vmx.c 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  33. MODULE_AUTHOR("Qumranet");
  34. MODULE_LICENSE("GPL");
  35. static int bypass_guest_pf = 1;
  36. module_param(bypass_guest_pf, bool, 0);
  37. static int enable_vpid = 1;
  38. module_param(enable_vpid, bool, 0);
  39. static int flexpriority_enabled = 1;
  40. module_param(flexpriority_enabled, bool, 0);
  41. static int enable_ept = 1;
  42. module_param(enable_ept, bool, 0);
  43. static int emulate_invalid_guest_state = 0;
  44. module_param(emulate_invalid_guest_state, bool, 0);
  45. struct vmcs {
  46. u32 revision_id;
  47. u32 abort;
  48. char data[0];
  49. };
  50. struct vcpu_vmx {
  51. struct kvm_vcpu vcpu;
  52. struct list_head local_vcpus_link;
  53. unsigned long host_rsp;
  54. int launched;
  55. u8 fail;
  56. u32 idt_vectoring_info;
  57. struct kvm_msr_entry *guest_msrs;
  58. struct kvm_msr_entry *host_msrs;
  59. int nmsrs;
  60. int save_nmsrs;
  61. int msr_offset_efer;
  62. #ifdef CONFIG_X86_64
  63. int msr_offset_kernel_gs_base;
  64. #endif
  65. struct vmcs *vmcs;
  66. struct {
  67. int loaded;
  68. u16 fs_sel, gs_sel, ldt_sel;
  69. int gs_ldt_reload_needed;
  70. int fs_reload_needed;
  71. int guest_efer_loaded;
  72. } host_state;
  73. struct {
  74. struct {
  75. bool pending;
  76. u8 vector;
  77. unsigned rip;
  78. } irq;
  79. } rmode;
  80. int vpid;
  81. bool emulation_required;
  82. enum emulation_result invalid_state_emulation_result;
  83. /* Support for vnmi-less CPUs */
  84. int soft_vnmi_blocked;
  85. ktime_t entry_time;
  86. s64 vnmi_blocked_time;
  87. };
  88. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  89. {
  90. return container_of(vcpu, struct vcpu_vmx, vcpu);
  91. }
  92. static int init_rmode(struct kvm *kvm);
  93. static u64 construct_eptp(unsigned long root_hpa);
  94. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  95. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  96. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  97. static struct page *vmx_io_bitmap_a;
  98. static struct page *vmx_io_bitmap_b;
  99. static struct page *vmx_msr_bitmap;
  100. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  101. static DEFINE_SPINLOCK(vmx_vpid_lock);
  102. static struct vmcs_config {
  103. int size;
  104. int order;
  105. u32 revision_id;
  106. u32 pin_based_exec_ctrl;
  107. u32 cpu_based_exec_ctrl;
  108. u32 cpu_based_2nd_exec_ctrl;
  109. u32 vmexit_ctrl;
  110. u32 vmentry_ctrl;
  111. } vmcs_config;
  112. static struct vmx_capability {
  113. u32 ept;
  114. u32 vpid;
  115. } vmx_capability;
  116. #define VMX_SEGMENT_FIELD(seg) \
  117. [VCPU_SREG_##seg] = { \
  118. .selector = GUEST_##seg##_SELECTOR, \
  119. .base = GUEST_##seg##_BASE, \
  120. .limit = GUEST_##seg##_LIMIT, \
  121. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  122. }
  123. static struct kvm_vmx_segment_field {
  124. unsigned selector;
  125. unsigned base;
  126. unsigned limit;
  127. unsigned ar_bytes;
  128. } kvm_vmx_segment_fields[] = {
  129. VMX_SEGMENT_FIELD(CS),
  130. VMX_SEGMENT_FIELD(DS),
  131. VMX_SEGMENT_FIELD(ES),
  132. VMX_SEGMENT_FIELD(FS),
  133. VMX_SEGMENT_FIELD(GS),
  134. VMX_SEGMENT_FIELD(SS),
  135. VMX_SEGMENT_FIELD(TR),
  136. VMX_SEGMENT_FIELD(LDTR),
  137. };
  138. /*
  139. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  140. * away by decrementing the array size.
  141. */
  142. static const u32 vmx_msr_index[] = {
  143. #ifdef CONFIG_X86_64
  144. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  145. #endif
  146. MSR_EFER, MSR_K6_STAR,
  147. };
  148. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  149. static void load_msrs(struct kvm_msr_entry *e, int n)
  150. {
  151. int i;
  152. for (i = 0; i < n; ++i)
  153. wrmsrl(e[i].index, e[i].data);
  154. }
  155. static void save_msrs(struct kvm_msr_entry *e, int n)
  156. {
  157. int i;
  158. for (i = 0; i < n; ++i)
  159. rdmsrl(e[i].index, e[i].data);
  160. }
  161. static inline int is_page_fault(u32 intr_info)
  162. {
  163. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  164. INTR_INFO_VALID_MASK)) ==
  165. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  166. }
  167. static inline int is_no_device(u32 intr_info)
  168. {
  169. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  170. INTR_INFO_VALID_MASK)) ==
  171. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  172. }
  173. static inline int is_invalid_opcode(u32 intr_info)
  174. {
  175. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  176. INTR_INFO_VALID_MASK)) ==
  177. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  178. }
  179. static inline int is_external_interrupt(u32 intr_info)
  180. {
  181. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  182. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  183. }
  184. static inline int cpu_has_vmx_msr_bitmap(void)
  185. {
  186. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  187. }
  188. static inline int cpu_has_vmx_tpr_shadow(void)
  189. {
  190. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  191. }
  192. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  193. {
  194. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  195. }
  196. static inline int cpu_has_secondary_exec_ctrls(void)
  197. {
  198. return (vmcs_config.cpu_based_exec_ctrl &
  199. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  200. }
  201. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  202. {
  203. return flexpriority_enabled
  204. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  205. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  206. }
  207. static inline int cpu_has_vmx_invept_individual_addr(void)
  208. {
  209. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  210. }
  211. static inline int cpu_has_vmx_invept_context(void)
  212. {
  213. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  214. }
  215. static inline int cpu_has_vmx_invept_global(void)
  216. {
  217. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  218. }
  219. static inline int cpu_has_vmx_ept(void)
  220. {
  221. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  222. SECONDARY_EXEC_ENABLE_EPT);
  223. }
  224. static inline int vm_need_ept(void)
  225. {
  226. return (cpu_has_vmx_ept() && enable_ept);
  227. }
  228. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  229. {
  230. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  231. (irqchip_in_kernel(kvm)));
  232. }
  233. static inline int cpu_has_vmx_vpid(void)
  234. {
  235. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  236. SECONDARY_EXEC_ENABLE_VPID);
  237. }
  238. static inline int cpu_has_virtual_nmis(void)
  239. {
  240. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  241. }
  242. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  243. {
  244. int i;
  245. for (i = 0; i < vmx->nmsrs; ++i)
  246. if (vmx->guest_msrs[i].index == msr)
  247. return i;
  248. return -1;
  249. }
  250. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  251. {
  252. struct {
  253. u64 vpid : 16;
  254. u64 rsvd : 48;
  255. u64 gva;
  256. } operand = { vpid, 0, gva };
  257. asm volatile (__ex(ASM_VMX_INVVPID)
  258. /* CF==1 or ZF==1 --> rc = -1 */
  259. "; ja 1f ; ud2 ; 1:"
  260. : : "a"(&operand), "c"(ext) : "cc", "memory");
  261. }
  262. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  263. {
  264. struct {
  265. u64 eptp, gpa;
  266. } operand = {eptp, gpa};
  267. asm volatile (__ex(ASM_VMX_INVEPT)
  268. /* CF==1 or ZF==1 --> rc = -1 */
  269. "; ja 1f ; ud2 ; 1:\n"
  270. : : "a" (&operand), "c" (ext) : "cc", "memory");
  271. }
  272. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  273. {
  274. int i;
  275. i = __find_msr_index(vmx, msr);
  276. if (i >= 0)
  277. return &vmx->guest_msrs[i];
  278. return NULL;
  279. }
  280. static void vmcs_clear(struct vmcs *vmcs)
  281. {
  282. u64 phys_addr = __pa(vmcs);
  283. u8 error;
  284. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  285. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  286. : "cc", "memory");
  287. if (error)
  288. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  289. vmcs, phys_addr);
  290. }
  291. static void __vcpu_clear(void *arg)
  292. {
  293. struct vcpu_vmx *vmx = arg;
  294. int cpu = raw_smp_processor_id();
  295. if (vmx->vcpu.cpu == cpu)
  296. vmcs_clear(vmx->vmcs);
  297. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  298. per_cpu(current_vmcs, cpu) = NULL;
  299. rdtscll(vmx->vcpu.arch.host_tsc);
  300. list_del(&vmx->local_vcpus_link);
  301. vmx->vcpu.cpu = -1;
  302. vmx->launched = 0;
  303. }
  304. static void vcpu_clear(struct vcpu_vmx *vmx)
  305. {
  306. if (vmx->vcpu.cpu == -1)
  307. return;
  308. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  309. }
  310. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  311. {
  312. if (vmx->vpid == 0)
  313. return;
  314. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  315. }
  316. static inline void ept_sync_global(void)
  317. {
  318. if (cpu_has_vmx_invept_global())
  319. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  320. }
  321. static inline void ept_sync_context(u64 eptp)
  322. {
  323. if (vm_need_ept()) {
  324. if (cpu_has_vmx_invept_context())
  325. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  326. else
  327. ept_sync_global();
  328. }
  329. }
  330. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  331. {
  332. if (vm_need_ept()) {
  333. if (cpu_has_vmx_invept_individual_addr())
  334. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  335. eptp, gpa);
  336. else
  337. ept_sync_context(eptp);
  338. }
  339. }
  340. static unsigned long vmcs_readl(unsigned long field)
  341. {
  342. unsigned long value;
  343. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  344. : "=a"(value) : "d"(field) : "cc");
  345. return value;
  346. }
  347. static u16 vmcs_read16(unsigned long field)
  348. {
  349. return vmcs_readl(field);
  350. }
  351. static u32 vmcs_read32(unsigned long field)
  352. {
  353. return vmcs_readl(field);
  354. }
  355. static u64 vmcs_read64(unsigned long field)
  356. {
  357. #ifdef CONFIG_X86_64
  358. return vmcs_readl(field);
  359. #else
  360. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  361. #endif
  362. }
  363. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  364. {
  365. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  366. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  367. dump_stack();
  368. }
  369. static void vmcs_writel(unsigned long field, unsigned long value)
  370. {
  371. u8 error;
  372. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  373. : "=q"(error) : "a"(value), "d"(field) : "cc");
  374. if (unlikely(error))
  375. vmwrite_error(field, value);
  376. }
  377. static void vmcs_write16(unsigned long field, u16 value)
  378. {
  379. vmcs_writel(field, value);
  380. }
  381. static void vmcs_write32(unsigned long field, u32 value)
  382. {
  383. vmcs_writel(field, value);
  384. }
  385. static void vmcs_write64(unsigned long field, u64 value)
  386. {
  387. vmcs_writel(field, value);
  388. #ifndef CONFIG_X86_64
  389. asm volatile ("");
  390. vmcs_writel(field+1, value >> 32);
  391. #endif
  392. }
  393. static void vmcs_clear_bits(unsigned long field, u32 mask)
  394. {
  395. vmcs_writel(field, vmcs_readl(field) & ~mask);
  396. }
  397. static void vmcs_set_bits(unsigned long field, u32 mask)
  398. {
  399. vmcs_writel(field, vmcs_readl(field) | mask);
  400. }
  401. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  402. {
  403. u32 eb;
  404. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  405. if (!vcpu->fpu_active)
  406. eb |= 1u << NM_VECTOR;
  407. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  408. if (vcpu->guest_debug &
  409. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  410. eb |= 1u << DB_VECTOR;
  411. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  412. eb |= 1u << BP_VECTOR;
  413. }
  414. if (vcpu->arch.rmode.active)
  415. eb = ~0;
  416. if (vm_need_ept())
  417. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  418. vmcs_write32(EXCEPTION_BITMAP, eb);
  419. }
  420. static void reload_tss(void)
  421. {
  422. /*
  423. * VT restores TR but not its size. Useless.
