system.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485
  1. #ifndef _ASM_X86_SYSTEM_H
  2. #define _ASM_X86_SYSTEM_H
  3. #include <asm/asm.h>
  4. #include <asm/segment.h>
  5. #include <asm/cpufeature.h>
  6. #include <asm/cmpxchg.h>
  7. #include <asm/nops.h>
  8. #include <linux/kernel.h>
  9. #include <linux/irqflags.h>
  10. /* entries in ARCH_DLINFO: */
  11. #ifdef CONFIG_IA32_EMULATION
  12. # define AT_VECTOR_SIZE_ARCH 2
  13. #else
  14. # define AT_VECTOR_SIZE_ARCH 1
  15. #endif
  16. struct task_struct; /* one of the stranger aspects of C forward declarations */
  17. struct task_struct *__switch_to(struct task_struct *prev,
  18. struct task_struct *next);
  19. struct tss_struct;
  20. void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  21. struct tss_struct *tss);
  22. #ifdef CONFIG_X86_32
  23. #ifdef CONFIG_CC_STACKPROTECTOR
  24. #define __switch_canary \
  25. "movl %P[task_canary](%[next]), %%ebx\n\t" \
  26. "movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
  27. #define __switch_canary_oparam \
  28. , [stack_canary] "=m" (per_cpu_var(stack_canary))
  29. #define __switch_canary_iparam \
  30. , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
  31. #else /* CC_STACKPROTECTOR */
  32. #define __switch_canary
  33. #define __switch_canary_oparam
  34. #define __switch_canary_iparam
  35. #endif /* CC_STACKPROTECTOR */
  36. /*
  37. * Saving eflags is important. It switches not only IOPL between tasks,
  38. * it also protects other tasks from NT leaking through sysenter etc.
  39. */
  40. #define switch_to(prev, next, last) \
  41. do { \
  42. /* \
  43. * Context-switching clobbers all registers, so we clobber \
  44. * them explicitly, via unused output variables. \
  45. * (EAX and EBP is not listed because EBP is saved/restored \
  46. * explicitly for wchan access and EAX is the return value of \
  47. * __switch_to()) \
  48. */ \
  49. unsigned long ebx, ecx, edx, esi, edi; \
  50. \
  51. asm volatile("pushfl\n\t" /* save flags */ \
  52. "pushl %%ebp\n\t" /* save EBP */ \
  53. "movl %%esp,%[prev_sp]\n\t" /* save ESP */ \
  54. "movl %[next_sp],%%esp\n\t" /* restore ESP */ \
  55. "movl $1f,%[prev_ip]\n\t" /* save EIP */ \
  56. "pushl %[next_ip]\n\t" /* restore EIP */ \
  57. __switch_canary \
  58. "jmp __switch_to\n" /* regparm call */ \
  59. "1:\t" \
  60. "popl %%ebp\n\t" /* restore EBP */ \
  61. "popfl\n" /* restore flags */ \
  62. \
  63. /* output parameters */ \
  64. : [prev_sp] "=m" (prev->thread.sp), \
  65. [prev_ip] "=m" (prev->thread.ip), \
  66. "=a" (last), \
  67. \
  68. /* clobbered output registers: */ \
  69. "=b" (ebx), "=c" (ecx), "=d" (edx), \
  70. "=S" (esi), "=D" (edi) \
  71. \
  72. __switch_canary_oparam \
  73. \
  74. /* input parameters: */ \
  75. : [next_sp] "m" (next->thread.sp), \
  76. [next_ip] "m" (next->thread.ip), \
  77. \
  78. /* regparm parameters for __switch_to(): */ \
  79. [prev] "a" (prev), \
  80. [next] "d" (next) \
  81. \
  82. __switch_canary_iparam \
  83. \
  84. : /* reloaded segment registers */ \
  85. "memory"); \
  86. } while (0)
  87. /*
  88. * disable hlt during certain critical i/o operations
  89. */
  90. #define HAVE_DISABLE_HLT
  91. #else
  92. #define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
  93. #define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
  94. /* frame pointer must be last for get_wchan */
  95. #define SAVE_CONTEXT "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
