cpufreq_ondemand.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710
  1. /*
  2. * drivers/cpufreq/cpufreq_ondemand.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/init.h>
  15. #include <linux/cpufreq.h>
  16. #include <linux/cpu.h>
  17. #include <linux/jiffies.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/mutex.h>
  20. #include <linux/hrtimer.h>
  21. #include <linux/tick.h>
  22. #include <linux/ktime.h>
  23. #include <linux/sched.h>
  24. /*
  25. * dbs is used in this file as a shortform for demandbased switching
  26. * It helps to keep variable names smaller, simpler
  27. */
  28. #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
  29. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  30. #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
  31. #define MICRO_FREQUENCY_UP_THRESHOLD (95)
  32. #define MIN_FREQUENCY_UP_THRESHOLD (11)
  33. #define MAX_FREQUENCY_UP_THRESHOLD (100)
  34. /*
  35. * The polling frequency of this governor depends on the capability of
  36. * the processor. Default polling frequency is 1000 times the transition
  37. * latency of the processor. The governor will work on any processor with
  38. * transition latency <= 10mS, using appropriate sampling
  39. * rate.
  40. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
  41. * this governor will not work.
  42. * All times here are in uS.
  43. */
  44. static unsigned int def_sampling_rate;
  45. #define MIN_SAMPLING_RATE_RATIO (2)
  46. /* for correct statistics, we need at least 10 ticks between each measure */
  47. #define MIN_STAT_SAMPLING_RATE \
  48. (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
  49. #define MIN_SAMPLING_RATE \
  50. (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
  51. /* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
  52. * Define the minimal settable sampling rate to the greater of:
  53. * - "HW transition latency" * 100 (same as default sampling / 10)
  54. * - MIN_STAT_SAMPLING_RATE
  55. * To avoid that userspace shoots itself.
  56. */
  57. static unsigned int minimum_sampling_rate(void)
  58. {
  59. return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
  60. }
  61. /* This will also vanish soon with removing sampling_rate_max */
  62. #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
  63. #define LATENCY_MULTIPLIER (1000)
  64. #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
  65. static void do_dbs_timer(struct work_struct *work);
  66. /* Sampling types */
  67. enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
  68. struct cpu_dbs_info_s {
  69. cputime64_t prev_cpu_idle;
  70. cputime64_t prev_cpu_wall;
  71. cputime64_t prev_cpu_nice;
  72. struct cpufreq_policy *cur_policy;
  73. struct delayed_work work;
  74. struct cpufreq_frequency_table *freq_table;
  75. unsigned int freq_lo;
  76. unsigned int freq_lo_jiffies;
  77. unsigned int freq_hi_jiffies;
  78. int cpu;
  79. unsigned int enable:1,
  80. sample_type:1;
  81. };
  82. static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
  83. static unsigned int dbs_enable; /* number of CPUs using this policy */
  84. /*
  85. * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
  86. * lock and dbs_mutex. cpu_hotplug lock should always be held before
  87. * dbs_mutex. If any function that can potentially take cpu_hotplug lock
  88. * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
  89. * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
  90. * is recursive for the same process. -Venki
  91. */
  92. static DEFINE_MUTEX(dbs_mutex);
  93. static struct workqueue_struct *kondemand_wq;
  94. static struct dbs_tuners {
  95. unsigned int sampling_rate;
  96. unsigned int up_threshold;
  97. unsigned int down_differential;
  98. unsigned int ignore_nice;
  99. unsigned int powersave_bias;
  100. } dbs_tuners_ins = {
  101. .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
  102. .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
  103. .ignore_nice = 0,
  104. .powersave_bias = 0,
  105. };
  106. static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
  107. cputime64_t *wall)
  108. {
  109. cputime64_t idle_time;
  110. cputime64_t cur_wall_time;
  111. cputime64_t busy_time;
  112. cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
  113. busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
  114. kstat_cpu(cpu).cpustat.system);
  115. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
  116. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
  117. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
  118. busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
  119. idle_time = cputime64_sub(cur_wall_time, busy_time);
  120. if (wall)
  121. *wall = cur_wall_time;
  122. return idle_time;
  123. }
  124. static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
  125. {
  126. u64 idle_time = get_cpu_idle_time_us(cpu, wall);
  127. if (idle_time == -1ULL)
  128. return get_cpu_idle_time_jiffy(cpu, wall);
  129. return idle_time;
  130. }
  131. /*
  132. * Find right freq to be set now with powersave_bias on.
