mv_xor.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380
  1. /*
  2. * offload engine driver for the Marvell XOR engine
  3. * Copyright (C) 2007, 2008, Marvell International Ltd.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/delay.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spinlock.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/memory.h>
  26. #include <plat/mv_xor.h>
  27. #include "mv_xor.h"
  28. static void mv_xor_issue_pending(struct dma_chan *chan);
  29. #define to_mv_xor_chan(chan) \
  30. container_of(chan, struct mv_xor_chan, common)
  31. #define to_mv_xor_device(dev) \
  32. container_of(dev, struct mv_xor_device, common)
  33. #define to_mv_xor_slot(tx) \
  34. container_of(tx, struct mv_xor_desc_slot, async_tx)
  35. static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
  36. {
  37. struct mv_xor_desc *hw_desc = desc->hw_desc;
  38. hw_desc->status = (1 << 31);
  39. hw_desc->phy_next_desc = 0;
  40. hw_desc->desc_command = (1 << 31);
  41. }
  42. static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
  43. {
  44. struct mv_xor_desc *hw_desc = desc->hw_desc;
  45. return hw_desc->phy_dest_addr;
  46. }
  47. static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
  48. int src_idx)
  49. {
  50. struct mv_xor_desc *hw_desc = desc->hw_desc;
  51. return hw_desc->phy_src_addr[src_idx];
  52. }
  53. static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
  54. u32 byte_count)
  55. {
  56. struct mv_xor_desc *hw_desc = desc->hw_desc;
  57. hw_desc->byte_count = byte_count;
  58. }
  59. static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
  60. u32 next_desc_addr)
  61. {
  62. struct mv_xor_desc *hw_desc = desc->hw_desc;
  63. BUG_ON(hw_desc->phy_next_desc);
  64. hw_desc->phy_next_desc = next_desc_addr;
  65. }
  66. static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
  67. {
  68. struct mv_xor_desc *hw_desc = desc->hw_desc;
  69. hw_desc->phy_next_desc = 0;
  70. }
  71. static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
  72. {
  73. desc->value = val;
  74. }
  75. static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
  76. dma_addr_t addr)
  77. {
  78. struct mv_xor_desc *hw_desc = desc->hw_desc;
  79. hw_desc->phy_dest_addr = addr;
  80. }
  81. static int mv_chan_memset_slot_count(size_t len)
  82. {
  83. return 1;
  84. }
  85. #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
  86. static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
  87. int index, dma_addr_t addr)
  88. {
  89. struct mv_xor_desc *hw_desc = desc->hw_desc;
  90. hw_desc->phy_src_addr[index] = addr;
  91. if (desc->type == DMA_XOR)
  92. hw_desc->desc_command |= (1 << index);
  93. }
  94. static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
  95. {
  96. return __raw_readl(XOR_CURR_DESC(chan));
  97. }
  98. static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
  99. u32 next_desc_addr)
  100. {
  101. __raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
  102. }
  103. static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
  104. {
  105. __raw_writel(desc_addr, XOR_DEST_POINTER(chan));
  106. }
  107. static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
  108. {
  109. __raw_writel(block_size, XOR_BLOCK_SIZE(chan));
  110. }
  111. static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
  112. {
  113. __raw_writel(value, XOR_INIT_VALUE_LOW(chan));
  114. __raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
  115. }
  116. static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
  117. {
  118. u32 val = __raw_readl(XOR_INTR_MASK(chan));
  119. val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
  120. __raw_writel(val, XOR_INTR_MASK(chan));
  121. }
  122. static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
  123. {
  124. u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
  125. intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
  126. return intr_cause;
  127. }
  128. static int mv_is_err_intr(u32 intr_cause)
  129. {
  130. if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
  131. return 1;
  132. return 0;
  133. }
  134. static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
  135. {
  136. u32 val = (1 << (1 + (chan->idx * 16)));
  137. dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
  138. __raw_writel(val, XOR_INTR_CAUSE(chan));
  139. }
  140. static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
  141. {
  142. u32 val = 0xFFFF0000 >> (chan->idx * 16);
  143. __raw_writel(val, XOR_INTR_CAUSE(chan));
  144. }
  145. static int mv_can_chain(struct mv_xor_desc_slot *desc)
  146. {
  147. struct mv_xor_desc_slot *chain_old_tail = list_entry(
  148. desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
  149. if (chain_old_tail->type != desc->type)
  150. return 0;
  151. if (desc->type == DMA_MEMSET)
  152. return 0;
  153. return 1;
  154. }
  155. static void mv_set_mode(struct mv_xor_chan *chan,
  156. enum dma_transaction_type type)
  157. {
  158. u32 op_mode;
  159. u32 config = __raw_readl(XOR_CONFIG(chan));
  160. switch (type) {
  161. case DMA_XOR:
