enlighten.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/init.h>
  15. #include <linux/smp.h>
  16. #include <linux/preempt.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/percpu.h>
  19. #include <linux/delay.h>
  20. #include <linux/start_kernel.h>
  21. #include <linux/sched.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/module.h>
  24. #include <linux/mm.h>
  25. #include <linux/page-flags.h>
  26. #include <linux/highmem.h>
  27. #include <linux/console.h>
  28. #include <xen/interface/xen.h>
  29. #include <xen/interface/version.h>
  30. #include <xen/interface/physdev.h>
  31. #include <xen/interface/vcpu.h>
  32. #include <xen/features.h>
  33. #include <xen/page.h>
  34. #include <xen/hvc-console.h>
  35. #include <asm/paravirt.h>
  36. #include <asm/apic.h>
  37. #include <asm/page.h>
  38. #include <asm/xen/hypercall.h>
  39. #include <asm/xen/hypervisor.h>
  40. #include <asm/fixmap.h>
  41. #include <asm/processor.h>
  42. #include <asm/msr-index.h>
  43. #include <asm/setup.h>
  44. #include <asm/desc.h>
  45. #include <asm/pgtable.h>
  46. #include <asm/tlbflush.h>
  47. #include <asm/reboot.h>
  48. #include "xen-ops.h"
  49. #include "mmu.h"
  50. #include "multicalls.h"
  51. EXPORT_SYMBOL_GPL(hypercall_page);
  52. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  53. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  54. enum xen_domain_type xen_domain_type = XEN_NATIVE;
  55. EXPORT_SYMBOL_GPL(xen_domain_type);
  56. struct start_info *xen_start_info;
  57. EXPORT_SYMBOL_GPL(xen_start_info);
  58. struct shared_info xen_dummy_shared_info;
  59. void *xen_initial_gdt;
  60. /*
  61. * Point at some empty memory to start with. We map the real shared_info
  62. * page as soon as fixmap is up and running.
  63. */
  64. struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
  65. /*
  66. * Flag to determine whether vcpu info placement is available on all
  67. * VCPUs. We assume it is to start with, and then set it to zero on
  68. * the first failure. This is because it can succeed on some VCPUs
  69. * and not others, since it can involve hypervisor memory allocation,
  70. * or because the guest failed to guarantee all the appropriate
  71. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  72. *
  73. * Note that any particular CPU may be using a placed vcpu structure,
  74. * but we can only optimise if the all are.
  75. *
  76. * 0: not available, 1: available
  77. */
  78. static int have_vcpu_info_placement = 1;
  79. static void xen_vcpu_setup(int cpu)
  80. {
  81. struct vcpu_register_vcpu_info info;
  82. int err;
  83. struct vcpu_info *vcpup;
  84. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  85. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  86. if (!have_vcpu_info_placement)
  87. return; /* already tested, not available */
  88. vcpup = &per_cpu(xen_vcpu_info, cpu);
  89. info.mfn = arbitrary_virt_to_mfn(vcpup);
  90. info.offset = offset_in_page(vcpup);
  91. printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n",
  92. cpu, vcpup, info.mfn, info.offset);
  93. /* Check to see if the hypervisor will put the vcpu_info
  94. structure where we want it, which allows direct access via
  95. a percpu-variable. */
  96. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  97. if (err) {
  98. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  99. have_vcpu_info_placement = 0;
  100. } else {
  101. /* This cpu is using the registered vcpu info, even if
  102. later ones fail to. */
  103. per_cpu(xen_vcpu, cpu) = vcpup;
  104. printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n",
  105. cpu, vcpup);
  106. }
  107. }
  108. /*
  109. * On restore, set the vcpu placement up again.
  110. * If it fails, then we're in a bad state, since
  111. * we can't back out from using it...