  133. * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
  134. * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
  135. */
  136. static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
  137. unsigned int freq_next,
  138. unsigned int relation)
  139. {
  140. unsigned int freq_req, freq_reduc, freq_avg;
  141. unsigned int freq_hi, freq_lo;
  142. unsigned int index = 0;
  143. unsigned int jiffies_total, jiffies_hi, jiffies_lo;
  144. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
  145. if (!dbs_info->freq_table) {
  146. dbs_info->freq_lo = 0;
  147. dbs_info->freq_lo_jiffies = 0;
  148. return freq_next;
  149. }
  150. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
  151. relation, &index);
  152. freq_req = dbs_info->freq_table[index].frequency;
  153. freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
  154. freq_avg = freq_req - freq_reduc;
  155. /* Find freq bounds for freq_avg in freq_table */
  156. index = 0;
  157. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  158. CPUFREQ_RELATION_H, &index);
  159. freq_lo = dbs_info->freq_table[index].frequency;
  160. index = 0;
  161. cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
  162. CPUFREQ_RELATION_L, &index);
  163. freq_hi = dbs_info->freq_table[index].frequency;
  164. /* Find out how long we have to be in hi and lo freqs */
  165. if (freq_hi == freq_lo) {
  166. dbs_info->freq_lo = 0;
  167. dbs_info->freq_lo_jiffies = 0;
  168. return freq_lo;
  169. }
  170. jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  171. jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
  172. jiffies_hi += ((freq_hi - freq_lo) / 2);
  173. jiffies_hi /= (freq_hi - freq_lo);
  174. jiffies_lo = jiffies_total - jiffies_hi;
  175. dbs_info->freq_lo = freq_lo;
  176. dbs_info->freq_lo_jiffies = jiffies_lo;
  177. dbs_info->freq_hi_jiffies = jiffies_hi;
  178. return freq_hi;
  179. }
  180. static void ondemand_powersave_bias_init(void)
  181. {
  182. int i;
  183. for_each_online_cpu(i) {
  184. struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
  185. dbs_info->freq_table = cpufreq_frequency_get_table(i);
  186. dbs_info->freq_lo = 0;
  187. }
  188. }
  189. /************************** sysfs interface ************************/
  190. static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
  191. {
  192. static int print_once;
  193. if (!print_once) {
  194. printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
  195. "sysfs file is deprecated - used by: %s\n",
  196. current->comm);
  197. print_once = 1;
  198. }
  199. return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
  200. }
  201. static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
  202. {
  203. static int print_once;
  204. if (!print_once) {
  205. printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_min "
  206. "sysfs file is deprecated - used by: %s\n",
  207. current->comm);
  208. print_once = 1;
  209. }
  210. return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
  211. }
  212. #define define_one_ro(_name) \
  213. static struct freq_attr _name = \
  214. __ATTR(_name, 0444, show_##_name, NULL)
  215. define_one_ro(sampling_rate_max);
  216. define_one_ro(sampling_rate_min);
  217. /* cpufreq_ondemand Governor Tunables */
  218. #define show_one(file_name, object) \
  219. static ssize_t show_##file_name \
  220. (struct cpufreq_policy *unused, char *buf) \
  221. { \
  222. return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
  223. }
  224. show_one(sampling_rate, sampling_rate);
  225. show_one(up_threshold, up_threshold);
  226. show_one(ignore_nice_load, ignore_nice);
  227. show_one(powersave_bias, powersave_bias);
  228. static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
  229. const char *buf, size_t count)
  230. {
  231. unsigned int input;
  232. int ret;
  233. ret = sscanf(buf, "%u", &input);
  234. mutex_lock(&dbs_mutex);
  235. if (ret != 1) {
  236. mutex_unlock(&dbs_mutex);
  237. return -EINVAL;
  238. }
  239. dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
  240. mutex_unlock(&dbs_mutex);
  241. return count;
  242. }
  243. static ssize_t store_up_threshold(struct cpufreq_policy *unused,
