mmu.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/types.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/module.h>
  26. #include <linux/swap.h>
  27. #include <linux/hugetlb.h>
  28. #include <linux/compiler.h>
  29. #include <asm/page.h>
  30. #include <asm/cmpxchg.h>
  31. #include <asm/io.h>
  32. #include <asm/vmx.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. static int oos_shadow = 1;
  60. module_param(oos_shadow, bool, 0644);
  61. #ifndef MMU_DEBUG
  62. #define ASSERT(x) do { } while (0)
  63. #else
  64. #define ASSERT(x) \
  65. if (!(x)) { \
  66. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  67. __FILE__, __LINE__, #x); \
  68. }
  69. #endif
  70. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  71. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  72. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  73. #define PT64_LEVEL_BITS 9
  74. #define PT64_LEVEL_SHIFT(level) \
  75. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  76. #define PT64_LEVEL_MASK(level) \
  77. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  78. #define PT64_INDEX(address, level)\
  79. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  80. #define PT32_LEVEL_BITS 10
  81. #define PT32_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  83. #define PT32_LEVEL_MASK(level) \
  84. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  85. #define PT32_INDEX(address, level)\
  86. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  87. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  88. #define PT64_DIR_BASE_ADDR_MASK \
  89. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  90. #define PT32_BASE_ADDR_MASK PAGE_MASK
  91. #define PT32_DIR_BASE_ADDR_MASK \
  92. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  93. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  94. | PT64_NX_MASK)
  95. #define PFERR_PRESENT_MASK (1U << 0)
  96. #define PFERR_WRITE_MASK (1U << 1)
  97. #define PFERR_USER_MASK (1U << 2)
  98. #define PFERR_FETCH_MASK (1U << 4)
  99. #define PT_DIRECTORY_LEVEL 2
  100. #define PT_PAGE_TABLE_LEVEL 1
  101. #define RMAP_EXT 4
  102. #define ACC_EXEC_MASK 1
  103. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  104. #define ACC_USER_MASK PT_USER_MASK
  105. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  106. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  107. struct kvm_rmap_desc {
  108. u64 *shadow_ptes[RMAP_EXT];
  109. struct kvm_rmap_desc *more;
  110. };
  111. struct kvm_shadow_walk_iterator {
  112. u64 addr;
  113. hpa_t shadow_addr;
  114. int level;
  115. u64 *sptep;
  116. unsigned index;
  117. };
  118. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  119. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  120. shadow_walk_okay(&(_walker)); \
  121. shadow_walk_next(&(_walker)))
  122. struct kvm_unsync_walk {
  123. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  124. };
  125. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  126. static struct kmem_cache *pte_chain_cache;
  127. static struct kmem_cache *rmap_desc_cache;
  128. static struct kmem_cache *mmu_page_header_cache;
  129. static u64 __read_mostly shadow_trap_nonpresent_pte;
  130. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  131. static u64 __read_mostly shadow_base_present_pte;
  132. static u64 __read_mostly shadow_nx_mask;
  133. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  134. static u64 __read_mostly shadow_user_mask;
  135. static u64 __read_mostly shadow_accessed_mask;
  136. static u64 __read_mostly shadow_dirty_mask;
  137. static u64 __read_mostly shadow_mt_mask;
  138. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  139. {
  140. shadow_trap_nonpresent_pte = trap_pte;
  141. shadow_notrap_nonpresent_pte = notrap_pte;
  142. }
  143. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  144. void kvm_mmu_set_base_ptes(u64 base_pte)
  145. {
  146. shadow_base_present_pte = base_pte;
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  149. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  150. u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 mt_mask)
  151. {
  152. shadow_user_mask = user_mask;
  153. shadow_accessed_mask = accessed_mask;
  154. shadow_dirty_mask = dirty_mask;
  155. shadow_nx_mask = nx_mask;
  156. shadow_x_mask = x_mask;
  157. shadow_mt_mask = mt_mask;
  158. }
  159. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  160. static int is_write_protection(struct kvm_vcpu *vcpu)
  161. {
  162. return vcpu->arch.cr0 & X86_CR0_WP;
  163. }
  164. static int is_cpuid_PSE36(void)
  165. {
  166. return 1;
  167. }
  168. static int is_nx(struct kvm_vcpu *vcpu)
  169. {
  170. return vcpu->arch.shadow_efer & EFER_NX;
  171. }
  172. static int is_present_pte(unsigned long pte)
  173. {
  174. return pte & PT_PRESENT_MASK;
  175. }
  176. static int is_shadow_present_pte(u64 pte)
  177. {
  178. return pte != shadow_trap_nonpresent_pte
  179. && pte != shadow_notrap_nonpresent_pte;
  180. }
  181. static int is_large_pte(u64 pte)
  182. {
  183. return pte & PT_PAGE_SIZE_MASK;
  184. }
  185. static int is_writeble_pte(unsigned long pte)
  186. {
  187. return pte & PT_WRITABLE_MASK;
  188. }
  189. static int is_dirty_pte(unsigned long pte)
  190. {
  191. return pte & shadow_dirty_mask;
  192. }
  193. static int is_rmap_pte(u64 pte)
  194. {
  195. return is_shadow_present_pte(pte);
  196. }
  197. static pfn_t spte_to_pfn(u64 pte)
  198. {
  199. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  200. }
  201. static gfn_t pse36_gfn_delta(u32 gpte)
  202. {
  203. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  204. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  205. }
  206. static void set_shadow_pte(u64 *sptep, u64 spte)
  207. {
  208. #ifdef CONFIG_X86_64
  209. set_64bit((unsigned long *)sptep, spte);
  210. #else
  211. set_64bit((unsigned long long *)sptep, spte);
  212. #endif
  213. }
  214. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  215. struct kmem_cache *base_cache, int min)
  216. {
  217. void *obj;
  218. if (cache->nobjs >= min)
  219. return 0;
  220. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  221. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  222. if (!obj)
  223. return -ENOMEM;
  224. cache->objects[cache->nobjs++] = obj;
  225. }
  226. return 0;
  227. }
  228. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  229. {
  230. while (mc->nobjs)
  231. kfree(mc->objects[--mc->nobjs]);
  232. }
  233. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  234. int min)
  235. {
  236. struct page *page;
  237. if (cache->nobjs >= min)
  238. return 0;
  239. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  240. page = alloc_page(GFP_KERNEL);
  241. if (!page)
  242. return -ENOMEM;
  243. set_page_private(page, 0);
  244. cache->objects[cache->nobjs++] = page_address(page);
  245. }
  246. return 0;
  247. }
  248. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  249. {
  250. while (mc->nobjs)
  251. free_page((unsigned long)mc->objects[--mc->nobjs]);
  252. }
  253. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  254. {
  255. int r;
  256. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  257. pte_chain_cache, 4);
  258. if (r)
  259. goto out;
  260. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  261. rmap_desc_cache, 4);
  262. if (r)
  263. goto out;
  264. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  265. if (r)
  266. goto out;
  267. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  268. mmu_page_header_cache, 4);
  269. out:
  270. return r;
  271. }
  272. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  273. {
  274. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  275. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  276. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  277. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  278. }
  279. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  280. size_t size)
  281. {
  282. void *p;
  283. BUG_ON(!mc->nobjs);
  284. p = mc->objects[--mc->nobjs];
  285. return p;
  286. }
  287. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  288. {
  289. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  290. sizeof(struct kvm_pte_chain));
  291. }
  292. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  293. {
  294. kfree(pc);
  295. }
  296. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  297. {
  298. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  299. sizeof(struct kvm_rmap_desc));
  300. }
  301. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  302. {
  303. kfree(rd);
  304. }
  305. /*
  306. * Return the pointer to the largepage write count for a given
  307. * gfn, handling slots that are not large page aligned.
  308. */
  309. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  310. {
  311. unsigned long idx;
  312. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  313. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  314. return &slot->lpage_info[idx].write_count;
  315. }
  316. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  317. {
  318. int *write_count;
  319. gfn = unalias_gfn(kvm, gfn);
  320. write_count = slot_largepage_idx(gfn,
  321. gfn_to_memslot_unaliased(kvm, gfn));
  322. *write_count += 1;
  323. }
  324. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  325. {
  326. int *write_count;
  327. gfn = unalias_gfn(kvm, gfn);
  328. write_count = slot_largepage_idx(gfn,
  329. gfn_to_memslot_unaliased(kvm, gfn));
  330. *write_count -= 1;
  331. WARN_ON(*write_count < 0);
  332. }
  333. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  334. {
  335. struct kvm_memory_slot *slot;
  336. int *largepage_idx;
  337. gfn = unalias_gfn(kvm, gfn);
  338. slot = gfn_to_memslot_unaliased(kvm, gfn);
  339. if (slot) {
  340. largepage_idx = slot_largepage_idx(gfn, slot);
  341. return *largepage_idx;
  342. }
  343. return 1;
  344. }
  345. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  346. {
  347. struct vm_area_struct *vma;
  348. unsigned long addr;
  349. int ret = 0;
  350. addr = gfn_to_hva(kvm, gfn);
  351. if (kvm_is_error_hva(addr))
  352. return ret;
  353. down_read(&current->mm->mmap_sem);
  354. vma = find_vma(current->mm, addr);
  355. if (vma && is_vm_hugetlb_page(vma))
  356. ret = 1;
  357. up_read(&current->mm->mmap_sem);
  358. return ret;
  359. }
  360. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  361. {
  362. struct kvm_memory_slot *slot;
  363. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  364. return 0;
  365. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  366. return 0;
  367. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  368. if (slot && slot->dirty_bitmap)
  369. return 0;
  370. return 1;
  371. }
  372. /*
  373. * Take gfn and return the reverse mapping to it.
  374. * Note: gfn must be unaliased before this function get called
  375. */
  376. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  377. {
  378. struct kvm_memory_slot *slot;
  379. unsigned long idx;
  380. slot = gfn_to_memslot(kvm, gfn);
  381. if (!lpage)
  382. return &slot->rmap[gfn - slot->base_gfn];
  383. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  384. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  385. return &slot->lpage_info[idx].rmap_pde;
  386. }
  387. /*
  388. * Reverse mapping data structures:
  389. *
  390. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  391. * that points to page_address(page).
  392. *
  393. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  394. * containing more mappings.
