uv_hub.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * SGI UV architectural definitions
  7. *
  8. * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
  9. */
  10. #ifndef _ASM_X86_UV_UV_HUB_H
  11. #define _ASM_X86_UV_UV_HUB_H
  12. #ifdef CONFIG_X86_64
  13. #include <linux/numa.h>
  14. #include <linux/percpu.h>
  15. #include <linux/timer.h>
  16. #include <asm/types.h>
  17. #include <asm/percpu.h>
  18. #include <asm/uv/uv_mmrs.h>
  19. /*
  20. * Addressing Terminology
  21. *
  22. * M - The low M bits of a physical address represent the offset
  23. * into the blade local memory. RAM memory on a blade is physically
  24. * contiguous (although various IO spaces may punch holes in
  25. * it)..
  26. *
  27. * N - Number of bits in the node portion of a socket physical
  28. * address.
  29. *
  30. * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
  31. * routers always have low bit of 1, C/MBricks have low bit
  32. * equal to 0. Most addressing macros that target UV hub chips
  33. * right shift the NASID by 1 to exclude the always-zero bit.
  34. * NASIDs contain up to 15 bits.
  35. *
  36. * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
  37. * of nasids.
  38. *
  39. * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
  40. * of the nasid for socket usage.
  41. *
  42. *
  43. * NumaLink Global Physical Address Format:
  44. * +--------------------------------+---------------------+
  45. * |00..000| GNODE | NodeOffset |
  46. * +--------------------------------+---------------------+
  47. * |<-------53 - M bits --->|<--------M bits ----->
  48. *
  49. * M - number of node offset bits (35 .. 40)
  50. *
  51. *
  52. * Memory/UV-HUB Processor Socket Address Format:
  53. * +----------------+---------------+---------------------+
  54. * |00..000000000000| PNODE | NodeOffset |
  55. * +----------------+---------------+---------------------+
  56. * <--- N bits --->|<--------M bits ----->
  57. *
  58. * M - number of node offset bits (35 .. 40)
  59. * N - number of PNODE bits (0 .. 10)
  60. *
  61. * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
  62. * The actual values are configuration dependent and are set at
  63. * boot time. M & N values are set by the hardware/BIOS at boot.
  64. *
  65. *
  66. * APICID format
  67. * NOTE!!!!!! This is the current format of the APICID. However, code
  68. * should assume that this will change in the future. Use functions
  69. * in this file for all APICID bit manipulations and conversion.
  70. *
  71. * 1111110000000000
  72. * 5432109876543210
  73. * pppppppppplc0cch
  74. * sssssssssss
  75. *
  76. * p = pnode bits
  77. * l = socket number on board
  78. * c = core
  79. * h = hyperthread
  80. * s = bits that are in the SOCKET_ID CSR
  81. *
  82. * Note: Processor only supports 12 bits in the APICID register. The ACPI
  83. * tables hold all 16 bits. Software needs to be aware of this.
  84. *
  85. * Unless otherwise specified, all references to APICID refer to
  86. * the FULL value contained in ACPI tables, not the subset in the
  87. * processor APICID register.
  88. */
  89. /*
  90. * Maximum number of bricks in all partitions and in all coherency domains.
  91. * This is the total number of bricks accessible in the numalink fabric. It
  92. * includes all C & M bricks. Routers are NOT included.
  93. *
  94. * This value is also the value of the maximum number of non-router NASIDs
  95. * in the numalink fabric.
  96. *
  97. * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
  98. */
  99. #define UV_MAX_NUMALINK_BLADES 16384
  100. /*
  101. * Maximum number of C/Mbricks within a software SSI (hardware may support
  102. * more).
  103. */
  104. #define UV_MAX_SSI_BLADES 256
  105. /*
  106. * The largest possible NASID of a C or M brick (+ 2)
  107. */
  108. #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
  109. struct uv_scir_s {
  110. struct timer_list timer;
  111. unsigned long offset;
  112. unsigned long last;
  113. unsigned long idle_on;
  114. unsigned long idle_off;
  115. unsigned char state;
  116. unsigned char enabled;
  117. };
  118. /*
  119. * The following defines attributes of the HUB chip. These attributes are
  120. * frequently referenced and are kept in the per-cpu data areas of each cpu.
  121. * They are kept together in a struct to minimize cache misses.
