uaccess_32.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. /*
  2. * uaccess.h: User space memore access functions.
  3. *
  4. * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #ifndef _ASM_UACCESS_H
  8. #define _ASM_UACCESS_H
  9. #ifdef __KERNEL__
  10. #include <linux/compiler.h>
  11. #include <linux/sched.h>
  12. #include <linux/string.h>
  13. #include <linux/errno.h>
  14. #include <asm/vac-ops.h>
  15. #endif
  16. #ifndef __ASSEMBLY__
  17. /* Sparc is not segmented, however we need to be able to fool access_ok()
  18. * when doing system calls from kernel mode legitimately.
  19. *
  20. * "For historical reasons, these macros are grossly misnamed." -Linus
  21. */
  22. #define KERNEL_DS ((mm_segment_t) { 0 })
  23. #define USER_DS ((mm_segment_t) { -1 })
  24. #define VERIFY_READ 0
  25. #define VERIFY_WRITE 1
  26. #define get_ds() (KERNEL_DS)
  27. #define get_fs() (current->thread.current_ds)
  28. #define set_fs(val) ((current->thread.current_ds) = (val))
  29. #define segment_eq(a,b) ((a).seg == (b).seg)
  30. /* We have there a nice not-mapped page at PAGE_OFFSET - PAGE_SIZE, so that this test
  31. * can be fairly lightweight.
  32. * No one can read/write anything from userland in the kernel space by setting
  33. * large size and address near to PAGE_OFFSET - a fault will break his intentions.
  34. */
  35. #define __user_ok(addr, size) ({ (void)(size); (addr) < STACK_TOP; })
  36. #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
  37. #define __access_ok(addr,size) (__user_ok((addr) & get_fs().seg,(size)))
  38. #define access_ok(type, addr, size) \
  39. ({ (void)(type); __access_ok((unsigned long)(addr), size); })
  40. /*
  41. * The exception table consists of pairs of addresses: the first is the
  42. * address of an instruction that is allowed to fault, and the second is
  43. * the address at which the program should continue. No registers are
  44. * modified, so it is entirely up to the continuation code to figure out
  45. * what to do.
  46. *
  47. * All the routines below use bits of fixup code that are out of line
  48. * with the main instruction path. This means when everything is well,
  49. * we don't even have to jump over them. Further, they do not intrude
  50. * on our cache or tlb entries.
  51. *
  52. * There is a special way how to put a range of potentially faulting
  53. * insns (like twenty ldd/std's with now intervening other instructions)
  54. * You specify address of first in insn and 0 in fixup and in the next
  55. * exception_table_entry you specify last potentially faulting insn + 1
  56. * and in fixup the routine which should handle the fault.
  57. * That fixup code will get
  58. * (faulting_insn_address - first_insn_in_the_range_address)/4
  59. * in %g2 (ie. index of the faulting instruction in the range).
  60. */
  61. struct exception_table_entry
  62. {
  63. unsigned long insn, fixup;
  64. };
  65. /* Returns 0 if exception not found and fixup otherwise. */
  66. extern unsigned long search_extables_range(unsigned long addr, unsigned long *g2);
  67. extern void __ret_efault(void);
  68. /* Uh, these should become the main single-value transfer routines..
  69. * They automatically use the right size if we just have the right
  70. * pointer type..
  71. *
  72. * This gets kind of ugly. We want to return _two_ values in "get_user()"
  73. * and yet we don't want to do any pointers, because that is too much
  74. * of a performance impact. Thus we have a few rather ugly macros here,
  75. * and hide all the ugliness from the user.