  112. */
  113. void xen_vcpu_restore(void)
  114. {
  115. if (have_vcpu_info_placement) {
  116. int cpu;
  117. for_each_online_cpu(cpu) {
  118. bool other_cpu = (cpu != smp_processor_id());
  119. if (other_cpu &&
  120. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
  121. BUG();
  122. xen_vcpu_setup(cpu);
  123. if (other_cpu &&
  124. HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
  125. BUG();
  126. }
  127. BUG_ON(!have_vcpu_info_placement);
  128. }
  129. }
  130. static void __init xen_banner(void)
  131. {
  132. unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
  133. struct xen_extraversion extra;
  134. HYPERVISOR_xen_version(XENVER_extraversion, &extra);
  135. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  136. pv_info.name);
  137. printk(KERN_INFO "Xen version: %d.%d%s%s\n",
  138. version >> 16, version & 0xffff, extra.extraversion,
  139. xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
  140. }
  141. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  142. unsigned int *cx, unsigned int *dx)
  143. {
  144. unsigned maskedx = ~0;
  145. /*
  146. * Mask out inconvenient features, to try and disable as many
  147. * unsupported kernel subsystems as possible.
  148. */
  149. if (*ax == 1)
  150. maskedx = ~((1 << X86_FEATURE_APIC) | /* disable APIC */
  151. (1 << X86_FEATURE_ACPI) | /* disable ACPI */
  152. (1 << X86_FEATURE_MCE) | /* disable MCE */
  153. (1 << X86_FEATURE_MCA) | /* disable MCA */
  154. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  155. asm(XEN_EMULATE_PREFIX "cpuid"
  156. : "=a" (*ax),
  157. "=b" (*bx),
  158. "=c" (*cx),
  159. "=d" (*dx)
  160. : "0" (*ax), "2" (*cx));
  161. *dx &= maskedx;
  162. }
  163. static void xen_set_debugreg(int reg, unsigned long val)
  164. {
  165. HYPERVISOR_set_debugreg(reg, val);
  166. }
  167. static unsigned long xen_get_debugreg(int reg)
  168. {
  169. return HYPERVISOR_get_debugreg(reg);
  170. }
  171. void xen_leave_lazy(void)
  172. {
  173. paravirt_leave_lazy(paravirt_get_lazy_mode());
  174. xen_mc_flush();
  175. }
  176. static unsigned long xen_store_tr(void)
  177. {
  178. return 0;
  179. }
  180. /*
  181. * Set the page permissions for a particular virtual address. If the
  182. * address is a vmalloc mapping (or other non-linear mapping), then
  183. * find the linear mapping of the page and also set its protections to
  184. * match.
  185. */
  186. static void set_aliased_prot(void *v, pgprot_t prot)
  187. {
  188. int level;
  189. pte_t *ptep;
  190. pte_t pte;
  191. unsigned long pfn;
  192. struct page *page;
  193. ptep = lookup_address((unsigned long)v, &level);
  194. BUG_ON(ptep == NULL);
  195. pfn = pte_pfn(*ptep);
  196. page = pfn_to_page(pfn);
  197. pte = pfn_pte(pfn, prot);
  198. if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
  199. BUG();
  200. if (!PageHighMem(page)) {
  201. void *av = __va(PFN_PHYS(pfn));
  202. if (av != v)
  203. if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
  204. BUG();
  205. } else
  206. kmap_flush_unused();
  207. }
  208. static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
  209. {
  210. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  211. int i;
  212. for(i = 0; i < entries; i += entries_per_page)
  213. set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
  214. }
  215. static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
  216. {
  217. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  218. int i;
  219. for(i = 0; i < entries; i += entries_per_page)
  220. set_aliased_prot(ldt + i, PAGE_KERNEL);
  221. }
  222. static void xen_set_ldt(const void *addr, unsigned entries)
  223. {
  224. struct mmuext_op *op;
  225. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  226. op = mcs.args;
  227. op->cmd = MMUEXT_SET_LDT;
