i8253.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. /*
  2. * 8253/PIT functions
  3. *
  4. */
  5. #include <linux/clockchips.h>
  6. #include <linux/interrupt.h>
  7. #include <linux/spinlock.h>
  8. #include <linux/jiffies.h>
  9. #include <linux/module.h>
  10. #include <linux/delay.h>
  11. #include <linux/init.h>
  12. #include <linux/io.h>
  13. #include <asm/i8253.h>
  14. #include <asm/hpet.h>
  15. #include <asm/smp.h>
  16. DEFINE_SPINLOCK(i8253_lock);
  17. EXPORT_SYMBOL(i8253_lock);
  18. #ifdef CONFIG_X86_32
  19. static void pit_disable_clocksource(void);
  20. #else
  21. static inline void pit_disable_clocksource(void) { }
  22. #endif
  23. /*
  24. * HPET replaces the PIT, when enabled. So we need to know, which of
  25. * the two timers is used
  26. */
  27. struct clock_event_device *global_clock_event;
  28. /*
  29. * Initialize the PIT timer.
  30. *
  31. * This is also called after resume to bring the PIT into operation again.
  32. */
  33. static void init_pit_timer(enum clock_event_mode mode,
  34. struct clock_event_device *evt)
  35. {
  36. spin_lock(&i8253_lock);
  37. switch (mode) {
  38. case CLOCK_EVT_MODE_PERIODIC:
  39. /* binary, mode 2, LSB/MSB, ch 0 */
  40. outb_pit(0x34, PIT_MODE);
  41. outb_pit(LATCH & 0xff , PIT_CH0); /* LSB */
  42. outb_pit(LATCH >> 8 , PIT_CH0); /* MSB */
  43. break;
  44. case CLOCK_EVT_MODE_SHUTDOWN:
  45. case CLOCK_EVT_MODE_UNUSED:
  46. if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
  47. evt->mode == CLOCK_EVT_MODE_ONESHOT) {
  48. outb_pit(0x30, PIT_MODE);
  49. outb_pit(0, PIT_CH0);
  50. outb_pit(0, PIT_CH0);
  51. }
  52. pit_disable_clocksource();
  53. break;
  54. case CLOCK_EVT_MODE_ONESHOT:
  55. /* One shot setup */
  56. pit_disable_clocksource();
  57. outb_pit(0x38, PIT_MODE);
  58. break;
  59. case CLOCK_EVT_MODE_RESUME:
  60. /* Nothing to do here */
  61. break;
  62. }
  63. spin_unlock(&i8253_lock);
  64. }
  65. /*
  66. * Program the next event in oneshot mode
  67. *
  68. * Delta is given in PIT ticks
  69. */
  70. static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
  71. {
  72. spin_lock(&i8253_lock);
  73. outb_pit(delta & 0xff , PIT_CH0); /* LSB */
  74. outb_pit(delta >> 8 , PIT_CH0); /* MSB */
  75. spin_unlock(&i8253_lock);
  76. return 0;
  77. }
  78. /*
  79. * On UP the PIT can serve all of the possible timer functions. On SMP systems
  80. * it can be solely used for the global tick.
  81. *
  82. * The profiling and update capabilities are switched off once the local apic is
  83. * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
  84. * !using_apic_timer decisions in do_timer_interrupt_hook()
  85. */
  86. static struct clock_event_device pit_ce = {
  87. .name = "pit",
  88. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  89. .set_mode = init_pit_timer,
  90. .set_next_event = pit_next_event,
  91. .shift = 32,
  92. .irq = 0,
  93. };
  94. /*
  95. * Initialize the conversion factor and the min/max deltas of the clock event
  96. * structure and register the clock event source with the framework.
  97. */
  98. void __init setup_pit_timer(void)
  99. {
  100. /*
  101. * Start pit with the boot cpu mask and make it global after the
  102. * IO_APIC has been initialized.
