paging_tmpl.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  31. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  32. #ifdef CONFIG_X86_64
  33. #define PT_MAX_FULL_LEVELS 4
  34. #define CMPXCHG cmpxchg
  35. #else
  36. #define CMPXCHG cmpxchg64
  37. #define PT_MAX_FULL_LEVELS 2
  38. #endif
  39. #elif PTTYPE == 32
  40. #define pt_element_t u32
  41. #define guest_walker guest_walker32
  42. #define FNAME(name) paging##32_##name
  43. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  44. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  45. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  48. #define PT_MAX_FULL_LEVELS 2
  49. #define CMPXCHG cmpxchg
  50. #else
  51. #error Invalid PTTYPE value
  52. #endif
  53. #define gpte_to_gfn FNAME(gpte_to_gfn)
  54. #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
  55. /*
  56. * The guest_walker structure emulates the behavior of the hardware page
  57. * table walker.
  58. */
  59. struct guest_walker {
  60. int level;
  61. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  62. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  63. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  64. unsigned pt_access;
  65. unsigned pte_access;
  66. gfn_t gfn;
  67. u32 error_code;
  68. };
  69. static gfn_t gpte_to_gfn(pt_element_t gpte)
  70. {
  71. return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  72. }
  73. static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
  74. {
  75. return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  76. }
  77. static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
  78. gfn_t table_gfn, unsigned index,
  79. pt_element_t orig_pte, pt_element_t new_pte)
  80. {
  81. pt_element_t ret;
  82. pt_element_t *table;
  83. struct page *page;
  84. page = gfn_to_page(kvm, table_gfn);
  85. table = kmap_atomic(page, KM_USER0);
  86. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  87. kunmap_atomic(table, KM_USER0);
  88. kvm_release_page_dirty(page);
  89. return (ret != orig_pte);
  90. }
  91. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  92. {
  93. unsigned access;
  94. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  95. #if PTTYPE == 64
  96. if (is_nx(vcpu))
  97. access &= ~(gpte >> PT64_NX_SHIFT);
  98. #endif
  99. return access;
  100. }
  101. /*
  102. * Fetch a guest pte for a guest virtual address
  103. */
  104. static int FNAME(walk_addr)(struct guest_walker *walker,
  105. struct kvm_vcpu *vcpu, gva_t addr,
  106. int write_fault, int user_fault, int fetch_fault)
  107. {
  108. pt_element_t pte;
  109. gfn_t table_gfn;
  110. unsigned index, pt_access, pte_access;
  111. gpa_t pte_gpa;
  112. pgprintk("%s: addr %lx\n", __func__, addr);
  113. walk:
  114. walker->level = vcpu->arch.mmu.root_level;
  115. pte = vcpu->arch.cr3;
  116. #if PTTYPE == 64
  117. if (!is_long_mode(vcpu)) {
  118. pte = vcpu->arch.pdptrs[(addr >> 30) & 3];
  119. if (!is_present_pte(pte))
  120. goto not_present;
  121. --walker->level;
  122. }
  123. #endif
  124. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  125. (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  126. pt_access = ACC_ALL;
  127. for (;;) {
  128. index = PT_INDEX(addr, walker->level);
  129. table_gfn = gpte_to_gfn(pte);
  130. pte_gpa = gfn_to_gpa(table_gfn);
  131. pte_gpa += index * sizeof(pt_element_t);
  132. walker->table_gfn[walker->level - 1] = table_gfn;
  133. walker->pte_gpa[walker->level - 1] = pte_gpa;
  134. pgprintk("%s: table_gfn[%d] %lx\n", __func__,
  135. walker->level - 1, table_gfn);
  136. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  137. if (!is_present_pte(pte))
  138. goto not_present;
  139. if (write_fault && !is_writeble_pte(pte))
  140. if (user_fault || is_write_protection(vcpu))
  141. goto access_error;
  142. if (user_fault && !(pte & PT_USER_MASK))
  143. goto access_error;
  144. #if PTTYPE == 64
  145. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  146. goto access_error;
  147. #endif
  148. if (!(pte & PT_ACCESSED_MASK)) {
  149. mark_page_dirty(vcpu->kvm, table_gfn);
  150. if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
  151. index, pte, pte|PT_ACCESSED_MASK))
  152. goto walk;
  153. pte |= PT_ACCESSED_MASK;
  154. }
  155. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  156. walker->ptes[walker->level - 1] = pte;
  157. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  158. walker->gfn = gpte_to_gfn(pte);
  159. break;
  160. }
  161. if (walker->level == PT_DIRECTORY_LEVEL
  162. && (pte & PT_PAGE_SIZE_MASK)
  163. && (PTTYPE == 64 || is_pse(vcpu))) {
  164. walker->gfn = gpte_to_gfn_pde(pte);
  165. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  166. if (PTTYPE == 32 && is_cpuid_PSE36())
  167. walker->gfn += pse36_gfn_delta(pte);
  168. break;
  169. }
  170. pt_access = pte_access;
  171. --walker->level;
  172. }
