time.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time. (for iSeries, we calibrate the timebase
  21. * against the Titan chip's clock.)
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  27. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  28. *
  29. * This program is free software; you can redistribute it and/or
  30. * modify it under the terms of the GNU General Public License
  31. * as published by the Free Software Foundation; either version
  32. * 2 of the License, or (at your option) any later version.
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/module.h>
  36. #include <linux/sched.h>
  37. #include <linux/kernel.h>
  38. #include <linux/param.h>
  39. #include <linux/string.h>
  40. #include <linux/mm.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/timex.h>
  43. #include <linux/kernel_stat.h>
  44. #include <linux/time.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <asm/io.h>
  55. #include <asm/processor.h>
  56. #include <asm/nvram.h>
  57. #include <asm/cache.h>
  58. #include <asm/machdep.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/time.h>
  61. #include <asm/prom.h>
  62. #include <asm/irq.h>
  63. #include <asm/div64.h>
  64. #include <asm/smp.h>
  65. #include <asm/vdso_datapage.h>
  66. #include <asm/firmware.h>
  67. #include <asm/cputime.h>
  68. #ifdef CONFIG_PPC_ISERIES
  69. #include <asm/iseries/it_lp_queue.h>
  70. #include <asm/iseries/hv_call_xm.h>
  71. #endif
  72. /* powerpc clocksource/clockevent code */
  73. #include <linux/clockchips.h>
  74. #include <linux/clocksource.h>
  75. static cycle_t rtc_read(void);
  76. static struct clocksource clocksource_rtc = {
  77. .name = "rtc",
  78. .rating = 400,
  79. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  80. .mask = CLOCKSOURCE_MASK(64),
  81. .shift = 22,
  82. .mult = 0, /* To be filled in */
  83. .read = rtc_read,
  84. };
  85. static cycle_t timebase_read(void);
  86. static struct clocksource clocksource_timebase = {
  87. .name = "timebase",
  88. .rating = 400,
  89. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  90. .mask = CLOCKSOURCE_MASK(64),
  91. .shift = 22,
  92. .mult = 0, /* To be filled in */
  93. .read = timebase_read,
  94. };
  95. #define DECREMENTER_MAX 0x7fffffff
  96. static int decrementer_set_next_event(unsigned long evt,
  97. struct clock_event_device *dev);
  98. static void decrementer_set_mode(enum clock_event_mode mode,
  99. struct clock_event_device *dev);
  100. static struct clock_event_device decrementer_clockevent = {
  101. .name = "decrementer",
  102. .rating = 200,
  103. .shift = 16,
  104. .mult = 0, /* To be filled in */
  105. .irq = 0,
  106. .set_next_event = decrementer_set_next_event,
  107. .set_mode = decrementer_set_mode,
  108. .features = CLOCK_EVT_FEAT_ONESHOT,
  109. };
  110. struct decrementer_clock {
  111. struct clock_event_device event;
  112. u64 next_tb;
  113. };
  114. static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
  115. #ifdef CONFIG_PPC_ISERIES
  116. static unsigned long __initdata iSeries_recal_titan;
  117. static signed long __initdata iSeries_recal_tb;
  118. /* Forward declaration is only needed for iSereis compiles */
  119. static void __init clocksource_init(void);
  120. #endif
  121. #define XSEC_PER_SEC (1024*1024)
  122. #ifdef CONFIG_PPC64
  123. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  124. #else
  125. /* compute ((xsec << 12) * max) >> 32 */
  126. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  127. #endif
  128. unsigned long tb_ticks_per_jiffy;
  129. unsigned long tb_ticks_per_usec = 100; /* sane default */
  130. EXPORT_SYMBOL(tb_ticks_per_usec);
  131. unsigned long tb_ticks_per_sec;
  132. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  133. u64 tb_to_xs;
  134. unsigned tb_to_us;
  135. #define TICKLEN_SCALE NTP_SCALE_SHIFT
  136. static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
  137. static u64 ticklen_to_xs; /* 0.64 fraction */
  138. /* If last_tick_len corresponds to about 1/HZ seconds, then
  139. last_tick_len << TICKLEN_SHIFT will be about 2^63. */
  140. #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
  141. DEFINE_SPINLOCK(rtc_lock);
  142. EXPORT_SYMBOL_GPL(rtc_lock);
  143. static u64 tb_to_ns_scale __read_mostly;
  144. static unsigned tb_to_ns_shift __read_mostly;
  145. static unsigned long boot_tb __read_mostly;
  146. extern struct timezone sys_tz;
  147. static long timezone_offset;
  148. unsigned long ppc_proc_freq;
  149. EXPORT_SYMBOL(ppc_proc_freq);
  150. unsigned long ppc_tb_freq;
  151. static u64 tb_last_jiffy __cacheline_aligned_in_smp;
  152. static DEFINE_PER_CPU(u64, last_jiffy);
  153. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  154. /*
  155. * Factors for converting from cputime_t (timebase ticks) to
  156. * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
  157. * These are all stored as 0.64 fixed-point binary fractions.