  228. op->arg1.linear_addr = (unsigned long)addr;
  229. op->arg2.nr_ents = entries;
  230. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  231. xen_mc_issue(PARAVIRT_LAZY_CPU);
  232. }
  233. static void xen_load_gdt(const struct desc_ptr *dtr)
  234. {
  235. unsigned long *frames;
  236. unsigned long va = dtr->address;
  237. unsigned int size = dtr->size + 1;
  238. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  239. int f;
  240. struct multicall_space mcs;
  241. /* A GDT can be up to 64k in size, which corresponds to 8192
  242. 8-byte entries, or 16 4k pages.. */
  243. BUG_ON(size > 65536);
  244. BUG_ON(va & ~PAGE_MASK);
  245. mcs = xen_mc_entry(sizeof(*frames) * pages);
  246. frames = mcs.args;
  247. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  248. frames[f] = arbitrary_virt_to_mfn((void *)va);
  249. make_lowmem_page_readonly((void *)va);
  250. make_lowmem_page_readonly(mfn_to_virt(frames[f]));
  251. }
  252. MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct));
  253. xen_mc_issue(PARAVIRT_LAZY_CPU);
  254. }
  255. static void load_TLS_descriptor(struct thread_struct *t,
  256. unsigned int cpu, unsigned int i)
  257. {
  258. struct desc_struct *gdt = get_cpu_gdt_table(cpu);
  259. xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  260. struct multicall_space mc = __xen_mc_entry(0);
  261. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  262. }
  263. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  264. {
  265. /*
  266. * XXX sleazy hack: If we're being called in a lazy-cpu zone
  267. * and lazy gs handling is enabled, it means we're in a
  268. * context switch, and %gs has just been saved. This means we
  269. * can zero it out to prevent faults on exit from the
  270. * hypervisor if the next process has no %gs. Either way, it
  271. * has been saved, and the new value will get loaded properly.
  272. * This will go away as soon as Xen has been modified to not
  273. * save/restore %gs for normal hypercalls.
  274. *
  275. * On x86_64, this hack is not used for %gs, because gs points
  276. * to KERNEL_GS_BASE (and uses it for PDA references), so we
  277. * must not zero %gs on x86_64
  278. *
  279. * For x86_64, we need to zero %fs, otherwise we may get an
  280. * exception between the new %fs descriptor being loaded and
  281. * %fs being effectively cleared at __switch_to().
  282. */
  283. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
  284. #ifdef CONFIG_X86_32
  285. lazy_load_gs(0);
  286. #else
  287. loadsegment(fs, 0);
  288. #endif
  289. }
  290. xen_mc_batch();
  291. load_TLS_descriptor(t, cpu, 0);
  292. load_TLS_descriptor(t, cpu, 1);
  293. load_TLS_descriptor(t, cpu, 2);
  294. xen_mc_issue(PARAVIRT_LAZY_CPU);
  295. }
  296. #ifdef CONFIG_X86_64
  297. static void xen_load_gs_index(unsigned int idx)
  298. {
  299. if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
  300. BUG();
  301. }
  302. #endif
  303. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  304. const void *ptr)
  305. {
  306. xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
  307. u64 entry = *(u64 *)ptr;
  308. preempt_disable();
  309. xen_mc_flush();
  310. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  311. BUG();
  312. preempt_enable();
  313. }
  314. static int cvt_gate_to_trap(int vector, const gate_desc *val,
  315. struct trap_info *info)
  316. {
  317. if (val->type != 0xf && val->type != 0xe)
  318. return 0;
  319. info->vector = vector;
  320. info->address = gate_offset(*val);
  321. info->cs = gate_segment(*val);
  322. info->flags = val->dpl;
  323. /* interrupt gates clear IF */
  324. if (val->type == 0xe)
  325. info->flags |= 4;
  326. return 1;
  327. }
  328. /* Locations of each CPU's IDT */
  329. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  330. /* Set an IDT entry. If the entry is part of the current IDT, then