  162. op_mode = XOR_OPERATION_MODE_XOR;
  163. break;
  164. case DMA_MEMCPY:
  165. op_mode = XOR_OPERATION_MODE_MEMCPY;
  166. break;
  167. case DMA_MEMSET:
  168. op_mode = XOR_OPERATION_MODE_MEMSET;
  169. break;
  170. default:
  171. dev_printk(KERN_ERR, chan->device->common.dev,
  172. "error: unsupported operation %d.\n",
  173. type);
  174. BUG();
  175. return;
  176. }
  177. config &= ~0x7;
  178. config |= op_mode;
  179. __raw_writel(config, XOR_CONFIG(chan));
  180. chan->current_type = type;
  181. }
  182. static void mv_chan_activate(struct mv_xor_chan *chan)
  183. {
  184. u32 activation;
  185. dev_dbg(chan->device->common.dev, " activate chan.\n");
  186. activation = __raw_readl(XOR_ACTIVATION(chan));
  187. activation |= 0x1;
  188. __raw_writel(activation, XOR_ACTIVATION(chan));
  189. }
  190. static char mv_chan_is_busy(struct mv_xor_chan *chan)
  191. {
  192. u32 state = __raw_readl(XOR_ACTIVATION(chan));
  193. state = (state >> 4) & 0x3;
  194. return (state == 1) ? 1 : 0;
  195. }
  196. static int mv_chan_xor_slot_count(size_t len, int src_cnt)
  197. {
  198. return 1;
  199. }
  200. /**
  201. * mv_xor_free_slots - flags descriptor slots for reuse
  202. * @slot: Slot to free
  203. * Caller must hold &mv_chan->lock while calling this function
  204. */
  205. static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
  206. struct mv_xor_desc_slot *slot)
  207. {
  208. dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
  209. __func__, __LINE__, slot);
  210. slot->slots_per_op = 0;
  211. }
  212. /*
  213. * mv_xor_start_new_chain - program the engine to operate on new chain headed by
  214. * sw_desc
  215. * Caller must hold &mv_chan->lock while calling this function
  216. */
  217. static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
  218. struct mv_xor_desc_slot *sw_desc)
  219. {
  220. dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
  221. __func__, __LINE__, sw_desc);
  222. if (sw_desc->type != mv_chan->current_type)
  223. mv_set_mode(mv_chan, sw_desc->type);
  224. if (sw_desc->type == DMA_MEMSET) {
  225. /* for memset requests we need to program the engine, no
  226. * descriptors used.
  227. */
  228. struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
  229. mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
  230. mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
  231. mv_chan_set_value(mv_chan, sw_desc->value);
  232. } else {
  233. /* set the hardware chain */
  234. mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
  235. }
  236. mv_chan->pending += sw_desc->slot_cnt;
  237. mv_xor_issue_pending(&mv_chan->common);
  238. }
  239. static dma_cookie_t
  240. mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
  241. struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
  242. {
  243. BUG_ON(desc->async_tx.cookie < 0);
  244. if (desc->async_tx.cookie > 0) {
  245. cookie = desc->async_tx.cookie;
  246. /* call the callback (must not sleep or submit new
  247. * operations to this channel)
  248. */
  249. if (desc->async_tx.callback)
  250. desc->async_tx.callback(
  251. desc->async_tx.callback_param);
  252. /* unmap dma addresses
  253. * (unmap_single vs unmap_page?)
  254. */
  255. if (desc->group_head && desc->unmap_len) {
  256. struct mv_xor_desc_slot *unmap = desc->group_head;
  257. struct device *dev =
  258. &mv_chan->device->pdev->dev;
  259. u32 len = unmap->unmap_len;
  260. enum dma_ctrl_flags flags = desc->async_tx.flags;
  261. u32 src_cnt;
  262. dma_addr_t addr;
  263. dma_addr_t dest;
  264. src_cnt = unmap->unmap_src_cnt;
  265. dest = mv_desc_get_dest_addr(unmap);
  266. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  267. enum dma_data_direction dir;
  268. if (src_cnt > 1) /* is xor ? */
  269. dir = DMA_BIDIRECTIONAL;
  270. else
  271. dir = DMA_FROM_DEVICE;
  272. dma_unmap_page(dev, dest, len, dir);
  273. }
  274. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  275. while (src_cnt--) {
  276. addr = mv_desc_get_src_addr(unmap,
  277. src_cnt);
  278. if (addr == dest)
  279. continue;
  280. dma_unmap_page(dev, addr, len,
  281. DMA_TO_DEVICE);
  282. }
  283. }
  284. desc->group_head = NULL;
  285. }
  286. }
  287. /* run dependent operations */
  288. dma_run_dependencies(&desc->async_tx);
  289. return cookie;
  290. }
  291. static int
  292. mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
  293. {
  294. struct mv_xor_desc_slot *iter, *_iter;
  295. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  296. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  297. completed_node) {
  298. if (async_tx_test_ack(&iter->async_tx)) {
  299. list_del(&iter->completed_node);
  300. mv_xor_free_slots(mv_chan, iter);
  301. }
  302. }
  303. return 0;
  304. }
  305. static int
  306. mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
  307. struct mv_xor_chan *mv_chan)
  308. {
  309. dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
  310. __func__, __LINE__, desc, desc->async_tx.flags);
  311. list_del(&desc->chain_node);
  312. /* the client is allowed to attach dependent operations
