ioremap_32.c 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153
  1. /*
  2. * arch/sh/mm/ioremap.c
  3. *
  4. * Re-map IO memory to kernel address space so that we can access it.
  5. * This is needed for high PCI addresses that aren't mapped in the
  6. * 640k-1MB IO memory area on PC's
  7. *
  8. * (C) Copyright 1995 1996 Linus Torvalds
  9. * (C) Copyright 2005, 2006 Paul Mundt
  10. *
  11. * This file is subject to the terms and conditions of the GNU General
  12. * Public License. See the file "COPYING" in the main directory of this
  13. * archive for more details.
  14. */
  15. #include <linux/vmalloc.h>
  16. #include <linux/module.h>
  17. #include <linux/mm.h>
  18. #include <linux/pci.h>
  19. #include <linux/io.h>
  20. #include <asm/page.h>
  21. #include <asm/pgalloc.h>
  22. #include <asm/addrspace.h>
  23. #include <asm/cacheflush.h>
  24. #include <asm/tlbflush.h>
  25. #include <asm/mmu.h>
  26. /*
  27. * Remap an arbitrary physical address space into the kernel virtual
  28. * address space. Needed when the kernel wants to access high addresses
  29. * directly.
  30. *
  31. * NOTE! We need to allow non-page-aligned mappings too: we will obviously
  32. * have to convert them into an offset in a page-aligned mapping, but the
  33. * caller shouldn't need to know that small detail.
  34. */
  35. void __iomem *__ioremap(unsigned long phys_addr, unsigned long size,
  36. unsigned long flags)
  37. {
  38. struct vm_struct * area;
  39. unsigned long offset, last_addr, addr, orig_addr;
  40. pgprot_t pgprot;
  41. /* Don't allow wraparound or zero size */
  42. last_addr = phys_addr + size - 1;
  43. if (!size || last_addr < phys_addr)
  44. return NULL;
  45. /*
  46. * If we're on an SH7751 or SH7780 PCI controller, PCI memory is
  47. * mapped at the end of the address space (typically 0xfd000000)
  48. * in a non-translatable area, so mapping through page tables for
  49. * this area is not only pointless, but also fundamentally
  50. * broken. Just return the physical address instead.
  51. *
  52. * For boards that map a small PCI memory aperture somewhere in
  53. * P1/P2 space, ioremap() will already do the right thing,
  54. * and we'll never get this far.
  55. */
  56. if (is_pci_memaddr(phys_addr) && is_pci_memaddr(last_addr))
  57. return (void __iomem *)phys_addr;
  58. #if !defined(CONFIG_PMB_FIXED)
  59. /*
  60. * Don't allow anybody to remap normal RAM that we're using..
  61. */
  62. if (phys_addr < virt_to_phys(high_memory))
  63. return NULL;
  64. #endif
  65. /*
  66. * Mappings have to be page-aligned
  67. */
  68. offset = phys_addr & ~PAGE_MASK;
  69. phys_addr &= PAGE_MASK;
  70. size = PAGE_ALIGN(last_addr+1) - phys_addr;
  71. /*
  72. * Ok, go for it..
  73. */
  74. area = get_vm_area(size, VM_IOREMAP);
  75. if (!area)
  76. return NULL;
  77. area->phys_addr = phys_addr;
  78. orig_addr = addr = (unsigned long)area->addr;
  79. #ifdef CONFIG_PMB
  80. /*
  81. * First try to remap through the PMB once a valid VMA has been
  82. * established. Smaller allocations (or the rest of the size
  83. * remaining after a PMB mapping due to the size not being
  84. * perfectly aligned on a PMB size boundary) are then mapped
  85. * through the UTLB using conventional page tables.
  86. *
  87. * PMB entries are all pre-faulted.
  88. */
  89. if (unlikely(size >= 0x1000000)) {
  90. unsigned long mapped = pmb_remap(addr, phys_addr, size, flags);
  91. if (likely(mapped)) {
  92. addr += mapped;
  93. phys_addr += mapped;
  94. size -= mapped;
  95. }
  96. }
  97. #endif
  98. pgprot = __pgprot(pgprot_val(PAGE_KERNEL_NOCACHE) | flags);
  99. if (likely(size))
  100. if (ioremap_page_range(addr, addr + size, phys_addr, pgprot)) {
  101. vunmap((void *)orig_addr);
  102. return NULL;
  103. }
  104. return (void __iomem *)(offset + (char *)orig_addr);
  105. }
  106. EXPORT_SYMBOL(__ioremap);
  107. void __iounmap(void __iomem *addr)
  108. {
  109. unsigned long vaddr = (unsigned long __force)addr;
  110. unsigned long seg = PXSEG(vaddr);
  111. struct vm_struct *p;
  112. if (seg < P3SEG || vaddr >= P3_ADDR_MAX || is_pci_memaddr(vaddr))
  113. return;
  114. #ifdef CONFIG_PMB
  115. /*
  116. * Purge any PMB entries that may have been established for this
  117. * mapping, then proceed with conventional VMA teardown.
  118. *
  119. * XXX: Note that due to the way that remove_vm_area() does
  120. * matching of the resultant VMA, we aren't able to fast-forward
  121. * the address past the PMB space until the end of the VMA where
  122. * the page tables reside. As such, unmap_vm_area() will be
  123. * forced to linearly scan over the area until it finds the page
  124. * tables where PTEs that need to be unmapped actually reside,
  125. * which is far from optimal. Perhaps we need to use a separate
  126. * VMA for the PMB mappings?
  127. * -- PFM.
  128. */
  129. pmb_unmap(vaddr);
  130. #endif
  131. p = remove_vm_area((void *)(vaddr & PAGE_MASK));
  132. if (!p) {
  133. printk(KERN_ERR "%s: bad address %p\n", __func__, addr);
  134. return;
  135. }
  136. kfree(p);
  137. }
  138. EXPORT_SYMBOL(__iounmap);