  331. also update Xen. */
  332. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  333. {
  334. unsigned long p = (unsigned long)&dt[entrynum];
  335. unsigned long start, end;
  336. preempt_disable();
  337. start = __get_cpu_var(idt_desc).address;
  338. end = start + __get_cpu_var(idt_desc).size + 1;
  339. xen_mc_flush();
  340. native_write_idt_entry(dt, entrynum, g);
  341. if (p >= start && (p + 8) <= end) {
  342. struct trap_info info[2];
  343. info[1].address = 0;
  344. if (cvt_gate_to_trap(entrynum, g, &info[0]))
  345. if (HYPERVISOR_set_trap_table(info))
  346. BUG();
  347. }
  348. preempt_enable();
  349. }
  350. static void xen_convert_trap_info(const struct desc_ptr *desc,
  351. struct trap_info *traps)
  352. {
  353. unsigned in, out, count;
  354. count = (desc->size+1) / sizeof(gate_desc);
  355. BUG_ON(count > 256);
  356. for (in = out = 0; in < count; in++) {
  357. gate_desc *entry = (gate_desc*)(desc->address) + in;
  358. if (cvt_gate_to_trap(in, entry, &traps[out]))
  359. out++;
  360. }
  361. traps[out].address = 0;
  362. }
  363. void xen_copy_trap_info(struct trap_info *traps)
  364. {
  365. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  366. xen_convert_trap_info(desc, traps);
  367. }
  368. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  369. hold a spinlock to protect the static traps[] array (static because
  370. it avoids allocation, and saves stack space). */
  371. static void xen_load_idt(const struct desc_ptr *desc)
  372. {
  373. static DEFINE_SPINLOCK(lock);
  374. static struct trap_info traps[257];
  375. spin_lock(&lock);
  376. __get_cpu_var(idt_desc) = *desc;
  377. xen_convert_trap_info(desc, traps);
  378. xen_mc_flush();
  379. if (HYPERVISOR_set_trap_table(traps))
  380. BUG();
  381. spin_unlock(&lock);
  382. }
  383. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  384. they're handled differently. */
  385. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  386. const void *desc, int type)
  387. {
  388. preempt_disable();
  389. switch (type) {
  390. case DESC_LDT:
  391. case DESC_TSS:
  392. /* ignore */
  393. break;
  394. default: {
  395. xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
  396. xen_mc_flush();
  397. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  398. BUG();
  399. }
  400. }
  401. preempt_enable();
  402. }
  403. static void xen_load_sp0(struct tss_struct *tss,
  404. struct thread_struct *thread)
  405. {
  406. struct multicall_space mcs = xen_mc_entry(0);
  407. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  408. xen_mc_issue(PARAVIRT_LAZY_CPU);
  409. }
  410. static void xen_set_iopl_mask(unsigned mask)
  411. {
  412. struct physdev_set_iopl set_iopl;
  413. /* Force the change at ring 0. */
  414. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  415. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  416. }
  417. static void xen_io_delay(void)
  418. {
  419. }
  420. #ifdef CONFIG_X86_LOCAL_APIC
  421. static u32 xen_apic_read(u32 reg)
  422. {
  423. return 0;
  424. }
  425. static void xen_apic_write(u32 reg, u32 val)
  426. {
  427. /* Warn to see if there's any stray references */
  428. WARN_ON(1);
  429. }
  430. static u64 xen_apic_icr_read(void)
  431. {
  432. return 0;
  433. }
  434. static void xen_apic_icr_write(u32 low, u32 id)
  435. {
  436. /* Warn to see if there's any stray references */
  437. WARN_ON(1);
  438. }
  439. static void xen_apic_wait_icr_idle(void)
  440. {
  441. return;
  442. }
  443. static u32 xen_safe_apic_wait_icr_idle(void)
  444. {
  445. return 0;
  446. }
  447. static void set_xen_basic_apic_ops(void)
  448. {
  449. apic->read = xen_apic_read;
  450. apic->write = xen_apic_write;
  451. apic->icr_read = xen_apic_icr_read;
  452. apic->icr_write = xen_apic_icr_write;