  313. * until 'ack' is set
  314. */
  315. if (!async_tx_test_ack(&desc->async_tx)) {
  316. /* move this slot to the completed_slots */
  317. list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
  318. return 0;
  319. }
  320. mv_xor_free_slots(mv_chan, desc);
  321. return 0;
  322. }
  323. static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  324. {
  325. struct mv_xor_desc_slot *iter, *_iter;
  326. dma_cookie_t cookie = 0;
  327. int busy = mv_chan_is_busy(mv_chan);
  328. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  329. int seen_current = 0;
  330. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  331. dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
  332. mv_xor_clean_completed_slots(mv_chan);
  333. /* free completed slots from the chain starting with
  334. * the oldest descriptor
  335. */
  336. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  337. chain_node) {
  338. prefetch(_iter);
  339. prefetch(&_iter->async_tx);
  340. /* do not advance past the current descriptor loaded into the
  341. * hardware channel, subsequent descriptors are either in
  342. * process or have not been submitted
  343. */
  344. if (seen_current)
  345. break;
  346. /* stop the search if we reach the current descriptor and the
  347. * channel is busy
  348. */
  349. if (iter->async_tx.phys == current_desc) {
  350. seen_current = 1;
  351. if (busy)
  352. break;
  353. }
  354. cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
  355. if (mv_xor_clean_slot(iter, mv_chan))
  356. break;
  357. }
  358. if ((busy == 0) && !list_empty(&mv_chan->chain)) {
  359. struct mv_xor_desc_slot *chain_head;
  360. chain_head = list_entry(mv_chan->chain.next,
  361. struct mv_xor_desc_slot,
  362. chain_node);
  363. mv_xor_start_new_chain(mv_chan, chain_head);
  364. }
  365. if (cookie > 0)
  366. mv_chan->completed_cookie = cookie;
  367. }
  368. static void
  369. mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  370. {
  371. spin_lock_bh(&mv_chan->lock);
  372. __mv_xor_slot_cleanup(mv_chan);
  373. spin_unlock_bh(&mv_chan->lock);
  374. }
  375. static void mv_xor_tasklet(unsigned long data)
  376. {
  377. struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
  378. __mv_xor_slot_cleanup(chan);
  379. }
  380. static struct mv_xor_desc_slot *
  381. mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
  382. int slots_per_op)
  383. {
  384. struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
  385. LIST_HEAD(chain);
  386. int slots_found, retry = 0;
  387. /* start search from the last allocated descrtiptor
  388. * if a contiguous allocation can not be found start searching
  389. * from the beginning of the list
  390. */
  391. retry:
  392. slots_found = 0;
  393. if (retry == 0)
  394. iter = mv_chan->last_used;
  395. else
  396. iter = list_entry(&mv_chan->all_slots,
  397. struct mv_xor_desc_slot,
  398. slot_node);
  399. list_for_each_entry_safe_continue(
  400. iter, _iter, &mv_chan->all_slots, slot_node) {
  401. prefetch(_iter);
  402. prefetch(&_iter->async_tx);
  403. if (iter->slots_per_op) {
  404. /* give up after finding the first busy slot
  405. * on the second pass through the list
  406. */
  407. if (retry)
  408. break;
  409. slots_found = 0;
  410. continue;
  411. }
  412. /* start the allocation if the slot is correctly aligned */
  413. if (!slots_found++)
  414. alloc_start = iter;
  415. if (slots_found == num_slots) {
  416. struct mv_xor_desc_slot *alloc_tail = NULL;
  417. struct mv_xor_desc_slot *last_used = NULL;
  418. iter = alloc_start;
  419. while (num_slots) {
  420. int i;
  421. /* pre-ack all but the last descriptor */
  422. async_tx_ack(&iter->async_tx);
  423. list_add_tail(&iter->chain_node, &chain);
  424. alloc_tail = iter;
  425. iter->async_tx.cookie = 0;
  426. iter->slot_cnt = num_slots;
  427. iter->xor_check_result = NULL;
  428. for (i = 0; i < slots_per_op; i++) {
  429. iter->slots_per_op = slots_per_op - i;
  430. last_used = iter;
  431. iter = list_entry(iter->slot_node.next,
  432. struct mv_xor_desc_slot,
  433. slot_node);
  434. }
  435. num_slots -= slots_per_op;
  436. }
  437. alloc_tail->group_head = alloc_start;
  438. alloc_tail->async_tx.cookie = -EBUSY;
  439. list_splice(&chain, &alloc_tail->async_tx.tx_list);
  440. mv_chan->last_used = last_used;
  441. mv_desc_clear_next_desc(alloc_start);
  442. mv_desc_clear_next_desc(alloc_tail);
  443. return alloc_tail;
  444. }
  445. }
  446. if (!retry++)
  447. goto retry;
  448. /* try to free some slots if the allocation fails */
  449. tasklet_schedule(&mv_chan->irq_tasklet);
  450. return NULL;
  451. }
  452. static dma_cookie_t
  453. mv_desc_assign_cookie(struct mv_xor_chan *mv_chan,
  454. struct mv_xor_desc_slot *desc)
  455. {
  456. dma_cookie_t cookie = mv_chan->common.cookie;
  457. if (++cookie < 0)
  458. cookie = 1;
  459. mv_chan->common.cookie = desc->async_tx.cookie = cookie;
  460. return cookie;
  461. }
  462. /************************ DMA engine API functions ****************************/
  463. static dma_cookie_t
  464. mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