  395. */
  396. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  397. {
  398. struct kvm_mmu_page *sp;
  399. struct kvm_rmap_desc *desc;
  400. unsigned long *rmapp;
  401. int i;
  402. if (!is_rmap_pte(*spte))
  403. return;
  404. gfn = unalias_gfn(vcpu->kvm, gfn);
  405. sp = page_header(__pa(spte));
  406. sp->gfns[spte - sp->spt] = gfn;
  407. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  408. if (!*rmapp) {
  409. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  410. *rmapp = (unsigned long)spte;
  411. } else if (!(*rmapp & 1)) {
  412. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  413. desc = mmu_alloc_rmap_desc(vcpu);
  414. desc->shadow_ptes[0] = (u64 *)*rmapp;
  415. desc->shadow_ptes[1] = spte;
  416. *rmapp = (unsigned long)desc | 1;
  417. } else {
  418. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  419. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  420. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  421. desc = desc->more;
  422. if (desc->shadow_ptes[RMAP_EXT-1]) {
  423. desc->more = mmu_alloc_rmap_desc(vcpu);
  424. desc = desc->more;
  425. }
  426. for (i = 0; desc->shadow_ptes[i]; ++i)
  427. ;
  428. desc->shadow_ptes[i] = spte;
  429. }
  430. }
  431. static void rmap_desc_remove_entry(unsigned long *rmapp,
  432. struct kvm_rmap_desc *desc,
  433. int i,
  434. struct kvm_rmap_desc *prev_desc)
  435. {
  436. int j;
  437. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  438. ;
  439. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  440. desc->shadow_ptes[j] = NULL;
  441. if (j != 0)
  442. return;
  443. if (!prev_desc && !desc->more)
  444. *rmapp = (unsigned long)desc->shadow_ptes[0];
  445. else
  446. if (prev_desc)
  447. prev_desc->more = desc->more;
  448. else
  449. *rmapp = (unsigned long)desc->more | 1;
  450. mmu_free_rmap_desc(desc);
  451. }
  452. static void rmap_remove(struct kvm *kvm, u64 *spte)
  453. {
  454. struct kvm_rmap_desc *desc;
  455. struct kvm_rmap_desc *prev_desc;
  456. struct kvm_mmu_page *sp;
  457. pfn_t pfn;
  458. unsigned long *rmapp;
  459. int i;
  460. if (!is_rmap_pte(*spte))
  461. return;
  462. sp = page_header(__pa(spte));
  463. pfn = spte_to_pfn(*spte);
  464. if (*spte & shadow_accessed_mask)
  465. kvm_set_pfn_accessed(pfn);
  466. if (is_writeble_pte(*spte))
  467. kvm_release_pfn_dirty(pfn);
  468. else
  469. kvm_release_pfn_clean(pfn);
  470. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  471. if (!*rmapp) {
  472. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  473. BUG();
  474. } else if (!(*rmapp & 1)) {
  475. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  476. if ((u64 *)*rmapp != spte) {
  477. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  478. spte, *spte);
  479. BUG();
  480. }
  481. *rmapp = 0;
  482. } else {
  483. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  484. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  485. prev_desc = NULL;
  486. while (desc) {
  487. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  488. if (desc->shadow_ptes[i] == spte) {
  489. rmap_desc_remove_entry(rmapp,
  490. desc, i,
  491. prev_desc);
  492. return;
  493. }
  494. prev_desc = desc;
  495. desc = desc->more;
  496. }
  497. BUG();
  498. }
  499. }
  500. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  501. {
  502. struct kvm_rmap_desc *desc;
  503. struct kvm_rmap_desc *prev_desc;
  504. u64 *prev_spte;
  505. int i;
  506. if (!*rmapp)
  507. return NULL;
  508. else if (!(*rmapp & 1)) {
  509. if (!spte)
  510. return (u64 *)*rmapp;
  511. return NULL;
  512. }
  513. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  514. prev_desc = NULL;
  515. prev_spte = NULL;
  516. while (desc) {
  517. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  518. if (prev_spte == spte)
  519. return desc->shadow_ptes[i];
  520. prev_spte = desc->shadow_ptes[i];
  521. }
  522. desc = desc->more;
  523. }
  524. return NULL;
  525. }
  526. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  527. {
  528. unsigned long *rmapp;
  529. u64 *spte;
  530. int write_protected = 0;
  531. gfn = unalias_gfn(kvm, gfn);
  532. rmapp = gfn_to_rmap(kvm, gfn, 0);
  533. spte = rmap_next(kvm, rmapp, NULL);
  534. while (spte) {
  535. BUG_ON(!spte);
  536. BUG_ON(!(*spte & PT_PRESENT_MASK));
  537. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  538. if (is_writeble_pte(*spte)) {
  539. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  540. write_protected = 1;
  541. }
  542. spte = rmap_next(kvm, rmapp, spte);
  543. }
  544. if (write_protected) {
  545. pfn_t pfn;
  546. spte = rmap_next(kvm, rmapp, NULL);
  547. pfn = spte_to_pfn(*spte);
  548. kvm_set_pfn_dirty(pfn);
  549. }
  550. /* check for huge page mappings */
  551. rmapp = gfn_to_rmap(kvm, gfn, 1);
  552. spte = rmap_next(kvm, rmapp, NULL);
  553. while (spte) {
  554. BUG_ON(!spte);
  555. BUG_ON(!(*spte & PT_PRESENT_MASK));
  556. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  557. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  558. if (is_writeble_pte(*spte)) {
  559. rmap_remove(kvm, spte);
  560. --kvm->stat.lpages;
  561. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  562. spte = NULL;
  563. write_protected = 1;
  564. }
  565. spte = rmap_next(kvm, rmapp, spte);
  566. }
  567. return write_protected;
  568. }
  569. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  570. {
  571. u64 *spte;
  572. int need_tlb_flush = 0;
  573. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  574. BUG_ON(!(*spte & PT_PRESENT_MASK));
  575. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  576. rmap_remove(kvm, spte);
  577. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  578. need_tlb_flush = 1;
  579. }
  580. return need_tlb_flush;
  581. }
  582. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  583. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  584. {
  585. int i;
  586. int retval = 0;
  587. /*
  588. * If mmap_sem isn't taken, we can look the memslots with only
  589. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  590. */
  591. for (i = 0; i < kvm->nmemslots; i++) {
  592. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  593. unsigned long start = memslot->userspace_addr;
  594. unsigned long end;
  595. /* mmu_lock protects userspace_addr */
  596. if (!start)
  597. continue;
  598. end = start + (memslot->npages << PAGE_SHIFT);
  599. if (hva >= start && hva < end) {
  600. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  601. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  602. retval |= handler(kvm,
  603. &memslot->lpage_info[
  604. gfn_offset /
  605. KVM_PAGES_PER_HPAGE].rmap_pde);
  606. }
  607. }
  608. return retval;
  609. }
  610. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  611. {
  612. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  613. }
  614. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  615. {
  616. u64 *spte;
  617. int young = 0;
  618. /* always return old for EPT */
  619. if (!shadow_accessed_mask)
  620. return 0;
  621. spte = rmap_next(kvm, rmapp, NULL);
  622. while (spte) {
  623. int _young;
  624. u64 _spte = *spte;
  625. BUG_ON(!(_spte & PT_PRESENT_MASK));
  626. _young = _spte & PT_ACCESSED_MASK;
  627. if (_young) {
  628. young = 1;
  629. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  630. }
  631. spte = rmap_next(kvm, rmapp, spte);
  632. }
  633. return young;
  634. }
  635. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  636. {
  637. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  638. }
  639. #ifdef MMU_DEBUG
  640. static int is_empty_shadow_page(u64 *spt)
  641. {
  642. u64 *pos;
  643. u64 *end;
  644. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  645. if (is_shadow_present_pte(*pos)) {
  646. printk(KERN_ERR "%s: %p %llx\n", __func__,
  647. pos, *pos);
  648. return 0;
  649. }
  650. return 1;
  651. }
  652. #endif
  653. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  654. {
  655. ASSERT(is_empty_shadow_page(sp->spt));
  656. list_del(&sp->link);
  657. __free_page(virt_to_page(sp->spt));
  658. __free_page(virt_to_page(sp->gfns));
  659. kfree(sp);
  660. ++kvm->arch.n_free_mmu_pages;
  661. }
  662. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  663. {
  664. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  665. }
  666. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  667. u64 *parent_pte)
  668. {
  669. struct kvm_mmu_page *sp;
  670. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  671. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  672. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  673. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  674. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  675. INIT_LIST_HEAD(&sp->oos_link);
  676. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  677. sp->multimapped = 0;
  678. sp->parent_pte = parent_pte;
  679. --vcpu->kvm->arch.n_free_mmu_pages;
  680. return sp;
  681. }
  682. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  683. struct kvm_mmu_page *sp, u64 *parent_pte)
  684. {
  685. struct kvm_pte_chain *pte_chain;
  686. struct hlist_node *node;
  687. int i;
  688. if (!parent_pte)
  689. return;
  690. if (!sp->multimapped) {
  691. u64 *old = sp->parent_pte;
  692. if (!old) {
  693. sp->parent_pte = parent_pte;
  694. return;
  695. }
  696. sp->multimapped = 1;
  697. pte_chain = mmu_alloc_pte_chain(vcpu);
  698. INIT_HLIST_HEAD(&sp->parent_ptes);
  699. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  700. pte_chain->parent_ptes[0] = old;
  701. }
  702. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  703. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  704. continue;
  705. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  706. if (!pte_chain->parent_ptes[i]) {
  707. pte_chain->parent_ptes[i] = parent_pte;
  708. return;
  709. }
  710. }
  711. pte_chain = mmu_alloc_pte_chain(vcpu);
  712. BUG_ON(!pte_chain);
  713. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  714. pte_chain->parent_ptes[0] = parent_pte;
  715. }
  716. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  717. u64 *parent_pte)
  718. {
  719. struct kvm_pte_chain *pte_chain;
  720. struct hlist_node *node;
  721. int i;
  722. if (!sp->multimapped) {
  723. BUG_ON(sp->parent_pte != parent_pte);
  724. sp->parent_pte = NULL;
  725. return;
  726. }
  727. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  728. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  729. if (!pte_chain->parent_ptes[i])
  730. break;
  731. if (pte_chain->parent_ptes[i] != parent_pte)
  732. continue;
  733. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  734. && pte_chain->parent_ptes[i + 1]) {
  735. pte_chain->parent_ptes[i]
  736. = pte_chain->parent_ptes[i + 1];
  737. ++i;
  738. }
  739. pte_chain->parent_ptes[i] = NULL;
  740. if (i == 0) {
  741. hlist_del(&pte_chain->link);
  742. mmu_free_pte_chain(pte_chain);
  743. if (hlist_empty(&sp->parent_ptes)) {
  744. sp->multimapped = 0;
  745. sp->parent_pte = NULL;
  746. }
  747. }
  748. return;
  749. }
  750. BUG();
  751. }
  752. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  753. mmu_parent_walk_fn fn)
  754. {
  755. struct kvm_pte_chain *pte_chain;
  756. struct hlist_node *node;
  757. struct kvm_mmu_page *parent_sp;
  758. int i;