  244. const char *buf, size_t count)
  245. {
  246. unsigned int input;
  247. int ret;
  248. ret = sscanf(buf, "%u", &input);
  249. mutex_lock(&dbs_mutex);
  250. if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
  251. input < MIN_FREQUENCY_UP_THRESHOLD) {
  252. mutex_unlock(&dbs_mutex);
  253. return -EINVAL;
  254. }
  255. dbs_tuners_ins.up_threshold = input;
  256. mutex_unlock(&dbs_mutex);
  257. return count;
  258. }
  259. static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
  260. const char *buf, size_t count)
  261. {
  262. unsigned int input;
  263. int ret;
  264. unsigned int j;
  265. ret = sscanf(buf, "%u", &input);
  266. if (ret != 1)
  267. return -EINVAL;
  268. if (input > 1)
  269. input = 1;
  270. mutex_lock(&dbs_mutex);
  271. if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
  272. mutex_unlock(&dbs_mutex);
  273. return count;
  274. }
  275. dbs_tuners_ins.ignore_nice = input;
  276. /* we need to re-evaluate prev_cpu_idle */
  277. for_each_online_cpu(j) {
  278. struct cpu_dbs_info_s *dbs_info;
  279. dbs_info = &per_cpu(cpu_dbs_info, j);
  280. dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  281. &dbs_info->prev_cpu_wall);
  282. if (dbs_tuners_ins.ignore_nice)
  283. dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  284. }
  285. mutex_unlock(&dbs_mutex);
  286. return count;
  287. }
  288. static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
  289. const char *buf, size_t count)
  290. {
  291. unsigned int input;
  292. int ret;
  293. ret = sscanf(buf, "%u", &input);
  294. if (ret != 1)
  295. return -EINVAL;
  296. if (input > 1000)
  297. input = 1000;
  298. mutex_lock(&dbs_mutex);
  299. dbs_tuners_ins.powersave_bias = input;
  300. ondemand_powersave_bias_init();
  301. mutex_unlock(&dbs_mutex);
  302. return count;
  303. }
  304. #define define_one_rw(_name) \
  305. static struct freq_attr _name = \
  306. __ATTR(_name, 0644, show_##_name, store_##_name)
  307. define_one_rw(sampling_rate);
  308. define_one_rw(up_threshold);
  309. define_one_rw(ignore_nice_load);
  310. define_one_rw(powersave_bias);
  311. static struct attribute *dbs_attributes[] = {
  312. &sampling_rate_max.attr,
  313. &sampling_rate_min.attr,
  314. &sampling_rate.attr,
  315. &up_threshold.attr,
  316. &ignore_nice_load.attr,
  317. &powersave_bias.attr,
  318. NULL
  319. };
  320. static struct attribute_group dbs_attr_group = {
  321. .attrs = dbs_attributes,
  322. .name = "ondemand",
  323. };
  324. /************************** sysfs end ************************/
  325. static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
  326. {
  327. unsigned int max_load_freq;
  328. struct cpufreq_policy *policy;
  329. unsigned int j;
  330. if (!this_dbs_info->enable)
  331. return;
  332. this_dbs_info->freq_lo = 0;
  333. policy = this_dbs_info->cur_policy;
  334. /*
  335. * Every sampling_rate, we check, if current idle time is less
  336. * than 20% (default), then we try to increase frequency
  337. * Every sampling_rate, we look for a the lowest
  338. * frequency which can sustain the load while keeping idle time over
  339. * 30%. If such a frequency exist, we try to decrease to this frequency.
  340. *
  341. * Any frequency increase takes it to the maximum frequency.
  342. * Frequency reduction happens at minimum steps of
  343. * 5% (default) of current frequency
  344. */
  345. /* Get Absolute Load - in terms of freq */
  346. max_load_freq = 0;
  347. for_each_cpu(j, policy->cpus) {
  348. struct cpu_dbs_info_s *j_dbs_info;
  349. cputime64_t cur_wall_time, cur_idle_time;
  350. unsigned int idle_time, wall_time;
  351. unsigned int load, load_freq;
  352. int freq_avg;
  353. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  354. cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
  355. wall_time = (unsigned int) cputime64_sub(cur_wall_time,
  356. j_dbs_info->prev_cpu_wall);
  357. j_dbs_info->prev_cpu_wall = cur_wall_time;
  358. idle_time = (unsigned int) cputime64_sub(cur_idle_time,
  359. j_dbs_info->prev_cpu_idle);
  360. j_dbs_info->prev_cpu_idle = cur_idle_time;
  361. if (dbs_tuners_ins.ignore_nice) {
  362. cputime64_t cur_nice;