  465. {
  466. struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
  467. struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
  468. struct mv_xor_desc_slot *grp_start, *old_chain_tail;
  469. dma_cookie_t cookie;
  470. int new_hw_chain = 1;
  471. dev_dbg(mv_chan->device->common.dev,
  472. "%s sw_desc %p: async_tx %p\n",
  473. __func__, sw_desc, &sw_desc->async_tx);
  474. grp_start = sw_desc->group_head;
  475. spin_lock_bh(&mv_chan->lock);
  476. cookie = mv_desc_assign_cookie(mv_chan, sw_desc);
  477. if (list_empty(&mv_chan->chain))
  478. list_splice_init(&sw_desc->async_tx.tx_list, &mv_chan->chain);
  479. else {
  480. new_hw_chain = 0;
  481. old_chain_tail = list_entry(mv_chan->chain.prev,
  482. struct mv_xor_desc_slot,
  483. chain_node);
  484. list_splice_init(&grp_start->async_tx.tx_list,
  485. &old_chain_tail->chain_node);
  486. if (!mv_can_chain(grp_start))
  487. goto submit_done;
  488. dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
  489. old_chain_tail->async_tx.phys);
  490. /* fix up the hardware chain */
  491. mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
  492. /* if the channel is not busy */
  493. if (!mv_chan_is_busy(mv_chan)) {
  494. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  495. /*
  496. * and the curren desc is the end of the chain before
  497. * the append, then we need to start the channel
  498. */
  499. if (current_desc == old_chain_tail->async_tx.phys)
  500. new_hw_chain = 1;
  501. }
  502. }
  503. if (new_hw_chain)
  504. mv_xor_start_new_chain(mv_chan, grp_start);
  505. submit_done:
  506. spin_unlock_bh(&mv_chan->lock);
  507. return cookie;
  508. }
  509. /* returns the number of allocated descriptors */
  510. static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
  511. {
  512. char *hw_desc;
  513. int idx;
  514. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  515. struct mv_xor_desc_slot *slot = NULL;
  516. struct mv_xor_platform_data *plat_data =
  517. mv_chan->device->pdev->dev.platform_data;
  518. int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
  519. /* Allocate descriptor slots */
  520. idx = mv_chan->slots_allocated;
  521. while (idx < num_descs_in_pool) {
  522. slot = kzalloc(sizeof(*slot), GFP_KERNEL);
  523. if (!slot) {
  524. printk(KERN_INFO "MV XOR Channel only initialized"
  525. " %d descriptor slots", idx);
  526. break;
  527. }
  528. hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
  529. slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  530. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  531. slot->async_tx.tx_submit = mv_xor_tx_submit;
  532. INIT_LIST_HEAD(&slot->chain_node);
  533. INIT_LIST_HEAD(&slot->slot_node);
  534. hw_desc = (char *) mv_chan->device->dma_desc_pool;
  535. slot->async_tx.phys =
  536. (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  537. slot->idx = idx++;
  538. spin_lock_bh(&mv_chan->lock);
  539. mv_chan->slots_allocated = idx;
  540. list_add_tail(&slot->slot_node, &mv_chan->all_slots);
  541. spin_unlock_bh(&mv_chan->lock);
  542. }
  543. if (mv_chan->slots_allocated && !mv_chan->last_used)
  544. mv_chan->last_used = list_entry(mv_chan->all_slots.next,
  545. struct mv_xor_desc_slot,
  546. slot_node);
  547. dev_dbg(mv_chan->device->common.dev,
  548. "allocated %d descriptor slots last_used: %p\n",
  549. mv_chan->slots_allocated, mv_chan->last_used);
  550. return mv_chan->slots_allocated ? : -ENOMEM;
  551. }
  552. static struct dma_async_tx_descriptor *
  553. mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  554. size_t len, unsigned long flags)
  555. {
  556. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  557. struct mv_xor_desc_slot *sw_desc, *grp_start;
  558. int slot_cnt;
  559. dev_dbg(mv_chan->device->common.dev,
  560. "%s dest: %x src %x len: %u flags: %ld\n",
  561. __func__, dest, src, len, flags);
  562. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  563. return NULL;
  564. BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
  565. spin_lock_bh(&mv_chan->lock);
  566. slot_cnt = mv_chan_memcpy_slot_count(len);
  567. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  568. if (sw_desc) {
  569. sw_desc->type = DMA_MEMCPY;
  570. sw_desc->async_tx.flags = flags;
  571. grp_start = sw_desc->group_head;
  572. mv_desc_init(grp_start, flags);
  573. mv_desc_set_byte_count(grp_start, len);
  574. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  575. mv_desc_set_src_addr(grp_start, 0, src);
  576. sw_desc->unmap_src_cnt = 1;
  577. sw_desc->unmap_len = len;
  578. }
  579. spin_unlock_bh(&mv_chan->lock);
  580. dev_dbg(mv_chan->device->common.dev,
  581. "%s sw_desc %p async_tx %p\n",
  582. __func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
  583. return sw_desc ? &sw_desc->async_tx : NULL;
  584. }
  585. static struct dma_async_tx_descriptor *
  586. mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
  587. size_t len, unsigned long flags)
  588. {
  589. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  590. struct mv_xor_desc_slot *sw_desc, *grp_start;
  591. int slot_cnt;