  759. if (!sp->multimapped && sp->parent_pte) {
  760. parent_sp = page_header(__pa(sp->parent_pte));
  761. fn(vcpu, parent_sp);
  762. mmu_parent_walk(vcpu, parent_sp, fn);
  763. return;
  764. }
  765. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  766. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  767. if (!pte_chain->parent_ptes[i])
  768. break;
  769. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  770. fn(vcpu, parent_sp);
  771. mmu_parent_walk(vcpu, parent_sp, fn);
  772. }
  773. }
  774. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  775. {
  776. unsigned int index;
  777. struct kvm_mmu_page *sp = page_header(__pa(spte));
  778. index = spte - sp->spt;
  779. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  780. sp->unsync_children++;
  781. WARN_ON(!sp->unsync_children);
  782. }
  783. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  784. {
  785. struct kvm_pte_chain *pte_chain;
  786. struct hlist_node *node;
  787. int i;
  788. if (!sp->parent_pte)
  789. return;
  790. if (!sp->multimapped) {
  791. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  792. return;
  793. }
  794. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  795. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  796. if (!pte_chain->parent_ptes[i])
  797. break;
  798. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  799. }
  800. }
  801. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  802. {
  803. kvm_mmu_update_parents_unsync(sp);
  804. return 1;
  805. }
  806. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  807. struct kvm_mmu_page *sp)
  808. {
  809. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  810. kvm_mmu_update_parents_unsync(sp);
  811. }
  812. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  813. struct kvm_mmu_page *sp)
  814. {
  815. int i;
  816. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  817. sp->spt[i] = shadow_trap_nonpresent_pte;
  818. }
  819. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  820. struct kvm_mmu_page *sp)
  821. {
  822. return 1;
  823. }
  824. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  825. {
  826. }
  827. #define KVM_PAGE_ARRAY_NR 16
  828. struct kvm_mmu_pages {
  829. struct mmu_page_and_offset {
  830. struct kvm_mmu_page *sp;
  831. unsigned int idx;
  832. } page[KVM_PAGE_ARRAY_NR];
  833. unsigned int nr;
  834. };
  835. #define for_each_unsync_children(bitmap, idx) \
  836. for (idx = find_first_bit(bitmap, 512); \
  837. idx < 512; \
  838. idx = find_next_bit(bitmap, 512, idx+1))
  839. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  840. int idx)
  841. {
  842. int i;
  843. if (sp->unsync)
  844. for (i=0; i < pvec->nr; i++)
  845. if (pvec->page[i].sp == sp)
  846. return 0;
  847. pvec->page[pvec->nr].sp = sp;
  848. pvec->page[pvec->nr].idx = idx;
  849. pvec->nr++;
  850. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  851. }
  852. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  853. struct kvm_mmu_pages *pvec)
  854. {
  855. int i, ret, nr_unsync_leaf = 0;
  856. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  857. u64 ent = sp->spt[i];
  858. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  859. struct kvm_mmu_page *child;
  860. child = page_header(ent & PT64_BASE_ADDR_MASK);
  861. if (child->unsync_children) {
  862. if (mmu_pages_add(pvec, child, i))
  863. return -ENOSPC;
  864. ret = __mmu_unsync_walk(child, pvec);
  865. if (!ret)
  866. __clear_bit(i, sp->unsync_child_bitmap);
  867. else if (ret > 0)
  868. nr_unsync_leaf += ret;
  869. else
  870. return ret;
  871. }
  872. if (child->unsync) {
  873. nr_unsync_leaf++;
  874. if (mmu_pages_add(pvec, child, i))
  875. return -ENOSPC;
  876. }
  877. }
  878. }
  879. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  880. sp->unsync_children = 0;
  881. return nr_unsync_leaf;
  882. }
  883. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  884. struct kvm_mmu_pages *pvec)
  885. {
  886. if (!sp->unsync_children)
  887. return 0;
  888. mmu_pages_add(pvec, sp, 0);
  889. return __mmu_unsync_walk(sp, pvec);
  890. }
  891. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  892. {
  893. unsigned index;
  894. struct hlist_head *bucket;
  895. struct kvm_mmu_page *sp;
  896. struct hlist_node *node;
  897. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  898. index = kvm_page_table_hashfn(gfn);
  899. bucket = &kvm->arch.mmu_page_hash[index];
  900. hlist_for_each_entry(sp, node, bucket, hash_link)
  901. if (sp->gfn == gfn && !sp->role.direct
  902. && !sp->role.invalid) {
  903. pgprintk("%s: found role %x\n",
  904. __func__, sp->role.word);
  905. return sp;
  906. }
  907. return NULL;
  908. }
  909. static void kvm_unlink_unsync_global(struct kvm *kvm, struct kvm_mmu_page *sp)
  910. {
  911. list_del(&sp->oos_link);
  912. --kvm->stat.mmu_unsync_global;
  913. }
  914. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  915. {
  916. WARN_ON(!sp->unsync);
  917. sp->unsync = 0;
  918. if (sp->global)
  919. kvm_unlink_unsync_global(kvm, sp);
  920. --kvm->stat.mmu_unsync;
  921. }
  922. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  923. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  924. {
  925. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  926. kvm_mmu_zap_page(vcpu->kvm, sp);
  927. return 1;
  928. }
  929. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  930. kvm_flush_remote_tlbs(vcpu->kvm);
  931. kvm_unlink_unsync_page(vcpu->kvm, sp);
  932. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  933. kvm_mmu_zap_page(vcpu->kvm, sp);
  934. return 1;
  935. }
  936. kvm_mmu_flush_tlb(vcpu);
  937. return 0;
  938. }
  939. struct mmu_page_path {
  940. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  941. unsigned int idx[PT64_ROOT_LEVEL-1];
  942. };
  943. #define for_each_sp(pvec, sp, parents, i) \
  944. for (i = mmu_pages_next(&pvec, &parents, -1), \
  945. sp = pvec.page[i].sp; \
  946. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  947. i = mmu_pages_next(&pvec, &parents, i))
  948. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  949. struct mmu_page_path *parents,
  950. int i)
  951. {
  952. int n;
  953. for (n = i+1; n < pvec->nr; n++) {
  954. struct kvm_mmu_page *sp = pvec->page[n].sp;
  955. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  956. parents->idx[0] = pvec->page[n].idx;
  957. return n;
  958. }
  959. parents->parent[sp->role.level-2] = sp;
  960. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  961. }
  962. return n;
  963. }
  964. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  965. {
  966. struct kvm_mmu_page *sp;
  967. unsigned int level = 0;
  968. do {
  969. unsigned int idx = parents->idx[level];
  970. sp = parents->parent[level];
  971. if (!sp)
  972. return;
  973. --sp->unsync_children;
  974. WARN_ON((int)sp->unsync_children < 0);
  975. __clear_bit(idx, sp->unsync_child_bitmap);
  976. level++;
  977. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  978. }
  979. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  980. struct mmu_page_path *parents,
  981. struct kvm_mmu_pages *pvec)
  982. {
  983. parents->parent[parent->role.level-1] = NULL;
  984. pvec->nr = 0;
  985. }
  986. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  987. struct kvm_mmu_page *parent)
  988. {
  989. int i;
  990. struct kvm_mmu_page *sp;
  991. struct mmu_page_path parents;
  992. struct kvm_mmu_pages pages;
  993. kvm_mmu_pages_init(parent, &parents, &pages);
  994. while (mmu_unsync_walk(parent, &pages)) {
  995. int protected = 0;
  996. for_each_sp(pages, sp, parents, i)
  997. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  998. if (protected)
  999. kvm_flush_remote_tlbs(vcpu->kvm);
  1000. for_each_sp(pages, sp, parents, i) {
  1001. kvm_sync_page(vcpu, sp);
  1002. mmu_pages_clear_parents(&parents);
  1003. }
  1004. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1005. kvm_mmu_pages_init(parent, &parents, &pages);
  1006. }
  1007. }
  1008. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1009. gfn_t gfn,
  1010. gva_t gaddr,
  1011. unsigned level,
  1012. int direct,
  1013. unsigned access,
  1014. u64 *parent_pte)
  1015. {
  1016. union kvm_mmu_page_role role;
  1017. unsigned index;
  1018. unsigned quadrant;
  1019. struct hlist_head *bucket;
  1020. struct kvm_mmu_page *sp;
  1021. struct hlist_node *node, *tmp;
  1022. role = vcpu->arch.mmu.base_role;
  1023. role.level = level;
  1024. role.direct = direct;
  1025. role.access = access;
  1026. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1027. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1028. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1029. role.quadrant = quadrant;
  1030. }
  1031. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  1032. gfn, role.word);
  1033. index = kvm_page_table_hashfn(gfn);
  1034. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1035. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1036. if (sp->gfn == gfn) {
  1037. if (sp->unsync)
  1038. if (kvm_sync_page(vcpu, sp))
  1039. continue;
  1040. if (sp->role.word != role.word)
  1041. continue;
  1042. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1043. if (sp->unsync_children) {
  1044. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1045. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1046. }
  1047. pgprintk("%s: found\n", __func__);
  1048. return sp;
  1049. }
  1050. ++vcpu->kvm->stat.mmu_cache_miss;
  1051. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1052. if (!sp)
  1053. return sp;
  1054. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  1055. sp->gfn = gfn;
  1056. sp->role = role;
  1057. sp->global = role.cr4_pge;
  1058. hlist_add_head(&sp->hash_link, bucket);
  1059. if (!direct) {
  1060. if (rmap_write_protect(vcpu->kvm, gfn))
  1061. kvm_flush_remote_tlbs(vcpu->kvm);
  1062. account_shadowed(vcpu->kvm, gfn);
  1063. }
  1064. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1065. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1066. else
  1067. nonpaging_prefetch_page(vcpu, sp);
  1068. return sp;
  1069. }
  1070. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1071. struct kvm_vcpu *vcpu, u64 addr)
  1072. {
  1073. iterator->addr = addr;
  1074. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1075. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1076. if (iterator->level == PT32E_ROOT_LEVEL) {
  1077. iterator->shadow_addr
  1078. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1079. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1080. --iterator->level;
  1081. if (!iterator->shadow_addr)
  1082. iterator->level = 0;
  1083. }
  1084. }
  1085. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1086. {
  1087. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1088. return false;
  1089. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1090. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1091. return true;
  1092. }
  1093. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1094. {
  1095. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1096. --iterator->level;
  1097. }
  1098. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1099. struct kvm_mmu_page *sp)
  1100. {
  1101. unsigned i;
  1102. u64 *pt;
  1103. u64 ent;
  1104. pt = sp->spt;
  1105. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1106. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1107. if (is_shadow_present_pte(pt[i]))