  76. */
  77. #define put_user(x,ptr) ({ \
  78. unsigned long __pu_addr = (unsigned long)(ptr); \
  79. __chk_user_ptr(ptr); \
  80. __put_user_check((__typeof__(*(ptr)))(x),__pu_addr,sizeof(*(ptr))); })
  81. #define get_user(x,ptr) ({ \
  82. unsigned long __gu_addr = (unsigned long)(ptr); \
  83. __chk_user_ptr(ptr); \
  84. __get_user_check((x),__gu_addr,sizeof(*(ptr)),__typeof__(*(ptr))); })
  85. /*
  86. * The "__xxx" versions do not do address space checking, useful when
  87. * doing multiple accesses to the same area (the user has to do the
  88. * checks by hand with "access_ok()")
  89. */
  90. #define __put_user(x,ptr) __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))
  91. #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)),__typeof__(*(ptr)))
  92. struct __large_struct { unsigned long buf[100]; };
  93. #define __m(x) ((struct __large_struct __user *)(x))
  94. #define __put_user_check(x,addr,size) ({ \
  95. register int __pu_ret; \
  96. if (__access_ok(addr,size)) { \
  97. switch (size) { \
  98. case 1: __put_user_asm(x,b,addr,__pu_ret); break; \
  99. case 2: __put_user_asm(x,h,addr,__pu_ret); break; \
  100. case 4: __put_user_asm(x,,addr,__pu_ret); break; \
  101. case 8: __put_user_asm(x,d,addr,__pu_ret); break; \
  102. default: __pu_ret = __put_user_bad(); break; \
  103. } } else { __pu_ret = -EFAULT; } __pu_ret; })
  104. #define __put_user_nocheck(x,addr,size) ({ \
  105. register int __pu_ret; \
  106. switch (size) { \
  107. case 1: __put_user_asm(x,b,addr,__pu_ret); break; \
  108. case 2: __put_user_asm(x,h,addr,__pu_ret); break; \
  109. case 4: __put_user_asm(x,,addr,__pu_ret); break; \
  110. case 8: __put_user_asm(x,d,addr,__pu_ret); break; \
  111. default: __pu_ret = __put_user_bad(); break; \
  112. } __pu_ret; })
  113. #define __put_user_asm(x,size,addr,ret) \
  114. __asm__ __volatile__( \
  115. "/* Put user asm, inline. */\n" \
  116. "1:\t" "st"#size " %1, %2\n\t" \
  117. "clr %0\n" \
  118. "2:\n\n\t" \
  119. ".section .fixup,#alloc,#execinstr\n\t" \
  120. ".align 4\n" \
  121. "3:\n\t" \
  122. "b 2b\n\t" \
  123. " mov %3, %0\n\t" \
  124. ".previous\n\n\t" \
  125. ".section __ex_table,#alloc\n\t" \
  126. ".align 4\n\t" \
  127. ".word 1b, 3b\n\t" \
  128. ".previous\n\n\t" \
  129. : "=&r" (ret) : "r" (x), "m" (*__m(addr)), \
  130. "i" (-EFAULT))
  131. extern int __put_user_bad(void);
  132. #define __get_user_check(x,addr,size,type) ({ \
  133. register int __gu_ret; \
  134. register unsigned long __gu_val; \
  135. if (__access_ok(addr,size)) { \
  136. switch (size) { \
  137. case 1: __get_user_asm(__gu_val,ub,addr,__gu_ret); break; \
  138. case 2: __get_user_asm(__gu_val,uh,addr,__gu_ret); break; \
  139. case 4: __get_user_asm(__gu_val,,addr,__gu_ret); break; \
  140. case 8: __get_user_asm(__gu_val,d,addr,__gu_ret); break; \
  141. default: __gu_val = 0; __gu_ret = __get_user_bad(); break; \
  142. } } else { __gu_val = 0; __gu_ret = -EFAULT; } x = (type) __gu_val; __gu_ret; })
  143. #define __get_user_check_ret(x,addr,size,type,retval) ({ \
  144. register unsigned long __gu_val __asm__ ("l1"); \
  145. if (__access_ok(addr,size)) { \
  146. switch (size) { \
  147. case 1: __get_user_asm_ret(__gu_val,ub,addr,retval); break; \
  148. case 2: __get_user_asm_ret(__gu_val,uh,addr,retval); break; \
  149. case 4: __get_user_asm_ret(__gu_val,,addr,retval); break; \
  150. case 8: __get_user_asm_ret(__gu_val,d,addr,retval); break; \
  151. default: if (__get_user_bad()) return retval; \
  152. } x = (type) __gu_val; } else return retval; })
  153. #define __get_user_nocheck(x,addr,size,type) ({ \
  154. register int __gu_ret; \
  155. register unsigned long __gu_val; \
  156. switch (size) { \
  157. case 1: __get_user_asm(__gu_val,ub,addr,__gu_ret); break; \
  158. case 2: __get_user_asm(__gu_val,uh,addr,__gu_ret); break; \
  159. case 4: __get_user_asm(__gu_val,,addr,__gu_ret); break; \
  160. case 8: __get_user_asm(__gu_val,d,addr,__gu_ret); break; \
  161. default: __gu_val = 0; __gu_ret = __get_user_bad(); break; \
  162. } x = (type) __gu_val; __gu_ret; })
  163. #define __get_user_nocheck_ret(x,addr,size,type,retval) ({ \
  164. register unsigned long __gu_val __asm__ ("l1"); \
  165. switch (size) { \
  166. case 1: __get_user_asm_ret(__gu_val,ub,addr,retval); break; \
  167. case 2: __get_user_asm_ret(__gu_val,uh,addr,retval); break; \
  168. case 4: __get_user_asm_ret(__gu_val,,addr,retval); break; \