  363. unsigned long cur_nice_jiffies;
  364. cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
  365. j_dbs_info->prev_cpu_nice);
  366. /*
  367. * Assumption: nice time between sampling periods will
  368. * be less than 2^32 jiffies for 32 bit sys
  369. */
  370. cur_nice_jiffies = (unsigned long)
  371. cputime64_to_jiffies64(cur_nice);
  372. j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
  373. idle_time += jiffies_to_usecs(cur_nice_jiffies);
  374. }
  375. if (unlikely(!wall_time || wall_time < idle_time))
  376. continue;
  377. load = 100 * (wall_time - idle_time) / wall_time;
  378. freq_avg = __cpufreq_driver_getavg(policy, j);
  379. if (freq_avg <= 0)
  380. freq_avg = policy->cur;
  381. load_freq = load * freq_avg;
  382. if (load_freq > max_load_freq)
  383. max_load_freq = load_freq;
  384. }
  385. /* Check for frequency increase */
  386. if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
  387. /* if we are already at full speed then break out early */
  388. if (!dbs_tuners_ins.powersave_bias) {
  389. if (policy->cur == policy->max)
  390. return;
  391. __cpufreq_driver_target(policy, policy->max,
  392. CPUFREQ_RELATION_H);
  393. } else {
  394. int freq = powersave_bias_target(policy, policy->max,
  395. CPUFREQ_RELATION_H);
  396. __cpufreq_driver_target(policy, freq,
  397. CPUFREQ_RELATION_L);
  398. }
  399. return;
  400. }
  401. /* Check for frequency decrease */
  402. /* if we cannot reduce the frequency anymore, break out early */
  403. if (policy->cur == policy->min)
  404. return;
  405. /*
  406. * The optimal frequency is the frequency that is the lowest that
  407. * can support the current CPU usage without triggering the up
  408. * policy. To be safe, we focus 10 points under the threshold.
  409. */
  410. if (max_load_freq <
  411. (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
  412. policy->cur) {
  413. unsigned int freq_next;
  414. freq_next = max_load_freq /
  415. (dbs_tuners_ins.up_threshold -
  416. dbs_tuners_ins.down_differential);
  417. if (!dbs_tuners_ins.powersave_bias) {
  418. __cpufreq_driver_target(policy, freq_next,
  419. CPUFREQ_RELATION_L);
  420. } else {
  421. int freq = powersave_bias_target(policy, freq_next,
  422. CPUFREQ_RELATION_L);
  423. __cpufreq_driver_target(policy, freq,
  424. CPUFREQ_RELATION_L);
  425. }
  426. }
  427. }
  428. static void do_dbs_timer(struct work_struct *work)
  429. {
  430. struct cpu_dbs_info_s *dbs_info =
  431. container_of(work, struct cpu_dbs_info_s, work.work);
  432. unsigned int cpu = dbs_info->cpu;
  433. int sample_type = dbs_info->sample_type;
  434. /* We want all CPUs to do sampling nearly on same jiffy */
  435. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  436. delay -= jiffies % delay;
  437. if (lock_policy_rwsem_write(cpu) < 0)
  438. return;
  439. if (!dbs_info->enable) {
  440. unlock_policy_rwsem_write(cpu);
  441. return;
  442. }
  443. /* Common NORMAL_SAMPLE setup */
  444. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  445. if (!dbs_tuners_ins.powersave_bias ||
  446. sample_type == DBS_NORMAL_SAMPLE) {
  447. dbs_check_cpu(dbs_info);
  448. if (dbs_info->freq_lo) {
  449. /* Setup timer for SUB_SAMPLE */
  450. dbs_info->sample_type = DBS_SUB_SAMPLE;
  451. delay = dbs_info->freq_hi_jiffies;
  452. }
  453. } else {
  454. __cpufreq_driver_target(dbs_info->cur_policy,
  455. dbs_info->freq_lo, CPUFREQ_RELATION_H);
  456. }
  457. queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
  458. unlock_policy_rwsem_write(cpu);
  459. }
  460. static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
  461. {
  462. /* We want all CPUs to do sampling nearly on same jiffy */
  463. int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
  464. delay -= jiffies % delay;
  465. dbs_info->enable = 1;
  466. ondemand_powersave_bias_init();
  467. dbs_info->sample_type = DBS_NORMAL_SAMPLE;
  468. INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
  469. queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
  470. delay);
  471. }
  472. static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
  473. {
  474. dbs_info->enable = 0;
  475. cancel_delayed_work(&dbs_info->work);