  1108. rmap_remove(kvm, &pt[i]);
  1109. pt[i] = shadow_trap_nonpresent_pte;
  1110. }
  1111. return;
  1112. }
  1113. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1114. ent = pt[i];
  1115. if (is_shadow_present_pte(ent)) {
  1116. if (!is_large_pte(ent)) {
  1117. ent &= PT64_BASE_ADDR_MASK;
  1118. mmu_page_remove_parent_pte(page_header(ent),
  1119. &pt[i]);
  1120. } else {
  1121. --kvm->stat.lpages;
  1122. rmap_remove(kvm, &pt[i]);
  1123. }
  1124. }
  1125. pt[i] = shadow_trap_nonpresent_pte;
  1126. }
  1127. }
  1128. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1129. {
  1130. mmu_page_remove_parent_pte(sp, parent_pte);
  1131. }
  1132. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1133. {
  1134. int i;
  1135. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  1136. if (kvm->vcpus[i])
  1137. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  1138. }
  1139. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1140. {
  1141. u64 *parent_pte;
  1142. while (sp->multimapped || sp->parent_pte) {
  1143. if (!sp->multimapped)
  1144. parent_pte = sp->parent_pte;
  1145. else {
  1146. struct kvm_pte_chain *chain;
  1147. chain = container_of(sp->parent_ptes.first,
  1148. struct kvm_pte_chain, link);
  1149. parent_pte = chain->parent_ptes[0];
  1150. }
  1151. BUG_ON(!parent_pte);
  1152. kvm_mmu_put_page(sp, parent_pte);
  1153. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  1154. }
  1155. }
  1156. static int mmu_zap_unsync_children(struct kvm *kvm,
  1157. struct kvm_mmu_page *parent)
  1158. {
  1159. int i, zapped = 0;
  1160. struct mmu_page_path parents;
  1161. struct kvm_mmu_pages pages;
  1162. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1163. return 0;
  1164. kvm_mmu_pages_init(parent, &parents, &pages);
  1165. while (mmu_unsync_walk(parent, &pages)) {
  1166. struct kvm_mmu_page *sp;
  1167. for_each_sp(pages, sp, parents, i) {
  1168. kvm_mmu_zap_page(kvm, sp);
  1169. mmu_pages_clear_parents(&parents);
  1170. }
  1171. zapped += pages.nr;
  1172. kvm_mmu_pages_init(parent, &parents, &pages);
  1173. }
  1174. return zapped;
  1175. }
  1176. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1177. {
  1178. int ret;
  1179. ++kvm->stat.mmu_shadow_zapped;
  1180. ret = mmu_zap_unsync_children(kvm, sp);
  1181. kvm_mmu_page_unlink_children(kvm, sp);
  1182. kvm_mmu_unlink_parents(kvm, sp);
  1183. kvm_flush_remote_tlbs(kvm);
  1184. if (!sp->role.invalid && !sp->role.direct)
  1185. unaccount_shadowed(kvm, sp->gfn);
  1186. if (sp->unsync)
  1187. kvm_unlink_unsync_page(kvm, sp);
  1188. if (!sp->root_count) {
  1189. hlist_del(&sp->hash_link);
  1190. kvm_mmu_free_page(kvm, sp);
  1191. } else {
  1192. sp->role.invalid = 1;
  1193. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1194. kvm_reload_remote_mmus(kvm);
  1195. }
  1196. kvm_mmu_reset_last_pte_updated(kvm);
  1197. return ret;
  1198. }
  1199. /*
  1200. * Changing the number of mmu pages allocated to the vm
  1201. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1202. */
  1203. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1204. {
  1205. /*
  1206. * If we set the number of mmu pages to be smaller be than the
  1207. * number of actived pages , we must to free some mmu pages before we
  1208. * change the value
  1209. */
  1210. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  1211. kvm_nr_mmu_pages) {
  1212. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  1213. - kvm->arch.n_free_mmu_pages;
  1214. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  1215. struct kvm_mmu_page *page;
  1216. page = container_of(kvm->arch.active_mmu_pages.prev,
  1217. struct kvm_mmu_page, link);
  1218. kvm_mmu_zap_page(kvm, page);
  1219. n_used_mmu_pages--;
  1220. }
  1221. kvm->arch.n_free_mmu_pages = 0;
  1222. }
  1223. else
  1224. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1225. - kvm->arch.n_alloc_mmu_pages;
  1226. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1227. }
  1228. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1229. {
  1230. unsigned index;
  1231. struct hlist_head *bucket;
  1232. struct kvm_mmu_page *sp;
  1233. struct hlist_node *node, *n;
  1234. int r;
  1235. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1236. r = 0;
  1237. index = kvm_page_table_hashfn(gfn);
  1238. bucket = &kvm->arch.mmu_page_hash[index];
  1239. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1240. if (sp->gfn == gfn && !sp->role.direct) {
  1241. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1242. sp->role.word);
  1243. r = 1;
  1244. if (kvm_mmu_zap_page(kvm, sp))
  1245. n = bucket->first;
  1246. }
  1247. return r;
  1248. }
  1249. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1250. {
  1251. unsigned index;
  1252. struct hlist_head *bucket;
  1253. struct kvm_mmu_page *sp;
  1254. struct hlist_node *node, *nn;
  1255. index = kvm_page_table_hashfn(gfn);
  1256. bucket = &kvm->arch.mmu_page_hash[index];
  1257. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1258. if (sp->gfn == gfn && !sp->role.direct
  1259. && !sp->role.invalid) {
  1260. pgprintk("%s: zap %lx %x\n",
  1261. __func__, gfn, sp->role.word);
  1262. kvm_mmu_zap_page(kvm, sp);
  1263. }
  1264. }
  1265. }
  1266. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1267. {
  1268. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1269. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1270. __set_bit(slot, sp->slot_bitmap);
  1271. }
  1272. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1273. {
  1274. int i;
  1275. u64 *pt = sp->spt;
  1276. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1277. return;
  1278. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1279. if (pt[i] == shadow_notrap_nonpresent_pte)
  1280. set_shadow_pte(&pt[i], shadow_trap_nonpresent_pte);
  1281. }
  1282. }
  1283. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1284. {
  1285. struct page *page;
  1286. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1287. if (gpa == UNMAPPED_GVA)
  1288. return NULL;
  1289. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1290. return page;
  1291. }
  1292. /*
  1293. * The function is based on mtrr_type_lookup() in
  1294. * arch/x86/kernel/cpu/mtrr/generic.c
  1295. */
  1296. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1297. u64 start, u64 end)
  1298. {
  1299. int i;
  1300. u64 base, mask;
  1301. u8 prev_match, curr_match;
  1302. int num_var_ranges = KVM_NR_VAR_MTRR;
  1303. if (!mtrr_state->enabled)
  1304. return 0xFF;
  1305. /* Make end inclusive end, instead of exclusive */
  1306. end--;
  1307. /* Look in fixed ranges. Just return the type as per start */
  1308. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1309. int idx;
  1310. if (start < 0x80000) {
  1311. idx = 0;
  1312. idx += (start >> 16);
  1313. return mtrr_state->fixed_ranges[idx];
  1314. } else if (start < 0xC0000) {
  1315. idx = 1 * 8;
  1316. idx += ((start - 0x80000) >> 14);
  1317. return mtrr_state->fixed_ranges[idx];
  1318. } else if (start < 0x1000000) {
  1319. idx = 3 * 8;
  1320. idx += ((start - 0xC0000) >> 12);
  1321. return mtrr_state->fixed_ranges[idx];
  1322. }
  1323. }
  1324. /*
  1325. * Look in variable ranges
  1326. * Look of multiple ranges matching this address and pick type
  1327. * as per MTRR precedence
  1328. */
  1329. if (!(mtrr_state->enabled & 2))
  1330. return mtrr_state->def_type;
  1331. prev_match = 0xFF;
  1332. for (i = 0; i < num_var_ranges; ++i) {
  1333. unsigned short start_state, end_state;
  1334. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1335. continue;
  1336. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1337. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1338. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1339. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1340. start_state = ((start & mask) == (base & mask));
  1341. end_state = ((end & mask) == (base & mask));
  1342. if (start_state != end_state)
  1343. return 0xFE;
  1344. if ((start & mask) != (base & mask))
  1345. continue;
  1346. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1347. if (prev_match == 0xFF) {
  1348. prev_match = curr_match;
  1349. continue;
  1350. }
  1351. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1352. curr_match == MTRR_TYPE_UNCACHABLE)
  1353. return MTRR_TYPE_UNCACHABLE;
  1354. if ((prev_match == MTRR_TYPE_WRBACK &&
  1355. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1356. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1357. curr_match == MTRR_TYPE_WRBACK)) {
  1358. prev_match = MTRR_TYPE_WRTHROUGH;
  1359. curr_match = MTRR_TYPE_WRTHROUGH;
  1360. }
  1361. if (prev_match != curr_match)
  1362. return MTRR_TYPE_UNCACHABLE;
  1363. }
  1364. if (prev_match != 0xFF)
  1365. return prev_match;
  1366. return mtrr_state->def_type;
  1367. }
  1368. static u8 get_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1369. {
  1370. u8 mtrr;
  1371. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1372. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1373. if (mtrr == 0xfe || mtrr == 0xff)
  1374. mtrr = MTRR_TYPE_WRBACK;
  1375. return mtrr;
  1376. }
  1377. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1378. {
  1379. unsigned index;
  1380. struct hlist_head *bucket;
  1381. struct kvm_mmu_page *s;
  1382. struct hlist_node *node, *n;
  1383. index = kvm_page_table_hashfn(sp->gfn);
  1384. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1385. /* don't unsync if pagetable is shadowed with multiple roles */
  1386. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1387. if (s->gfn != sp->gfn || s->role.direct)
  1388. continue;
  1389. if (s->role.word != sp->role.word)
  1390. return 1;
  1391. }
  1392. ++vcpu->kvm->stat.mmu_unsync;
  1393. sp->unsync = 1;
  1394. if (sp->global) {
  1395. list_add(&sp->oos_link, &vcpu->kvm->arch.oos_global_pages);
  1396. ++vcpu->kvm->stat.mmu_unsync_global;
  1397. } else
  1398. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1399. mmu_convert_notrap(sp);
  1400. return 0;
  1401. }
  1402. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1403. bool can_unsync)
  1404. {
  1405. struct kvm_mmu_page *shadow;
  1406. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1407. if (shadow) {
  1408. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1409. return 1;
  1410. if (shadow->unsync)
  1411. return 0;
  1412. if (can_unsync && oos_shadow)
  1413. return kvm_unsync_page(vcpu, shadow);
  1414. return 1;
  1415. }
  1416. return 0;
  1417. }
  1418. static int set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1419. unsigned pte_access, int user_fault,
  1420. int write_fault, int dirty, int largepage,
  1421. int global, gfn_t gfn, pfn_t pfn, bool speculative,
  1422. bool can_unsync)
  1423. {
  1424. u64 spte;
  1425. int ret = 0;
  1426. u64 mt_mask = shadow_mt_mask;
  1427. struct kvm_mmu_page *sp = page_header(__pa(shadow_pte));
  1428. if (!global && sp->global) {
  1429. sp->global = 0;
  1430. if (sp->unsync) {
  1431. kvm_unlink_unsync_global(vcpu->kvm, sp);
  1432. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1433. }
  1434. }
  1435. /*
  1436. * We don't set the accessed bit, since we sometimes want to see
  1437. * whether the guest actually used the pte (in order to detect
  1438. * demand paging).