  592. dev_dbg(mv_chan->device->common.dev,
  593. "%s dest: %x len: %u flags: %ld\n",
  594. __func__, dest, len, flags);
  595. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  596. return NULL;
  597. BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
  598. spin_lock_bh(&mv_chan->lock);
  599. slot_cnt = mv_chan_memset_slot_count(len);
  600. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  601. if (sw_desc) {
  602. sw_desc->type = DMA_MEMSET;
  603. sw_desc->async_tx.flags = flags;
  604. grp_start = sw_desc->group_head;
  605. mv_desc_init(grp_start, flags);
  606. mv_desc_set_byte_count(grp_start, len);
  607. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  608. mv_desc_set_block_fill_val(grp_start, value);
  609. sw_desc->unmap_src_cnt = 1;
  610. sw_desc->unmap_len = len;
  611. }
  612. spin_unlock_bh(&mv_chan->lock);
  613. dev_dbg(mv_chan->device->common.dev,
  614. "%s sw_desc %p async_tx %p \n",
  615. __func__, sw_desc, &sw_desc->async_tx);
  616. return sw_desc ? &sw_desc->async_tx : NULL;
  617. }
  618. static struct dma_async_tx_descriptor *
  619. mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  620. unsigned int src_cnt, size_t len, unsigned long flags)
  621. {
  622. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  623. struct mv_xor_desc_slot *sw_desc, *grp_start;
  624. int slot_cnt;
  625. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  626. return NULL;
  627. BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
  628. dev_dbg(mv_chan->device->common.dev,
  629. "%s src_cnt: %d len: dest %x %u flags: %ld\n",
  630. __func__, src_cnt, len, dest, flags);
  631. spin_lock_bh(&mv_chan->lock);
  632. slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
  633. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  634. if (sw_desc) {
  635. sw_desc->type = DMA_XOR;
  636. sw_desc->async_tx.flags = flags;
  637. grp_start = sw_desc->group_head;
  638. mv_desc_init(grp_start, flags);
  639. /* the byte count field is the same as in memcpy desc*/
  640. mv_desc_set_byte_count(grp_start, len);
  641. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  642. sw_desc->unmap_src_cnt = src_cnt;
  643. sw_desc->unmap_len = len;
  644. while (src_cnt--)
  645. mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
  646. }
  647. spin_unlock_bh(&mv_chan->lock);
  648. dev_dbg(mv_chan->device->common.dev,
  649. "%s sw_desc %p async_tx %p \n",
  650. __func__, sw_desc, &sw_desc->async_tx);
  651. return sw_desc ? &sw_desc->async_tx : NULL;
  652. }
  653. static void mv_xor_free_chan_resources(struct dma_chan *chan)
  654. {
  655. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  656. struct mv_xor_desc_slot *iter, *_iter;
  657. int in_use_descs = 0;
  658. mv_xor_slot_cleanup(mv_chan);
  659. spin_lock_bh(&mv_chan->lock);
  660. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  661. chain_node) {
  662. in_use_descs++;
  663. list_del(&iter->chain_node);
  664. }
  665. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  666. completed_node) {
  667. in_use_descs++;
  668. list_del(&iter->completed_node);
  669. }
  670. list_for_each_entry_safe_reverse(
  671. iter, _iter, &mv_chan->all_slots, slot_node) {
  672. list_del(&iter->slot_node);
  673. kfree(iter);
  674. mv_chan->slots_allocated--;
  675. }
  676. mv_chan->last_used = NULL;
  677. dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
  678. __func__, mv_chan->slots_allocated);
  679. spin_unlock_bh(&mv_chan->lock);
  680. if (in_use_descs)
  681. dev_err(mv_chan->device->common.dev,
  682. "freeing %d in use descriptors!\n", in_use_descs);
  683. }
  684. /**
  685. * mv_xor_is_complete - poll the status of an XOR transaction
  686. * @chan: XOR channel handle
  687. * @cookie: XOR transaction identifier
  688. */
  689. static enum dma_status mv_xor_is_complete(struct dma_chan *chan,
  690. dma_cookie_t cookie,
  691. dma_cookie_t *done,
  692. dma_cookie_t *used)
  693. {
  694. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  695. dma_cookie_t last_used;
  696. dma_cookie_t last_complete;
  697. enum dma_status ret;
  698. last_used = chan->cookie;
  699. last_complete = mv_chan->completed_cookie;
  700. mv_chan->is_complete_cookie = cookie;
  701. if (done)
  702. *done = last_complete;
  703. if (used)
  704. *used = last_used;
  705. ret = dma_async_is_complete(cookie, last_complete, last_used);
  706. if (ret == DMA_SUCCESS) {
  707. mv_xor_clean_completed_slots(mv_chan);
  708. return ret;
  709. }
  710. mv_xor_slot_cleanup(mv_chan);
  711. last_used = chan->cookie;
  712. last_complete = mv_chan->completed_cookie;
  713. if (done)
  714. *done = last_complete;
  715. if (used)
  716. *used = last_used;
  717. return dma_async_is_complete(cookie, last_complete, last_used);
  718. }
  719. static void mv_dump_xor_regs(struct mv_xor_chan *chan)
  720. {
  721. u32 val;
  722. val = __raw_readl(XOR_CONFIG(chan));
  723. dev_printk(KERN_ERR, chan->device->common.dev,
  724. "config 0x%08x.\n", val);
  725. val = __raw_readl(XOR_ACTIVATION(chan));
  726. dev_printk(KERN_ERR, chan->device->common.dev,