  173. if (write_fault && !is_dirty_pte(pte)) {
  174. bool ret;
  175. mark_page_dirty(vcpu->kvm, table_gfn);
  176. ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
  177. pte|PT_DIRTY_MASK);
  178. if (ret)
  179. goto walk;
  180. pte |= PT_DIRTY_MASK;
  181. kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte), 0);
  182. walker->ptes[walker->level - 1] = pte;
  183. }
  184. walker->pt_access = pt_access;
  185. walker->pte_access = pte_access;
  186. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  187. __func__, (u64)pte, pt_access, pte_access);
  188. return 1;
  189. not_present:
  190. walker->error_code = 0;
  191. goto err;
  192. access_error:
  193. walker->error_code = PFERR_PRESENT_MASK;
  194. err:
  195. if (write_fault)
  196. walker->error_code |= PFERR_WRITE_MASK;
  197. if (user_fault)
  198. walker->error_code |= PFERR_USER_MASK;
  199. if (fetch_fault)
  200. walker->error_code |= PFERR_FETCH_MASK;
  201. return 0;
  202. }
  203. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  204. u64 *spte, const void *pte)
  205. {
  206. pt_element_t gpte;
  207. unsigned pte_access;
  208. pfn_t pfn;
  209. int largepage = vcpu->arch.update_pte.largepage;
  210. gpte = *(const pt_element_t *)pte;
  211. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  212. if (!is_present_pte(gpte))
  213. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  214. return;
  215. }
  216. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  217. pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
  218. if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
  219. return;
  220. pfn = vcpu->arch.update_pte.pfn;
  221. if (is_error_pfn(pfn))
  222. return;
  223. if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
  224. return;
  225. kvm_get_pfn(pfn);
  226. mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
  227. gpte & PT_DIRTY_MASK, NULL, largepage,
  228. gpte & PT_GLOBAL_MASK, gpte_to_gfn(gpte),
  229. pfn, true);
  230. }
  231. /*
  232. * Fetch a shadow pte for a specific level in the paging hierarchy.
  233. */
  234. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  235. struct guest_walker *gw,
  236. int user_fault, int write_fault, int largepage,
  237. int *ptwrite, pfn_t pfn)
  238. {
  239. unsigned access = gw->pt_access;
  240. struct kvm_mmu_page *shadow_page;
  241. u64 spte, *sptep;
  242. int direct;
  243. gfn_t table_gfn;
  244. int r;
  245. int level;
  246. pt_element_t curr_pte;
  247. struct kvm_shadow_walk_iterator iterator;
  248. if (!is_present_pte(gw->ptes[gw->level - 1]))
  249. return NULL;
  250. for_each_shadow_entry(vcpu, addr, iterator) {
  251. level = iterator.level;
  252. sptep = iterator.sptep;
  253. if (level == PT_PAGE_TABLE_LEVEL
  254. || (largepage && level == PT_DIRECTORY_LEVEL)) {
  255. mmu_set_spte(vcpu, sptep, access,
  256. gw->pte_access & access,
  257. user_fault, write_fault,
  258. gw->ptes[gw->level-1] & PT_DIRTY_MASK,
  259. ptwrite, largepage,
  260. gw->ptes[gw->level-1] & PT_GLOBAL_MASK,
  261. gw->gfn, pfn, false);
  262. break;
  263. }
  264. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
  265. continue;
  266. if (is_large_pte(*sptep)) {
  267. rmap_remove(vcpu->kvm, sptep);
  268. set_shadow_pte(sptep, shadow_trap_nonpresent_pte);
  269. kvm_flush_remote_tlbs(vcpu->kvm);
  270. }
  271. if (level == PT_DIRECTORY_LEVEL
  272. && gw->level == PT_DIRECTORY_LEVEL) {
  273. direct = 1;
  274. if (!is_dirty_pte(gw->ptes[level - 1]))
  275. access &= ~ACC_WRITE_MASK;
  276. table_gfn = gpte_to_gfn(gw->ptes[level - 1]);
  277. } else {
  278. direct = 0;
  279. table_gfn = gw->table_gfn[level - 2];
  280. }
  281. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  282. direct, access, sptep);
  283. if (!direct) {
  284. r = kvm_read_guest_atomic(vcpu->kvm,
  285. gw->pte_gpa[level - 2],
  286. &curr_pte, sizeof(curr_pte));
  287. if (r || curr_pte != gw->ptes[level - 2]) {
  288. kvm_mmu_put_page(shadow_page, sptep);
  289. kvm_release_pfn_clean(pfn);
  290. sptep = NULL;
  291. break;
  292. }
  293. }
  294. spte = __pa(shadow_page->spt)
  295. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  296. | PT_WRITABLE_MASK | PT_USER_MASK;
  297. *sptep = spte;
  298. }
  299. return sptep;
  300. }
  301. /*
  302. * Page fault handler. There are several causes for a page fault:
  303. * - there is no shadow pte for the guest pte
  304. * - write access through a shadow pte marked read only so that we can set
  305. * the dirty bit
  306. * - write access to a shadow pte marked read only so we can update the page
  307. * dirty bitmap, when userspace requests it
  308. * - mmio access; in this case we will never install a present shadow pte
  309. * - normal guest page fault due to the guest pte marked not present, not
  310. * writable, or not executable
  311. *
  312. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  313. * a negative value on error.