  169. case 8: __get_user_asm_ret(__gu_val,d,addr,retval); break; \
  170. default: if (__get_user_bad()) return retval; \
  171. } x = (type) __gu_val; })
  172. #define __get_user_asm(x,size,addr,ret) \
  173. __asm__ __volatile__( \
  174. "/* Get user asm, inline. */\n" \
  175. "1:\t" "ld"#size " %2, %1\n\t" \
  176. "clr %0\n" \
  177. "2:\n\n\t" \
  178. ".section .fixup,#alloc,#execinstr\n\t" \
  179. ".align 4\n" \
  180. "3:\n\t" \
  181. "clr %1\n\t" \
  182. "b 2b\n\t" \
  183. " mov %3, %0\n\n\t" \
  184. ".previous\n\t" \
  185. ".section __ex_table,#alloc\n\t" \
  186. ".align 4\n\t" \
  187. ".word 1b, 3b\n\n\t" \
  188. ".previous\n\t" \
  189. : "=&r" (ret), "=&r" (x) : "m" (*__m(addr)), \
  190. "i" (-EFAULT))
  191. #define __get_user_asm_ret(x,size,addr,retval) \
  192. if (__builtin_constant_p(retval) && retval == -EFAULT) \
  193. __asm__ __volatile__( \
  194. "/* Get user asm ret, inline. */\n" \
  195. "1:\t" "ld"#size " %1, %0\n\n\t" \
  196. ".section __ex_table,#alloc\n\t" \
  197. ".align 4\n\t" \
  198. ".word 1b,__ret_efault\n\n\t" \
  199. ".previous\n\t" \
  200. : "=&r" (x) : "m" (*__m(addr))); \
  201. else \
  202. __asm__ __volatile__( \
  203. "/* Get user asm ret, inline. */\n" \
  204. "1:\t" "ld"#size " %1, %0\n\n\t" \
  205. ".section .fixup,#alloc,#execinstr\n\t" \
  206. ".align 4\n" \
  207. "3:\n\t" \
  208. "ret\n\t" \
  209. " restore %%g0, %2, %%o0\n\n\t" \
  210. ".previous\n\t" \
  211. ".section __ex_table,#alloc\n\t" \
  212. ".align 4\n\t" \
  213. ".word 1b, 3b\n\n\t" \
  214. ".previous\n\t" \
  215. : "=&r" (x) : "m" (*__m(addr)), "i" (retval))
  216. extern int __get_user_bad(void);
  217. extern unsigned long __copy_user(void __user *to, const void __user *from, unsigned long size);
  218. static inline unsigned long copy_to_user(void __user *to, const void *from, unsigned long n)
  219. {
  220. if (n && __access_ok((unsigned long) to, n))
  221. return __copy_user(to, (__force void __user *) from, n);
  222. else
  223. return n;
  224. }
  225. static inline unsigned long __copy_to_user(void __user *to, const void *from, unsigned long n)
  226. {
  227. return __copy_user(to, (__force void __user *) from, n);
  228. }
  229. static inline unsigned long copy_from_user(void *to, const void __user *from, unsigned long n)
  230. {
  231. if (n && __access_ok((unsigned long) from, n))
  232. return __copy_user((__force void __user *) to, from, n);
  233. else
  234. return n;
  235. }
  236. static inline unsigned long __copy_from_user(void *to, const void __user *from, unsigned long n)
  237. {
  238. return __copy_user((__force void __user *) to, from, n);
  239. }
  240. #define __copy_to_user_inatomic __copy_to_user
  241. #define __copy_from_user_inatomic __copy_from_user
  242. static inline unsigned long __clear_user(void __user *addr, unsigned long size)
  243. {
  244. unsigned long ret;
  245. __asm__ __volatile__ (
  246. ".section __ex_table,#alloc\n\t"
  247. ".align 4\n\t"
  248. ".word 1f,3\n\t"
  249. ".previous\n\t"
  250. "mov %2, %%o1\n"
  251. "1:\n\t"
  252. "call __bzero\n\t"
  253. " mov %1, %%o0\n\t"
  254. "mov %%o0, %0\n"
  255. : "=r" (ret) : "r" (addr), "r" (size) :
  256. "o0", "o1", "o2", "o3", "o4", "o5", "o7",
  257. "g1", "g2", "g3", "g4", "g5", "g7", "cc");
  258. return ret;
  259. }
  260. static inline unsigned long clear_user(void __user *addr, unsigned long n)
  261. {
  262. if (n && __access_ok((unsigned long) addr, n))
  263. return __clear_user(addr, n);
  264. else
  265. return n;
  266. }
  267. extern long __strncpy_from_user(char *dest, const char __user *src, long count);
  268. static inline long strncpy_from_user(char *dest, const char __user *src, long count)
  269. {
  270. if (__access_ok((unsigned long) src, count))
  271. return __strncpy_from_user(dest, src, count);
  272. else
  273. return -EFAULT;
  274. }
  275. extern long __strlen_user(const char __user *);
  276. extern long __strnlen_user(const char __user *, long len);
  277. static inline long strlen_user(const char __user *str)
  278. {
  279. if (!access_ok(VERIFY_READ, str, 0))
  280. return 0;
  281. else
  282. return __strlen_user(str);
  283. }
  284. static inline long strnlen_user(const char __user *str, long len)
  285. {
  286. if (!access_ok(VERIFY_READ, str, 0))
  287. return 0;
  288. else
  289. return __strnlen_user(str, len);
  290. }
  291. #endif /* __ASSEMBLY__ */
  292. #endif /* _ASM_UACCESS_H */