  1439. */
  1440. spte = shadow_base_present_pte | shadow_dirty_mask;
  1441. if (!speculative)
  1442. spte |= shadow_accessed_mask;
  1443. if (!dirty)
  1444. pte_access &= ~ACC_WRITE_MASK;
  1445. if (pte_access & ACC_EXEC_MASK)
  1446. spte |= shadow_x_mask;
  1447. else
  1448. spte |= shadow_nx_mask;
  1449. if (pte_access & ACC_USER_MASK)
  1450. spte |= shadow_user_mask;
  1451. if (largepage)
  1452. spte |= PT_PAGE_SIZE_MASK;
  1453. if (mt_mask) {
  1454. if (!kvm_is_mmio_pfn(pfn)) {
  1455. mt_mask = get_memory_type(vcpu, gfn) <<
  1456. kvm_x86_ops->get_mt_mask_shift();
  1457. mt_mask |= VMX_EPT_IGMT_BIT;
  1458. } else
  1459. mt_mask = MTRR_TYPE_UNCACHABLE <<
  1460. kvm_x86_ops->get_mt_mask_shift();
  1461. spte |= mt_mask;
  1462. }
  1463. spte |= (u64)pfn << PAGE_SHIFT;
  1464. if ((pte_access & ACC_WRITE_MASK)
  1465. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1466. if (largepage && has_wrprotected_page(vcpu->kvm, gfn)) {
  1467. ret = 1;
  1468. spte = shadow_trap_nonpresent_pte;
  1469. goto set_pte;
  1470. }
  1471. spte |= PT_WRITABLE_MASK;
  1472. /*
  1473. * Optimization: for pte sync, if spte was writable the hash
  1474. * lookup is unnecessary (and expensive). Write protection
  1475. * is responsibility of mmu_get_page / kvm_sync_page.
  1476. * Same reasoning can be applied to dirty page accounting.
  1477. */
  1478. if (!can_unsync && is_writeble_pte(*shadow_pte))
  1479. goto set_pte;
  1480. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1481. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1482. __func__, gfn);
  1483. ret = 1;
  1484. pte_access &= ~ACC_WRITE_MASK;
  1485. if (is_writeble_pte(spte))
  1486. spte &= ~PT_WRITABLE_MASK;
  1487. }
  1488. }
  1489. if (pte_access & ACC_WRITE_MASK)
  1490. mark_page_dirty(vcpu->kvm, gfn);
  1491. set_pte:
  1492. set_shadow_pte(shadow_pte, spte);
  1493. return ret;
  1494. }
  1495. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  1496. unsigned pt_access, unsigned pte_access,
  1497. int user_fault, int write_fault, int dirty,
  1498. int *ptwrite, int largepage, int global,
  1499. gfn_t gfn, pfn_t pfn, bool speculative)
  1500. {
  1501. int was_rmapped = 0;
  1502. int was_writeble = is_writeble_pte(*shadow_pte);
  1503. pgprintk("%s: spte %llx access %x write_fault %d"
  1504. " user_fault %d gfn %lx\n",
  1505. __func__, *shadow_pte, pt_access,
  1506. write_fault, user_fault, gfn);
  1507. if (is_rmap_pte(*shadow_pte)) {
  1508. /*
  1509. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1510. * the parent of the now unreachable PTE.
  1511. */
  1512. if (largepage && !is_large_pte(*shadow_pte)) {
  1513. struct kvm_mmu_page *child;
  1514. u64 pte = *shadow_pte;
  1515. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1516. mmu_page_remove_parent_pte(child, shadow_pte);
  1517. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  1518. pgprintk("hfn old %lx new %lx\n",
  1519. spte_to_pfn(*shadow_pte), pfn);
  1520. rmap_remove(vcpu->kvm, shadow_pte);
  1521. } else
  1522. was_rmapped = 1;
  1523. }
  1524. if (set_spte(vcpu, shadow_pte, pte_access, user_fault, write_fault,
  1525. dirty, largepage, global, gfn, pfn, speculative, true)) {
  1526. if (write_fault)
  1527. *ptwrite = 1;
  1528. kvm_x86_ops->tlb_flush(vcpu);
  1529. }
  1530. pgprintk("%s: setting spte %llx\n", __func__, *shadow_pte);
  1531. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1532. is_large_pte(*shadow_pte)? "2MB" : "4kB",
  1533. is_present_pte(*shadow_pte)?"RW":"R", gfn,
  1534. *shadow_pte, shadow_pte);
  1535. if (!was_rmapped && is_large_pte(*shadow_pte))
  1536. ++vcpu->kvm->stat.lpages;
  1537. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1538. if (!was_rmapped) {
  1539. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1540. if (!is_rmap_pte(*shadow_pte))
  1541. kvm_release_pfn_clean(pfn);
  1542. } else {
  1543. if (was_writeble)
  1544. kvm_release_pfn_dirty(pfn);
  1545. else
  1546. kvm_release_pfn_clean(pfn);
  1547. }
  1548. if (speculative) {
  1549. vcpu->arch.last_pte_updated = shadow_pte;
  1550. vcpu->arch.last_pte_gfn = gfn;
  1551. }
  1552. }
  1553. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1554. {
  1555. }
  1556. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1557. int largepage, gfn_t gfn, pfn_t pfn)
  1558. {
  1559. struct kvm_shadow_walk_iterator iterator;
  1560. struct kvm_mmu_page *sp;
  1561. int pt_write = 0;
  1562. gfn_t pseudo_gfn;
  1563. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1564. if (iterator.level == PT_PAGE_TABLE_LEVEL
  1565. || (largepage && iterator.level == PT_DIRECTORY_LEVEL)) {
  1566. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1567. 0, write, 1, &pt_write,
  1568. largepage, 0, gfn, pfn, false);
  1569. ++vcpu->stat.pf_fixed;
  1570. break;
  1571. }
  1572. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1573. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1574. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1575. iterator.level - 1,
  1576. 1, ACC_ALL, iterator.sptep);
  1577. if (!sp) {
  1578. pgprintk("nonpaging_map: ENOMEM\n");
  1579. kvm_release_pfn_clean(pfn);
  1580. return -ENOMEM;
  1581. }
  1582. set_shadow_pte(iterator.sptep,
  1583. __pa(sp->spt)
  1584. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1585. | shadow_user_mask | shadow_x_mask);
  1586. }
  1587. }
  1588. return pt_write;
  1589. }
  1590. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1591. {
  1592. int r;
  1593. int largepage = 0;
  1594. pfn_t pfn;
  1595. unsigned long mmu_seq;
  1596. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1597. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1598. largepage = 1;
  1599. }
  1600. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1601. smp_rmb();
  1602. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1603. /* mmio */
  1604. if (is_error_pfn(pfn)) {
  1605. kvm_release_pfn_clean(pfn);
  1606. return 1;
  1607. }
  1608. spin_lock(&vcpu->kvm->mmu_lock);
  1609. if (mmu_notifier_retry(vcpu, mmu_seq))
  1610. goto out_unlock;
  1611. kvm_mmu_free_some_pages(vcpu);
  1612. r = __direct_map(vcpu, v, write, largepage, gfn, pfn);
  1613. spin_unlock(&vcpu->kvm->mmu_lock);
  1614. return r;
  1615. out_unlock:
  1616. spin_unlock(&vcpu->kvm->mmu_lock);
  1617. kvm_release_pfn_clean(pfn);
  1618. return 0;
  1619. }
  1620. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1621. {
  1622. int i;
  1623. struct kvm_mmu_page *sp;
  1624. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1625. return;
  1626. spin_lock(&vcpu->kvm->mmu_lock);
  1627. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1628. hpa_t root = vcpu->arch.mmu.root_hpa;
  1629. sp = page_header(root);
  1630. --sp->root_count;
  1631. if (!sp->root_count && sp->role.invalid)
  1632. kvm_mmu_zap_page(vcpu->kvm, sp);
  1633. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1634. spin_unlock(&vcpu->kvm->mmu_lock);
  1635. return;
  1636. }
  1637. for (i = 0; i < 4; ++i) {
  1638. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1639. if (root) {
  1640. root &= PT64_BASE_ADDR_MASK;
  1641. sp = page_header(root);
  1642. --sp->root_count;
  1643. if (!sp->root_count && sp->role.invalid)
  1644. kvm_mmu_zap_page(vcpu->kvm, sp);
  1645. }
  1646. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1647. }
  1648. spin_unlock(&vcpu->kvm->mmu_lock);
  1649. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1650. }
  1651. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1652. {
  1653. int i;
  1654. gfn_t root_gfn;
  1655. struct kvm_mmu_page *sp;
  1656. int direct = 0;
  1657. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1658. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1659. hpa_t root = vcpu->arch.mmu.root_hpa;
  1660. ASSERT(!VALID_PAGE(root));
  1661. if (tdp_enabled)
  1662. direct = 1;
  1663. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1664. PT64_ROOT_LEVEL, direct,
  1665. ACC_ALL, NULL);
  1666. root = __pa(sp->spt);
  1667. ++sp->root_count;
  1668. vcpu->arch.mmu.root_hpa = root;
  1669. return;
  1670. }
  1671. direct = !is_paging(vcpu);
  1672. if (tdp_enabled)
  1673. direct = 1;
  1674. for (i = 0; i < 4; ++i) {
  1675. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1676. ASSERT(!VALID_PAGE(root));
  1677. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1678. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1679. vcpu->arch.mmu.pae_root[i] = 0;
  1680. continue;
  1681. }
  1682. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1683. } else if (vcpu->arch.mmu.root_level == 0)
  1684. root_gfn = 0;
  1685. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1686. PT32_ROOT_LEVEL, direct,
  1687. ACC_ALL, NULL);
  1688. root = __pa(sp->spt);
  1689. ++sp->root_count;
  1690. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1691. }
  1692. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1693. }
  1694. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1695. {
  1696. int i;
  1697. struct kvm_mmu_page *sp;
  1698. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1699. return;
  1700. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1701. hpa_t root = vcpu->arch.mmu.root_hpa;
  1702. sp = page_header(root);
  1703. mmu_sync_children(vcpu, sp);
  1704. return;
  1705. }
  1706. for (i = 0; i < 4; ++i) {
  1707. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1708. if (root) {
  1709. root &= PT64_BASE_ADDR_MASK;
  1710. sp = page_header(root);
  1711. mmu_sync_children(vcpu, sp);
  1712. }
  1713. }
  1714. }
  1715. static void mmu_sync_global(struct kvm_vcpu *vcpu)
  1716. {
  1717. struct kvm *kvm = vcpu->kvm;
  1718. struct kvm_mmu_page *sp, *n;
  1719. list_for_each_entry_safe(sp, n, &kvm->arch.oos_global_pages, oos_link)
  1720. kvm_sync_page(vcpu, sp);
  1721. }
  1722. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1723. {
  1724. spin_lock(&vcpu->kvm->mmu_lock);
  1725. mmu_sync_roots(vcpu);
  1726. spin_unlock(&vcpu->kvm->mmu_lock);
  1727. }
  1728. void kvm_mmu_sync_global(struct kvm_vcpu *vcpu)
  1729. {
  1730. spin_lock(&vcpu->kvm->mmu_lock);
  1731. mmu_sync_global(vcpu);
  1732. spin_unlock(&vcpu->kvm->mmu_lock);
  1733. }