  424. */
  425. struct descriptor_table gdt;
  426. struct desc_struct *descs;
  427. kvm_get_gdt(&gdt);
  428. descs = (void *)gdt.base;
  429. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  430. load_TR_desc();
  431. }
  432. static void load_transition_efer(struct vcpu_vmx *vmx)
  433. {
  434. int efer_offset = vmx->msr_offset_efer;
  435. u64 host_efer = vmx->host_msrs[efer_offset].data;
  436. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  437. u64 ignore_bits;
  438. if (efer_offset < 0)
  439. return;
  440. /*
  441. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  442. * outside long mode
  443. */
  444. ignore_bits = EFER_NX | EFER_SCE;
  445. #ifdef CONFIG_X86_64
  446. ignore_bits |= EFER_LMA | EFER_LME;
  447. /* SCE is meaningful only in long mode on Intel */
  448. if (guest_efer & EFER_LMA)
  449. ignore_bits &= ~(u64)EFER_SCE;
  450. #endif
  451. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  452. return;
  453. vmx->host_state.guest_efer_loaded = 1;
  454. guest_efer &= ~ignore_bits;
  455. guest_efer |= host_efer & ignore_bits;
  456. wrmsrl(MSR_EFER, guest_efer);
  457. vmx->vcpu.stat.efer_reload++;
  458. }
  459. static void reload_host_efer(struct vcpu_vmx *vmx)
  460. {
  461. if (vmx->host_state.guest_efer_loaded) {
  462. vmx->host_state.guest_efer_loaded = 0;
  463. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  464. }
  465. }
  466. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  467. {
  468. struct vcpu_vmx *vmx = to_vmx(vcpu);
  469. if (vmx->host_state.loaded)
  470. return;
  471. vmx->host_state.loaded = 1;
  472. /*
  473. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  474. * allow segment selectors with cpl > 0 or ti == 1.
  475. */
  476. vmx->host_state.ldt_sel = kvm_read_ldt();
  477. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  478. vmx->host_state.fs_sel = kvm_read_fs();
  479. if (!(vmx->host_state.fs_sel & 7)) {
  480. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  481. vmx->host_state.fs_reload_needed = 0;
  482. } else {
  483. vmcs_write16(HOST_FS_SELECTOR, 0);
  484. vmx->host_state.fs_reload_needed = 1;
  485. }
  486. vmx->host_state.gs_sel = kvm_read_gs();
  487. if (!(vmx->host_state.gs_sel & 7))
  488. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  489. else {
  490. vmcs_write16(HOST_GS_SELECTOR, 0);
  491. vmx->host_state.gs_ldt_reload_needed = 1;
  492. }
  493. #ifdef CONFIG_X86_64
  494. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  495. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  496. #else
  497. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  498. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  499. #endif
  500. #ifdef CONFIG_X86_64
  501. if (is_long_mode(&vmx->vcpu))
  502. save_msrs(vmx->host_msrs +
  503. vmx->msr_offset_kernel_gs_base, 1);
  504. #endif
  505. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  506. load_transition_efer(vmx);
  507. }
  508. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  509. {
  510. unsigned long flags;
  511. if (!vmx->host_state.loaded)
  512. return;
  513. ++vmx->vcpu.stat.host_state_reload;
  514. vmx->host_state.loaded = 0;
  515. if (vmx->host_state.fs_reload_needed)
  516. kvm_load_fs(vmx->host_state.fs_sel);
  517. if (vmx->host_state.gs_ldt_reload_needed) {
  518. kvm_load_ldt(vmx->host_state.ldt_sel);
  519. /*
  520. * If we have to reload gs, we must take care to
  521. * preserve our gs base.
  522. */
  523. local_irq_save(flags);
  524. kvm_load_gs(vmx->host_state.gs_sel);
  525. #ifdef CONFIG_X86_64
  526. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  527. #endif
  528. local_irq_restore(flags);
  529. }
  530. reload_tss();
  531. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  532. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  533. reload_host_efer(vmx);
  534. }
  535. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  536. {
  537. preempt_disable();
  538. __vmx_load_host_state(vmx);
  539. preempt_enable();
  540. }
  541. /*
  542. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  543. * vcpu mutex is already taken.
  544. */
  545. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  546. {
  547. struct vcpu_vmx *vmx = to_vmx(vcpu);
  548. u64 phys_addr = __pa(vmx->vmcs);
  549. u64 tsc_this, delta, new_offset;
  550. if (vcpu->cpu != cpu) {
  551. vcpu_clear(vmx);
  552. kvm_migrate_timers(vcpu);
  553. vpid_sync_vcpu_all(vmx);
  554. local_irq_disable();
  555. list_add(&vmx->local_vcpus_link,
  556. &per_cpu(vcpus_on_cpu, cpu));
  557. local_irq_enable();
  558. }
  559. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  560. u8 error;
  561. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  562. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  563. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  564. : "cc");
  565. if (error)
  566. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  567. vmx->vmcs, phys_addr);
  568. }
  569. if (vcpu->cpu != cpu) {
  570. struct descriptor_table dt;
  571. unsigned long sysenter_esp;
  572. vcpu->cpu = cpu;
  573. /*
  574. * Linux uses per-cpu TSS and GDT, so set these when switching
  575. * processors.
  576. */
  577. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  578. kvm_get_gdt(&dt);
  579. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  580. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  581. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  582. /*
  583. * Make sure the time stamp counter is monotonous.
  584. */
  585. rdtscll(tsc_this);
  586. if (tsc_this < vcpu->arch.host_tsc) {
  587. delta = vcpu->arch.host_tsc - tsc_this;
  588. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  589. vmcs_write64(TSC_OFFSET, new_offset);
  590. }
  591. }
  592. }
  593. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  594. {
  595. __vmx_load_host_state(to_vmx(vcpu));
  596. }
  597. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  598. {
  599. if (vcpu->fpu_active)
  600. return;
  601. vcpu->fpu_active = 1;
  602. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  603. if (vcpu->arch.cr0 & X86_CR0_TS)
  604. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  605. update_exception_bitmap(vcpu);
  606. }
  607. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  608. {
  609. if (!vcpu->fpu_active)
  610. return;
  611. vcpu->fpu_active = 0;
  612. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  613. update_exception_bitmap(vcpu);
  614. }
  615. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  616. {
  617. return vmcs_readl(GUEST_RFLAGS);
  618. }
  619. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  620. {
  621. if (vcpu->arch.rmode.active)
  622. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  623. vmcs_writel(GUEST_RFLAGS, rflags);
  624. }
  625. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  626. {
  627. unsigned long rip;
  628. u32 interruptibility;
  629. rip = kvm_rip_read(vcpu);
  630. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  631. kvm_rip_write(vcpu, rip);
  632. /*
  633. * We emulated an instruction, so temporary interrupt blocking
  634. * should be removed, if set.
  635. */
  636. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  637. if (interruptibility & 3)
  638. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  639. interruptibility & ~3);
  640. vcpu->arch.interrupt_window_open = 1;
  641. }
  642. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  643. bool has_error_code, u32 error_code)
  644. {
  645. struct vcpu_vmx *vmx = to_vmx(vcpu);
  646. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  647. if (has_error_code) {
  648. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  649. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  650. }
  651. if (vcpu->arch.rmode.active) {
  652. vmx->rmode.irq.pending = true;
  653. vmx->rmode.irq.vector = nr;
  654. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  655. if (nr == BP_VECTOR || nr == OF_VECTOR)
  656. vmx->rmode.irq.rip++;
  657. intr_info |= INTR_TYPE_SOFT_INTR;
  658. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  659. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  660. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  661. return;
  662. }
  663. if (nr == BP_VECTOR || nr == OF_VECTOR) {
  664. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  665. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  666. } else
  667. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  668. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  669. }
  670. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  671. {
  672. return false;
  673. }
  674. /*
  675. * Swap MSR entry in host/guest MSR entry array.
  676. */
  677. #ifdef CONFIG_X86_64
  678. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  679. {
  680. struct kvm_msr_entry tmp;
  681. tmp = vmx->guest_msrs[to];
  682. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  683. vmx->guest_msrs[from] = tmp;
  684. tmp = vmx->host_msrs[to];
  685. vmx->host_msrs[to] = vmx->host_msrs[from];
  686. vmx->host_msrs[from] = tmp;
  687. }
  688. #endif
  689. /*
  690. * Set up the vmcs to automatically save and restore system
  691. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  692. * mode, as fiddling with msrs is very expensive.
  693. */
  694. static void setup_msrs(struct vcpu_vmx *vmx)
  695. {
  696. int save_nmsrs;
  697. vmx_load_host_state(vmx);
  698. save_nmsrs = 0;
  699. #ifdef CONFIG_X86_64
  700. if (is_long_mode(&vmx->vcpu)) {
  701. int index;
  702. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  703. if (index >= 0)
  704. move_msr_up(vmx, index, save_nmsrs++);
  705. index = __find_msr_index(vmx, MSR_LSTAR);
  706. if (index >= 0)
  707. move_msr_up(vmx, index, save_nmsrs++);
  708. index = __find_msr_index(vmx, MSR_CSTAR);
  709. if (index >= 0)
  710. move_msr_up(vmx, index, save_nmsrs++);
  711. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  712. if (index >= 0)
  713. move_msr_up(vmx, index, save_nmsrs++);
  714. /*
  715. * MSR_K6_STAR is only needed on long mode guests, and only
  716. * if efer.sce is enabled.
  717. */
  718. index = __find_msr_index(vmx, MSR_K6_STAR);
  719. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  720. move_msr_up(vmx, index, save_nmsrs++);
  721. }
  722. #endif
  723. vmx->save_nmsrs = save_nmsrs;
  724. #ifdef CONFIG_X86_64
  725. vmx->msr_offset_kernel_gs_base =
  726. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  727. #endif
  728. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  729. }
  730. /*
  731. * reads and returns guest's timestamp counter "register"
  732. * guest_tsc = host_tsc + tsc_offset -- 21.3
  733. */
  734. static u64 guest_read_tsc(void)
  735. {
  736. u64 host_tsc, tsc_offset;
  737. rdtscll(host_tsc);
  738. tsc_offset = vmcs_read64(TSC_OFFSET);
  739. return host_tsc + tsc_offset;
  740. }
  741. /*
  742. * writes 'guest_tsc' into guest's timestamp counter "register"
  743. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  744. */
  745. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  746. {
  747. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  748. }
  749. /*
  750. * Reads an msr value (of 'msr_index') into 'pdata'.
  751. * Returns 0 on success, non-0 otherwise.
  752. * Assumes vcpu_load() was already called.
  753. */
  754. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  755. {
  756. u64 data;
  757. struct kvm_msr_entry *msr;
  758. if (!pdata) {
  759. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  760. return -EINVAL;
  761. }
  762. switch (msr_index) {
  763. #ifdef CONFIG_X86_64
  764. case MSR_FS_BASE:
  765. data = vmcs_readl(GUEST_FS_BASE);
  766. break;
  767. case MSR_GS_BASE:
  768. data = vmcs_readl(GUEST_GS_BASE);
  769. break;
  770. case MSR_EFER:
  771. return kvm_get_msr_common(vcpu, msr_index, pdata);
  772. #endif
  773. case MSR_IA32_TIME_STAMP_COUNTER:
  774. data = guest_read_tsc();
  775. break;
  776. case MSR_IA32_SYSENTER_CS:
  777. data = vmcs_read32(GUEST_SYSENTER_CS);
  778. break;
  779. case MSR_IA32_SYSENTER_EIP:
  780. data = vmcs_readl(GUEST_SYSENTER_EIP);
  781. break;
  782. case MSR_IA32_SYSENTER_ESP:
  783. data = vmcs_readl(GUEST_SYSENTER_ESP);
  784. break;
  785. default:
  786. vmx_load_host_state(to_vmx(vcpu));
  787. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  788. if (msr) {
  789. data = msr->data;
  790. break;
  791. }
  792. return kvm_get_msr_common(vcpu, msr_index, pdata);
  793. }
  794. *pdata = data;
  795. return 0;
  796. }
  797. /*
  798. * Writes msr value into into the appropriate "register".
  799. * Returns 0 on success, non-0 otherwise.
  800. * Assumes vcpu_load() was already called.