  158. */
  159. u64 __cputime_jiffies_factor;
  160. EXPORT_SYMBOL(__cputime_jiffies_factor);
  161. u64 __cputime_msec_factor;
  162. EXPORT_SYMBOL(__cputime_msec_factor);
  163. u64 __cputime_sec_factor;
  164. EXPORT_SYMBOL(__cputime_sec_factor);
  165. u64 __cputime_clockt_factor;
  166. EXPORT_SYMBOL(__cputime_clockt_factor);
  167. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  168. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  169. static void calc_cputime_factors(void)
  170. {
  171. struct div_result res;
  172. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  173. __cputime_jiffies_factor = res.result_low;
  174. div128_by_32(1000, 0, tb_ticks_per_sec, &res);
  175. __cputime_msec_factor = res.result_low;
  176. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  177. __cputime_sec_factor = res.result_low;
  178. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  179. __cputime_clockt_factor = res.result_low;
  180. }
  181. /*
  182. * Read the PURR on systems that have it, otherwise the timebase.
  183. */
  184. static u64 read_purr(void)
  185. {
  186. if (cpu_has_feature(CPU_FTR_PURR))
  187. return mfspr(SPRN_PURR);
  188. return mftb();
  189. }
  190. /*
  191. * Read the SPURR on systems that have it, otherwise the purr
  192. */
  193. static u64 read_spurr(u64 purr)
  194. {
  195. /*
  196. * cpus without PURR won't have a SPURR
  197. * We already know the former when we use this, so tell gcc
  198. */
  199. if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
  200. return mfspr(SPRN_SPURR);
  201. return purr;
  202. }
  203. /*
  204. * Account time for a transition between system, hard irq
  205. * or soft irq state.
  206. */
  207. void account_system_vtime(struct task_struct *tsk)
  208. {
  209. u64 now, nowscaled, delta, deltascaled, sys_time;
  210. unsigned long flags;
  211. local_irq_save(flags);
  212. now = read_purr();
  213. nowscaled = read_spurr(now);
  214. delta = now - get_paca()->startpurr;
  215. deltascaled = nowscaled - get_paca()->startspurr;
  216. get_paca()->startpurr = now;
  217. get_paca()->startspurr = nowscaled;
  218. if (!in_interrupt()) {
  219. /* deltascaled includes both user and system time.
  220. * Hence scale it based on the purr ratio to estimate
  221. * the system time */
  222. sys_time = get_paca()->system_time;
  223. if (get_paca()->user_time)
  224. deltascaled = deltascaled * sys_time /
  225. (sys_time + get_paca()->user_time);
  226. delta += sys_time;
  227. get_paca()->system_time = 0;
  228. }
  229. if (in_irq() || idle_task(smp_processor_id()) != tsk)
  230. account_system_time(tsk, 0, delta, deltascaled);
  231. else
  232. account_idle_time(delta);
  233. per_cpu(cputime_last_delta, smp_processor_id()) = delta;
  234. per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
  235. local_irq_restore(flags);
  236. }
  237. /*
  238. * Transfer the user and system times accumulated in the paca
  239. * by the exception entry and exit code to the generic process
  240. * user and system time records.
  241. * Must be called with interrupts disabled.