  314. */
  315. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  316. u32 error_code)
  317. {
  318. int write_fault = error_code & PFERR_WRITE_MASK;
  319. int user_fault = error_code & PFERR_USER_MASK;
  320. int fetch_fault = error_code & PFERR_FETCH_MASK;
  321. struct guest_walker walker;
  322. u64 *shadow_pte;
  323. int write_pt = 0;
  324. int r;
  325. pfn_t pfn;
  326. int largepage = 0;
  327. unsigned long mmu_seq;
  328. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  329. kvm_mmu_audit(vcpu, "pre page fault");
  330. r = mmu_topup_memory_caches(vcpu);
  331. if (r)
  332. return r;
  333. /*
  334. * Look up the shadow pte for the faulting address.
  335. */
  336. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  337. fetch_fault);
  338. /*
  339. * The page is not mapped by the guest. Let the guest handle it.
  340. */
  341. if (!r) {
  342. pgprintk("%s: guest page fault\n", __func__);
  343. inject_page_fault(vcpu, addr, walker.error_code);
  344. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  345. return 0;
  346. }
  347. if (walker.level == PT_DIRECTORY_LEVEL) {
  348. gfn_t large_gfn;
  349. large_gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE-1);
  350. if (is_largepage_backed(vcpu, large_gfn)) {
  351. walker.gfn = large_gfn;
  352. largepage = 1;
  353. }
  354. }
  355. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  356. smp_rmb();
  357. pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
  358. /* mmio */
  359. if (is_error_pfn(pfn)) {
  360. pgprintk("gfn %lx is mmio\n", walker.gfn);
  361. kvm_release_pfn_clean(pfn);
  362. return 1;
  363. }
  364. spin_lock(&vcpu->kvm->mmu_lock);
  365. if (mmu_notifier_retry(vcpu, mmu_seq))
  366. goto out_unlock;
  367. kvm_mmu_free_some_pages(vcpu);
  368. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  369. largepage, &write_pt, pfn);
  370. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
  371. shadow_pte, *shadow_pte, write_pt);
  372. if (!write_pt)
  373. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  374. ++vcpu->stat.pf_fixed;
  375. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  376. spin_unlock(&vcpu->kvm->mmu_lock);
  377. return write_pt;
  378. out_unlock:
  379. spin_unlock(&vcpu->kvm->mmu_lock);
  380. kvm_release_pfn_clean(pfn);
  381. return 0;
  382. }
  383. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  384. {
  385. struct kvm_shadow_walk_iterator iterator;
  386. pt_element_t gpte;
  387. gpa_t pte_gpa = -1;
  388. int level;
  389. u64 *sptep;
  390. int need_flush = 0;
  391. spin_lock(&vcpu->kvm->mmu_lock);
  392. for_each_shadow_entry(vcpu, gva, iterator) {
  393. level = iterator.level;
  394. sptep = iterator.sptep;
  395. /* FIXME: properly handle invlpg on large guest pages */
  396. if (level == PT_PAGE_TABLE_LEVEL ||
  397. ((level == PT_DIRECTORY_LEVEL) && is_large_pte(*sptep))) {
  398. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  399. pte_gpa = (sp->gfn << PAGE_SHIFT);
  400. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  401. if (is_shadow_present_pte(*sptep)) {
  402. rmap_remove(vcpu->kvm, sptep);
  403. if (is_large_pte(*sptep))
  404. --vcpu->kvm->stat.lpages;
  405. need_flush = 1;
  406. }
  407. set_shadow_pte(sptep, shadow_trap_nonpresent_pte);
  408. break;
  409. }
  410. if (!is_shadow_present_pte(*sptep))
  411. break;
  412. }
  413. if (need_flush)
  414. kvm_flush_remote_tlbs(vcpu->kvm);
  415. spin_unlock(&vcpu->kvm->mmu_lock);
  416. if (pte_gpa == -1)
  417. return;