  801. */
  802. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  803. {
  804. struct vcpu_vmx *vmx = to_vmx(vcpu);
  805. struct kvm_msr_entry *msr;
  806. u64 host_tsc;
  807. int ret = 0;
  808. switch (msr_index) {
  809. case MSR_EFER:
  810. vmx_load_host_state(vmx);
  811. ret = kvm_set_msr_common(vcpu, msr_index, data);
  812. break;
  813. #ifdef CONFIG_X86_64
  814. case MSR_FS_BASE:
  815. vmcs_writel(GUEST_FS_BASE, data);
  816. break;
  817. case MSR_GS_BASE:
  818. vmcs_writel(GUEST_GS_BASE, data);
  819. break;
  820. #endif
  821. case MSR_IA32_SYSENTER_CS:
  822. vmcs_write32(GUEST_SYSENTER_CS, data);
  823. break;
  824. case MSR_IA32_SYSENTER_EIP:
  825. vmcs_writel(GUEST_SYSENTER_EIP, data);
  826. break;
  827. case MSR_IA32_SYSENTER_ESP:
  828. vmcs_writel(GUEST_SYSENTER_ESP, data);
  829. break;
  830. case MSR_IA32_TIME_STAMP_COUNTER:
  831. rdtscll(host_tsc);
  832. guest_write_tsc(data, host_tsc);
  833. break;
  834. case MSR_P6_PERFCTR0:
  835. case MSR_P6_PERFCTR1:
  836. case MSR_P6_EVNTSEL0:
  837. case MSR_P6_EVNTSEL1:
  838. /*
  839. * Just discard all writes to the performance counters; this
  840. * should keep both older linux and windows 64-bit guests
  841. * happy
  842. */
  843. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  844. break;
  845. case MSR_IA32_CR_PAT:
  846. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  847. vmcs_write64(GUEST_IA32_PAT, data);
  848. vcpu->arch.pat = data;
  849. break;
  850. }
  851. /* Otherwise falls through to kvm_set_msr_common */
  852. default:
  853. vmx_load_host_state(vmx);
  854. msr = find_msr_entry(vmx, msr_index);
  855. if (msr) {
  856. msr->data = data;
  857. break;
  858. }
  859. ret = kvm_set_msr_common(vcpu, msr_index, data);
  860. }
  861. return ret;
  862. }
  863. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  864. {
  865. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  866. switch (reg) {
  867. case VCPU_REGS_RSP:
  868. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  869. break;
  870. case VCPU_REGS_RIP:
  871. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  872. break;
  873. default:
  874. break;
  875. }
  876. }
  877. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  878. {
  879. int old_debug = vcpu->guest_debug;
  880. unsigned long flags;
  881. vcpu->guest_debug = dbg->control;
  882. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  883. vcpu->guest_debug = 0;
  884. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  885. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  886. else
  887. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  888. flags = vmcs_readl(GUEST_RFLAGS);
  889. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  890. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  891. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  892. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  893. vmcs_writel(GUEST_RFLAGS, flags);
  894. update_exception_bitmap(vcpu);
  895. return 0;
  896. }
  897. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  898. {
  899. if (!vcpu->arch.interrupt.pending)
  900. return -1;
  901. return vcpu->arch.interrupt.nr;
  902. }
  903. static __init int cpu_has_kvm_support(void)
  904. {
  905. return cpu_has_vmx();
  906. }
  907. static __init int vmx_disabled_by_bios(void)
  908. {
  909. u64 msr;
  910. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  911. return (msr & (FEATURE_CONTROL_LOCKED |
  912. FEATURE_CONTROL_VMXON_ENABLED))
  913. == FEATURE_CONTROL_LOCKED;
  914. /* locked but not enabled */
  915. }
  916. static void hardware_enable(void *garbage)
  917. {
  918. int cpu = raw_smp_processor_id();
  919. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  920. u64 old;
  921. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  922. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  923. if ((old & (FEATURE_CONTROL_LOCKED |
  924. FEATURE_CONTROL_VMXON_ENABLED))
  925. != (FEATURE_CONTROL_LOCKED |
  926. FEATURE_CONTROL_VMXON_ENABLED))
  927. /* enable and lock */
  928. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  929. FEATURE_CONTROL_LOCKED |
  930. FEATURE_CONTROL_VMXON_ENABLED);
  931. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  932. asm volatile (ASM_VMX_VMXON_RAX
  933. : : "a"(&phys_addr), "m"(phys_addr)
  934. : "memory", "cc");
  935. }
  936. static void vmclear_local_vcpus(void)
  937. {
  938. int cpu = raw_smp_processor_id();
  939. struct vcpu_vmx *vmx, *n;
  940. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  941. local_vcpus_link)
  942. __vcpu_clear(vmx);
  943. }
  944. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  945. * tricks.
  946. */
  947. static void kvm_cpu_vmxoff(void)
  948. {
  949. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  950. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  951. }
  952. static void hardware_disable(void *garbage)
  953. {
  954. vmclear_local_vcpus();
  955. kvm_cpu_vmxoff();
  956. }
  957. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  958. u32 msr, u32 *result)
  959. {
  960. u32 vmx_msr_low, vmx_msr_high;
  961. u32 ctl = ctl_min | ctl_opt;
  962. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  963. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  964. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  965. /* Ensure minimum (required) set of control bits are supported. */
  966. if (ctl_min & ~ctl)
  967. return -EIO;
  968. *result = ctl;
  969. return 0;
  970. }
  971. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  972. {
  973. u32 vmx_msr_low, vmx_msr_high;
  974. u32 min, opt, min2, opt2;
  975. u32 _pin_based_exec_control = 0;
  976. u32 _cpu_based_exec_control = 0;
  977. u32 _cpu_based_2nd_exec_control = 0;
  978. u32 _vmexit_control = 0;
  979. u32 _vmentry_control = 0;
  980. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  981. opt = PIN_BASED_VIRTUAL_NMIS;
  982. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  983. &_pin_based_exec_control) < 0)
  984. return -EIO;
  985. min = CPU_BASED_HLT_EXITING |
  986. #ifdef CONFIG_X86_64
  987. CPU_BASED_CR8_LOAD_EXITING |
  988. CPU_BASED_CR8_STORE_EXITING |
  989. #endif
  990. CPU_BASED_CR3_LOAD_EXITING |
  991. CPU_BASED_CR3_STORE_EXITING |
  992. CPU_BASED_USE_IO_BITMAPS |
  993. CPU_BASED_MOV_DR_EXITING |
  994. CPU_BASED_USE_TSC_OFFSETING |
  995. CPU_BASED_INVLPG_EXITING;
  996. opt = CPU_BASED_TPR_SHADOW |
  997. CPU_BASED_USE_MSR_BITMAPS |
  998. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  999. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1000. &_cpu_based_exec_control) < 0)
  1001. return -EIO;
  1002. #ifdef CONFIG_X86_64
  1003. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1004. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1005. ~CPU_BASED_CR8_STORE_EXITING;
  1006. #endif
  1007. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1008. min2 = 0;
  1009. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1010. SECONDARY_EXEC_WBINVD_EXITING |
  1011. SECONDARY_EXEC_ENABLE_VPID |
  1012. SECONDARY_EXEC_ENABLE_EPT;
  1013. if (adjust_vmx_controls(min2, opt2,
  1014. MSR_IA32_VMX_PROCBASED_CTLS2,
  1015. &_cpu_based_2nd_exec_control) < 0)
  1016. return -EIO;
  1017. }
  1018. #ifndef CONFIG_X86_64
  1019. if (!(_cpu_based_2nd_exec_control &
  1020. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1021. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1022. #endif
  1023. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1024. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1025. enabled */
  1026. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1027. CPU_BASED_CR3_STORE_EXITING |
  1028. CPU_BASED_INVLPG_EXITING);
  1029. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1030. &_cpu_based_exec_control) < 0)
  1031. return -EIO;
  1032. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1033. vmx_capability.ept, vmx_capability.vpid);
  1034. }
  1035. min = 0;
  1036. #ifdef CONFIG_X86_64
  1037. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1038. #endif
  1039. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1040. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1041. &_vmexit_control) < 0)
  1042. return -EIO;
  1043. min = 0;
  1044. opt = VM_ENTRY_LOAD_IA32_PAT;
  1045. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1046. &_vmentry_control) < 0)
  1047. return -EIO;
  1048. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1049. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1050. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1051. return -EIO;
  1052. #ifdef CONFIG_X86_64
  1053. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1054. if (vmx_msr_high & (1u<<16))
  1055. return -EIO;
  1056. #endif
  1057. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1058. if (((vmx_msr_high >> 18) & 15) != 6)
  1059. return -EIO;
  1060. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1061. vmcs_conf->order = get_order(vmcs_config.size);
  1062. vmcs_conf->revision_id = vmx_msr_low;
  1063. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1064. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1065. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1066. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1067. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1068. return 0;
  1069. }
  1070. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1071. {
  1072. int node = cpu_to_node(cpu);
  1073. struct page *pages;
  1074. struct vmcs *vmcs;
  1075. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1076. if (!pages)
  1077. return NULL;
  1078. vmcs = page_address(pages);
  1079. memset(vmcs, 0, vmcs_config.size);
  1080. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1081. return vmcs;
  1082. }
  1083. static struct vmcs *alloc_vmcs(void)
  1084. {
  1085. return alloc_vmcs_cpu(raw_smp_processor_id());
  1086. }
  1087. static void free_vmcs(struct vmcs *vmcs)
  1088. {
  1089. free_pages((unsigned long)vmcs, vmcs_config.order);
  1090. }
  1091. static void free_kvm_area(void)
  1092. {
  1093. int cpu;
  1094. for_each_online_cpu(cpu)
  1095. free_vmcs(per_cpu(vmxarea, cpu));
  1096. }
  1097. static __init int alloc_kvm_area(void)
  1098. {
  1099. int cpu;
  1100. for_each_online_cpu(cpu) {
  1101. struct vmcs *vmcs;
  1102. vmcs = alloc_vmcs_cpu(cpu);
  1103. if (!vmcs) {
  1104. free_kvm_area();
  1105. return -ENOMEM;
  1106. }
  1107. per_cpu(vmxarea, cpu) = vmcs;
  1108. }
  1109. return 0;
  1110. }
  1111. static __init int hardware_setup(void)
  1112. {
  1113. if (setup_vmcs_config(&vmcs_config) < 0)
  1114. return -EIO;
  1115. if (boot_cpu_has(X86_FEATURE_NX))
  1116. kvm_enable_efer_bits(EFER_NX);
  1117. return alloc_kvm_area();
  1118. }
  1119. static __exit void hardware_unsetup(void)
  1120. {
  1121. free_kvm_area();
  1122. }
  1123. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1124. {
  1125. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1126. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1127. vmcs_write16(sf->selector, save->selector);
  1128. vmcs_writel(sf->base, save->base);
  1129. vmcs_write32(sf->limit, save->limit);
  1130. vmcs_write32(sf->ar_bytes, save->ar);
  1131. } else {
  1132. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1133. << AR_DPL_SHIFT;
  1134. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1135. }
  1136. }
  1137. static void enter_pmode(struct kvm_vcpu *vcpu)
  1138. {
  1139. unsigned long flags;
  1140. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1141. vmx->emulation_required = 1;
  1142. vcpu->arch.rmode.active = 0;
  1143. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1144. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1145. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1146. flags = vmcs_readl(GUEST_RFLAGS);
  1147. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1148. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1149. vmcs_writel(GUEST_RFLAGS, flags);
  1150. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1151. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1152. update_exception_bitmap(vcpu);
  1153. if (emulate_invalid_guest_state)
  1154. return;
  1155. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1156. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1157. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1158. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1159. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1160. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1161. vmcs_write16(GUEST_CS_SELECTOR,
  1162. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1163. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1164. }
  1165. static gva_t rmode_tss_base(struct kvm *kvm)
  1166. {
  1167. if (!kvm->arch.tss_addr) {
  1168. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1169. kvm->memslots[0].npages - 3;
  1170. return base_gfn << PAGE_SHIFT;
  1171. }
  1172. return kvm->arch.tss_addr;
  1173. }
  1174. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1175. {
  1176. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1177. save->selector = vmcs_read16(sf->selector);
  1178. save->base = vmcs_readl(sf->base);
  1179. save->limit = vmcs_read32(sf->limit);
  1180. save->ar = vmcs_read32(sf->ar_bytes);
  1181. vmcs_write16(sf->selector, save->base >> 4);
  1182. vmcs_write32(sf->base, save->base & 0xfffff);
  1183. vmcs_write32(sf->limit, 0xffff);
  1184. vmcs_write32(sf->ar_bytes, 0xf3);
  1185. }
  1186. static void enter_rmode(struct kvm_vcpu *vcpu)
  1187. {
  1188. unsigned long flags;
  1189. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1190. vmx->emulation_required = 1;
  1191. vcpu->arch.rmode.active = 1;
  1192. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1193. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1194. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1195. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1196. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1197. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1198. flags = vmcs_readl(GUEST_RFLAGS);
  1199. vcpu->arch.rmode.save_iopl
  1200. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1201. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1202. vmcs_writel(GUEST_RFLAGS, flags);