  727. "activation 0x%08x.\n", val);
  728. val = __raw_readl(XOR_INTR_CAUSE(chan));
  729. dev_printk(KERN_ERR, chan->device->common.dev,
  730. "intr cause 0x%08x.\n", val);
  731. val = __raw_readl(XOR_INTR_MASK(chan));
  732. dev_printk(KERN_ERR, chan->device->common.dev,
  733. "intr mask 0x%08x.\n", val);
  734. val = __raw_readl(XOR_ERROR_CAUSE(chan));
  735. dev_printk(KERN_ERR, chan->device->common.dev,
  736. "error cause 0x%08x.\n", val);
  737. val = __raw_readl(XOR_ERROR_ADDR(chan));
  738. dev_printk(KERN_ERR, chan->device->common.dev,
  739. "error addr 0x%08x.\n", val);
  740. }
  741. static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
  742. u32 intr_cause)
  743. {
  744. if (intr_cause & (1 << 4)) {
  745. dev_dbg(chan->device->common.dev,
  746. "ignore this error\n");
  747. return;
  748. }
  749. dev_printk(KERN_ERR, chan->device->common.dev,
  750. "error on chan %d. intr cause 0x%08x.\n",
  751. chan->idx, intr_cause);
  752. mv_dump_xor_regs(chan);
  753. BUG();
  754. }
  755. static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
  756. {
  757. struct mv_xor_chan *chan = data;
  758. u32 intr_cause = mv_chan_get_intr_cause(chan);
  759. dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
  760. if (mv_is_err_intr(intr_cause))
  761. mv_xor_err_interrupt_handler(chan, intr_cause);
  762. tasklet_schedule(&chan->irq_tasklet);
  763. mv_xor_device_clear_eoc_cause(chan);
  764. return IRQ_HANDLED;
  765. }
  766. static void mv_xor_issue_pending(struct dma_chan *chan)
  767. {
  768. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  769. if (mv_chan->pending >= MV_XOR_THRESHOLD) {
  770. mv_chan->pending = 0;
  771. mv_chan_activate(mv_chan);
  772. }
  773. }
  774. /*
  775. * Perform a transaction to verify the HW works.
  776. */
  777. #define MV_XOR_TEST_SIZE 2000
  778. static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
  779. {
  780. int i;
  781. void *src, *dest;
  782. dma_addr_t src_dma, dest_dma;
  783. struct dma_chan *dma_chan;
  784. dma_cookie_t cookie;
  785. struct dma_async_tx_descriptor *tx;
  786. int err = 0;
  787. struct mv_xor_chan *mv_chan;
  788. src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  789. if (!src)
  790. return -ENOMEM;
  791. dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  792. if (!dest) {
  793. kfree(src);
  794. return -ENOMEM;
  795. }
  796. /* Fill in src buffer */
  797. for (i = 0; i < MV_XOR_TEST_SIZE; i++)
  798. ((u8 *) src)[i] = (u8)i;
  799. /* Start copy, using first DMA channel */
  800. dma_chan = container_of(device->common.channels.next,
  801. struct dma_chan,
  802. device_node);
  803. if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
  804. err = -ENODEV;
  805. goto out;
  806. }
  807. dest_dma = dma_map_single(dma_chan->device->dev, dest,
  808. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  809. src_dma = dma_map_single(dma_chan->device->dev, src,
  810. MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
  811. tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
  812. MV_XOR_TEST_SIZE, 0);
  813. cookie = mv_xor_tx_submit(tx);
  814. mv_xor_issue_pending(dma_chan);
  815. async_tx_ack(tx);
  816. msleep(1);
  817. if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
  818. DMA_SUCCESS) {
  819. dev_printk(KERN_ERR, dma_chan->device->dev,
  820. "Self-test copy timed out, disabling\n");
  821. err = -ENODEV;
  822. goto free_resources;
  823. }
  824. mv_chan = to_mv_xor_chan(dma_chan);
  825. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  826. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  827. if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
  828. dev_printk(KERN_ERR, dma_chan->device->dev,
  829. "Self-test copy failed compare, disabling\n");
  830. err = -ENODEV;
  831. goto free_resources;
  832. }
  833. free_resources:
  834. mv_xor_free_chan_resources(dma_chan);
  835. out:
  836. kfree(src);
  837. kfree(dest);
  838. return err;
  839. }
  840. #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
  841. static int __devinit
  842. mv_xor_xor_self_test(struct mv_xor_device *device)
  843. {
  844. int i, src_idx;
  845. struct page *dest;
  846. struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
  847. dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
  848. dma_addr_t dest_dma;
  849. struct dma_async_tx_descriptor *tx;
  850. struct dma_chan *dma_chan;
  851. dma_cookie_t cookie;
  852. u8 cmp_byte = 0;
  853. u32 cmp_word;
  854. int err = 0;
  855. struct mv_xor_chan *mv_chan;
  856. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  857. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  858. if (!xor_srcs[src_idx]) {
  859. while (src_idx--)
  860. __free_page(xor_srcs[src_idx]);
  861. return -ENOMEM;
  862. }
  863. }
  864. dest = alloc_page(GFP_KERNEL);
  865. if (!dest) {
  866. while (src_idx--)
  867. __free_page(xor_srcs[src_idx]);
  868. return -ENOMEM;
  869. }
  870. /* Fill in src buffers */
  871. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  872. u8 *ptr = page_address(xor_srcs[src_idx]);
  873. for (i = 0; i < PAGE_SIZE; i++)
