i8254.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670
  1. /*
  2. * 8253/8254 interval timer emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2006 Intel Corporation
  6. * Copyright (c) 2007 Keir Fraser, XenSource Inc
  7. * Copyright (c) 2008 Intel Corporation
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. * Authors:
  28. * Sheng Yang <sheng.yang@intel.com>
  29. * Based on QEMU and Xen.
  30. */
  31. #include <linux/kvm_host.h>
  32. #include "irq.h"
  33. #include "i8254.h"
  34. #ifndef CONFIG_X86_64
  35. #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
  36. #else
  37. #define mod_64(x, y) ((x) % (y))
  38. #endif
  39. #define RW_STATE_LSB 1
  40. #define RW_STATE_MSB 2
  41. #define RW_STATE_WORD0 3
  42. #define RW_STATE_WORD1 4
  43. /* Compute with 96 bit intermediate result: (a*b)/c */
  44. static u64 muldiv64(u64 a, u32 b, u32 c)
  45. {
  46. union {
  47. u64 ll;
  48. struct {
  49. u32 low, high;
  50. } l;
  51. } u, res;
  52. u64 rl, rh;
  53. u.ll = a;
  54. rl = (u64)u.l.low * (u64)b;
  55. rh = (u64)u.l.high * (u64)b;
  56. rh += (rl >> 32);
  57. res.l.high = div64_u64(rh, c);
  58. res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
  59. return res.ll;
  60. }
  61. static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
  62. {
  63. struct kvm_kpit_channel_state *c =
  64. &kvm->arch.vpit->pit_state.channels[channel];
  65. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  66. switch (c->mode) {
  67. default:
  68. case 0:
  69. case 4:
  70. /* XXX: just disable/enable counting */
  71. break;
  72. case 1:
  73. case 2:
  74. case 3:
  75. case 5:
  76. /* Restart counting on rising edge. */
  77. if (c->gate < val)
  78. c->count_load_time = ktime_get();
  79. break;
  80. }
  81. c->gate = val;
  82. }
  83. static int pit_get_gate(struct kvm *kvm, int channel)
  84. {
  85. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  86. return kvm->arch.vpit->pit_state.channels[channel].gate;
  87. }
  88. static int pit_get_count(struct kvm *kvm, int channel)
  89. {
  90. struct kvm_kpit_channel_state *c =
  91. &kvm->arch.vpit->pit_state.channels[channel];
  92. s64 d, t;
  93. int counter;
  94. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  95. t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
  96. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  97. switch (c->mode) {
  98. case 0:
  99. case 1:
  100. case 4:
  101. case 5:
  102. counter = (c->count - d) & 0xffff;
  103. break;
  104. case 3:
  105. /* XXX: may be incorrect for odd counts */
  106. counter = c->count - (mod_64((2 * d), c->count));
  107. break;
  108. default:
  109. counter = c->count - mod_64(d, c->count);
  110. break;
  111. }
  112. return counter;
  113. }
  114. static int pit_get_out(struct kvm *kvm, int channel)
  115. {
  116. struct kvm_kpit_channel_state *c =
  117. &kvm->arch.vpit->pit_state.channels[channel];
  118. s64 d, t;
  119. int out;
  120. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  121. t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
  122. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  123. switch (c->mode) {
  124. default:
  125. case 0:
  126. out = (d >= c->count);
  127. break;
  128. case 1:
  129. out = (d < c->count);
  130. break;
  131. case 2:
  132. out = ((mod_64(d, c->count) == 0) && (d != 0));
  133. break;
  134. case 3:
  135. out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
  136. break;
  137. case 4:
  138. case 5:
  139. out = (d == c->count);
  140. break;
  141. }
  142. return out;
  143. }
  144. static void pit_latch_count(struct kvm *kvm, int channel)
  145. {
  146. struct kvm_kpit_channel_state *c =
  147. &kvm->arch.vpit->pit_state.channels[channel];
  148. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  149. if (!c->count_latched) {