  1203. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1204. update_exception_bitmap(vcpu);
  1205. if (emulate_invalid_guest_state)
  1206. goto continue_rmode;
  1207. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1208. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1209. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1210. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1211. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1212. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1213. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1214. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1215. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1216. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1217. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1218. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1219. continue_rmode:
  1220. kvm_mmu_reset_context(vcpu);
  1221. init_rmode(vcpu->kvm);
  1222. }
  1223. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1224. {
  1225. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1226. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1227. vcpu->arch.shadow_efer = efer;
  1228. if (!msr)
  1229. return;
  1230. if (efer & EFER_LMA) {
  1231. vmcs_write32(VM_ENTRY_CONTROLS,
  1232. vmcs_read32(VM_ENTRY_CONTROLS) |
  1233. VM_ENTRY_IA32E_MODE);
  1234. msr->data = efer;
  1235. } else {
  1236. vmcs_write32(VM_ENTRY_CONTROLS,
  1237. vmcs_read32(VM_ENTRY_CONTROLS) &
  1238. ~VM_ENTRY_IA32E_MODE);
  1239. msr->data = efer & ~EFER_LME;
  1240. }
  1241. setup_msrs(vmx);
  1242. }
  1243. #ifdef CONFIG_X86_64
  1244. static void enter_lmode(struct kvm_vcpu *vcpu)
  1245. {
  1246. u32 guest_tr_ar;
  1247. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1248. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1249. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1250. __func__);
  1251. vmcs_write32(GUEST_TR_AR_BYTES,
  1252. (guest_tr_ar & ~AR_TYPE_MASK)
  1253. | AR_TYPE_BUSY_64_TSS);
  1254. }
  1255. vcpu->arch.shadow_efer |= EFER_LMA;
  1256. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1257. }
  1258. static void exit_lmode(struct kvm_vcpu *vcpu)
  1259. {
  1260. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1261. vmcs_write32(VM_ENTRY_CONTROLS,
  1262. vmcs_read32(VM_ENTRY_CONTROLS)
  1263. & ~VM_ENTRY_IA32E_MODE);
  1264. }
  1265. #endif
  1266. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1267. {
  1268. vpid_sync_vcpu_all(to_vmx(vcpu));
  1269. if (vm_need_ept())
  1270. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1271. }
  1272. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1273. {
  1274. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1275. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1276. }
  1277. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1278. {
  1279. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1280. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1281. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1282. return;
  1283. }
  1284. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1285. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1286. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1287. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1288. }
  1289. }
  1290. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1291. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1292. unsigned long cr0,
  1293. struct kvm_vcpu *vcpu)
  1294. {
  1295. if (!(cr0 & X86_CR0_PG)) {
  1296. /* From paging/starting to nonpaging */
  1297. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1298. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1299. (CPU_BASED_CR3_LOAD_EXITING |
  1300. CPU_BASED_CR3_STORE_EXITING));
  1301. vcpu->arch.cr0 = cr0;
  1302. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1303. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1304. *hw_cr0 &= ~X86_CR0_WP;
  1305. } else if (!is_paging(vcpu)) {
  1306. /* From nonpaging to paging */
  1307. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1308. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1309. ~(CPU_BASED_CR3_LOAD_EXITING |
  1310. CPU_BASED_CR3_STORE_EXITING));
  1311. vcpu->arch.cr0 = cr0;
  1312. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1313. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1314. *hw_cr0 &= ~X86_CR0_WP;
  1315. }
  1316. }
  1317. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1318. struct kvm_vcpu *vcpu)
  1319. {
  1320. if (!is_paging(vcpu)) {
  1321. *hw_cr4 &= ~X86_CR4_PAE;
  1322. *hw_cr4 |= X86_CR4_PSE;
  1323. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1324. *hw_cr4 &= ~X86_CR4_PAE;
  1325. }
  1326. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1327. {
  1328. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1329. KVM_VM_CR0_ALWAYS_ON;
  1330. vmx_fpu_deactivate(vcpu);
  1331. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1332. enter_pmode(vcpu);
  1333. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1334. enter_rmode(vcpu);
  1335. #ifdef CONFIG_X86_64
  1336. if (vcpu->arch.shadow_efer & EFER_LME) {
  1337. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1338. enter_lmode(vcpu);
  1339. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1340. exit_lmode(vcpu);
  1341. }
  1342. #endif
  1343. if (vm_need_ept())
  1344. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1345. vmcs_writel(CR0_READ_SHADOW, cr0);
  1346. vmcs_writel(GUEST_CR0, hw_cr0);
  1347. vcpu->arch.cr0 = cr0;
  1348. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1349. vmx_fpu_activate(vcpu);
  1350. }
  1351. static u64 construct_eptp(unsigned long root_hpa)
  1352. {
  1353. u64 eptp;
  1354. /* TODO write the value reading from MSR */
  1355. eptp = VMX_EPT_DEFAULT_MT |
  1356. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1357. eptp |= (root_hpa & PAGE_MASK);
  1358. return eptp;
  1359. }
  1360. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1361. {
  1362. unsigned long guest_cr3;
  1363. u64 eptp;
  1364. guest_cr3 = cr3;
  1365. if (vm_need_ept()) {
  1366. eptp = construct_eptp(cr3);
  1367. vmcs_write64(EPT_POINTER, eptp);
  1368. ept_sync_context(eptp);
  1369. ept_load_pdptrs(vcpu);
  1370. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1371. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1372. }
  1373. vmx_flush_tlb(vcpu);
  1374. vmcs_writel(GUEST_CR3, guest_cr3);
  1375. if (vcpu->arch.cr0 & X86_CR0_PE)
  1376. vmx_fpu_deactivate(vcpu);
  1377. }
  1378. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1379. {
  1380. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1381. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1382. vcpu->arch.cr4 = cr4;
  1383. if (vm_need_ept())
  1384. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1385. vmcs_writel(CR4_READ_SHADOW, cr4);
  1386. vmcs_writel(GUEST_CR4, hw_cr4);
  1387. }
  1388. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1389. {
  1390. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1391. return vmcs_readl(sf->base);
  1392. }
  1393. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1394. struct kvm_segment *var, int seg)
  1395. {
  1396. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1397. u32 ar;
  1398. var->base = vmcs_readl(sf->base);
  1399. var->limit = vmcs_read32(sf->limit);
  1400. var->selector = vmcs_read16(sf->selector);
  1401. ar = vmcs_read32(sf->ar_bytes);
  1402. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1403. ar = 0;
  1404. var->type = ar & 15;
  1405. var->s = (ar >> 4) & 1;
  1406. var->dpl = (ar >> 5) & 3;
  1407. var->present = (ar >> 7) & 1;
  1408. var->avl = (ar >> 12) & 1;
  1409. var->l = (ar >> 13) & 1;
  1410. var->db = (ar >> 14) & 1;
  1411. var->g = (ar >> 15) & 1;
  1412. var->unusable = (ar >> 16) & 1;
  1413. }
  1414. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1415. {
  1416. struct kvm_segment kvm_seg;
  1417. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1418. return 0;
  1419. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1420. return 3;
  1421. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1422. return kvm_seg.selector & 3;
  1423. }
  1424. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1425. {
  1426. u32 ar;
  1427. if (var->unusable)
  1428. ar = 1 << 16;
  1429. else {
  1430. ar = var->type & 15;
  1431. ar |= (var->s & 1) << 4;
  1432. ar |= (var->dpl & 3) << 5;
  1433. ar |= (var->present & 1) << 7;
  1434. ar |= (var->avl & 1) << 12;
  1435. ar |= (var->l & 1) << 13;
  1436. ar |= (var->db & 1) << 14;
  1437. ar |= (var->g & 1) << 15;
  1438. }
  1439. if (ar == 0) /* a 0 value means unusable */
  1440. ar = AR_UNUSABLE_MASK;
  1441. return ar;
  1442. }
  1443. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1444. struct kvm_segment *var, int seg)
  1445. {
  1446. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1447. u32 ar;
  1448. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1449. vcpu->arch.rmode.tr.selector = var->selector;
  1450. vcpu->arch.rmode.tr.base = var->base;
  1451. vcpu->arch.rmode.tr.limit = var->limit;
  1452. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1453. return;
  1454. }
  1455. vmcs_writel(sf->base, var->base);
  1456. vmcs_write32(sf->limit, var->limit);
  1457. vmcs_write16(sf->selector, var->selector);
  1458. if (vcpu->arch.rmode.active && var->s) {
  1459. /*
  1460. * Hack real-mode segments into vm86 compatibility.
  1461. */
  1462. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1463. vmcs_writel(sf->base, 0xf0000);
  1464. ar = 0xf3;
  1465. } else
  1466. ar = vmx_segment_access_rights(var);
  1467. vmcs_write32(sf->ar_bytes, ar);
  1468. }
  1469. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1470. {
  1471. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1472. *db = (ar >> 14) & 1;
  1473. *l = (ar >> 13) & 1;
  1474. }
  1475. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1476. {
  1477. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1478. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1479. }
  1480. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1481. {
  1482. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1483. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1484. }
  1485. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1486. {
  1487. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1488. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1489. }
  1490. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1491. {
  1492. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1493. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1494. }
  1495. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1496. {
  1497. struct kvm_segment var;
  1498. u32 ar;
  1499. vmx_get_segment(vcpu, &var, seg);
  1500. ar = vmx_segment_access_rights(&var);
  1501. if (var.base != (var.selector << 4))
  1502. return false;
  1503. if (var.limit != 0xffff)
  1504. return false;
  1505. if (ar != 0xf3)
  1506. return false;
  1507. return true;
  1508. }
  1509. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1510. {
  1511. struct kvm_segment cs;
  1512. unsigned int cs_rpl;
  1513. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1514. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1515. if (cs.unusable)
  1516. return false;
  1517. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1518. return false;
  1519. if (!cs.s)
  1520. return false;
  1521. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1522. if (cs.dpl > cs_rpl)
  1523. return false;
  1524. } else {
  1525. if (cs.dpl != cs_rpl)
  1526. return false;
  1527. }
  1528. if (!cs.present)
  1529. return false;
  1530. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1531. return true;
  1532. }
  1533. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1534. {
  1535. struct kvm_segment ss;
  1536. unsigned int ss_rpl;
  1537. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1538. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1539. if (ss.unusable)
  1540. return true;
  1541. if (ss.type != 3 && ss.type != 7)
  1542. return false;
  1543. if (!ss.s)
  1544. return false;
  1545. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1546. return false;
  1547. if (!ss.present)
  1548. return false;
  1549. return true;
  1550. }
  1551. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1552. {
  1553. struct kvm_segment var;
  1554. unsigned int rpl;
  1555. vmx_get_segment(vcpu, &var, seg);
  1556. rpl = var.selector & SELECTOR_RPL_MASK;
  1557. if (var.unusable)
  1558. return true;
  1559. if (!var.s)
  1560. return false;
  1561. if (!var.present)
  1562. return false;
  1563. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1564. if (var.dpl < rpl) /* DPL < RPL */
  1565. return false;
  1566. }
  1567. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1568. * rights flags
  1569. */
  1570. return true;
  1571. }
  1572. static bool tr_valid(struct kvm_vcpu *vcpu)
  1573. {
  1574. struct kvm_segment tr;
  1575. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1576. if (tr.unusable)
  1577. return false;
  1578. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1579. return false;
  1580. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1581. return false;
  1582. if (!tr.present)
  1583. return false;
  1584. return true;
  1585. }
  1586. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1587. {
  1588. struct kvm_segment ldtr;
  1589. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1590. if (ldtr.unusable)
  1591. return true;
  1592. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1593. return false;
  1594. if (ldtr.type != 2)
  1595. return false;
  1596. if (!ldtr.present)
  1597. return false;
  1598. return true;
  1599. }
  1600. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1601. {
  1602. struct kvm_segment cs, ss;
  1603. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1604. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1605. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1606. (ss.selector & SELECTOR_RPL_MASK));
  1607. }
  1608. /*
  1609. * Check if guest state is valid. Returns true if valid, false if
  1610. * not.