  453. apic->wait_icr_idle = xen_apic_wait_icr_idle;
  454. apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
  455. }
  456. #endif
  457. static void xen_clts(void)
  458. {
  459. struct multicall_space mcs;
  460. mcs = xen_mc_entry(0);
  461. MULTI_fpu_taskswitch(mcs.mc, 0);
  462. xen_mc_issue(PARAVIRT_LAZY_CPU);
  463. }
  464. static void xen_write_cr0(unsigned long cr0)
  465. {
  466. struct multicall_space mcs;
  467. /* Only pay attention to cr0.TS; everything else is
  468. ignored. */
  469. mcs = xen_mc_entry(0);
  470. MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
  471. xen_mc_issue(PARAVIRT_LAZY_CPU);
  472. }
  473. static void xen_write_cr4(unsigned long cr4)
  474. {
  475. cr4 &= ~X86_CR4_PGE;
  476. cr4 &= ~X86_CR4_PSE;
  477. native_write_cr4(cr4);
  478. }
  479. static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
  480. {
  481. int ret;
  482. ret = 0;
  483. switch (msr) {
  484. #ifdef CONFIG_X86_64
  485. unsigned which;
  486. u64 base;
  487. case MSR_FS_BASE: which = SEGBASE_FS; goto set;
  488. case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
  489. case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
  490. set:
  491. base = ((u64)high << 32) | low;
  492. if (HYPERVISOR_set_segment_base(which, base) != 0)
  493. ret = -EFAULT;
  494. break;
  495. #endif
  496. case MSR_STAR:
  497. case MSR_CSTAR:
  498. case MSR_LSTAR:
  499. case MSR_SYSCALL_MASK:
  500. case MSR_IA32_SYSENTER_CS:
  501. case MSR_IA32_SYSENTER_ESP:
  502. case MSR_IA32_SYSENTER_EIP:
  503. /* Fast syscall setup is all done in hypercalls, so
  504. these are all ignored. Stub them out here to stop
  505. Xen console noise. */
  506. break;
  507. default:
  508. ret = native_write_msr_safe(msr, low, high);
  509. }
  510. return ret;
  511. }
  512. void xen_setup_shared_info(void)
  513. {
  514. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  515. set_fixmap(FIX_PARAVIRT_BOOTMAP,
  516. xen_start_info->shared_info);
  517. HYPERVISOR_shared_info =
  518. (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  519. } else
  520. HYPERVISOR_shared_info =
  521. (struct shared_info *)__va(xen_start_info->shared_info);
  522. #ifndef CONFIG_SMP
  523. /* In UP this is as good a place as any to set up shared info */
  524. xen_setup_vcpu_info_placement();
  525. #endif
  526. xen_setup_mfn_list_list();
  527. }
  528. /* This is called once we have the cpu_possible_map */
  529. void xen_setup_vcpu_info_placement(void)
  530. {
  531. int cpu;
  532. for_each_possible_cpu(cpu)
  533. xen_vcpu_setup(cpu);
  534. /* xen_vcpu_setup managed to place the vcpu_info within the
  535. percpu area for all cpus, so make use of it */
  536. if (have_vcpu_info_placement) {
  537. printk(KERN_INFO "Xen: using vcpu_info placement\n");
  538. pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
  539. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
  540. pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
  541. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
  542. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  543. }
  544. }
  545. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  546. unsigned long addr, unsigned len)
  547. {
  548. char *start, *end, *reloc;
  549. unsigned ret;
  550. start = end = reloc = NULL;
  551. #define SITE(op, x) \
  552. case PARAVIRT_PATCH(op.x): \
  553. if (have_vcpu_info_placement) { \
  554. start = (char *)xen_##x##_direct; \
  555. end = xen_##x##_direct_end; \
  556. reloc = xen_##x##_direct_reloc; \
  557. } \
  558. goto patch_site
  559. switch (type) {
  560. SITE(pv_irq_ops, irq_enable);
  561. SITE(pv_irq_ops, irq_disable);
  562. SITE(pv_irq_ops, save_fl);
  563. SITE(pv_irq_ops, restore_fl);
  564. #undef SITE
  565. patch_site:
  566. if (start == NULL || (end-start) > len)