  96. #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
  97. #define __EXTRA_CLOBBER \
  98. , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
  99. "r12", "r13", "r14", "r15"
  100. #ifdef CONFIG_CC_STACKPROTECTOR
  101. #define __switch_canary \
  102. "movq %P[task_canary](%%rsi),%%r8\n\t" \
  103. "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
  104. #define __switch_canary_oparam \
  105. , [gs_canary] "=m" (per_cpu_var(irq_stack_union.stack_canary))
  106. #define __switch_canary_iparam \
  107. , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
  108. #else /* CC_STACKPROTECTOR */
  109. #define __switch_canary
  110. #define __switch_canary_oparam
  111. #define __switch_canary_iparam
  112. #endif /* CC_STACKPROTECTOR */
  113. /* Save restore flags to clear handle leaking NT */
  114. #define switch_to(prev, next, last) \
  115. asm volatile(SAVE_CONTEXT \
  116. "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */ \
  117. "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */ \
  118. "call __switch_to\n\t" \
  119. ".globl thread_return\n" \
  120. "thread_return:\n\t" \
  121. "movq "__percpu_arg([current_task])",%%rsi\n\t" \
  122. __switch_canary \
  123. "movq %P[thread_info](%%rsi),%%r8\n\t" \
  124. "movq %%rax,%%rdi\n\t" \
  125. "testl %[_tif_fork],%P[ti_flags](%%r8)\n\t" \
  126. "jnz ret_from_fork\n\t" \
  127. RESTORE_CONTEXT \
  128. : "=a" (last) \
  129. __switch_canary_oparam \
  130. : [next] "S" (next), [prev] "D" (prev), \
  131. [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
  132. [ti_flags] "i" (offsetof(struct thread_info, flags)), \
  133. [_tif_fork] "i" (_TIF_FORK), \
  134. [thread_info] "i" (offsetof(struct task_struct, stack)), \
  135. [current_task] "m" (per_cpu_var(current_task)) \
  136. __switch_canary_iparam \
  137. : "memory", "cc" __EXTRA_CLOBBER)
  138. #endif
  139. #ifdef __KERNEL__
  140. #define _set_base(addr, base) do { unsigned long __pr; \
  141. __asm__ __volatile__ ("movw %%dx,%1\n\t" \
  142. "rorl $16,%%edx\n\t" \
  143. "movb %%dl,%2\n\t" \
  144. "movb %%dh,%3" \
  145. :"=&d" (__pr) \
  146. :"m" (*((addr)+2)), \
  147. "m" (*((addr)+4)), \
  148. "m" (*((addr)+7)), \
  149. "0" (base) \
  150. ); } while (0)
  151. #define _set_limit(addr, limit) do { unsigned long __lr; \
  152. __asm__ __volatile__ ("movw %%dx,%1\n\t" \
  153. "rorl $16,%%edx\n\t" \
  154. "movb %2,%%dh\n\t" \
  155. "andb $0xf0,%%dh\n\t" \
  156. "orb %%dh,%%dl\n\t" \
  157. "movb %%dl,%2" \
  158. :"=&d" (__lr) \
  159. :"m" (*(addr)), \
  160. "m" (*((addr)+6)), \
  161. "0" (limit) \
  162. ); } while (0)
  163. #define set_base(ldt, base) _set_base(((char *)&(ldt)) , (base))
  164. #define set_limit(ldt, limit) _set_limit(((char *)&(ldt)) , ((limit)-1))
  165. extern void native_load_gs_index(unsigned);
  166. /*
  167. * Load a segment. Fall back on loading the zero
  168. * segment if something goes wrong..
  169. */
  170. #define loadsegment(seg, value) \
  171. asm volatile("\n" \
  172. "1:\t" \
  173. "movl %k0,%%" #seg "\n" \
  174. "2:\n" \
  175. ".section .fixup,\"ax\"\n" \
  176. "3:\t" \
  177. "movl %k1, %%" #seg "\n\t" \
  178. "jmp 2b\n" \
  179. ".previous\n" \
  180. _ASM_EXTABLE(1b,3b) \
  181. : :"r" (value), "r" (0) : "memory")
  182. /*
  183. * Save a segment register away
  184. */
  185. #define savesegment(seg, value) \
  186. asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
  187. /*
  188. * x86_32 user gs accessors.