  1611. * We assume that registers are always usable
  1612. */
  1613. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1614. {
  1615. /* real mode guest state checks */
  1616. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1617. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1618. return false;
  1619. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1620. return false;
  1621. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1622. return false;
  1623. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1624. return false;
  1625. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1626. return false;
  1627. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1628. return false;
  1629. } else {
  1630. /* protected mode guest state checks */
  1631. if (!cs_ss_rpl_check(vcpu))
  1632. return false;
  1633. if (!code_segment_valid(vcpu))
  1634. return false;
  1635. if (!stack_segment_valid(vcpu))
  1636. return false;
  1637. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1638. return false;
  1639. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1640. return false;
  1641. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1642. return false;
  1643. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1644. return false;
  1645. if (!tr_valid(vcpu))
  1646. return false;
  1647. if (!ldtr_valid(vcpu))
  1648. return false;
  1649. }
  1650. /* TODO:
  1651. * - Add checks on RIP
  1652. * - Add checks on RFLAGS
  1653. */
  1654. return true;
  1655. }
  1656. static int init_rmode_tss(struct kvm *kvm)
  1657. {
  1658. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1659. u16 data = 0;
  1660. int ret = 0;
  1661. int r;
  1662. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1663. if (r < 0)
  1664. goto out;
  1665. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1666. r = kvm_write_guest_page(kvm, fn++, &data,
  1667. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1668. if (r < 0)
  1669. goto out;
  1670. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1671. if (r < 0)
  1672. goto out;
  1673. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1674. if (r < 0)
  1675. goto out;
  1676. data = ~0;
  1677. r = kvm_write_guest_page(kvm, fn, &data,
  1678. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1679. sizeof(u8));
  1680. if (r < 0)
  1681. goto out;
  1682. ret = 1;
  1683. out:
  1684. return ret;
  1685. }
  1686. static int init_rmode_identity_map(struct kvm *kvm)
  1687. {
  1688. int i, r, ret;
  1689. pfn_t identity_map_pfn;
  1690. u32 tmp;
  1691. if (!vm_need_ept())
  1692. return 1;
  1693. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1694. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1695. "haven't been allocated!\n");
  1696. return 0;
  1697. }
  1698. if (likely(kvm->arch.ept_identity_pagetable_done))
  1699. return 1;
  1700. ret = 0;
  1701. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1702. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1703. if (r < 0)
  1704. goto out;
  1705. /* Set up identity-mapping pagetable for EPT in real mode */
  1706. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1707. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1708. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1709. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1710. &tmp, i * sizeof(tmp), sizeof(tmp));
  1711. if (r < 0)
  1712. goto out;
  1713. }
  1714. kvm->arch.ept_identity_pagetable_done = true;
  1715. ret = 1;
  1716. out:
  1717. return ret;
  1718. }
  1719. static void seg_setup(int seg)
  1720. {
  1721. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1722. vmcs_write16(sf->selector, 0);
  1723. vmcs_writel(sf->base, 0);
  1724. vmcs_write32(sf->limit, 0xffff);
  1725. vmcs_write32(sf->ar_bytes, 0xf3);
  1726. }
  1727. static int alloc_apic_access_page(struct kvm *kvm)
  1728. {
  1729. struct kvm_userspace_memory_region kvm_userspace_mem;
  1730. int r = 0;
  1731. down_write(&kvm->slots_lock);
  1732. if (kvm->arch.apic_access_page)
  1733. goto out;
  1734. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1735. kvm_userspace_mem.flags = 0;
  1736. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1737. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1738. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1739. if (r)
  1740. goto out;
  1741. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1742. out:
  1743. up_write(&kvm->slots_lock);
  1744. return r;
  1745. }
  1746. static int alloc_identity_pagetable(struct kvm *kvm)
  1747. {
  1748. struct kvm_userspace_memory_region kvm_userspace_mem;
  1749. int r = 0;
  1750. down_write(&kvm->slots_lock);
  1751. if (kvm->arch.ept_identity_pagetable)
  1752. goto out;
  1753. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1754. kvm_userspace_mem.flags = 0;
  1755. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1756. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1757. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1758. if (r)
  1759. goto out;
  1760. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1761. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1762. out:
  1763. up_write(&kvm->slots_lock);
  1764. return r;
  1765. }
  1766. static void allocate_vpid(struct vcpu_vmx *vmx)
  1767. {
  1768. int vpid;
  1769. vmx->vpid = 0;
  1770. if (!enable_vpid || !cpu_has_vmx_vpid())
  1771. return;
  1772. spin_lock(&vmx_vpid_lock);
  1773. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1774. if (vpid < VMX_NR_VPIDS) {
  1775. vmx->vpid = vpid;
  1776. __set_bit(vpid, vmx_vpid_bitmap);
  1777. }
  1778. spin_unlock(&vmx_vpid_lock);
  1779. }
  1780. static void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1781. {
  1782. void *va;
  1783. if (!cpu_has_vmx_msr_bitmap())
  1784. return;
  1785. /*
  1786. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1787. * have the write-low and read-high bitmap offsets the wrong way round.
  1788. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1789. */
  1790. va = kmap(msr_bitmap);
  1791. if (msr <= 0x1fff) {
  1792. __clear_bit(msr, va + 0x000); /* read-low */
  1793. __clear_bit(msr, va + 0x800); /* write-low */
  1794. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1795. msr &= 0x1fff;
  1796. __clear_bit(msr, va + 0x400); /* read-high */
  1797. __clear_bit(msr, va + 0xc00); /* write-high */
  1798. }
  1799. kunmap(msr_bitmap);
  1800. }
  1801. /*
  1802. * Sets up the vmcs for emulated real mode.
  1803. */
  1804. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1805. {
  1806. u32 host_sysenter_cs, msr_low, msr_high;
  1807. u32 junk;
  1808. u64 host_pat, tsc_this, tsc_base;
  1809. unsigned long a;
  1810. struct descriptor_table dt;
  1811. int i;
  1812. unsigned long kvm_vmx_return;
  1813. u32 exec_control;
  1814. /* I/O */
  1815. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1816. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1817. if (cpu_has_vmx_msr_bitmap())
  1818. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1819. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1820. /* Control */
  1821. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1822. vmcs_config.pin_based_exec_ctrl);
  1823. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1824. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1825. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1826. #ifdef CONFIG_X86_64
  1827. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1828. CPU_BASED_CR8_LOAD_EXITING;
  1829. #endif
  1830. }
  1831. if (!vm_need_ept())
  1832. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1833. CPU_BASED_CR3_LOAD_EXITING |
  1834. CPU_BASED_INVLPG_EXITING;
  1835. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1836. if (cpu_has_secondary_exec_ctrls()) {
  1837. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1838. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1839. exec_control &=
  1840. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1841. if (vmx->vpid == 0)
  1842. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1843. if (!vm_need_ept())
  1844. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1845. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1846. }
  1847. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1848. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1849. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1850. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1851. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1852. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1853. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1854. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1855. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1856. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1857. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1858. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1859. #ifdef CONFIG_X86_64
  1860. rdmsrl(MSR_FS_BASE, a);
  1861. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1862. rdmsrl(MSR_GS_BASE, a);
  1863. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1864. #else
  1865. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1866. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1867. #endif
  1868. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1869. kvm_get_idt(&dt);
  1870. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1871. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1872. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1873. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1874. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1875. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1876. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1877. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1878. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1879. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1880. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1881. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1882. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1883. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1884. host_pat = msr_low | ((u64) msr_high << 32);
  1885. vmcs_write64(HOST_IA32_PAT, host_pat);
  1886. }
  1887. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1888. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1889. host_pat = msr_low | ((u64) msr_high << 32);
  1890. /* Write the default value follow host pat */
  1891. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1892. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1893. vmx->vcpu.arch.pat = host_pat;
  1894. }
  1895. for (i = 0; i < NR_VMX_MSR; ++i) {
  1896. u32 index = vmx_msr_index[i];
  1897. u32 data_low, data_high;
  1898. u64 data;
  1899. int j = vmx->nmsrs;
  1900. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1901. continue;
  1902. if (wrmsr_safe(index, data_low, data_high) < 0)
  1903. continue;
  1904. data = data_low | ((u64)data_high << 32);
  1905. vmx->host_msrs[j].index = index;
  1906. vmx->host_msrs[j].reserved = 0;
  1907. vmx->host_msrs[j].data = data;
  1908. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1909. ++vmx->nmsrs;
  1910. }
  1911. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1912. /* 22.2.1, 20.8.1 */
  1913. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1914. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1915. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1916. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  1917. rdtscll(tsc_this);
  1918. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  1919. tsc_base = tsc_this;
  1920. guest_write_tsc(0, tsc_base);
  1921. return 0;
  1922. }
  1923. static int init_rmode(struct kvm *kvm)
  1924. {
  1925. if (!init_rmode_tss(kvm))
  1926. return 0;
  1927. if (!init_rmode_identity_map(kvm))
  1928. return 0;
  1929. return 1;
  1930. }
  1931. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1932. {
  1933. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1934. u64 msr;
  1935. int ret;
  1936. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1937. down_read(&vcpu->kvm->slots_lock);
  1938. if (!init_rmode(vmx->vcpu.kvm)) {
  1939. ret = -ENOMEM;
  1940. goto out;
  1941. }
  1942. vmx->vcpu.arch.rmode.active = 0;
  1943. vmx->soft_vnmi_blocked = 0;
  1944. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1945. kvm_set_cr8(&vmx->vcpu, 0);
  1946. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1947. if (vmx->vcpu.vcpu_id == 0)
  1948. msr |= MSR_IA32_APICBASE_BSP;
  1949. kvm_set_apic_base(&vmx->vcpu, msr);
  1950. fx_init(&vmx->vcpu);
  1951. seg_setup(VCPU_SREG_CS);
  1952. /*
  1953. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1954. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1955. */
  1956. if (vmx->vcpu.vcpu_id == 0) {
  1957. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1958. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1959. } else {
  1960. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1961. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1962. }
  1963. seg_setup(VCPU_SREG_DS);
  1964. seg_setup(VCPU_SREG_ES);
  1965. seg_setup(VCPU_SREG_FS);
  1966. seg_setup(VCPU_SREG_GS);
  1967. seg_setup(VCPU_SREG_SS);
  1968. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1969. vmcs_writel(GUEST_TR_BASE, 0);
  1970. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1971. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1972. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1973. vmcs_writel(GUEST_LDTR_BASE, 0);
  1974. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1975. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1976. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1977. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1978. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1979. vmcs_writel(GUEST_RFLAGS, 0x02);
  1980. if (vmx->vcpu.vcpu_id == 0)
  1981. kvm_rip_write(vcpu, 0xfff0);
  1982. else
  1983. kvm_rip_write(vcpu, 0);
  1984. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1985. vmcs_writel(GUEST_DR7, 0x400);
  1986. vmcs_writel(GUEST_GDTR_BASE, 0);
  1987. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1988. vmcs_writel(GUEST_IDTR_BASE, 0);
  1989. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1990. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1991. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1992. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1993. /* Special registers */
  1994. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1995. setup_msrs(vmx);
  1996. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1997. if (cpu_has_vmx_tpr_shadow()) {
  1998. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1999. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2000. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2001. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2002. vmcs_write32(TPR_THRESHOLD, 0);
  2003. }
  2004. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2005. vmcs_write64(APIC_ACCESS_ADDR,
  2006. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2007. if (vmx->vpid != 0)
  2008. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2009. vmx->vcpu.arch.cr0 = 0x60000010;
  2010. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2011. vmx_set_cr4(&vmx->vcpu, 0);
  2012. vmx_set_efer(&vmx->vcpu, 0);
  2013. vmx_fpu_activate(&vmx->vcpu);
  2014. update_exception_bitmap(&vmx->vcpu);
  2015. vpid_sync_vcpu_all(vmx);
  2016. ret = 0;
  2017. /* HACK: Don't enable emulation on guest boot/reset */
  2018. vmx->emulation_required = 0;
  2019. out:
  2020. up_read(&vcpu->kvm->slots_lock);
  2021. return ret;
  2022. }
  2023. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2024. {
  2025. u32 cpu_based_vm_exec_control;
  2026. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2027. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2028. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2029. }
  2030. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2031. {
  2032. u32 cpu_based_vm_exec_control;
  2033. if (!cpu_has_virtual_nmis()) {
  2034. enable_irq_window(vcpu);
  2035. return;
  2036. }
  2037. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2038. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2039. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2040. }
  2041. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  2042. {
  2043. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2044. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2045. ++vcpu->stat.irq_injections;
  2046. if (vcpu->arch.rmode.active) {
  2047. vmx->rmode.irq.pending = true;
  2048. vmx->rmode.irq.vector = irq;
  2049. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2050. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2051. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2052. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2053. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2054. return;
  2055. }
  2056. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2057. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  2058. }
  2059. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2060. {
  2061. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2062. if (!cpu_has_virtual_nmis()) {
  2063. /*
  2064. * Tracking the NMI-blocked state in software is built upon
  2065. * finding the next open IRQ window. This, in turn, depends on
  2066. * well-behaving guests: They have to keep IRQs disabled at
  2067. * least as long as the NMI handler runs. Otherwise we may
  2068. * cause NMI nesting, maybe breaking the guest. But as this is
  2069. * highly unlikely, we can live with the residual risk.