  567. goto default_patch;
  568. ret = paravirt_patch_insns(insnbuf, len, start, end);
  569. /* Note: because reloc is assigned from something that
  570. appears to be an array, gcc assumes it's non-null,
  571. but doesn't know its relationship with start and
  572. end. */
  573. if (reloc > start && reloc < end) {
  574. int reloc_off = reloc - start;
  575. long *relocp = (long *)(insnbuf + reloc_off);
  576. long delta = start - (char *)addr;
  577. *relocp += delta;
  578. }
  579. break;
  580. default_patch:
  581. default:
  582. ret = paravirt_patch_default(type, clobbers, insnbuf,
  583. addr, len);
  584. break;
  585. }
  586. return ret;
  587. }
  588. static const struct pv_info xen_info __initdata = {
  589. .paravirt_enabled = 1,
  590. .shared_kernel_pmd = 0,
  591. .name = "Xen",
  592. };
  593. static const struct pv_init_ops xen_init_ops __initdata = {
  594. .patch = xen_patch,
  595. .banner = xen_banner,
  596. .memory_setup = xen_memory_setup,
  597. .arch_setup = xen_arch_setup,
  598. .post_allocator_init = xen_post_allocator_init,
  599. };
  600. static const struct pv_time_ops xen_time_ops __initdata = {
  601. .time_init = xen_time_init,
  602. .set_wallclock = xen_set_wallclock,
  603. .get_wallclock = xen_get_wallclock,
  604. .get_tsc_khz = xen_tsc_khz,
  605. .sched_clock = xen_sched_clock,
  606. };
  607. static const struct pv_cpu_ops xen_cpu_ops __initdata = {
  608. .cpuid = xen_cpuid,
  609. .set_debugreg = xen_set_debugreg,
  610. .get_debugreg = xen_get_debugreg,
  611. .clts = xen_clts,
  612. .read_cr0 = native_read_cr0,
  613. .write_cr0 = xen_write_cr0,
  614. .read_cr4 = native_read_cr4,
  615. .read_cr4_safe = native_read_cr4_safe,
  616. .write_cr4 = xen_write_cr4,
  617. .wbinvd = native_wbinvd,
  618. .read_msr = native_read_msr_safe,
  619. .write_msr = xen_write_msr_safe,
  620. .read_tsc = native_read_tsc,
  621. .read_pmc = native_read_pmc,
  622. .iret = xen_iret,
  623. .irq_enable_sysexit = xen_sysexit,
  624. #ifdef CONFIG_X86_64
  625. .usergs_sysret32 = xen_sysret32,
  626. .usergs_sysret64 = xen_sysret64,
  627. #endif
  628. .load_tr_desc = paravirt_nop,
  629. .set_ldt = xen_set_ldt,
  630. .load_gdt = xen_load_gdt,
  631. .load_idt = xen_load_idt,
  632. .load_tls = xen_load_tls,
  633. #ifdef CONFIG_X86_64
  634. .load_gs_index = xen_load_gs_index,
  635. #endif
  636. .alloc_ldt = xen_alloc_ldt,
  637. .free_ldt = xen_free_ldt,
  638. .store_gdt = native_store_gdt,
  639. .store_idt = native_store_idt,
  640. .store_tr = xen_store_tr,
  641. .write_ldt_entry = xen_write_ldt_entry,
  642. .write_gdt_entry = xen_write_gdt_entry,
  643. .write_idt_entry = xen_write_idt_entry,
  644. .load_sp0 = xen_load_sp0,
  645. .set_iopl_mask = xen_set_iopl_mask,
  646. .io_delay = xen_io_delay,
  647. /* Xen takes care of %gs when switching to usermode for us */
  648. .swapgs = paravirt_nop,
  649. .lazy_mode = {
  650. .enter = paravirt_enter_lazy_cpu,
  651. .leave = xen_leave_lazy,
  652. },
  653. };
  654. static const struct pv_apic_ops xen_apic_ops __initdata = {
  655. #ifdef CONFIG_X86_LOCAL_APIC
  656. .setup_boot_clock = paravirt_nop,
  657. .setup_secondary_clock = paravirt_nop,
  658. .startup_ipi_hook = paravirt_nop,
  659. #endif
  660. };
  661. static void xen_reboot(int reason)
  662. {
  663. struct sched_shutdown r = { .reason = reason };
  664. #ifdef CONFIG_SMP
  665. smp_send_stop();
  666. #endif
  667. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
  668. BUG();
  669. }
  670. static void xen_restart(char *msg)
  671. {
  672. xen_reboot(SHUTDOWN_reboot);
  673. }
  674. static void xen_emergency_restart(void)
  675. {
  676. xen_reboot(SHUTDOWN_reboot);
  677. }
  678. static void xen_machine_halt(void)
  679. {
  680. xen_reboot(SHUTDOWN_poweroff);
  681. }
  682. static void xen_crash_shutdown(struct pt_regs *regs)