  150. c->latched_count = pit_get_count(kvm, channel);
  151. c->count_latched = c->rw_mode;
  152. }
  153. }
  154. static void pit_latch_status(struct kvm *kvm, int channel)
  155. {
  156. struct kvm_kpit_channel_state *c =
  157. &kvm->arch.vpit->pit_state.channels[channel];
  158. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  159. if (!c->status_latched) {
  160. /* TODO: Return NULL COUNT (bit 6). */
  161. c->status = ((pit_get_out(kvm, channel) << 7) |
  162. (c->rw_mode << 4) |
  163. (c->mode << 1) |
  164. c->bcd);
  165. c->status_latched = 1;
  166. }
  167. }
  168. static int __pit_timer_fn(struct kvm_kpit_state *ps)
  169. {
  170. struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
  171. struct kvm_kpit_timer *pt = &ps->pit_timer;
  172. if (!atomic_inc_and_test(&pt->pending))
  173. set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
  174. if (!pt->reinject)
  175. atomic_set(&pt->pending, 1);
  176. if (vcpu0 && waitqueue_active(&vcpu0->wq))
  177. wake_up_interruptible(&vcpu0->wq);
  178. hrtimer_add_expires_ns(&pt->timer, pt->period);
  179. pt->scheduled = hrtimer_get_expires_ns(&pt->timer);
  180. if (pt->period)
  181. ps->channels[0].count_load_time = ktime_get();
  182. return (pt->period == 0 ? 0 : 1);
  183. }
  184. int pit_has_pending_timer(struct kvm_vcpu *vcpu)
  185. {
  186. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  187. if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
  188. return atomic_read(&pit->pit_state.pit_timer.pending);
  189. return 0;
  190. }
  191. static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
  192. {
  193. struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
  194. irq_ack_notifier);
  195. spin_lock(&ps->inject_lock);
  196. if (atomic_dec_return(&ps->pit_timer.pending) < 0)
  197. atomic_inc(&ps->pit_timer.pending);
  198. ps->irq_ack = 1;
  199. spin_unlock(&ps->inject_lock);
  200. }
  201. static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
  202. {
  203. struct kvm_kpit_state *ps;
  204. int restart_timer = 0;
  205. ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
  206. restart_timer = __pit_timer_fn(ps);
  207. if (restart_timer)
  208. return HRTIMER_RESTART;
  209. else
  210. return HRTIMER_NORESTART;
  211. }
  212. void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
  213. {
  214. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  215. struct hrtimer *timer;
  216. if (vcpu->vcpu_id != 0 || !pit)
  217. return;
  218. timer = &pit->pit_state.pit_timer.timer;
  219. if (hrtimer_cancel(timer))
  220. hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
  221. }
  222. static void destroy_pit_timer(struct kvm_kpit_timer *pt)
  223. {
  224. pr_debug("pit: execute del timer!\n");
  225. hrtimer_cancel(&pt->timer);
  226. }
  227. static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
  228. {
  229. struct kvm_kpit_timer *pt = &ps->pit_timer;
  230. s64 interval;
  231. interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
  232. pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
  233. /* TODO The new value only affected after the retriggered */
  234. hrtimer_cancel(&pt->timer);
  235. pt->period = (is_period == 0) ? 0 : interval;
  236. pt->timer.function = pit_timer_fn;
  237. atomic_set(&pt->pending, 0);
  238. ps->irq_ack = 1;
  239. hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
  240. HRTIMER_MODE_ABS);
  241. }
  242. static void pit_load_count(struct kvm *kvm, int channel, u32 val)
  243. {
  244. struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
  245. WARN_ON(!mutex_is_locked(&ps->lock));
  246. pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
  247. /*
  248. * Though spec said the state of 8254 is undefined after power-up,
  249. * seems some tricky OS like Windows XP depends on IRQ0 interrupt
  250. * when booting up.