  103. */
  104. pit_ce.cpumask = cpumask_of(smp_processor_id());
  105. pit_ce.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, pit_ce.shift);
  106. pit_ce.max_delta_ns = clockevent_delta2ns(0x7FFF, &pit_ce);
  107. pit_ce.min_delta_ns = clockevent_delta2ns(0xF, &pit_ce);
  108. clockevents_register_device(&pit_ce);
  109. global_clock_event = &pit_ce;
  110. }
  111. #ifndef CONFIG_X86_64
  112. /*
  113. * Since the PIT overflows every tick, its not very useful
  114. * to just read by itself. So use jiffies to emulate a free
  115. * running counter:
  116. */
  117. static cycle_t pit_read(void)
  118. {
  119. static int old_count;
  120. static u32 old_jifs;
  121. unsigned long flags;
  122. int count;
  123. u32 jifs;
  124. spin_lock_irqsave(&i8253_lock, flags);
  125. /*
  126. * Although our caller may have the read side of xtime_lock,
  127. * this is now a seqlock, and we are cheating in this routine
  128. * by having side effects on state that we cannot undo if
  129. * there is a collision on the seqlock and our caller has to
  130. * retry. (Namely, old_jifs and old_count.) So we must treat
  131. * jiffies as volatile despite the lock. We read jiffies
  132. * before latching the timer count to guarantee that although
  133. * the jiffies value might be older than the count (that is,
  134. * the counter may underflow between the last point where
  135. * jiffies was incremented and the point where we latch the
  136. * count), it cannot be newer.
  137. */
  138. jifs = jiffies;
  139. outb_pit(0x00, PIT_MODE); /* latch the count ASAP */
  140. count = inb_pit(PIT_CH0); /* read the latched count */
  141. count |= inb_pit(PIT_CH0) << 8;
  142. /* VIA686a test code... reset the latch if count > max + 1 */
  143. if (count > LATCH) {
  144. outb_pit(0x34, PIT_MODE);
  145. outb_pit(LATCH & 0xff, PIT_CH0);
  146. outb_pit(LATCH >> 8, PIT_CH0);
  147. count = LATCH - 1;
  148. }
  149. /*
  150. * It's possible for count to appear to go the wrong way for a
  151. * couple of reasons:
  152. *
  153. * 1. The timer counter underflows, but we haven't handled the
  154. * resulting interrupt and incremented jiffies yet.
  155. * 2. Hardware problem with the timer, not giving us continuous time,
  156. * the counter does small "jumps" upwards on some Pentium systems,
  157. * (see c't 95/10 page 335 for Neptun bug.)
  158. *
  159. * Previous attempts to handle these cases intelligently were
  160. * buggy, so we just do the simple thing now.
  161. */
  162. if (count > old_count && jifs == old_jifs)
  163. count = old_count;
  164. old_count = count;
  165. old_jifs = jifs;
  166. spin_unlock_irqrestore(&i8253_lock, flags);
  167. count = (LATCH - 1) - count;
  168. return (cycle_t)(jifs * LATCH) + count;
  169. }
  170. static struct clocksource pit_cs = {
  171. .name = "pit",
  172. .rating = 110,
  173. .read = pit_read,
  174. .mask = CLOCKSOURCE_MASK(32),
  175. .mult = 0,
  176. .shift = 20,
  177. };
  178. static void pit_disable_clocksource(void)
  179. {
  180. /*
  181. * Use mult to check whether it is registered or not
  182. */
  183. if (pit_cs.mult) {
  184. clocksource_unregister(&pit_cs);
  185. pit_cs.mult = 0;
  186. }
  187. }
  188. static int __init init_pit_clocksource(void)
  189. {
  190. /*
  191. * Several reasons not to register PIT as a clocksource:
  192. *
  193. * - On SMP PIT does not scale due to i8253_lock
  194. * - when HPET is enabled
  195. * - when local APIC timer is active (PIT is switched off)
  196. */
  197. if (num_possible_cpus() > 1 || is_hpet_enabled() ||
  198. pit_ce.mode != CLOCK_EVT_MODE_PERIODIC)
  199. return 0;
  200. pit_cs.mult = clocksource_hz2mult(CLOCK_TICK_RATE, pit_cs.shift);
  201. return clocksource_register(&pit_cs);
  202. }
  203. arch_initcall(init_pit_clocksource);
  204. #endif /* !CONFIG_X86_64 */