  874. ptr[i] = (1 << src_idx);
  875. }
  876. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
  877. cmp_byte ^= (u8) (1 << src_idx);
  878. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  879. (cmp_byte << 8) | cmp_byte;
  880. memset(page_address(dest), 0, PAGE_SIZE);
  881. dma_chan = container_of(device->common.channels.next,
  882. struct dma_chan,
  883. device_node);
  884. if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
  885. err = -ENODEV;
  886. goto out;
  887. }
  888. /* test xor */
  889. dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
  890. DMA_FROM_DEVICE);
  891. for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
  892. dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
  893. 0, PAGE_SIZE, DMA_TO_DEVICE);
  894. tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  895. MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
  896. cookie = mv_xor_tx_submit(tx);
  897. mv_xor_issue_pending(dma_chan);
  898. async_tx_ack(tx);
  899. msleep(8);
  900. if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
  901. DMA_SUCCESS) {
  902. dev_printk(KERN_ERR, dma_chan->device->dev,
  903. "Self-test xor timed out, disabling\n");
  904. err = -ENODEV;
  905. goto free_resources;
  906. }
  907. mv_chan = to_mv_xor_chan(dma_chan);
  908. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  909. PAGE_SIZE, DMA_FROM_DEVICE);
  910. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  911. u32 *ptr = page_address(dest);
  912. if (ptr[i] != cmp_word) {
  913. dev_printk(KERN_ERR, dma_chan->device->dev,
  914. "Self-test xor failed compare, disabling."
  915. " index %d, data %x, expected %x\n", i,
  916. ptr[i], cmp_word);
  917. err = -ENODEV;
  918. goto free_resources;
  919. }
  920. }
  921. free_resources:
  922. mv_xor_free_chan_resources(dma_chan);
  923. out:
  924. src_idx = MV_XOR_NUM_SRC_TEST;
  925. while (src_idx--)
  926. __free_page(xor_srcs[src_idx]);
  927. __free_page(dest);
  928. return err;
  929. }
  930. static int __devexit mv_xor_remove(struct platform_device *dev)
  931. {
  932. struct mv_xor_device *device = platform_get_drvdata(dev);
  933. struct dma_chan *chan, *_chan;
  934. struct mv_xor_chan *mv_chan;
  935. struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
  936. dma_async_device_unregister(&device->common);
  937. dma_free_coherent(&dev->dev, plat_data->pool_size,
  938. device->dma_desc_pool_virt, device->dma_desc_pool);
  939. list_for_each_entry_safe(chan, _chan, &device->common.channels,
  940. device_node) {
  941. mv_chan = to_mv_xor_chan(chan);
  942. list_del(&chan->device_node);
  943. }
  944. return 0;
  945. }
  946. static int __devinit mv_xor_probe(struct platform_device *pdev)
  947. {
  948. int ret = 0;
  949. int irq;
  950. struct mv_xor_device *adev;
  951. struct mv_xor_chan *mv_chan;
  952. struct dma_device *dma_dev;
  953. struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
  954. adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
  955. if (!adev)
  956. return -ENOMEM;
  957. dma_dev = &adev->common;
  958. /* allocate coherent memory for hardware descriptors
  959. * note: writecombine gives slightly better performance, but
  960. * requires that we explicitly flush the writes
  961. */
  962. adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
  963. plat_data->pool_size,
  964. &adev->dma_desc_pool,
  965. GFP_KERNEL);
  966. if (!adev->dma_desc_pool_virt)
  967. return -ENOMEM;
  968. adev->id = plat_data->hw_id;
  969. /* discover transaction capabilites from the platform data */
  970. dma_dev->cap_mask = plat_data->cap_mask;
  971. adev->pdev = pdev;
  972. platform_set_drvdata(pdev, adev);
  973. adev->shared = platform_get_drvdata(plat_data->shared);
  974. INIT_LIST_HEAD(&dma_dev->channels);
  975. /* set base routines */
  976. dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
  977. dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
  978. dma_dev->device_is_tx_complete = mv_xor_is_complete;
  979. dma_dev->device_issue_pending = mv_xor_issue_pending;
  980. dma_dev->dev = &pdev->dev;
  981. /* set prep routines based on capability */
  982. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
  983. dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
  984. if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
  985. dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
  986. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  987. dma_dev->max_xor = 8; ;
  988. dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
  989. }
  990. mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
  991. if (!mv_chan) {
  992. ret = -ENOMEM;
  993. goto err_free_dma;
  994. }
  995. mv_chan->device = adev;
  996. mv_chan->idx = plat_data->hw_id;
  997. mv_chan->mmr_base = adev->shared->xor_base;
  998. if (!mv_chan->mmr_base) {
  999. ret = -ENOMEM;
  1000. goto err_free_dma;
  1001. }
  1002. tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
  1003. mv_chan);
  1004. /* clear errors before enabling interrupts */
  1005. mv_xor_device_clear_err_status(mv_chan);
  1006. irq = platform_get_irq(pdev, 0);