  251. * So here setting initialize rate for it, and not a specific number
  252. */
  253. if (val == 0)
  254. val = 0x10000;
  255. ps->channels[channel].count_load_time = ktime_get();
  256. ps->channels[channel].count = val;
  257. if (channel != 0)
  258. return;
  259. /* Two types of timer
  260. * mode 1 is one shot, mode 2 is period, otherwise del timer */
  261. switch (ps->channels[0].mode) {
  262. case 1:
  263. /* FIXME: enhance mode 4 precision */
  264. case 4:
  265. create_pit_timer(ps, val, 0);
  266. break;
  267. case 2:
  268. case 3:
  269. create_pit_timer(ps, val, 1);
  270. break;
  271. default:
  272. destroy_pit_timer(&ps->pit_timer);
  273. }
  274. }
  275. void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
  276. {
  277. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  278. pit_load_count(kvm, channel, val);
  279. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  280. }
  281. static void pit_ioport_write(struct kvm_io_device *this,
  282. gpa_t addr, int len, const void *data)
  283. {
  284. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  285. struct kvm_kpit_state *pit_state = &pit->pit_state;
  286. struct kvm *kvm = pit->kvm;
  287. int channel, access;
  288. struct kvm_kpit_channel_state *s;
  289. u32 val = *(u32 *) data;
  290. val &= 0xff;
  291. addr &= KVM_PIT_CHANNEL_MASK;
  292. mutex_lock(&pit_state->lock);
  293. if (val != 0)
  294. pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
  295. (unsigned int)addr, len, val);
  296. if (addr == 3) {
  297. channel = val >> 6;
  298. if (channel == 3) {
  299. /* Read-Back Command. */
  300. for (channel = 0; channel < 3; channel++) {
  301. s = &pit_state->channels[channel];
  302. if (val & (2 << channel)) {
  303. if (!(val & 0x20))
  304. pit_latch_count(kvm, channel);
  305. if (!(val & 0x10))
  306. pit_latch_status(kvm, channel);
  307. }
  308. }
  309. } else {
  310. /* Select Counter <channel>. */
  311. s = &pit_state->channels[channel];
  312. access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
  313. if (access == 0) {
  314. pit_latch_count(kvm, channel);
  315. } else {
  316. s->rw_mode = access;
  317. s->read_state = access;
  318. s->write_state = access;
  319. s->mode = (val >> 1) & 7;
  320. if (s->mode > 5)
  321. s->mode -= 4;
  322. s->bcd = val & 1;
  323. }
  324. }
  325. } else {
  326. /* Write Count. */
  327. s = &pit_state->channels[addr];
  328. switch (s->write_state) {
  329. default:
  330. case RW_STATE_LSB:
  331. pit_load_count(kvm, addr, val);
  332. break;
  333. case RW_STATE_MSB:
  334. pit_load_count(kvm, addr, val << 8);
  335. break;
  336. case RW_STATE_WORD0:
  337. s->write_latch = val;
  338. s->write_state = RW_STATE_WORD1;
  339. break;
  340. case RW_STATE_WORD1:
  341. pit_load_count(kvm, addr, s->write_latch | (val << 8));
  342. s->write_state = RW_STATE_WORD0;
  343. break;
  344. }
  345. }
  346. mutex_unlock(&pit_state->lock);
  347. }
  348. static void pit_ioport_read(struct kvm_io_device *this,
  349. gpa_t addr, int len, void *data)
  350. {
  351. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  352. struct kvm_kpit_state *pit_state = &pit->pit_state;
  353. struct kvm *kvm = pit->kvm;
  354. int ret, count;
  355. struct kvm_kpit_channel_state *s;
  356. addr &= KVM_PIT_CHANNEL_MASK;
  357. s = &pit_state->channels[addr];
  358. mutex_lock(&pit_state->lock);
  359. if (s->status_latched) {
  360. s->status_latched = 0;
  361. ret = s->status;
  362. } else if (s->count_latched) {
  363. switch (s->count_latched) {
  364. default:
  365. case RW_STATE_LSB:
  366. ret = s->latched_count & 0xff;
  367. s->count_latched = 0;
  368. break;
  369. case RW_STATE_MSB:
  370. ret = s->latched_count >> 8;
  371. s->count_latched = 0;
  372. break;
  373. case RW_STATE_WORD0:
  374. ret = s->latched_count & 0xff;
  375. s->count_latched = RW_STATE_MSB;
  376. break;
  377. }
  378. } else {
  379. switch (s->read_state) {
  380. default:
  381. case RW_STATE_LSB:
  382. count = pit_get_count(kvm, addr);
  383. ret = count & 0xff;
  384. break;
  385. case RW_STATE_MSB:
  386. count = pit_get_count(kvm, addr);
  387. ret = (count >> 8) & 0xff;
  388. break;
  389. case RW_STATE_WORD0:
  390. count = pit_get_count(kvm, addr);
  391. ret = count & 0xff;
  392. s->read_state = RW_STATE_WORD1;
  393. break;
  394. case RW_STATE_WORD1:
  395. count = pit_get_count(kvm, addr);
  396. ret = (count >> 8) & 0xff;
  397. s->read_state = RW_STATE_WORD0;
  398. break;
  399. }
  400. }
  401. if (len > sizeof(ret))
  402. len = sizeof(ret);
  403. memcpy(data, (char *)&ret, len);
  404. mutex_unlock(&pit_state->lock);
  405. }
  406. static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
  407. int len, int is_write)
  408. {
  409. return ((addr >= KVM_PIT_BASE_ADDRESS) &&
  410. (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
  411. }
  412. static void speaker_ioport_write(struct kvm_io_device *this,
  413. gpa_t addr, int len, const void *data)
  414. {
  415. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  416. struct kvm_kpit_state *pit_state = &pit->pit_state;
  417. struct kvm *kvm = pit->kvm;
  418. u32 val = *(u32 *) data;
  419. mutex_lock(&pit_state->lock);
  420. pit_state->speaker_data_on = (val >> 1) & 1;
  421. pit_set_gate(kvm, 2, val & 1);
  422. mutex_unlock(&pit_state->lock);
  423. }
  424. static void speaker_ioport_read(struct kvm_io_device *this,
  425. gpa_t addr, int len, void *data)
  426. {
  427. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  428. struct kvm_kpit_state *pit_state = &pit->pit_state;
  429. struct kvm *kvm = pit->kvm;
  430. unsigned int refresh_clock;
  431. int ret;
  432. /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
  433. refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
  434. mutex_lock(&pit_state->lock);
  435. ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
  436. (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
  437. if (len > sizeof(ret))
  438. len = sizeof(ret);
  439. memcpy(data, (char *)&ret, len);
  440. mutex_unlock(&pit_state->lock);
  441. }
  442. static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
  443. int len, int is_write)
  444. {
  445. return (addr == KVM_SPEAKER_BASE_ADDRESS);
  446. }
  447. void kvm_pit_reset(struct kvm_pit *pit)
  448. {
  449. int i;
  450. struct kvm_kpit_channel_state *c;
  451. mutex_lock(&pit->pit_state.lock);
  452. for (i = 0; i < 3; i++) {
  453. c = &pit->pit_state.channels[i];
  454. c->mode = 0xff;
  455. c->gate = (i != 2);
  456. pit_load_count(pit->kvm, i, 0);
  457. }
  458. mutex_unlock(&pit->pit_state.lock);
  459. atomic_set(&pit->pit_state.pit_timer.pending, 0);
  460. pit->pit_state.irq_ack = 1;
  461. }
  462. static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
  463. {
  464. struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
  465. if (!mask) {
  466. atomic_set(&pit->pit_state.pit_timer.pending, 0);
  467. pit->pit_state.irq_ack = 1;
  468. }
  469. }
  470. struct kvm_pit *kvm_create_pit(struct kvm *kvm)
  471. {
  472. struct kvm_pit *pit;
  473. struct kvm_kpit_state *pit_state;