  242. */
  243. void account_process_tick(struct task_struct *tsk, int user_tick)
  244. {
  245. cputime_t utime, utimescaled;
  246. utime = get_paca()->user_time;
  247. get_paca()->user_time = 0;
  248. utimescaled = cputime_to_scaled(utime);
  249. account_user_time(tsk, utime, utimescaled);
  250. }
  251. /*
  252. * Stuff for accounting stolen time.
  253. */
  254. struct cpu_purr_data {
  255. int initialized; /* thread is running */
  256. u64 tb; /* last TB value read */
  257. u64 purr; /* last PURR value read */
  258. u64 spurr; /* last SPURR value read */
  259. };
  260. /*
  261. * Each entry in the cpu_purr_data array is manipulated only by its
  262. * "owner" cpu -- usually in the timer interrupt but also occasionally
  263. * in process context for cpu online. As long as cpus do not touch
  264. * each others' cpu_purr_data, disabling local interrupts is
  265. * sufficient to serialize accesses.
  266. */
  267. static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
  268. static void snapshot_tb_and_purr(void *data)
  269. {
  270. unsigned long flags;
  271. struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
  272. local_irq_save(flags);
  273. p->tb = get_tb_or_rtc();
  274. p->purr = mfspr(SPRN_PURR);
  275. wmb();
  276. p->initialized = 1;
  277. local_irq_restore(flags);
  278. }
  279. /*
  280. * Called during boot when all cpus have come up.
  281. */
  282. void snapshot_timebases(void)
  283. {
  284. if (!cpu_has_feature(CPU_FTR_PURR))
  285. return;
  286. on_each_cpu(snapshot_tb_and_purr, NULL, 1);
  287. }
  288. /*
  289. * Must be called with interrupts disabled.
  290. */
  291. void calculate_steal_time(void)
  292. {
  293. u64 tb, purr;
  294. s64 stolen;
  295. struct cpu_purr_data *pme;
  296. pme = &__get_cpu_var(cpu_purr_data);
  297. if (!pme->initialized)
  298. return; /* !CPU_FTR_PURR or early in early boot */
  299. tb = mftb();
  300. purr = mfspr(SPRN_PURR);
  301. stolen = (tb - pme->tb) - (purr - pme->purr);
  302. if (stolen > 0) {
  303. if (idle_task(smp_processor_id()) != current)
  304. account_steal_time(stolen);
  305. else
  306. account_idle_time(stolen);
  307. }
  308. pme->tb = tb;
  309. pme->purr = purr;
  310. }
  311. #ifdef CONFIG_PPC_SPLPAR
  312. /*
  313. * Must be called before the cpu is added to the online map when
  314. * a cpu is being brought up at runtime.
  315. */
  316. static void snapshot_purr(void)
  317. {
  318. struct cpu_purr_data *pme;
  319. unsigned long flags;
  320. if (!cpu_has_feature(CPU_FTR_PURR))
  321. return;
  322. local_irq_save(flags);
  323. pme = &__get_cpu_var(cpu_purr_data);
  324. pme->tb = mftb();
  325. pme->purr = mfspr(SPRN_PURR);
  326. pme->initialized = 1;
  327. local_irq_restore(flags);
  328. }
  329. #endif /* CONFIG_PPC_SPLPAR */
  330. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
  331. #define calc_cputime_factors()
  332. #define calculate_steal_time() do { } while (0)
  333. #endif
  334. #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
  335. #define snapshot_purr() do { } while (0)
  336. #endif
  337. /*
  338. * Called when a cpu comes up after the system has finished booting,
  339. * i.e. as a result of a hotplug cpu action.
  340. */
  341. void snapshot_timebase(void)
  342. {
  343. __get_cpu_var(last_jiffy) = get_tb_or_rtc();
  344. snapshot_purr();
  345. }
  346. void __delay(unsigned long loops)
  347. {
  348. unsigned long start;
  349. int diff;
  350. if (__USE_RTC()) {
  351. start = get_rtcl();
  352. do {
  353. /* the RTCL register wraps at 1000000000 */
  354. diff = get_rtcl() - start;
  355. if (diff < 0)
  356. diff += 1000000000;
  357. } while (diff < loops);
  358. } else {
  359. start = get_tbl();
  360. while (get_tbl() - start < loops)
  361. HMT_low();
  362. HMT_medium();
  363. }
  364. }
  365. EXPORT_SYMBOL(__delay);
  366. void udelay(unsigned long usecs)
  367. {
  368. __delay(tb_ticks_per_usec * usecs);
  369. }
  370. EXPORT_SYMBOL(udelay);
  371. static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
  372. u64 new_tb_to_xs)
  373. {
  374. /*
  375. * tb_update_count is used to allow the userspace gettimeofday code
  376. * to assure itself that it sees a consistent view of the tb_to_xs and
  377. * stamp_xsec variables. It reads the tb_update_count, then reads
  378. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  379. * the two values of tb_update_count match and are even then the
  380. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  381. * loops back and reads them again until this criteria is met.