  1734. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1735. {
  1736. return vaddr;
  1737. }
  1738. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1739. u32 error_code)
  1740. {
  1741. gfn_t gfn;
  1742. int r;
  1743. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1744. r = mmu_topup_memory_caches(vcpu);
  1745. if (r)
  1746. return r;
  1747. ASSERT(vcpu);
  1748. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1749. gfn = gva >> PAGE_SHIFT;
  1750. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1751. error_code & PFERR_WRITE_MASK, gfn);
  1752. }
  1753. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1754. u32 error_code)
  1755. {
  1756. pfn_t pfn;
  1757. int r;
  1758. int largepage = 0;
  1759. gfn_t gfn = gpa >> PAGE_SHIFT;
  1760. unsigned long mmu_seq;
  1761. ASSERT(vcpu);
  1762. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1763. r = mmu_topup_memory_caches(vcpu);
  1764. if (r)
  1765. return r;
  1766. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1767. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1768. largepage = 1;
  1769. }
  1770. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1771. smp_rmb();
  1772. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1773. if (is_error_pfn(pfn)) {
  1774. kvm_release_pfn_clean(pfn);
  1775. return 1;
  1776. }
  1777. spin_lock(&vcpu->kvm->mmu_lock);
  1778. if (mmu_notifier_retry(vcpu, mmu_seq))
  1779. goto out_unlock;
  1780. kvm_mmu_free_some_pages(vcpu);
  1781. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1782. largepage, gfn, pfn);
  1783. spin_unlock(&vcpu->kvm->mmu_lock);
  1784. return r;
  1785. out_unlock:
  1786. spin_unlock(&vcpu->kvm->mmu_lock);
  1787. kvm_release_pfn_clean(pfn);
  1788. return 0;
  1789. }
  1790. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1791. {
  1792. mmu_free_roots(vcpu);
  1793. }
  1794. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1795. {
  1796. struct kvm_mmu *context = &vcpu->arch.mmu;
  1797. context->new_cr3 = nonpaging_new_cr3;
  1798. context->page_fault = nonpaging_page_fault;
  1799. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1800. context->free = nonpaging_free;
  1801. context->prefetch_page = nonpaging_prefetch_page;
  1802. context->sync_page = nonpaging_sync_page;
  1803. context->invlpg = nonpaging_invlpg;
  1804. context->root_level = 0;
  1805. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1806. context->root_hpa = INVALID_PAGE;
  1807. return 0;
  1808. }
  1809. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1810. {
  1811. ++vcpu->stat.tlb_flush;
  1812. kvm_x86_ops->tlb_flush(vcpu);
  1813. }
  1814. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1815. {
  1816. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1817. mmu_free_roots(vcpu);
  1818. }
  1819. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1820. u64 addr,
  1821. u32 err_code)
  1822. {
  1823. kvm_inject_page_fault(vcpu, addr, err_code);
  1824. }
  1825. static void paging_free(struct kvm_vcpu *vcpu)
  1826. {
  1827. nonpaging_free(vcpu);
  1828. }
  1829. #define PTTYPE 64
  1830. #include "paging_tmpl.h"
  1831. #undef PTTYPE
  1832. #define PTTYPE 32
  1833. #include "paging_tmpl.h"
  1834. #undef PTTYPE
  1835. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1836. {
  1837. struct kvm_mmu *context = &vcpu->arch.mmu;
  1838. ASSERT(is_pae(vcpu));
  1839. context->new_cr3 = paging_new_cr3;
  1840. context->page_fault = paging64_page_fault;
  1841. context->gva_to_gpa = paging64_gva_to_gpa;
  1842. context->prefetch_page = paging64_prefetch_page;
  1843. context->sync_page = paging64_sync_page;
  1844. context->invlpg = paging64_invlpg;
  1845. context->free = paging_free;
  1846. context->root_level = level;
  1847. context->shadow_root_level = level;
  1848. context->root_hpa = INVALID_PAGE;
  1849. return 0;
  1850. }
  1851. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1852. {
  1853. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1854. }
  1855. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1856. {
  1857. struct kvm_mmu *context = &vcpu->arch.mmu;
  1858. context->new_cr3 = paging_new_cr3;
  1859. context->page_fault = paging32_page_fault;
  1860. context->gva_to_gpa = paging32_gva_to_gpa;
  1861. context->free = paging_free;
  1862. context->prefetch_page = paging32_prefetch_page;
  1863. context->sync_page = paging32_sync_page;
  1864. context->invlpg = paging32_invlpg;
  1865. context->root_level = PT32_ROOT_LEVEL;
  1866. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1867. context->root_hpa = INVALID_PAGE;
  1868. return 0;
  1869. }
  1870. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1871. {
  1872. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1873. }
  1874. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1875. {
  1876. struct kvm_mmu *context = &vcpu->arch.mmu;
  1877. context->new_cr3 = nonpaging_new_cr3;
  1878. context->page_fault = tdp_page_fault;
  1879. context->free = nonpaging_free;
  1880. context->prefetch_page = nonpaging_prefetch_page;
  1881. context->sync_page = nonpaging_sync_page;
  1882. context->invlpg = nonpaging_invlpg;
  1883. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1884. context->root_hpa = INVALID_PAGE;
  1885. if (!is_paging(vcpu)) {
  1886. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1887. context->root_level = 0;
  1888. } else if (is_long_mode(vcpu)) {
  1889. context->gva_to_gpa = paging64_gva_to_gpa;
  1890. context->root_level = PT64_ROOT_LEVEL;
  1891. } else if (is_pae(vcpu)) {
  1892. context->gva_to_gpa = paging64_gva_to_gpa;
  1893. context->root_level = PT32E_ROOT_LEVEL;
  1894. } else {
  1895. context->gva_to_gpa = paging32_gva_to_gpa;
  1896. context->root_level = PT32_ROOT_LEVEL;
  1897. }
  1898. return 0;
  1899. }
  1900. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1901. {
  1902. int r;
  1903. ASSERT(vcpu);
  1904. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1905. if (!is_paging(vcpu))
  1906. r = nonpaging_init_context(vcpu);
  1907. else if (is_long_mode(vcpu))
  1908. r = paging64_init_context(vcpu);
  1909. else if (is_pae(vcpu))
  1910. r = paging32E_init_context(vcpu);
  1911. else
  1912. r = paging32_init_context(vcpu);
  1913. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  1914. return r;
  1915. }
  1916. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1917. {
  1918. vcpu->arch.update_pte.pfn = bad_pfn;
  1919. if (tdp_enabled)
  1920. return init_kvm_tdp_mmu(vcpu);
  1921. else
  1922. return init_kvm_softmmu(vcpu);
  1923. }
  1924. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1925. {
  1926. ASSERT(vcpu);
  1927. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1928. vcpu->arch.mmu.free(vcpu);
  1929. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1930. }
  1931. }
  1932. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1933. {
  1934. destroy_kvm_mmu(vcpu);
  1935. return init_kvm_mmu(vcpu);
  1936. }
  1937. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1938. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1939. {
  1940. int r;
  1941. r = mmu_topup_memory_caches(vcpu);
  1942. if (r)
  1943. goto out;
  1944. spin_lock(&vcpu->kvm->mmu_lock);
  1945. kvm_mmu_free_some_pages(vcpu);
  1946. mmu_alloc_roots(vcpu);
  1947. mmu_sync_roots(vcpu);
  1948. spin_unlock(&vcpu->kvm->mmu_lock);
  1949. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1950. kvm_mmu_flush_tlb(vcpu);
  1951. out:
  1952. return r;
  1953. }
  1954. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1955. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1956. {
  1957. mmu_free_roots(vcpu);
  1958. }
  1959. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1960. struct kvm_mmu_page *sp,
  1961. u64 *spte)
  1962. {
  1963. u64 pte;
  1964. struct kvm_mmu_page *child;
  1965. pte = *spte;
  1966. if (is_shadow_present_pte(pte)) {
  1967. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1968. is_large_pte(pte))
  1969. rmap_remove(vcpu->kvm, spte);
  1970. else {
  1971. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1972. mmu_page_remove_parent_pte(child, spte);
  1973. }
  1974. }
  1975. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1976. if (is_large_pte(pte))
  1977. --vcpu->kvm->stat.lpages;
  1978. }
  1979. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1980. struct kvm_mmu_page *sp,
  1981. u64 *spte,
  1982. const void *new)
  1983. {
  1984. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1985. if (!vcpu->arch.update_pte.largepage ||
  1986. sp->role.glevels == PT32_ROOT_LEVEL) {
  1987. ++vcpu->kvm->stat.mmu_pde_zapped;
  1988. return;
  1989. }
  1990. }
  1991. ++vcpu->kvm->stat.mmu_pte_updated;
  1992. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1993. paging32_update_pte(vcpu, sp, spte, new);
  1994. else
  1995. paging64_update_pte(vcpu, sp, spte, new);
  1996. }
  1997. static bool need_remote_flush(u64 old, u64 new)
  1998. {
  1999. if (!is_shadow_present_pte(old))
  2000. return false;
  2001. if (!is_shadow_present_pte(new))
  2002. return true;
  2003. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2004. return true;
  2005. old ^= PT64_NX_MASK;
  2006. new ^= PT64_NX_MASK;
  2007. return (old & ~new & PT64_PERM_MASK) != 0;
  2008. }
  2009. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2010. {
  2011. if (need_remote_flush(old, new))
  2012. kvm_flush_remote_tlbs(vcpu->kvm);
  2013. else
  2014. kvm_mmu_flush_tlb(vcpu);
  2015. }
  2016. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2017. {
  2018. u64 *spte = vcpu->arch.last_pte_updated;
  2019. return !!(spte && (*spte & shadow_accessed_mask));
  2020. }
  2021. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2022. const u8 *new, int bytes)
  2023. {
  2024. gfn_t gfn;
  2025. int r;
  2026. u64 gpte = 0;
  2027. pfn_t pfn;
  2028. vcpu->arch.update_pte.largepage = 0;
  2029. if (bytes != 4 && bytes != 8)
  2030. return;
  2031. /*
  2032. * Assume that the pte write on a page table of the same type
  2033. * as the current vcpu paging mode. This is nearly always true
  2034. * (might be false while changing modes). Note it is verified later
  2035. * by update_pte().