  189. */
  190. #ifdef CONFIG_X86_32
  191. #ifdef CONFIG_X86_32_LAZY_GS
  192. #define get_user_gs(regs) (u16)({unsigned long v; savesegment(gs, v); v;})
  193. #define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
  194. #define task_user_gs(tsk) ((tsk)->thread.gs)
  195. #define lazy_save_gs(v) savesegment(gs, (v))
  196. #define lazy_load_gs(v) loadsegment(gs, (v))
  197. #else /* X86_32_LAZY_GS */
  198. #define get_user_gs(regs) (u16)((regs)->gs)
  199. #define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
  200. #define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
  201. #define lazy_save_gs(v) do { } while (0)
  202. #define lazy_load_gs(v) do { } while (0)
  203. #endif /* X86_32_LAZY_GS */
  204. #endif /* X86_32 */
  205. static inline unsigned long get_limit(unsigned long segment)
  206. {
  207. unsigned long __limit;
  208. asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
  209. return __limit + 1;
  210. }
  211. static inline void native_clts(void)
  212. {
  213. asm volatile("clts");
  214. }
  215. /*
  216. * Volatile isn't enough to prevent the compiler from reordering the
  217. * read/write functions for the control registers and messing everything up.
  218. * A memory clobber would solve the problem, but would prevent reordering of
  219. * all loads stores around it, which can hurt performance. Solution is to
  220. * use a variable and mimic reads and writes to it to enforce serialization
  221. */
  222. static unsigned long __force_order;
  223. static inline unsigned long native_read_cr0(void)
  224. {
  225. unsigned long val;
  226. asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
  227. return val;
  228. }
  229. static inline void native_write_cr0(unsigned long val)
  230. {
  231. asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
  232. }
  233. static inline unsigned long native_read_cr2(void)
  234. {
  235. unsigned long val;
  236. asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
  237. return val;
  238. }
  239. static inline void native_write_cr2(unsigned long val)
  240. {
  241. asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
  242. }
  243. static inline unsigned long native_read_cr3(void)
  244. {
  245. unsigned long val;
  246. asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
  247. return val;
  248. }
  249. static inline void native_write_cr3(unsigned long val)
  250. {
  251. asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
  252. }
  253. static inline unsigned long native_read_cr4(void)
  254. {
  255. unsigned long val;
  256. asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
  257. return val;
  258. }
  259. static inline unsigned long native_read_cr4_safe(void)
  260. {
  261. unsigned long val;
  262. /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
  263. * exists, so it will never fail. */
  264. #ifdef CONFIG_X86_32
  265. asm volatile("1: mov %%cr4, %0\n"
  266. "2:\n"
  267. _ASM_EXTABLE(1b, 2b)
  268. : "=r" (val), "=m" (__force_order) : "0" (0));
  269. #else
  270. val = native_read_cr4();
  271. #endif
  272. return val;
  273. }
  274. static inline void native_write_cr4(unsigned long val)
  275. {
  276. asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
  277. }
  278. #ifdef CONFIG_X86_64
  279. static inline unsigned long native_read_cr8(void)
  280. {
  281. unsigned long cr8;
  282. asm volatile("movq %%cr8,%0" : "=r" (cr8));
  283. return cr8;
  284. }
  285. static inline void native_write_cr8(unsigned long val)
  286. {
  287. asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
  288. }
  289. #endif
  290. static inline void native_wbinvd(void)
  291. {
  292. asm volatile("wbinvd": : :"memory");
  293. }
  294. #ifdef CONFIG_PARAVIRT
  295. #include <asm/paravirt.h>
  296. #else
  297. #define read_cr0() (native_read_cr0())
  298. #define write_cr0(x) (native_write_cr0(x))
  299. #define read_cr2() (native_read_cr2())
  300. #define write_cr2(x) (native_write_cr2(x))
  301. #define read_cr3() (native_read_cr3())
  302. #define write_cr3(x) (native_write_cr3(x))
  303. #define read_cr4() (native_read_cr4())
  304. #define read_cr4_safe() (native_read_cr4_safe())
  305. #define write_cr4(x) (native_write_cr4(x))
  306. #define wbinvd() (native_wbinvd())
  307. #ifdef CONFIG_X86_64
  308. #define read_cr8() (native_read_cr8())
  309. #define write_cr8(x) (native_write_cr8(x))
  310. #define load_gs_index native_load_gs_index
  311. #endif
  312. /* Clear the 'TS' bit */
  313. #define clts() (native_clts())
  314. #endif/* CONFIG_PARAVIRT */
  315. #define stts() write_cr0(read_cr0() | X86_CR0_TS)
  316. #endif /* __KERNEL__ */
  317. static inline void clflush(volatile void *__p)
  318. {
  319. asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
  320. }
  321. #define nop() asm volatile ("nop")
  322. void disable_hlt(void);
  323. void enable_hlt(void);
  324. void cpu_idle_wait(void);
  325. extern unsigned long arch_align_stack(unsigned long sp);
  326. extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
  327. void default_idle(void);
  328. void stop_this_cpu(void *dummy);
  329. /*
  330. * Force strict CPU ordering.