  382. * We expect the caller to have done the first increment of
  383. * vdso_data->tb_update_count already.
  384. */
  385. vdso_data->tb_orig_stamp = new_tb_stamp;
  386. vdso_data->stamp_xsec = new_stamp_xsec;
  387. vdso_data->tb_to_xs = new_tb_to_xs;
  388. vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
  389. vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
  390. vdso_data->stamp_xtime = xtime;
  391. smp_wmb();
  392. ++(vdso_data->tb_update_count);
  393. }
  394. #ifdef CONFIG_SMP
  395. unsigned long profile_pc(struct pt_regs *regs)
  396. {
  397. unsigned long pc = instruction_pointer(regs);
  398. if (in_lock_functions(pc))
  399. return regs->link;
  400. return pc;
  401. }
  402. EXPORT_SYMBOL(profile_pc);
  403. #endif
  404. #ifdef CONFIG_PPC_ISERIES
  405. /*
  406. * This function recalibrates the timebase based on the 49-bit time-of-day
  407. * value in the Titan chip. The Titan is much more accurate than the value
  408. * returned by the service processor for the timebase frequency.
  409. */
  410. static int __init iSeries_tb_recal(void)
  411. {
  412. struct div_result divres;
  413. unsigned long titan, tb;
  414. /* Make sure we only run on iSeries */
  415. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  416. return -ENODEV;
  417. tb = get_tb();
  418. titan = HvCallXm_loadTod();
  419. if ( iSeries_recal_titan ) {
  420. unsigned long tb_ticks = tb - iSeries_recal_tb;
  421. unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
  422. unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
  423. unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
  424. long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
  425. char sign = '+';
  426. /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
  427. new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
  428. if ( tick_diff < 0 ) {
  429. tick_diff = -tick_diff;
  430. sign = '-';
  431. }
  432. if ( tick_diff ) {
  433. if ( tick_diff < tb_ticks_per_jiffy/25 ) {
  434. printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
  435. new_tb_ticks_per_jiffy, sign, tick_diff );
  436. tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
  437. tb_ticks_per_sec = new_tb_ticks_per_sec;
  438. calc_cputime_factors();
  439. div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
  440. tb_to_xs = divres.result_low;
  441. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  442. vdso_data->tb_to_xs = tb_to_xs;
  443. }
  444. else {
  445. printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
  446. " new tb_ticks_per_jiffy = %lu\n"
  447. " old tb_ticks_per_jiffy = %lu\n",
  448. new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
  449. }
  450. }
  451. }
  452. iSeries_recal_titan = titan;
  453. iSeries_recal_tb = tb;
  454. /* Called here as now we know accurate values for the timebase */
  455. clocksource_init();
  456. return 0;
  457. }
  458. late_initcall(iSeries_tb_recal);
  459. /* Called from platform early init */
  460. void __init iSeries_time_init_early(void)
  461. {
  462. iSeries_recal_tb = get_tb();
  463. iSeries_recal_titan = HvCallXm_loadTod();
  464. }
  465. #endif /* CONFIG_PPC_ISERIES */
  466. /*
  467. * For iSeries shared processors, we have to let the hypervisor
  468. * set the hardware decrementer. We set a virtual decrementer
  469. * in the lppaca and call the hypervisor if the virtual
  470. * decrementer is less than the current value in the hardware
  471. * decrementer. (almost always the new decrementer value will
  472. * be greater than the current hardware decementer so the hypervisor
  473. * call will not be needed)
  474. */
  475. /*
  476. * timer_interrupt - gets called when the decrementer overflows,
  477. * with interrupts disabled.