  122. */
  123. struct uv_hub_info_s {
  124. unsigned long global_mmr_base;
  125. unsigned long gpa_mask;
  126. unsigned long gnode_upper;
  127. unsigned long lowmem_remap_top;
  128. unsigned long lowmem_remap_base;
  129. unsigned short pnode;
  130. unsigned short pnode_mask;
  131. unsigned short coherency_domain_number;
  132. unsigned short numa_blade_id;
  133. unsigned char blade_processor_id;
  134. unsigned char m_val;
  135. unsigned char n_val;
  136. struct uv_scir_s scir;
  137. };
  138. DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
  139. #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
  140. #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
  141. /*
  142. * Local & Global MMR space macros.
  143. * Note: macros are intended to be used ONLY by inline functions
  144. * in this file - not by other kernel code.
  145. * n - NASID (full 15-bit global nasid)
  146. * g - GNODE (full 15-bit global nasid, right shifted 1)
  147. * p - PNODE (local part of nsids, right shifted 1)
  148. */
  149. #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
  150. #define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
  151. #define UV_LOCAL_MMR_BASE 0xf4000000UL
  152. #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
  153. #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
  154. #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
  155. #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
  156. #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
  157. #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
  158. #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
  159. #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
  160. ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
  161. #define UV_APIC_PNODE_SHIFT 6
  162. /* Local Bus from cpu's perspective */
  163. #define LOCAL_BUS_BASE 0x1c00000
  164. #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
  165. /*
  166. * System Controller Interface Reg
  167. *
  168. * Note there are NO leds on a UV system. This register is only
  169. * used by the system controller to monitor system-wide operation.
  170. * There are 64 regs per node. With Nahelem cpus (2 cores per node,
  171. * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
  172. * a node.
  173. *
  174. * The window is located at top of ACPI MMR space
  175. */
  176. #define SCIR_WINDOW_COUNT 64
  177. #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
  178. LOCAL_BUS_SIZE - \
  179. SCIR_WINDOW_COUNT)
  180. #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
  181. #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
  182. #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
  183. /* Loop through all installed blades */
  184. #define for_each_possible_blade(bid) \
  185. for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
  186. /*
  187. * Macros for converting between kernel virtual addresses, socket local physical
  188. * addresses, and UV global physical addresses.
  189. * Note: use the standard __pa() & __va() macros for converting
  190. * between socket virtual and socket physical addresses.
  191. */
  192. /* socket phys RAM --> UV global physical address */
  193. static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
  194. {
  195. if (paddr < uv_hub_info->lowmem_remap_top)
  196. paddr |= uv_hub_info->lowmem_remap_base;
  197. return paddr | uv_hub_info->gnode_upper;
  198. }
  199. /* socket virtual --> UV global physical address */
  200. static inline unsigned long uv_gpa(void *v)
  201. {
  202. return uv_soc_phys_ram_to_gpa(__pa(v));
  203. }
  204. /* pnode, offset --> socket virtual */
  205. static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
  206. {
  207. return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
  208. }
  209. /*
  210. * Extract a PNODE from an APICID (full apicid, not processor subset)
  211. */
  212. static inline int uv_apicid_to_pnode(int apicid)
  213. {
  214. return (apicid >> UV_APIC_PNODE_SHIFT);
  215. }
  216. /*
  217. * Access global MMRs using the low memory MMR32 space. This region supports
  218. * faster MMR access but not all MMRs are accessible in this space.
  219. */
  220. static inline unsigned long *uv_global_mmr32_address(int pnode,
  221. unsigned long offset)
  222. {
  223. return __va(UV_GLOBAL_MMR32_BASE |
  224. UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
  225. }
  226. static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
  227. unsigned long val)
  228. {
  229. *uv_global_mmr32_address(pnode, offset) = val;
  230. }
  231. static inline unsigned long uv_read_global_mmr32(int pnode,
  232. unsigned long offset)
  233. {
  234. return *uv_global_mmr32_address(pnode, offset);
  235. }
  236. /*
  237. * Access Global MMR space using the MMR space located at the top of physical
  238. * memory.
  239. */
  240. static inline unsigned long *uv_global_mmr64_address(int pnode,
  241. unsigned long offset)
  242. {
  243. return __va(UV_GLOBAL_MMR64_BASE |
  244. UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
  245. }
  246. static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
  247. unsigned long val)
  248. {
  249. *uv_global_mmr64_address(pnode, offset) = val;
  250. }
  251. static inline unsigned long uv_read_global_mmr64(int pnode,
  252. unsigned long offset)
  253. {
  254. return *uv_global_mmr64_address(pnode, offset);
  255. }
  256. /*
  257. * Access hub local MMRs. Faster than using global space but only local MMRs
  258. * are accessible.