  2070. */
  2071. vmx->soft_vnmi_blocked = 1;
  2072. vmx->vnmi_blocked_time = 0;
  2073. }
  2074. ++vcpu->stat.nmi_injections;
  2075. if (vcpu->arch.rmode.active) {
  2076. vmx->rmode.irq.pending = true;
  2077. vmx->rmode.irq.vector = NMI_VECTOR;
  2078. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2079. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2080. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2081. INTR_INFO_VALID_MASK);
  2082. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2083. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2084. return;
  2085. }
  2086. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2087. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2088. }
  2089. static void vmx_update_window_states(struct kvm_vcpu *vcpu)
  2090. {
  2091. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2092. vcpu->arch.nmi_window_open =
  2093. !(guest_intr & (GUEST_INTR_STATE_STI |
  2094. GUEST_INTR_STATE_MOV_SS |
  2095. GUEST_INTR_STATE_NMI));
  2096. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2097. vcpu->arch.nmi_window_open = 0;
  2098. vcpu->arch.interrupt_window_open =
  2099. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2100. !(guest_intr & (GUEST_INTR_STATE_STI |
  2101. GUEST_INTR_STATE_MOV_SS)));
  2102. }
  2103. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  2104. {
  2105. int word_index = __ffs(vcpu->arch.irq_summary);
  2106. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  2107. int irq = word_index * BITS_PER_LONG + bit_index;
  2108. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  2109. if (!vcpu->arch.irq_pending[word_index])
  2110. clear_bit(word_index, &vcpu->arch.irq_summary);
  2111. kvm_queue_interrupt(vcpu, irq);
  2112. }
  2113. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  2114. struct kvm_run *kvm_run)
  2115. {
  2116. vmx_update_window_states(vcpu);
  2117. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2118. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2119. GUEST_INTR_STATE_STI |
  2120. GUEST_INTR_STATE_MOV_SS);
  2121. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2122. if (vcpu->arch.interrupt.pending) {
  2123. enable_nmi_window(vcpu);
  2124. } else if (vcpu->arch.nmi_window_open) {
  2125. vcpu->arch.nmi_pending = false;
  2126. vcpu->arch.nmi_injected = true;
  2127. } else {
  2128. enable_nmi_window(vcpu);
  2129. return;
  2130. }
  2131. }
  2132. if (vcpu->arch.nmi_injected) {
  2133. vmx_inject_nmi(vcpu);
  2134. if (vcpu->arch.nmi_pending)
  2135. enable_nmi_window(vcpu);
  2136. else if (vcpu->arch.irq_summary
  2137. || kvm_run->request_interrupt_window)
  2138. enable_irq_window(vcpu);
  2139. return;
  2140. }
  2141. if (vcpu->arch.interrupt_window_open) {
  2142. if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
  2143. kvm_do_inject_irq(vcpu);
  2144. if (vcpu->arch.interrupt.pending)
  2145. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2146. }
  2147. if (!vcpu->arch.interrupt_window_open &&
  2148. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  2149. enable_irq_window(vcpu);
  2150. }
  2151. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2152. {
  2153. int ret;
  2154. struct kvm_userspace_memory_region tss_mem = {
  2155. .slot = TSS_PRIVATE_MEMSLOT,
  2156. .guest_phys_addr = addr,
  2157. .memory_size = PAGE_SIZE * 3,
  2158. .flags = 0,
  2159. };
  2160. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2161. if (ret)
  2162. return ret;
  2163. kvm->arch.tss_addr = addr;
  2164. return 0;
  2165. }
  2166. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2167. int vec, u32 err_code)
  2168. {
  2169. /*
  2170. * Instruction with address size override prefix opcode 0x67
  2171. * Cause the #SS fault with 0 error code in VM86 mode.
  2172. */
  2173. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2174. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2175. return 1;
  2176. /*
  2177. * Forward all other exceptions that are valid in real mode.
  2178. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2179. * the required debugging infrastructure rework.
  2180. */
  2181. switch (vec) {
  2182. case DB_VECTOR:
  2183. if (vcpu->guest_debug &
  2184. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2185. return 0;
  2186. kvm_queue_exception(vcpu, vec);
  2187. return 1;
  2188. case BP_VECTOR:
  2189. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2190. return 0;
  2191. /* fall through */
  2192. case DE_VECTOR:
  2193. case OF_VECTOR:
  2194. case BR_VECTOR:
  2195. case UD_VECTOR:
  2196. case DF_VECTOR:
  2197. case SS_VECTOR:
  2198. case GP_VECTOR:
  2199. case MF_VECTOR:
  2200. kvm_queue_exception(vcpu, vec);
  2201. return 1;
  2202. }
  2203. return 0;
  2204. }
  2205. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2206. {
  2207. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2208. u32 intr_info, ex_no, error_code;
  2209. unsigned long cr2, rip, dr6;
  2210. u32 vect_info;
  2211. enum emulation_result er;
  2212. vect_info = vmx->idt_vectoring_info;
  2213. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2214. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2215. !is_page_fault(intr_info))
  2216. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2217. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2218. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  2219. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  2220. set_bit(irq, vcpu->arch.irq_pending);
  2221. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  2222. }
  2223. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2224. return 1; /* already handled by vmx_vcpu_run() */
  2225. if (is_no_device(intr_info)) {
  2226. vmx_fpu_activate(vcpu);
  2227. return 1;
  2228. }
  2229. if (is_invalid_opcode(intr_info)) {
  2230. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2231. if (er != EMULATE_DONE)
  2232. kvm_queue_exception(vcpu, UD_VECTOR);
  2233. return 1;
  2234. }
  2235. error_code = 0;
  2236. rip = kvm_rip_read(vcpu);
  2237. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2238. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2239. if (is_page_fault(intr_info)) {
  2240. /* EPT won't cause page fault directly */
  2241. if (vm_need_ept())
  2242. BUG();
  2243. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2244. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2245. (u32)((u64)cr2 >> 32), handler);
  2246. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  2247. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2248. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2249. }
  2250. if (vcpu->arch.rmode.active &&
  2251. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2252. error_code)) {
  2253. if (vcpu->arch.halt_request) {
  2254. vcpu->arch.halt_request = 0;
  2255. return kvm_emulate_halt(vcpu);
  2256. }
  2257. return 1;
  2258. }
  2259. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2260. switch (ex_no) {
  2261. case DB_VECTOR:
  2262. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2263. if (!(vcpu->guest_debug &
  2264. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2265. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2266. kvm_queue_exception(vcpu, DB_VECTOR);
  2267. return 1;
  2268. }
  2269. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2270. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2271. /* fall through */
  2272. case BP_VECTOR:
  2273. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2274. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2275. kvm_run->debug.arch.exception = ex_no;
  2276. break;
  2277. default:
  2278. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2279. kvm_run->ex.exception = ex_no;
  2280. kvm_run->ex.error_code = error_code;
  2281. break;
  2282. }
  2283. return 0;
  2284. }
  2285. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2286. struct kvm_run *kvm_run)
  2287. {
  2288. ++vcpu->stat.irq_exits;
  2289. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2290. return 1;
  2291. }
  2292. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2293. {
  2294. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2295. return 0;
  2296. }
  2297. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2298. {
  2299. unsigned long exit_qualification;
  2300. int size, in, string;
  2301. unsigned port;
  2302. ++vcpu->stat.io_exits;
  2303. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2304. string = (exit_qualification & 16) != 0;
  2305. if (string) {
  2306. if (emulate_instruction(vcpu,
  2307. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2308. return 0;
  2309. return 1;
  2310. }
  2311. size = (exit_qualification & 7) + 1;
  2312. in = (exit_qualification & 8) != 0;
  2313. port = exit_qualification >> 16;
  2314. skip_emulated_instruction(vcpu);
  2315. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2316. }
  2317. static void
  2318. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2319. {
  2320. /*
  2321. * Patch in the VMCALL instruction:
  2322. */
  2323. hypercall[0] = 0x0f;
  2324. hypercall[1] = 0x01;
  2325. hypercall[2] = 0xc1;
  2326. }
  2327. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2328. {
  2329. unsigned long exit_qualification;
  2330. int cr;
  2331. int reg;
  2332. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2333. cr = exit_qualification & 15;
  2334. reg = (exit_qualification >> 8) & 15;
  2335. switch ((exit_qualification >> 4) & 3) {
  2336. case 0: /* mov to cr */
  2337. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2338. (u32)kvm_register_read(vcpu, reg),
  2339. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2340. handler);
  2341. switch (cr) {
  2342. case 0:
  2343. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2344. skip_emulated_instruction(vcpu);
  2345. return 1;
  2346. case 3:
  2347. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2348. skip_emulated_instruction(vcpu);
  2349. return 1;
  2350. case 4:
  2351. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2352. skip_emulated_instruction(vcpu);
  2353. return 1;
  2354. case 8:
  2355. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2356. skip_emulated_instruction(vcpu);
  2357. if (irqchip_in_kernel(vcpu->kvm))
  2358. return 1;
  2359. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2360. return 0;
  2361. };
  2362. break;
  2363. case 2: /* clts */
  2364. vmx_fpu_deactivate(vcpu);
  2365. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2366. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2367. vmx_fpu_activate(vcpu);
  2368. KVMTRACE_0D(CLTS, vcpu, handler);
  2369. skip_emulated_instruction(vcpu);
  2370. return 1;
  2371. case 1: /*mov from cr*/
  2372. switch (cr) {
  2373. case 3:
  2374. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2375. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2376. (u32)kvm_register_read(vcpu, reg),
  2377. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2378. handler);
  2379. skip_emulated_instruction(vcpu);
  2380. return 1;
  2381. case 8:
  2382. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2383. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2384. (u32)kvm_register_read(vcpu, reg), handler);
  2385. skip_emulated_instruction(vcpu);
  2386. return 1;
  2387. }
  2388. break;
  2389. case 3: /* lmsw */
  2390. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2391. skip_emulated_instruction(vcpu);
  2392. return 1;
  2393. default:
  2394. break;
  2395. }
  2396. kvm_run->exit_reason = 0;
  2397. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2398. (int)(exit_qualification >> 4) & 3, cr);
  2399. return 0;
  2400. }
  2401. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2402. {
  2403. unsigned long exit_qualification;
  2404. unsigned long val;
  2405. int dr, reg;
  2406. dr = vmcs_readl(GUEST_DR7);
  2407. if (dr & DR7_GD) {
  2408. /*
  2409. * As the vm-exit takes precedence over the debug trap, we
  2410. * need to emulate the latter, either for the host or the
  2411. * guest debugging itself.