  418. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  419. sizeof(pt_element_t)))
  420. return;
  421. if (is_present_pte(gpte) && (gpte & PT_ACCESSED_MASK)) {
  422. if (mmu_topup_memory_caches(vcpu))
  423. return;
  424. kvm_mmu_pte_write(vcpu, pte_gpa, (const u8 *)&gpte,
  425. sizeof(pt_element_t), 0);
  426. }
  427. }
  428. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  429. {
  430. struct guest_walker walker;
  431. gpa_t gpa = UNMAPPED_GVA;
  432. int r;
  433. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  434. if (r) {
  435. gpa = gfn_to_gpa(walker.gfn);
  436. gpa |= vaddr & ~PAGE_MASK;
  437. }
  438. return gpa;
  439. }
  440. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  441. struct kvm_mmu_page *sp)
  442. {
  443. int i, j, offset, r;
  444. pt_element_t pt[256 / sizeof(pt_element_t)];
  445. gpa_t pte_gpa;
  446. if (sp->role.direct
  447. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  448. nonpaging_prefetch_page(vcpu, sp);
  449. return;
  450. }
  451. pte_gpa = gfn_to_gpa(sp->gfn);
  452. if (PTTYPE == 32) {
  453. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  454. pte_gpa += offset * sizeof(pt_element_t);
  455. }
  456. for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
  457. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
  458. pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
  459. for (j = 0; j < ARRAY_SIZE(pt); ++j)
  460. if (r || is_present_pte(pt[j]))
  461. sp->spt[i+j] = shadow_trap_nonpresent_pte;
  462. else
  463. sp->spt[i+j] = shadow_notrap_nonpresent_pte;
  464. }
  465. }
  466. /*
  467. * Using the cached information from sp->gfns is safe because:
  468. * - The spte has a reference to the struct page, so the pfn for a given gfn
  469. * can't change unless all sptes pointing to it are nuked first.
  470. * - Alias changes zap the entire shadow cache.
  471. */
  472. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  473. {
  474. int i, offset, nr_present;
  475. offset = nr_present = 0;
  476. if (PTTYPE == 32)
  477. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  478. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  479. unsigned pte_access;
  480. pt_element_t gpte;
  481. gpa_t pte_gpa;
  482. gfn_t gfn = sp->gfns[i];
  483. if (!is_shadow_present_pte(sp->spt[i]))
  484. continue;
  485. pte_gpa = gfn_to_gpa(sp->gfn);
  486. pte_gpa += (i+offset) * sizeof(pt_element_t);
  487. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  488. sizeof(pt_element_t)))
  489. return -EINVAL;
  490. if (gpte_to_gfn(gpte) != gfn || !is_present_pte(gpte) ||
  491. !(gpte & PT_ACCESSED_MASK)) {
  492. u64 nonpresent;
  493. rmap_remove(vcpu->kvm, &sp->spt[i]);
  494. if (is_present_pte(gpte))
  495. nonpresent = shadow_trap_nonpresent_pte;
  496. else
  497. nonpresent = shadow_notrap_nonpresent_pte;
  498. set_shadow_pte(&sp->spt[i], nonpresent);
  499. continue;
  500. }
  501. nr_present++;
  502. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  503. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  504. is_dirty_pte(gpte), 0, gpte & PT_GLOBAL_MASK, gfn,
  505. spte_to_pfn(sp->spt[i]), true, false);
  506. }
  507. return !nr_present;
  508. }
  509. #undef pt_element_t
  510. #undef guest_walker
  511. #undef FNAME
  512. #undef PT_BASE_ADDR_MASK
  513. #undef PT_INDEX
  514. #undef PT_LEVEL_MASK
  515. #undef PT_DIR_BASE_ADDR_MASK
  516. #undef PT_LEVEL_BITS
  517. #undef PT_MAX_FULL_LEVELS
  518. #undef gpte_to_gfn
  519. #undef gpte_to_gfn_pde
  520. #undef CMPXCHG