  2036. */
  2037. if (is_pae(vcpu)) {
  2038. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2039. if ((bytes == 4) && (gpa % 4 == 0)) {
  2040. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2041. if (r)
  2042. return;
  2043. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2044. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2045. memcpy((void *)&gpte, new, 8);
  2046. }
  2047. } else {
  2048. if ((bytes == 4) && (gpa % 4 == 0))
  2049. memcpy((void *)&gpte, new, 4);
  2050. }
  2051. if (!is_present_pte(gpte))
  2052. return;
  2053. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2054. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  2055. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  2056. vcpu->arch.update_pte.largepage = 1;
  2057. }
  2058. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2059. smp_rmb();
  2060. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2061. if (is_error_pfn(pfn)) {
  2062. kvm_release_pfn_clean(pfn);
  2063. return;
  2064. }
  2065. vcpu->arch.update_pte.gfn = gfn;
  2066. vcpu->arch.update_pte.pfn = pfn;
  2067. }
  2068. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2069. {
  2070. u64 *spte = vcpu->arch.last_pte_updated;
  2071. if (spte
  2072. && vcpu->arch.last_pte_gfn == gfn
  2073. && shadow_accessed_mask
  2074. && !(*spte & shadow_accessed_mask)
  2075. && is_shadow_present_pte(*spte))
  2076. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2077. }
  2078. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2079. const u8 *new, int bytes,
  2080. bool guest_initiated)
  2081. {
  2082. gfn_t gfn = gpa >> PAGE_SHIFT;
  2083. struct kvm_mmu_page *sp;
  2084. struct hlist_node *node, *n;
  2085. struct hlist_head *bucket;
  2086. unsigned index;
  2087. u64 entry, gentry;
  2088. u64 *spte;
  2089. unsigned offset = offset_in_page(gpa);
  2090. unsigned pte_size;
  2091. unsigned page_offset;
  2092. unsigned misaligned;
  2093. unsigned quadrant;
  2094. int level;
  2095. int flooded = 0;
  2096. int npte;
  2097. int r;
  2098. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2099. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2100. spin_lock(&vcpu->kvm->mmu_lock);
  2101. kvm_mmu_access_page(vcpu, gfn);
  2102. kvm_mmu_free_some_pages(vcpu);
  2103. ++vcpu->kvm->stat.mmu_pte_write;
  2104. kvm_mmu_audit(vcpu, "pre pte write");
  2105. if (guest_initiated) {
  2106. if (gfn == vcpu->arch.last_pt_write_gfn
  2107. && !last_updated_pte_accessed(vcpu)) {
  2108. ++vcpu->arch.last_pt_write_count;
  2109. if (vcpu->arch.last_pt_write_count >= 3)
  2110. flooded = 1;
  2111. } else {
  2112. vcpu->arch.last_pt_write_gfn = gfn;
  2113. vcpu->arch.last_pt_write_count = 1;
  2114. vcpu->arch.last_pte_updated = NULL;
  2115. }
  2116. }
  2117. index = kvm_page_table_hashfn(gfn);
  2118. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2119. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2120. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2121. continue;
  2122. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2123. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2124. misaligned |= bytes < 4;
  2125. if (misaligned || flooded) {
  2126. /*
  2127. * Misaligned accesses are too much trouble to fix
  2128. * up; also, they usually indicate a page is not used
  2129. * as a page table.
  2130. *
  2131. * If we're seeing too many writes to a page,
  2132. * it may no longer be a page table, or we may be
  2133. * forking, in which case it is better to unmap the
  2134. * page.
  2135. */
  2136. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2137. gpa, bytes, sp->role.word);
  2138. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2139. n = bucket->first;
  2140. ++vcpu->kvm->stat.mmu_flooded;
  2141. continue;
  2142. }
  2143. page_offset = offset;
  2144. level = sp->role.level;
  2145. npte = 1;
  2146. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2147. page_offset <<= 1; /* 32->64 */
  2148. /*
  2149. * A 32-bit pde maps 4MB while the shadow pdes map
  2150. * only 2MB. So we need to double the offset again
  2151. * and zap two pdes instead of one.
  2152. */
  2153. if (level == PT32_ROOT_LEVEL) {
  2154. page_offset &= ~7; /* kill rounding error */
  2155. page_offset <<= 1;
  2156. npte = 2;
  2157. }
  2158. quadrant = page_offset >> PAGE_SHIFT;
  2159. page_offset &= ~PAGE_MASK;
  2160. if (quadrant != sp->role.quadrant)
  2161. continue;
  2162. }
  2163. spte = &sp->spt[page_offset / sizeof(*spte)];
  2164. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2165. gentry = 0;
  2166. r = kvm_read_guest_atomic(vcpu->kvm,
  2167. gpa & ~(u64)(pte_size - 1),
  2168. &gentry, pte_size);
  2169. new = (const void *)&gentry;
  2170. if (r < 0)
  2171. new = NULL;
  2172. }
  2173. while (npte--) {
  2174. entry = *spte;
  2175. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2176. if (new)
  2177. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2178. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2179. ++spte;
  2180. }
  2181. }
  2182. kvm_mmu_audit(vcpu, "post pte write");
  2183. spin_unlock(&vcpu->kvm->mmu_lock);
  2184. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2185. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2186. vcpu->arch.update_pte.pfn = bad_pfn;
  2187. }
  2188. }
  2189. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2190. {
  2191. gpa_t gpa;
  2192. int r;
  2193. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2194. spin_lock(&vcpu->kvm->mmu_lock);
  2195. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2196. spin_unlock(&vcpu->kvm->mmu_lock);
  2197. return r;
  2198. }
  2199. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2200. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2201. {
  2202. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  2203. struct kvm_mmu_page *sp;
  2204. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2205. struct kvm_mmu_page, link);
  2206. kvm_mmu_zap_page(vcpu->kvm, sp);
  2207. ++vcpu->kvm->stat.mmu_recycled;
  2208. }
  2209. }
  2210. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2211. {
  2212. int r;
  2213. enum emulation_result er;
  2214. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2215. if (r < 0)
  2216. goto out;
  2217. if (!r) {
  2218. r = 1;
  2219. goto out;
  2220. }
  2221. r = mmu_topup_memory_caches(vcpu);
  2222. if (r)
  2223. goto out;
  2224. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2225. switch (er) {
  2226. case EMULATE_DONE:
  2227. return 1;
  2228. case EMULATE_DO_MMIO:
  2229. ++vcpu->stat.mmio_exits;
  2230. return 0;
  2231. case EMULATE_FAIL:
  2232. kvm_report_emulation_failure(vcpu, "pagetable");
  2233. return 1;
  2234. default:
  2235. BUG();
  2236. }
  2237. out:
  2238. return r;
  2239. }
  2240. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2241. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2242. {
  2243. vcpu->arch.mmu.invlpg(vcpu, gva);
  2244. kvm_mmu_flush_tlb(vcpu);
  2245. ++vcpu->stat.invlpg;
  2246. }
  2247. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2248. void kvm_enable_tdp(void)
  2249. {
  2250. tdp_enabled = true;
  2251. }
  2252. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2253. void kvm_disable_tdp(void)
  2254. {
  2255. tdp_enabled = false;
  2256. }
  2257. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2258. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2259. {
  2260. struct kvm_mmu_page *sp;
  2261. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2262. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  2263. struct kvm_mmu_page, link);
  2264. kvm_mmu_zap_page(vcpu->kvm, sp);
  2265. cond_resched();
  2266. }
  2267. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2268. }
  2269. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2270. {
  2271. struct page *page;
  2272. int i;
  2273. ASSERT(vcpu);
  2274. if (vcpu->kvm->arch.n_requested_mmu_pages)
  2275. vcpu->kvm->arch.n_free_mmu_pages =
  2276. vcpu->kvm->arch.n_requested_mmu_pages;
  2277. else
  2278. vcpu->kvm->arch.n_free_mmu_pages =
  2279. vcpu->kvm->arch.n_alloc_mmu_pages;
  2280. /*
  2281. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2282. * Therefore we need to allocate shadow page tables in the first
  2283. * 4GB of memory, which happens to fit the DMA32 zone.