  2412. */
  2413. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2414. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2415. kvm_run->debug.arch.dr7 = dr;
  2416. kvm_run->debug.arch.pc =
  2417. vmcs_readl(GUEST_CS_BASE) +
  2418. vmcs_readl(GUEST_RIP);
  2419. kvm_run->debug.arch.exception = DB_VECTOR;
  2420. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2421. return 0;
  2422. } else {
  2423. vcpu->arch.dr7 &= ~DR7_GD;
  2424. vcpu->arch.dr6 |= DR6_BD;
  2425. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2426. kvm_queue_exception(vcpu, DB_VECTOR);
  2427. return 1;
  2428. }
  2429. }
  2430. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2431. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2432. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2433. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2434. switch (dr) {
  2435. case 0 ... 3:
  2436. val = vcpu->arch.db[dr];
  2437. break;
  2438. case 6:
  2439. val = vcpu->arch.dr6;
  2440. break;
  2441. case 7:
  2442. val = vcpu->arch.dr7;
  2443. break;
  2444. default:
  2445. val = 0;
  2446. }
  2447. kvm_register_write(vcpu, reg, val);
  2448. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2449. } else {
  2450. val = vcpu->arch.regs[reg];
  2451. switch (dr) {
  2452. case 0 ... 3:
  2453. vcpu->arch.db[dr] = val;
  2454. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2455. vcpu->arch.eff_db[dr] = val;
  2456. break;
  2457. case 4 ... 5:
  2458. if (vcpu->arch.cr4 & X86_CR4_DE)
  2459. kvm_queue_exception(vcpu, UD_VECTOR);
  2460. break;
  2461. case 6:
  2462. if (val & 0xffffffff00000000ULL) {
  2463. kvm_queue_exception(vcpu, GP_VECTOR);
  2464. break;
  2465. }
  2466. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2467. break;
  2468. case 7:
  2469. if (val & 0xffffffff00000000ULL) {
  2470. kvm_queue_exception(vcpu, GP_VECTOR);
  2471. break;
  2472. }
  2473. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2474. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2475. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2476. vcpu->arch.switch_db_regs =
  2477. (val & DR7_BP_EN_MASK);
  2478. }
  2479. break;
  2480. }
  2481. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2482. }
  2483. skip_emulated_instruction(vcpu);
  2484. return 1;
  2485. }
  2486. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2487. {
  2488. kvm_emulate_cpuid(vcpu);
  2489. return 1;
  2490. }
  2491. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2492. {
  2493. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2494. u64 data;
  2495. if (vmx_get_msr(vcpu, ecx, &data)) {
  2496. kvm_inject_gp(vcpu, 0);
  2497. return 1;
  2498. }
  2499. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2500. handler);
  2501. /* FIXME: handling of bits 32:63 of rax, rdx */
  2502. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2503. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2504. skip_emulated_instruction(vcpu);
  2505. return 1;
  2506. }
  2507. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2508. {
  2509. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2510. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2511. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2512. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2513. handler);
  2514. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2515. kvm_inject_gp(vcpu, 0);
  2516. return 1;
  2517. }
  2518. skip_emulated_instruction(vcpu);
  2519. return 1;
  2520. }
  2521. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2522. struct kvm_run *kvm_run)
  2523. {
  2524. return 1;
  2525. }
  2526. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2527. struct kvm_run *kvm_run)
  2528. {
  2529. u32 cpu_based_vm_exec_control;
  2530. /* clear pending irq */
  2531. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2532. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2533. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2534. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2535. ++vcpu->stat.irq_window_exits;
  2536. /*
  2537. * If the user space waits to inject interrupts, exit as soon as
  2538. * possible
  2539. */
  2540. if (kvm_run->request_interrupt_window &&
  2541. !vcpu->arch.irq_summary) {
  2542. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2543. return 0;
  2544. }
  2545. return 1;
  2546. }
  2547. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2548. {
  2549. skip_emulated_instruction(vcpu);
  2550. return kvm_emulate_halt(vcpu);
  2551. }
  2552. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2553. {
  2554. skip_emulated_instruction(vcpu);
  2555. kvm_emulate_hypercall(vcpu);
  2556. return 1;
  2557. }
  2558. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2559. {
  2560. u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2561. kvm_mmu_invlpg(vcpu, exit_qualification);
  2562. skip_emulated_instruction(vcpu);
  2563. return 1;
  2564. }
  2565. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2566. {
  2567. skip_emulated_instruction(vcpu);
  2568. /* TODO: Add support for VT-d/pass-through device */
  2569. return 1;
  2570. }
  2571. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2572. {
  2573. u64 exit_qualification;
  2574. enum emulation_result er;
  2575. unsigned long offset;
  2576. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2577. offset = exit_qualification & 0xffful;
  2578. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2579. if (er != EMULATE_DONE) {
  2580. printk(KERN_ERR
  2581. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2582. offset);
  2583. return -ENOTSUPP;
  2584. }
  2585. return 1;
  2586. }
  2587. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2588. {
  2589. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2590. unsigned long exit_qualification;
  2591. u16 tss_selector;
  2592. int reason;
  2593. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2594. reason = (u32)exit_qualification >> 30;
  2595. if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
  2596. (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2597. (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
  2598. == INTR_TYPE_NMI_INTR) {
  2599. vcpu->arch.nmi_injected = false;
  2600. if (cpu_has_virtual_nmis())
  2601. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2602. GUEST_INTR_STATE_NMI);
  2603. }
  2604. tss_selector = exit_qualification;
  2605. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2606. return 0;
  2607. /* clear all local breakpoint enable flags */
  2608. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2609. /*
  2610. * TODO: What about debug traps on tss switch?
  2611. * Are we supposed to inject them and update dr6?
  2612. */
  2613. return 1;
  2614. }
  2615. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2616. {
  2617. u64 exit_qualification;
  2618. gpa_t gpa;
  2619. int gla_validity;
  2620. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2621. if (exit_qualification & (1 << 6)) {
  2622. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2623. return -ENOTSUPP;
  2624. }
  2625. gla_validity = (exit_qualification >> 7) & 0x3;
  2626. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2627. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2628. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2629. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2630. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2631. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2632. (long unsigned int)exit_qualification);
  2633. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2634. kvm_run->hw.hardware_exit_reason = 0;
  2635. return -ENOTSUPP;
  2636. }
  2637. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2638. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2639. }
  2640. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2641. {
  2642. u32 cpu_based_vm_exec_control;
  2643. /* clear pending NMI */
  2644. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2645. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2646. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2647. ++vcpu->stat.nmi_window_exits;
  2648. return 1;
  2649. }
  2650. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2651. struct kvm_run *kvm_run)
  2652. {
  2653. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2654. enum emulation_result err = EMULATE_DONE;
  2655. preempt_enable();
  2656. local_irq_enable();
  2657. while (!guest_state_valid(vcpu)) {
  2658. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2659. if (err == EMULATE_DO_MMIO)
  2660. break;
  2661. if (err != EMULATE_DONE) {
  2662. kvm_report_emulation_failure(vcpu, "emulation failure");
  2663. return;
  2664. }
  2665. if (signal_pending(current))
  2666. break;
  2667. if (need_resched())
  2668. schedule();
  2669. }
  2670. local_irq_disable();
  2671. preempt_disable();
  2672. vmx->invalid_state_emulation_result = err;
  2673. }
  2674. /*
  2675. * The exit handlers return 1 if the exit was handled fully and guest execution
  2676. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2677. * to be done to userspace and return 0.
  2678. */
  2679. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2680. struct kvm_run *kvm_run) = {
  2681. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2682. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2683. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2684. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2685. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2686. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2687. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2688. [EXIT_REASON_CPUID] = handle_cpuid,
  2689. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2690. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2691. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2692. [EXIT_REASON_HLT] = handle_halt,
  2693. [EXIT_REASON_INVLPG] = handle_invlpg,
  2694. [EXIT_REASON_VMCALL] = handle_vmcall,
  2695. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2696. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2697. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2698. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2699. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2700. };
  2701. static const int kvm_vmx_max_exit_handlers =
  2702. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2703. /*
  2704. * The guest has exited. See if we can fix it or if we need userspace
  2705. * assistance.
  2706. */
  2707. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2708. {
  2709. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2710. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2711. u32 vectoring_info = vmx->idt_vectoring_info;
  2712. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2713. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2714. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2715. * we just return 0 */
  2716. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2717. if (guest_state_valid(vcpu))
  2718. vmx->emulation_required = 0;
  2719. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2720. }
  2721. /* Access CR3 don't cause VMExit in paging mode, so we need
  2722. * to sync with guest real CR3. */
  2723. if (vm_need_ept() && is_paging(vcpu)) {
  2724. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2725. ept_load_pdptrs(vcpu);
  2726. }
  2727. if (unlikely(vmx->fail)) {
  2728. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2729. kvm_run->fail_entry.hardware_entry_failure_reason
  2730. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2731. return 0;
  2732. }
  2733. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2734. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2735. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2736. exit_reason != EXIT_REASON_TASK_SWITCH))
  2737. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2738. "(0x%x) and exit reason is 0x%x\n",
  2739. __func__, vectoring_info, exit_reason);
  2740. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2741. if (vcpu->arch.interrupt_window_open) {
  2742. vmx->soft_vnmi_blocked = 0;
  2743. vcpu->arch.nmi_window_open = 1;
  2744. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2745. vcpu->arch.nmi_pending) {
  2746. /*
  2747. * This CPU don't support us in finding the end of an
  2748. * NMI-blocked window if the guest runs with IRQs
  2749. * disabled. So we pull the trigger after 1 s of
  2750. * futile waiting, but inform the user about this.
  2751. */
  2752. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2753. "state on VCPU %d after 1 s timeout\n",
  2754. __func__, vcpu->vcpu_id);
  2755. vmx->soft_vnmi_blocked = 0;
  2756. vmx->vcpu.arch.nmi_window_open = 1;
  2757. }
  2758. }
  2759. if (exit_reason < kvm_vmx_max_exit_handlers
  2760. && kvm_vmx_exit_handlers[exit_reason])
  2761. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2762. else {
  2763. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2764. kvm_run->hw.hardware_exit_reason = exit_reason;
  2765. }
  2766. return 0;
  2767. }
  2768. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2769. {
  2770. int max_irr, tpr;
  2771. if (!vm_need_tpr_shadow(vcpu->kvm))
  2772. return;
  2773. if (!kvm_lapic_enabled(vcpu) ||
  2774. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2775. vmcs_write32(TPR_THRESHOLD, 0);
  2776. return;
  2777. }
  2778. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2779. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2780. }
  2781. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2782. {
  2783. u32 exit_intr_info;
  2784. u32 idt_vectoring_info;
  2785. bool unblock_nmi;
  2786. u8 vector;
  2787. int type;
  2788. bool idtv_info_valid;
  2789. u32 error;
  2790. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2791. if (cpu_has_virtual_nmis()) {
  2792. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2793. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2794. /*
  2795. * SDM 3: 25.7.1.2
  2796. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2797. * a guest IRET fault.
  2798. */
  2799. if (unblock_nmi && vector != DF_VECTOR)
  2800. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2801. GUEST_INTR_STATE_NMI);
  2802. } else if (unlikely(vmx->soft_vnmi_blocked))
  2803. vmx->vnmi_blocked_time +=
  2804. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2805. idt_vectoring_info = vmx->idt_vectoring_info;
  2806. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2807. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2808. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2809. if (vmx->vcpu.arch.nmi_injected) {
  2810. /*
  2811. * SDM 3: 25.7.1.2
  2812. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2813. * faulted.
  2814. */
  2815. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2816. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2817. GUEST_INTR_STATE_NMI);
  2818. else
  2819. vmx->vcpu.arch.nmi_injected = false;
  2820. }
  2821. kvm_clear_exception_queue(&vmx->vcpu);
  2822. if (idtv_info_valid && (type == INTR_TYPE_HARD_EXCEPTION ||
  2823. type == INTR_TYPE_SOFT_EXCEPTION)) {
  2824. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2825. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2826. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2827. } else
  2828. kvm_queue_exception(&vmx->vcpu, vector);
  2829. vmx->idt_vectoring_info = 0;
  2830. }
  2831. kvm_clear_interrupt_queue(&vmx->vcpu);
  2832. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2833. kvm_queue_interrupt(&vmx->vcpu, vector);
  2834. vmx->idt_vectoring_info = 0;
  2835. }
  2836. }
  2837. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2838. {
  2839. update_tpr_threshold(vcpu);
  2840. vmx_update_window_states(vcpu);
  2841. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2842. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2843. GUEST_INTR_STATE_STI |
  2844. GUEST_INTR_STATE_MOV_SS);
  2845. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2846. if (vcpu->arch.interrupt.pending) {
  2847. enable_nmi_window(vcpu);
  2848. } else if (vcpu->arch.nmi_window_open) {
  2849. vcpu->arch.nmi_pending = false;
  2850. vcpu->arch.nmi_injected = true;
  2851. } else {
  2852. enable_nmi_window(vcpu);
  2853. return;
  2854. }
  2855. }
  2856. if (vcpu->arch.nmi_injected) {
  2857. vmx_inject_nmi(vcpu);
  2858. if (vcpu->arch.nmi_pending)
  2859. enable_nmi_window(vcpu);
  2860. else if (kvm_cpu_has_interrupt(vcpu))
  2861. enable_irq_window(vcpu);
  2862. return;
  2863. }
  2864. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2865. if (vcpu->arch.interrupt_window_open)
  2866. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2867. else
  2868. enable_irq_window(vcpu);
  2869. }
  2870. if (vcpu->arch.interrupt.pending) {
  2871. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2872. if (kvm_cpu_has_interrupt(vcpu))
  2873. enable_irq_window(vcpu);
  2874. }
  2875. }
  2876. /*
  2877. * Failure to inject an interrupt should give us the information
  2878. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2879. * when fetching the interrupt redirection bitmap in the real-mode
  2880. * tss, this doesn't happen. So we do it ourselves.