  259. */
  260. static inline unsigned long *uv_local_mmr_address(unsigned long offset)
  261. {
  262. return __va(UV_LOCAL_MMR_BASE | offset);
  263. }
  264. static inline unsigned long uv_read_local_mmr(unsigned long offset)
  265. {
  266. return *uv_local_mmr_address(offset);
  267. }
  268. static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
  269. {
  270. *uv_local_mmr_address(offset) = val;
  271. }
  272. static inline unsigned char uv_read_local_mmr8(unsigned long offset)
  273. {
  274. return *((unsigned char *)uv_local_mmr_address(offset));
  275. }
  276. static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
  277. {
  278. *((unsigned char *)uv_local_mmr_address(offset)) = val;
  279. }
  280. /*
  281. * Structures and definitions for converting between cpu, node, pnode, and blade
  282. * numbers.
  283. */
  284. struct uv_blade_info {
  285. unsigned short nr_possible_cpus;
  286. unsigned short nr_online_cpus;
  287. unsigned short pnode;
  288. };
  289. extern struct uv_blade_info *uv_blade_info;
  290. extern short *uv_node_to_blade;
  291. extern short *uv_cpu_to_blade;
  292. extern short uv_possible_blades;
  293. /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
  294. static inline int uv_blade_processor_id(void)
  295. {
  296. return uv_hub_info->blade_processor_id;
  297. }
  298. /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
  299. static inline int uv_numa_blade_id(void)
  300. {
  301. return uv_hub_info->numa_blade_id;
  302. }
  303. /* Convert a cpu number to the the UV blade number */
  304. static inline int uv_cpu_to_blade_id(int cpu)
  305. {
  306. return uv_cpu_to_blade[cpu];
  307. }
  308. /* Convert linux node number to the UV blade number */
  309. static inline int uv_node_to_blade_id(int nid)
  310. {
  311. return uv_node_to_blade[nid];
  312. }
  313. /* Convert a blade id to the PNODE of the blade */
  314. static inline int uv_blade_to_pnode(int bid)
  315. {
  316. return uv_blade_info[bid].pnode;
  317. }
  318. /* Determine the number of possible cpus on a blade */
  319. static inline int uv_blade_nr_possible_cpus(int bid)
  320. {
  321. return uv_blade_info[bid].nr_possible_cpus;
  322. }
  323. /* Determine the number of online cpus on a blade */
  324. static inline int uv_blade_nr_online_cpus(int bid)
  325. {
  326. return uv_blade_info[bid].nr_online_cpus;
  327. }
  328. /* Convert a cpu id to the PNODE of the blade containing the cpu */
  329. static inline int uv_cpu_to_pnode(int cpu)
  330. {
  331. return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
  332. }
  333. /* Convert a linux node number to the PNODE of the blade */
  334. static inline int uv_node_to_pnode(int nid)
  335. {
  336. return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
  337. }
  338. /* Maximum possible number of blades */
  339. static inline int uv_num_possible_blades(void)
  340. {
  341. return uv_possible_blades;
  342. }
  343. /* Update SCIR state */
  344. static inline void uv_set_scir_bits(unsigned char value)
  345. {
  346. if (uv_hub_info->scir.state != value) {
  347. uv_hub_info->scir.state = value;
  348. uv_write_local_mmr8(uv_hub_info->scir.offset, value);
  349. }
  350. }
  351. static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
  352. {
  353. if (uv_cpu_hub_info(cpu)->scir.state != value) {
  354. uv_cpu_hub_info(cpu)->scir.state = value;
  355. uv_write_local_mmr8(uv_cpu_hub_info(cpu)->scir.offset, value);
  356. }
  357. }
  358. static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
  359. {
  360. unsigned long val;
  361. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  362. ((apicid & 0x3f) << UVH_IPI_INT_APIC_ID_SHFT) |
  363. (vector << UVH_IPI_INT_VECTOR_SHFT);
  364. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  365. }
  366. #endif /* CONFIG_X86_64 */
  367. #endif /* _ASM_X86_UV_UV_HUB_H */