  2284. */
  2285. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2286. if (!page)
  2287. goto error_1;
  2288. vcpu->arch.mmu.pae_root = page_address(page);
  2289. for (i = 0; i < 4; ++i)
  2290. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2291. return 0;
  2292. error_1:
  2293. free_mmu_pages(vcpu);
  2294. return -ENOMEM;
  2295. }
  2296. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2297. {
  2298. ASSERT(vcpu);
  2299. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2300. return alloc_mmu_pages(vcpu);
  2301. }
  2302. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2303. {
  2304. ASSERT(vcpu);
  2305. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2306. return init_kvm_mmu(vcpu);
  2307. }
  2308. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2309. {
  2310. ASSERT(vcpu);
  2311. destroy_kvm_mmu(vcpu);
  2312. free_mmu_pages(vcpu);
  2313. mmu_free_memory_caches(vcpu);
  2314. }
  2315. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2316. {
  2317. struct kvm_mmu_page *sp;
  2318. spin_lock(&kvm->mmu_lock);
  2319. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2320. int i;
  2321. u64 *pt;
  2322. if (!test_bit(slot, sp->slot_bitmap))
  2323. continue;
  2324. pt = sp->spt;
  2325. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2326. /* avoid RMW */
  2327. if (pt[i] & PT_WRITABLE_MASK)
  2328. pt[i] &= ~PT_WRITABLE_MASK;
  2329. }
  2330. kvm_flush_remote_tlbs(kvm);
  2331. spin_unlock(&kvm->mmu_lock);
  2332. }
  2333. void kvm_mmu_zap_all(struct kvm *kvm)
  2334. {
  2335. struct kvm_mmu_page *sp, *node;
  2336. spin_lock(&kvm->mmu_lock);
  2337. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2338. if (kvm_mmu_zap_page(kvm, sp))
  2339. node = container_of(kvm->arch.active_mmu_pages.next,
  2340. struct kvm_mmu_page, link);
  2341. spin_unlock(&kvm->mmu_lock);
  2342. kvm_flush_remote_tlbs(kvm);
  2343. }
  2344. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2345. {
  2346. struct kvm_mmu_page *page;
  2347. page = container_of(kvm->arch.active_mmu_pages.prev,
  2348. struct kvm_mmu_page, link);
  2349. kvm_mmu_zap_page(kvm, page);
  2350. }
  2351. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2352. {
  2353. struct kvm *kvm;
  2354. struct kvm *kvm_freed = NULL;
  2355. int cache_count = 0;
  2356. spin_lock(&kvm_lock);
  2357. list_for_each_entry(kvm, &vm_list, vm_list) {
  2358. int npages;
  2359. if (!down_read_trylock(&kvm->slots_lock))
  2360. continue;
  2361. spin_lock(&kvm->mmu_lock);
  2362. npages = kvm->arch.n_alloc_mmu_pages -
  2363. kvm->arch.n_free_mmu_pages;
  2364. cache_count += npages;
  2365. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2366. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2367. cache_count--;
  2368. kvm_freed = kvm;
  2369. }
  2370. nr_to_scan--;
  2371. spin_unlock(&kvm->mmu_lock);
  2372. up_read(&kvm->slots_lock);
  2373. }
  2374. if (kvm_freed)
  2375. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2376. spin_unlock(&kvm_lock);
  2377. return cache_count;
  2378. }
  2379. static struct shrinker mmu_shrinker = {
  2380. .shrink = mmu_shrink,
  2381. .seeks = DEFAULT_SEEKS * 10,
  2382. };
  2383. static void mmu_destroy_caches(void)
  2384. {
  2385. if (pte_chain_cache)
  2386. kmem_cache_destroy(pte_chain_cache);
  2387. if (rmap_desc_cache)
  2388. kmem_cache_destroy(rmap_desc_cache);
  2389. if (mmu_page_header_cache)
  2390. kmem_cache_destroy(mmu_page_header_cache);
  2391. }
  2392. void kvm_mmu_module_exit(void)
  2393. {
  2394. mmu_destroy_caches();
  2395. unregister_shrinker(&mmu_shrinker);
  2396. }
  2397. int kvm_mmu_module_init(void)
  2398. {
  2399. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2400. sizeof(struct kvm_pte_chain),
  2401. 0, 0, NULL);
  2402. if (!pte_chain_cache)
  2403. goto nomem;
  2404. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2405. sizeof(struct kvm_rmap_desc),
  2406. 0, 0, NULL);
  2407. if (!rmap_desc_cache)
  2408. goto nomem;
  2409. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2410. sizeof(struct kvm_mmu_page),
  2411. 0, 0, NULL);
  2412. if (!mmu_page_header_cache)
  2413. goto nomem;
  2414. register_shrinker(&mmu_shrinker);
  2415. return 0;
  2416. nomem:
  2417. mmu_destroy_caches();
  2418. return -ENOMEM;
  2419. }
  2420. /*
  2421. * Caculate mmu pages needed for kvm.
  2422. */
  2423. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2424. {
  2425. int i;
  2426. unsigned int nr_mmu_pages;
  2427. unsigned int nr_pages = 0;
  2428. for (i = 0; i < kvm->nmemslots; i++)
  2429. nr_pages += kvm->memslots[i].npages;
  2430. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2431. nr_mmu_pages = max(nr_mmu_pages,
  2432. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2433. return nr_mmu_pages;
  2434. }
  2435. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2436. unsigned len)
  2437. {
  2438. if (len > buffer->len)
  2439. return NULL;
  2440. return buffer->ptr;
  2441. }
  2442. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2443. unsigned len)
  2444. {
  2445. void *ret;
  2446. ret = pv_mmu_peek_buffer(buffer, len);
  2447. if (!ret)
  2448. return ret;
  2449. buffer->ptr += len;
  2450. buffer->len -= len;
  2451. buffer->processed += len;
  2452. return ret;
  2453. }
  2454. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2455. gpa_t addr, gpa_t value)
  2456. {
  2457. int bytes = 8;
  2458. int r;
  2459. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2460. bytes = 4;
  2461. r = mmu_topup_memory_caches(vcpu);
  2462. if (r)
  2463. return r;
  2464. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2465. return -EFAULT;
  2466. return 1;
  2467. }
  2468. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2469. {
  2470. kvm_x86_ops->tlb_flush(vcpu);
  2471. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  2472. return 1;
  2473. }
  2474. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2475. {
  2476. spin_lock(&vcpu->kvm->mmu_lock);
  2477. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2478. spin_unlock(&vcpu->kvm->mmu_lock);
  2479. return 1;
  2480. }
  2481. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2482. struct kvm_pv_mmu_op_buffer *buffer)
  2483. {
  2484. struct kvm_mmu_op_header *header;
  2485. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2486. if (!header)
  2487. return 0;
  2488. switch (header->op) {
  2489. case KVM_MMU_OP_WRITE_PTE: {
  2490. struct kvm_mmu_op_write_pte *wpte;
  2491. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2492. if (!wpte)
  2493. return 0;
  2494. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2495. wpte->pte_val);
  2496. }
  2497. case KVM_MMU_OP_FLUSH_TLB: {
  2498. struct kvm_mmu_op_flush_tlb *ftlb;
  2499. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2500. if (!ftlb)
  2501. return 0;
  2502. return kvm_pv_mmu_flush_tlb(vcpu);
  2503. }
  2504. case KVM_MMU_OP_RELEASE_PT: {
  2505. struct kvm_mmu_op_release_pt *rpt;
  2506. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2507. if (!rpt)
  2508. return 0;
  2509. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2510. }
  2511. default: return 0;
  2512. }
  2513. }
  2514. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2515. gpa_t addr, unsigned long *ret)
  2516. {
  2517. int r;
  2518. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2519. buffer->ptr = buffer->buf;
  2520. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2521. buffer->processed = 0;
  2522. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2523. if (r)
  2524. goto out;
  2525. while (buffer->len) {
  2526. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2527. if (r < 0)
  2528. goto out;
  2529. if (r == 0)
  2530. break;
  2531. }
  2532. r = 1;
  2533. out:
  2534. *ret = buffer->processed;
  2535. return r;
  2536. }
  2537. #ifdef AUDIT
  2538. static const char *audit_msg;
  2539. static gva_t canonicalize(gva_t gva)
  2540. {
  2541. #ifdef CONFIG_X86_64
  2542. gva = (long long)(gva << 16) >> 16;
  2543. #endif
  2544. return gva;
  2545. }
  2546. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2547. gva_t va, int level)
  2548. {
  2549. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2550. int i;
  2551. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2552. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2553. u64 ent = pt[i];
  2554. if (ent == shadow_trap_nonpresent_pte)
  2555. continue;
  2556. va = canonicalize(va);
  2557. if (level > 1) {
  2558. if (ent == shadow_notrap_nonpresent_pte)
  2559. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2560. " in nonleaf level: levels %d gva %lx"
  2561. " level %d pte %llx\n", audit_msg,
  2562. vcpu->arch.mmu.root_level, va, level, ent);
  2563. audit_mappings_page(vcpu, ent, va, level - 1);
  2564. } else {
  2565. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2566. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2567. if (is_shadow_present_pte(ent)
  2568. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2569. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2570. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2571. audit_msg, vcpu->arch.mmu.root_level,
  2572. va, gpa, hpa, ent,
  2573. is_shadow_present_pte(ent));
  2574. else if (ent == shadow_notrap_nonpresent_pte
  2575. && !is_error_hpa(hpa))
  2576. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2577. " valid guest gva %lx\n", audit_msg, va);
  2578. kvm_release_pfn_clean(pfn);
  2579. }
  2580. }
  2581. }
  2582. static void audit_mappings(struct kvm_vcpu *vcpu)
  2583. {
  2584. unsigned i;
  2585. if (vcpu->arch.mmu.root_level == 4)
  2586. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2587. else
  2588. for (i = 0; i < 4; ++i)
  2589. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2590. audit_mappings_page(vcpu,
  2591. vcpu->arch.mmu.pae_root[i],
  2592. i << 30,
  2593. 2);
  2594. }
  2595. static int count_rmaps(struct kvm_vcpu *vcpu)
  2596. {
  2597. int nmaps = 0;
  2598. int i, j, k;
  2599. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2600. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2601. struct kvm_rmap_desc *d;
  2602. for (j = 0; j < m->npages; ++j) {
  2603. unsigned long *rmapp = &m->rmap[j];
  2604. if (!*rmapp)
  2605. continue;
  2606. if (!(*rmapp & 1)) {
  2607. ++nmaps;
  2608. continue;
  2609. }
  2610. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2611. while (d) {
  2612. for (k = 0; k < RMAP_EXT; ++k)
  2613. if (d->shadow_ptes[k])
  2614. ++nmaps;
  2615. else
  2616. break;
  2617. d = d->more;
  2618. }
  2619. }
  2620. }
  2621. return nmaps;
  2622. }
  2623. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2624. {
  2625. int nmaps = 0;
  2626. struct kvm_mmu_page *sp;
  2627. int i;
  2628. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2629. u64 *pt = sp->spt;
  2630. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2631. continue;
  2632. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2633. u64 ent = pt[i];
  2634. if (!(ent & PT_PRESENT_MASK))
  2635. continue;
  2636. if (!(ent & PT_WRITABLE_MASK))
  2637. continue;
  2638. ++nmaps;
  2639. }
  2640. }
  2641. return nmaps;
  2642. }
  2643. static void audit_rmap(struct kvm_vcpu *vcpu)
  2644. {
  2645. int n_rmap = count_rmaps(vcpu);
  2646. int n_actual = count_writable_mappings(vcpu);
  2647. if (n_rmap != n_actual)
  2648. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2649. __func__, audit_msg, n_rmap, n_actual);
  2650. }
  2651. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2652. {
  2653. struct kvm_mmu_page *sp;
  2654. struct kvm_memory_slot *slot;
  2655. unsigned long *rmapp;
  2656. gfn_t gfn;
  2657. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2658. if (sp->role.direct)
  2659. continue;
  2660. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2661. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2662. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2663. if (*rmapp)
  2664. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2665. " mappings: gfn %lx role %x\n",
  2666. __func__, audit_msg, sp->gfn,
  2667. sp->role.word);
  2668. }
  2669. }
  2670. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2671. {
  2672. int olddbg = dbg;
  2673. dbg = 0;
  2674. audit_msg = msg;
  2675. audit_rmap(vcpu);
  2676. audit_write_protection(vcpu);
  2677. audit_mappings(vcpu);
  2678. dbg = olddbg;
  2679. }
  2680. #endif