  331. * And yes, this is required on UP too when we're talking
  332. * to devices.
  333. */
  334. #ifdef CONFIG_X86_32
  335. /*
  336. * Some non-Intel clones support out of order store. wmb() ceases to be a
  337. * nop for these.
  338. */
  339. #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
  340. #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
  341. #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
  342. #else
  343. #define mb() asm volatile("mfence":::"memory")
  344. #define rmb() asm volatile("lfence":::"memory")
  345. #define wmb() asm volatile("sfence" ::: "memory")
  346. #endif
  347. /**
  348. * read_barrier_depends - Flush all pending reads that subsequents reads
  349. * depend on.
  350. *
  351. * No data-dependent reads from memory-like regions are ever reordered
  352. * over this barrier. All reads preceding this primitive are guaranteed
  353. * to access memory (but not necessarily other CPUs' caches) before any
  354. * reads following this primitive that depend on the data return by
  355. * any of the preceding reads. This primitive is much lighter weight than
  356. * rmb() on most CPUs, and is never heavier weight than is
  357. * rmb().
  358. *
  359. * These ordering constraints are respected by both the local CPU
  360. * and the compiler.
  361. *
  362. * Ordering is not guaranteed by anything other than these primitives,
  363. * not even by data dependencies. See the documentation for
  364. * memory_barrier() for examples and URLs to more information.
  365. *
  366. * For example, the following code would force ordering (the initial
  367. * value of "a" is zero, "b" is one, and "p" is "&a"):
  368. *
  369. * <programlisting>
  370. * CPU 0 CPU 1
  371. *
  372. * b = 2;
  373. * memory_barrier();
  374. * p = &b; q = p;
  375. * read_barrier_depends();
  376. * d = *q;
  377. * </programlisting>
  378. *
  379. * because the read of "*q" depends on the read of "p" and these
  380. * two reads are separated by a read_barrier_depends(). However,
  381. * the following code, with the same initial values for "a" and "b":
  382. *
  383. * <programlisting>
  384. * CPU 0 CPU 1
  385. *
  386. * a = 2;
  387. * memory_barrier();
  388. * b = 3; y = b;
  389. * read_barrier_depends();
  390. * x = a;
  391. * </programlisting>
  392. *
  393. * does not enforce ordering, since there is no data dependency between
  394. * the read of "a" and the read of "b". Therefore, on some CPUs, such
  395. * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
  396. * in cases like this where there are no data dependencies.
  397. **/
  398. #define read_barrier_depends() do { } while (0)
  399. #ifdef CONFIG_SMP
  400. #define smp_mb() mb()
  401. #ifdef CONFIG_X86_PPRO_FENCE
  402. # define smp_rmb() rmb()
  403. #else
  404. # define smp_rmb() barrier()
  405. #endif
  406. #ifdef CONFIG_X86_OOSTORE
  407. # define smp_wmb() wmb()
  408. #else
  409. # define smp_wmb() barrier()
  410. #endif
  411. #define smp_read_barrier_depends() read_barrier_depends()
  412. #define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
  413. #else
  414. #define smp_mb() barrier()
  415. #define smp_rmb() barrier()
  416. #define smp_wmb() barrier()
  417. #define smp_read_barrier_depends() do { } while (0)
  418. #define set_mb(var, value) do { var = value; barrier(); } while (0)
  419. #endif
  420. /*
  421. * Stop RDTSC speculation. This is needed when you need to use RDTSC
  422. * (or get_cycles or vread that possibly accesses the TSC) in a defined
  423. * code region.
  424. *
  425. * (Could use an alternative three way for this if there was one.)
  426. */
  427. static inline void rdtsc_barrier(void)
  428. {
  429. alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
  430. alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
  431. }
  432. #endif /* _ASM_X86_SYSTEM_H */