  476. }
  477. static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
  478. unsigned int event)
  479. {
  480. unsigned int cpu = policy->cpu;
  481. struct cpu_dbs_info_s *this_dbs_info;
  482. unsigned int j;
  483. int rc;
  484. this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
  485. switch (event) {
  486. case CPUFREQ_GOV_START:
  487. if ((!cpu_online(cpu)) || (!policy->cur))
  488. return -EINVAL;
  489. if (this_dbs_info->enable) /* Already enabled */
  490. break;
  491. mutex_lock(&dbs_mutex);
  492. dbs_enable++;
  493. rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
  494. if (rc) {
  495. dbs_enable--;
  496. mutex_unlock(&dbs_mutex);
  497. return rc;
  498. }
  499. for_each_cpu(j, policy->cpus) {
  500. struct cpu_dbs_info_s *j_dbs_info;
  501. j_dbs_info = &per_cpu(cpu_dbs_info, j);
  502. j_dbs_info->cur_policy = policy;
  503. j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
  504. &j_dbs_info->prev_cpu_wall);
  505. if (dbs_tuners_ins.ignore_nice) {
  506. j_dbs_info->prev_cpu_nice =
  507. kstat_cpu(j).cpustat.nice;
  508. }
  509. }
  510. this_dbs_info->cpu = cpu;
  511. /*
  512. * Start the timerschedule work, when this governor
  513. * is used for first time
  514. */
  515. if (dbs_enable == 1) {
  516. unsigned int latency;
  517. /* policy latency is in nS. Convert it to uS first */
  518. latency = policy->cpuinfo.transition_latency / 1000;
  519. if (latency == 0)
  520. latency = 1;
  521. def_sampling_rate =
  522. max(latency * LATENCY_MULTIPLIER,
  523. MIN_STAT_SAMPLING_RATE);
  524. dbs_tuners_ins.sampling_rate = def_sampling_rate;
  525. }
  526. dbs_timer_init(this_dbs_info);
  527. mutex_unlock(&dbs_mutex);
  528. break;
  529. case CPUFREQ_GOV_STOP:
  530. mutex_lock(&dbs_mutex);
  531. dbs_timer_exit(this_dbs_info);
  532. sysfs_remove_group(&policy->kobj, &dbs_attr_group);
  533. dbs_enable--;
  534. mutex_unlock(&dbs_mutex);
  535. break;
  536. case CPUFREQ_GOV_LIMITS:
  537. mutex_lock(&dbs_mutex);
  538. if (policy->max < this_dbs_info->cur_policy->cur)
  539. __cpufreq_driver_target(this_dbs_info->cur_policy,
  540. policy->max, CPUFREQ_RELATION_H);
  541. else if (policy->min > this_dbs_info->cur_policy->cur)
  542. __cpufreq_driver_target(this_dbs_info->cur_policy,
  543. policy->min, CPUFREQ_RELATION_L);
  544. mutex_unlock(&dbs_mutex);
  545. break;
  546. }
  547. return 0;
  548. }
  549. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  550. static
  551. #endif
  552. struct cpufreq_governor cpufreq_gov_ondemand = {
  553. .name = "ondemand",
  554. .governor = cpufreq_governor_dbs,
  555. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  556. .owner = THIS_MODULE,
  557. };
  558. static int __init cpufreq_gov_dbs_init(void)
  559. {
  560. int err;
  561. cputime64_t wall;
  562. u64 idle_time;
  563. int cpu = get_cpu();
  564. idle_time = get_cpu_idle_time_us(cpu, &wall);
  565. put_cpu();
  566. if (idle_time != -1ULL) {
  567. /* Idle micro accounting is supported. Use finer thresholds */
  568. dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
  569. dbs_tuners_ins.down_differential =
  570. MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
  571. }
  572. kondemand_wq = create_workqueue("kondemand");
  573. if (!kondemand_wq) {
  574. printk(KERN_ERR "Creation of kondemand failed\n");
  575. return -EFAULT;
  576. }
  577. err = cpufreq_register_governor(&cpufreq_gov_ondemand);
  578. if (err)
  579. destroy_workqueue(kondemand_wq);
  580. return err;
  581. }
  582. static void __exit cpufreq_gov_dbs_exit(void)
  583. {
  584. cpufreq_unregister_governor(&cpufreq_gov_ondemand);
  585. destroy_workqueue(kondemand_wq);
  586. }
  587. MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
  588. MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
  589. MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
  590. "Low Latency Frequency Transition capable processors");
  591. MODULE_LICENSE("GPL");
  592. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
  593. fs_initcall(cpufreq_gov_dbs_init);
  594. #else
  595. module_init(cpufreq_gov_dbs_init);
  596. #endif
  597. module_exit(cpufreq_gov_dbs_exit);