  683. {
  684. xen_reboot(SHUTDOWN_crash);
  685. }
  686. static const struct machine_ops __initdata xen_machine_ops = {
  687. .restart = xen_restart,
  688. .halt = xen_machine_halt,
  689. .power_off = xen_machine_halt,
  690. .shutdown = xen_machine_halt,
  691. .crash_shutdown = xen_crash_shutdown,
  692. .emergency_restart = xen_emergency_restart,
  693. };
  694. /* First C function to be called on Xen boot */
  695. asmlinkage void __init xen_start_kernel(void)
  696. {
  697. pgd_t *pgd;
  698. if (!xen_start_info)
  699. return;
  700. xen_domain_type = XEN_PV_DOMAIN;
  701. BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0);
  702. xen_setup_features();
  703. /* Install Xen paravirt ops */
  704. pv_info = xen_info;
  705. pv_init_ops = xen_init_ops;
  706. pv_time_ops = xen_time_ops;
  707. pv_cpu_ops = xen_cpu_ops;
  708. pv_apic_ops = xen_apic_ops;
  709. pv_mmu_ops = xen_mmu_ops;
  710. xen_init_irq_ops();
  711. #ifdef CONFIG_X86_LOCAL_APIC
  712. /*
  713. * set up the basic apic ops.
  714. */
  715. set_xen_basic_apic_ops();
  716. #endif
  717. if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
  718. pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
  719. pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
  720. }
  721. machine_ops = xen_machine_ops;
  722. #ifdef CONFIG_X86_64
  723. /*
  724. * Setup percpu state. We only need to do this for 64-bit
  725. * because 32-bit already has %fs set properly.
  726. */
  727. load_percpu_segment(0);
  728. #endif
  729. /*
  730. * The only reliable way to retain the initial address of the
  731. * percpu gdt_page is to remember it here, so we can go and
  732. * mark it RW later, when the initial percpu area is freed.
  733. */
  734. xen_initial_gdt = &per_cpu(gdt_page, 0);
  735. xen_smp_init();
  736. /* Get mfn list */
  737. if (!xen_feature(XENFEAT_auto_translated_physmap))
  738. xen_build_dynamic_phys_to_machine();
  739. pgd = (pgd_t *)xen_start_info->pt_base;
  740. /* Prevent unwanted bits from being set in PTEs. */
  741. __supported_pte_mask &= ~_PAGE_GLOBAL;
  742. if (!xen_initial_domain())
  743. __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
  744. /* Don't do the full vcpu_info placement stuff until we have a
  745. possible map and a non-dummy shared_info. */
  746. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  747. local_irq_disable();
  748. early_boot_irqs_off();
  749. xen_raw_console_write("mapping kernel into physical memory\n");
  750. pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
  751. init_mm.pgd = pgd;
  752. /* keep using Xen gdt for now; no urgent need to change it */
  753. pv_info.kernel_rpl = 1;
  754. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  755. pv_info.kernel_rpl = 0;
  756. /* set the limit of our address space */
  757. xen_reserve_top();
  758. #ifdef CONFIG_X86_32
  759. /* set up basic CPUID stuff */
  760. cpu_detect(&new_cpu_data);
  761. new_cpu_data.hard_math = 1;
  762. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  763. #endif
  764. /* Poke various useful things into boot_params */
  765. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  766. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  767. ? __pa(xen_start_info->mod_start) : 0;
  768. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  769. boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
  770. if (!xen_initial_domain()) {
  771. add_preferred_console("xenboot", 0, NULL);
  772. add_preferred_console("tty", 0, NULL);
  773. add_preferred_console("hvc", 0, NULL);
  774. }
  775. xen_raw_console_write("about to get started...\n");
  776. /* Start the world */
  777. #ifdef CONFIG_X86_32
  778. i386_start_kernel();
  779. #else
  780. x86_64_start_reservations((char *)__pa_symbol(&boot_params));
  781. #endif
  782. }