  1007. if (irq < 0) {
  1008. ret = irq;
  1009. goto err_free_dma;
  1010. }
  1011. ret = devm_request_irq(&pdev->dev, irq,
  1012. mv_xor_interrupt_handler,
  1013. 0, dev_name(&pdev->dev), mv_chan);
  1014. if (ret)
  1015. goto err_free_dma;
  1016. mv_chan_unmask_interrupts(mv_chan);
  1017. mv_set_mode(mv_chan, DMA_MEMCPY);
  1018. spin_lock_init(&mv_chan->lock);
  1019. INIT_LIST_HEAD(&mv_chan->chain);
  1020. INIT_LIST_HEAD(&mv_chan->completed_slots);
  1021. INIT_LIST_HEAD(&mv_chan->all_slots);
  1022. mv_chan->common.device = dma_dev;
  1023. list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
  1024. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
  1025. ret = mv_xor_memcpy_self_test(adev);
  1026. dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
  1027. if (ret)
  1028. goto err_free_dma;
  1029. }
  1030. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  1031. ret = mv_xor_xor_self_test(adev);
  1032. dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
  1033. if (ret)
  1034. goto err_free_dma;
  1035. }
  1036. dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
  1037. "( %s%s%s%s)\n",
  1038. dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
  1039. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
  1040. dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
  1041. dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
  1042. dma_async_device_register(dma_dev);
  1043. goto out;
  1044. err_free_dma:
  1045. dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
  1046. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  1047. out:
  1048. return ret;
  1049. }
  1050. static void
  1051. mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
  1052. struct mbus_dram_target_info *dram)
  1053. {
  1054. void __iomem *base = msp->xor_base;
  1055. u32 win_enable = 0;
  1056. int i;
  1057. for (i = 0; i < 8; i++) {
  1058. writel(0, base + WINDOW_BASE(i));
  1059. writel(0, base + WINDOW_SIZE(i));
  1060. if (i < 4)
  1061. writel(0, base + WINDOW_REMAP_HIGH(i));
  1062. }
  1063. for (i = 0; i < dram->num_cs; i++) {
  1064. struct mbus_dram_window *cs = dram->cs + i;
  1065. writel((cs->base & 0xffff0000) |
  1066. (cs->mbus_attr << 8) |
  1067. dram->mbus_dram_target_id, base + WINDOW_BASE(i));
  1068. writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
  1069. win_enable |= (1 << i);
  1070. win_enable |= 3 << (16 + (2 * i));
  1071. }
  1072. writel(win_enable, base + WINDOW_BAR_ENABLE(0));
  1073. writel(win_enable, base + WINDOW_BAR_ENABLE(1));
  1074. }
  1075. static struct platform_driver mv_xor_driver = {
  1076. .probe = mv_xor_probe,
  1077. .remove = __devexit_p(mv_xor_remove),
  1078. .driver = {
  1079. .owner = THIS_MODULE,
  1080. .name = MV_XOR_NAME,
  1081. },
  1082. };
  1083. static int mv_xor_shared_probe(struct platform_device *pdev)
  1084. {
  1085. struct mv_xor_platform_shared_data *msd = pdev->dev.platform_data;
  1086. struct mv_xor_shared_private *msp;
  1087. struct resource *res;
  1088. dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
  1089. msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
  1090. if (!msp)
  1091. return -ENOMEM;
  1092. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1093. if (!res)
  1094. return -ENODEV;
  1095. msp->xor_base = devm_ioremap(&pdev->dev, res->start,
  1096. res->end - res->start + 1);
  1097. if (!msp->xor_base)
  1098. return -EBUSY;
  1099. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1100. if (!res)
  1101. return -ENODEV;
  1102. msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
  1103. res->end - res->start + 1);
  1104. if (!msp->xor_high_base)
  1105. return -EBUSY;
  1106. platform_set_drvdata(pdev, msp);
  1107. /*
  1108. * (Re-)program MBUS remapping windows if we are asked to.
  1109. */
  1110. if (msd != NULL && msd->dram != NULL)
  1111. mv_xor_conf_mbus_windows(msp, msd->dram);
  1112. return 0;
  1113. }
  1114. static int mv_xor_shared_remove(struct platform_device *pdev)
  1115. {
  1116. return 0;
  1117. }
  1118. static struct platform_driver mv_xor_shared_driver = {
  1119. .probe = mv_xor_shared_probe,
  1120. .remove = mv_xor_shared_remove,
  1121. .driver = {
  1122. .owner = THIS_MODULE,
  1123. .name = MV_XOR_SHARED_NAME,
  1124. },
  1125. };
  1126. static int __init mv_xor_init(void)
  1127. {
  1128. int rc;
  1129. rc = platform_driver_register(&mv_xor_shared_driver);
  1130. if (!rc) {
  1131. rc = platform_driver_register(&mv_xor_driver);
  1132. if (rc)
  1133. platform_driver_unregister(&mv_xor_shared_driver);
  1134. }
  1135. return rc;
  1136. }
  1137. module_init(mv_xor_init);
  1138. /* it's currently unsafe to unload this module */
  1139. #if 0
  1140. static void __exit mv_xor_exit(void)
  1141. {
  1142. platform_driver_unregister(&mv_xor_driver);
  1143. platform_driver_unregister(&mv_xor_shared_driver);
  1144. return;
  1145. }
  1146. module_exit(mv_xor_exit);
  1147. #endif
  1148. MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
  1149. MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
  1150. MODULE_LICENSE("GPL");