  474. pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
  475. if (!pit)
  476. return NULL;
  477. pit->irq_source_id = kvm_request_irq_source_id(kvm);
  478. if (pit->irq_source_id < 0) {
  479. kfree(pit);
  480. return NULL;
  481. }
  482. mutex_init(&pit->pit_state.lock);
  483. mutex_lock(&pit->pit_state.lock);
  484. spin_lock_init(&pit->pit_state.inject_lock);
  485. /* Initialize PIO device */
  486. pit->dev.read = pit_ioport_read;
  487. pit->dev.write = pit_ioport_write;
  488. pit->dev.in_range = pit_in_range;
  489. pit->dev.private = pit;
  490. kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
  491. pit->speaker_dev.read = speaker_ioport_read;
  492. pit->speaker_dev.write = speaker_ioport_write;
  493. pit->speaker_dev.in_range = speaker_in_range;
  494. pit->speaker_dev.private = pit;
  495. kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
  496. kvm->arch.vpit = pit;
  497. pit->kvm = kvm;
  498. pit_state = &pit->pit_state;
  499. pit_state->pit = pit;
  500. hrtimer_init(&pit_state->pit_timer.timer,
  501. CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  502. pit_state->irq_ack_notifier.gsi = 0;
  503. pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
  504. kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
  505. pit_state->pit_timer.reinject = true;
  506. mutex_unlock(&pit->pit_state.lock);
  507. kvm_pit_reset(pit);
  508. pit->mask_notifier.func = pit_mask_notifer;
  509. kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
  510. return pit;
  511. }
  512. void kvm_free_pit(struct kvm *kvm)
  513. {
  514. struct hrtimer *timer;
  515. if (kvm->arch.vpit) {
  516. kvm_unregister_irq_mask_notifier(kvm, 0,
  517. &kvm->arch.vpit->mask_notifier);
  518. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  519. timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
  520. hrtimer_cancel(timer);
  521. kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
  522. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  523. kfree(kvm->arch.vpit);
  524. }
  525. }
  526. static void __inject_pit_timer_intr(struct kvm *kvm)
  527. {
  528. struct kvm_vcpu *vcpu;
  529. int i;
  530. mutex_lock(&kvm->lock);
  531. kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
  532. kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
  533. mutex_unlock(&kvm->lock);
  534. /*
  535. * Provides NMI watchdog support via Virtual Wire mode.
  536. * The route is: PIT -> PIC -> LVT0 in NMI mode.
  537. *
  538. * Note: Our Virtual Wire implementation is simplified, only
  539. * propagating PIT interrupts to all VCPUs when they have set
  540. * LVT0 to NMI delivery. Other PIC interrupts are just sent to
  541. * VCPU0, and only if its LVT0 is in EXTINT mode.
  542. */
  543. if (kvm->arch.vapics_in_nmi_mode > 0)
  544. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  545. vcpu = kvm->vcpus[i];
  546. if (vcpu)
  547. kvm_apic_nmi_wd_deliver(vcpu);
  548. }
  549. }
  550. void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
  551. {
  552. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  553. struct kvm *kvm = vcpu->kvm;
  554. struct kvm_kpit_state *ps;
  555. if (vcpu && pit) {
  556. int inject = 0;
  557. ps = &pit->pit_state;
  558. /* Try to inject pending interrupts when
  559. * last one has been acked.
  560. */
  561. spin_lock(&ps->inject_lock);
  562. if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
  563. ps->irq_ack = 0;
  564. inject = 1;
  565. }
  566. spin_unlock(&ps->inject_lock);
  567. if (inject)
  568. __inject_pit_timer_intr(kvm);
  569. }
  570. }