  2881. */
  2882. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2883. {
  2884. vmx->rmode.irq.pending = 0;
  2885. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2886. return;
  2887. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2888. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2889. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2890. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2891. return;
  2892. }
  2893. vmx->idt_vectoring_info =
  2894. VECTORING_INFO_VALID_MASK
  2895. | INTR_TYPE_EXT_INTR
  2896. | vmx->rmode.irq.vector;
  2897. }
  2898. #ifdef CONFIG_X86_64
  2899. #define R "r"
  2900. #define Q "q"
  2901. #else
  2902. #define R "e"
  2903. #define Q "l"
  2904. #endif
  2905. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2906. {
  2907. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2908. u32 intr_info;
  2909. /* Record the guest's net vcpu time for enforced NMI injections. */
  2910. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2911. vmx->entry_time = ktime_get();
  2912. /* Handle invalid guest state instead of entering VMX */
  2913. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2914. handle_invalid_guest_state(vcpu, kvm_run);
  2915. return;
  2916. }
  2917. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2918. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2919. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2920. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2921. /*
  2922. * Loading guest fpu may have cleared host cr0.ts
  2923. */
  2924. vmcs_writel(HOST_CR0, read_cr0());
  2925. set_debugreg(vcpu->arch.dr6, 6);
  2926. asm(
  2927. /* Store host registers */
  2928. "push %%"R"dx; push %%"R"bp;"
  2929. "push %%"R"cx \n\t"
  2930. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2931. "je 1f \n\t"
  2932. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2933. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2934. "1: \n\t"
  2935. /* Check if vmlaunch of vmresume is needed */
  2936. "cmpl $0, %c[launched](%0) \n\t"
  2937. /* Load guest registers. Don't clobber flags. */
  2938. "mov %c[cr2](%0), %%"R"ax \n\t"
  2939. "mov %%"R"ax, %%cr2 \n\t"
  2940. "mov %c[rax](%0), %%"R"ax \n\t"
  2941. "mov %c[rbx](%0), %%"R"bx \n\t"
  2942. "mov %c[rdx](%0), %%"R"dx \n\t"
  2943. "mov %c[rsi](%0), %%"R"si \n\t"
  2944. "mov %c[rdi](%0), %%"R"di \n\t"
  2945. "mov %c[rbp](%0), %%"R"bp \n\t"
  2946. #ifdef CONFIG_X86_64
  2947. "mov %c[r8](%0), %%r8 \n\t"
  2948. "mov %c[r9](%0), %%r9 \n\t"
  2949. "mov %c[r10](%0), %%r10 \n\t"
  2950. "mov %c[r11](%0), %%r11 \n\t"
  2951. "mov %c[r12](%0), %%r12 \n\t"
  2952. "mov %c[r13](%0), %%r13 \n\t"
  2953. "mov %c[r14](%0), %%r14 \n\t"
  2954. "mov %c[r15](%0), %%r15 \n\t"
  2955. #endif
  2956. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2957. /* Enter guest mode */
  2958. "jne .Llaunched \n\t"
  2959. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2960. "jmp .Lkvm_vmx_return \n\t"
  2961. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2962. ".Lkvm_vmx_return: "
  2963. /* Save guest registers, load host registers, keep flags */
  2964. "xchg %0, (%%"R"sp) \n\t"
  2965. "mov %%"R"ax, %c[rax](%0) \n\t"
  2966. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2967. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2968. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2969. "mov %%"R"si, %c[rsi](%0) \n\t"
  2970. "mov %%"R"di, %c[rdi](%0) \n\t"
  2971. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2972. #ifdef CONFIG_X86_64
  2973. "mov %%r8, %c[r8](%0) \n\t"
  2974. "mov %%r9, %c[r9](%0) \n\t"
  2975. "mov %%r10, %c[r10](%0) \n\t"
  2976. "mov %%r11, %c[r11](%0) \n\t"
  2977. "mov %%r12, %c[r12](%0) \n\t"
  2978. "mov %%r13, %c[r13](%0) \n\t"
  2979. "mov %%r14, %c[r14](%0) \n\t"
  2980. "mov %%r15, %c[r15](%0) \n\t"
  2981. #endif
  2982. "mov %%cr2, %%"R"ax \n\t"
  2983. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2984. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2985. "setbe %c[fail](%0) \n\t"
  2986. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2987. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2988. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2989. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2990. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2991. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2992. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2993. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2994. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2995. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2996. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2997. #ifdef CONFIG_X86_64
  2998. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2999. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3000. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3001. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3002. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3003. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3004. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3005. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3006. #endif
  3007. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3008. : "cc", "memory"
  3009. , R"bx", R"di", R"si"
  3010. #ifdef CONFIG_X86_64
  3011. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3012. #endif
  3013. );
  3014. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3015. vcpu->arch.regs_dirty = 0;
  3016. get_debugreg(vcpu->arch.dr6, 6);
  3017. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3018. if (vmx->rmode.irq.pending)
  3019. fixup_rmode_irq(vmx);
  3020. vmx_update_window_states(vcpu);
  3021. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3022. vmx->launched = 1;
  3023. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3024. /* We need to handle NMIs before interrupts are enabled */
  3025. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3026. (intr_info & INTR_INFO_VALID_MASK)) {
  3027. KVMTRACE_0D(NMI, vcpu, handler);
  3028. asm("int $2");
  3029. }
  3030. vmx_complete_interrupts(vmx);
  3031. }
  3032. #undef R
  3033. #undef Q
  3034. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3035. {
  3036. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3037. if (vmx->vmcs) {
  3038. vcpu_clear(vmx);
  3039. free_vmcs(vmx->vmcs);
  3040. vmx->vmcs = NULL;
  3041. }
  3042. }
  3043. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3044. {
  3045. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3046. spin_lock(&vmx_vpid_lock);
  3047. if (vmx->vpid != 0)
  3048. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3049. spin_unlock(&vmx_vpid_lock);
  3050. vmx_free_vmcs(vcpu);
  3051. kfree(vmx->host_msrs);
  3052. kfree(vmx->guest_msrs);
  3053. kvm_vcpu_uninit(vcpu);
  3054. kmem_cache_free(kvm_vcpu_cache, vmx);
  3055. }
  3056. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3057. {
  3058. int err;
  3059. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3060. int cpu;
  3061. if (!vmx)
  3062. return ERR_PTR(-ENOMEM);
  3063. allocate_vpid(vmx);
  3064. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3065. if (err)
  3066. goto free_vcpu;
  3067. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3068. if (!vmx->guest_msrs) {
  3069. err = -ENOMEM;
  3070. goto uninit_vcpu;
  3071. }
  3072. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3073. if (!vmx->host_msrs)
  3074. goto free_guest_msrs;
  3075. vmx->vmcs = alloc_vmcs();
  3076. if (!vmx->vmcs)
  3077. goto free_msrs;
  3078. vmcs_clear(vmx->vmcs);
  3079. cpu = get_cpu();
  3080. vmx_vcpu_load(&vmx->vcpu, cpu);
  3081. err = vmx_vcpu_setup(vmx);
  3082. vmx_vcpu_put(&vmx->vcpu);
  3083. put_cpu();
  3084. if (err)
  3085. goto free_vmcs;
  3086. if (vm_need_virtualize_apic_accesses(kvm))
  3087. if (alloc_apic_access_page(kvm) != 0)
  3088. goto free_vmcs;
  3089. if (vm_need_ept())
  3090. if (alloc_identity_pagetable(kvm) != 0)
  3091. goto free_vmcs;
  3092. return &vmx->vcpu;
  3093. free_vmcs:
  3094. free_vmcs(vmx->vmcs);
  3095. free_msrs:
  3096. kfree(vmx->host_msrs);
  3097. free_guest_msrs:
  3098. kfree(vmx->guest_msrs);
  3099. uninit_vcpu:
  3100. kvm_vcpu_uninit(&vmx->vcpu);
  3101. free_vcpu:
  3102. kmem_cache_free(kvm_vcpu_cache, vmx);
  3103. return ERR_PTR(err);
  3104. }
  3105. static void __init vmx_check_processor_compat(void *rtn)
  3106. {
  3107. struct vmcs_config vmcs_conf;
  3108. *(int *)rtn = 0;
  3109. if (setup_vmcs_config(&vmcs_conf) < 0)
  3110. *(int *)rtn = -EIO;
  3111. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3112. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3113. smp_processor_id());
  3114. *(int *)rtn = -EIO;
  3115. }
  3116. }
  3117. static int get_ept_level(void)
  3118. {
  3119. return VMX_EPT_DEFAULT_GAW + 1;
  3120. }
  3121. static int vmx_get_mt_mask_shift(void)
  3122. {
  3123. return VMX_EPT_MT_EPTE_SHIFT;
  3124. }
  3125. static struct kvm_x86_ops vmx_x86_ops = {
  3126. .cpu_has_kvm_support = cpu_has_kvm_support,
  3127. .disabled_by_bios = vmx_disabled_by_bios,
  3128. .hardware_setup = hardware_setup,
  3129. .hardware_unsetup = hardware_unsetup,
  3130. .check_processor_compatibility = vmx_check_processor_compat,
  3131. .hardware_enable = hardware_enable,
  3132. .hardware_disable = hardware_disable,
  3133. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  3134. .vcpu_create = vmx_create_vcpu,
  3135. .vcpu_free = vmx_free_vcpu,
  3136. .vcpu_reset = vmx_vcpu_reset,
  3137. .prepare_guest_switch = vmx_save_host_state,
  3138. .vcpu_load = vmx_vcpu_load,
  3139. .vcpu_put = vmx_vcpu_put,
  3140. .set_guest_debug = set_guest_debug,
  3141. .get_msr = vmx_get_msr,
  3142. .set_msr = vmx_set_msr,
  3143. .get_segment_base = vmx_get_segment_base,
  3144. .get_segment = vmx_get_segment,
  3145. .set_segment = vmx_set_segment,
  3146. .get_cpl = vmx_get_cpl,
  3147. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3148. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3149. .set_cr0 = vmx_set_cr0,
  3150. .set_cr3 = vmx_set_cr3,
  3151. .set_cr4 = vmx_set_cr4,
  3152. .set_efer = vmx_set_efer,
  3153. .get_idt = vmx_get_idt,
  3154. .set_idt = vmx_set_idt,
  3155. .get_gdt = vmx_get_gdt,
  3156. .set_gdt = vmx_set_gdt,
  3157. .cache_reg = vmx_cache_reg,
  3158. .get_rflags = vmx_get_rflags,
  3159. .set_rflags = vmx_set_rflags,
  3160. .tlb_flush = vmx_flush_tlb,
  3161. .run = vmx_vcpu_run,
  3162. .handle_exit = kvm_handle_exit,
  3163. .skip_emulated_instruction = skip_emulated_instruction,
  3164. .patch_hypercall = vmx_patch_hypercall,
  3165. .get_irq = vmx_get_irq,
  3166. .set_irq = vmx_inject_irq,
  3167. .queue_exception = vmx_queue_exception,
  3168. .exception_injected = vmx_exception_injected,
  3169. .inject_pending_irq = vmx_intr_assist,
  3170. .inject_pending_vectors = do_interrupt_requests,
  3171. .set_tss_addr = vmx_set_tss_addr,
  3172. .get_tdp_level = get_ept_level,
  3173. .get_mt_mask_shift = vmx_get_mt_mask_shift,
  3174. };
  3175. static int __init vmx_init(void)
  3176. {
  3177. void *va;
  3178. int r;
  3179. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3180. if (!vmx_io_bitmap_a)
  3181. return -ENOMEM;
  3182. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3183. if (!vmx_io_bitmap_b) {
  3184. r = -ENOMEM;
  3185. goto out;
  3186. }
  3187. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  3188. if (!vmx_msr_bitmap) {
  3189. r = -ENOMEM;
  3190. goto out1;
  3191. }
  3192. /*
  3193. * Allow direct access to the PC debug port (it is often used for I/O
  3194. * delays, but the vmexits simply slow things down).
  3195. */
  3196. va = kmap(vmx_io_bitmap_a);
  3197. memset(va, 0xff, PAGE_SIZE);
  3198. clear_bit(0x80, va);
  3199. kunmap(vmx_io_bitmap_a);
  3200. va = kmap(vmx_io_bitmap_b);
  3201. memset(va, 0xff, PAGE_SIZE);
  3202. kunmap(vmx_io_bitmap_b);
  3203. va = kmap(vmx_msr_bitmap);
  3204. memset(va, 0xff, PAGE_SIZE);
  3205. kunmap(vmx_msr_bitmap);
  3206. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3207. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3208. if (r)
  3209. goto out2;
  3210. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  3211. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  3212. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  3213. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  3214. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  3215. if (vm_need_ept()) {
  3216. bypass_guest_pf = 0;
  3217. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3218. VMX_EPT_WRITABLE_MASK);
  3219. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3220. VMX_EPT_EXECUTABLE_MASK,
  3221. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  3222. kvm_enable_tdp();
  3223. } else
  3224. kvm_disable_tdp();
  3225. if (bypass_guest_pf)
  3226. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3227. ept_sync_global();
  3228. return 0;
  3229. out2:
  3230. __free_page(vmx_msr_bitmap);
  3231. out1:
  3232. __free_page(vmx_io_bitmap_b);
  3233. out:
  3234. __free_page(vmx_io_bitmap_a);
  3235. return r;
  3236. }
  3237. static void __exit vmx_exit(void)
  3238. {
  3239. __free_page(vmx_msr_bitmap);
  3240. __free_page(vmx_io_bitmap_b);
  3241. __free_page(vmx_io_bitmap_a);
  3242. kvm_exit();
  3243. }
  3244. module_init(vmx_init)
  3245. module_exit(vmx_exit)