  478. */
  479. void timer_interrupt(struct pt_regs * regs)
  480. {
  481. struct pt_regs *old_regs;
  482. struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
  483. struct clock_event_device *evt = &decrementer->event;
  484. u64 now;
  485. /* Ensure a positive value is written to the decrementer, or else
  486. * some CPUs will continuue to take decrementer exceptions */
  487. set_dec(DECREMENTER_MAX);
  488. #ifdef CONFIG_PPC32
  489. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  490. do_IRQ(regs);
  491. #endif
  492. now = get_tb_or_rtc();
  493. if (now < decrementer->next_tb) {
  494. /* not time for this event yet */
  495. now = decrementer->next_tb - now;
  496. if (now <= DECREMENTER_MAX)
  497. set_dec((int)now);
  498. return;
  499. }
  500. old_regs = set_irq_regs(regs);
  501. irq_enter();
  502. calculate_steal_time();
  503. #ifdef CONFIG_PPC_ISERIES
  504. if (firmware_has_feature(FW_FEATURE_ISERIES))
  505. get_lppaca()->int_dword.fields.decr_int = 0;
  506. #endif
  507. if (evt->event_handler)
  508. evt->event_handler(evt);
  509. #ifdef CONFIG_PPC_ISERIES
  510. if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
  511. process_hvlpevents();
  512. #endif
  513. #ifdef CONFIG_PPC64
  514. /* collect purr register values often, for accurate calculations */
  515. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  516. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  517. cu->current_tb = mfspr(SPRN_PURR);
  518. }
  519. #endif
  520. irq_exit();
  521. set_irq_regs(old_regs);
  522. }
  523. void wakeup_decrementer(void)
  524. {
  525. unsigned long ticks;
  526. /*
  527. * The timebase gets saved on sleep and restored on wakeup,
  528. * so all we need to do is to reset the decrementer.
  529. */
  530. ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
  531. if (ticks < tb_ticks_per_jiffy)
  532. ticks = tb_ticks_per_jiffy - ticks;
  533. else
  534. ticks = 1;
  535. set_dec(ticks);
  536. }
  537. #ifdef CONFIG_SUSPEND
  538. void generic_suspend_disable_irqs(void)
  539. {
  540. preempt_disable();
  541. /* Disable the decrementer, so that it doesn't interfere
  542. * with suspending.
  543. */
  544. set_dec(0x7fffffff);
  545. local_irq_disable();
  546. set_dec(0x7fffffff);
  547. }
  548. void generic_suspend_enable_irqs(void)
  549. {
  550. wakeup_decrementer();
  551. local_irq_enable();
  552. preempt_enable();
  553. }
  554. /* Overrides the weak version in kernel/power/main.c */
  555. void arch_suspend_disable_irqs(void)
  556. {
  557. if (ppc_md.suspend_disable_irqs)
  558. ppc_md.suspend_disable_irqs();
  559. generic_suspend_disable_irqs();
  560. }
  561. /* Overrides the weak version in kernel/power/main.c */
  562. void arch_suspend_enable_irqs(void)
  563. {
  564. generic_suspend_enable_irqs();
  565. if (ppc_md.suspend_enable_irqs)
  566. ppc_md.suspend_enable_irqs();
  567. }
  568. #endif
  569. #ifdef CONFIG_SMP
  570. void __init smp_space_timers(unsigned int max_cpus)
  571. {
  572. int i;
  573. u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
  574. /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
  575. previous_tb -= tb_ticks_per_jiffy;
  576. for_each_possible_cpu(i) {
  577. if (i == boot_cpuid)
  578. continue;
  579. per_cpu(last_jiffy, i) = previous_tb;
  580. }
  581. }
  582. #endif
  583. /*
  584. * Scheduler clock - returns current time in nanosec units.
  585. *
  586. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  587. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  588. * are 64-bit unsigned numbers.
  589. */
  590. unsigned long long sched_clock(void)
  591. {
  592. if (__USE_RTC())
  593. return get_rtc();
  594. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  595. }
  596. static int __init get_freq(char *name, int cells, unsigned long *val)
  597. {
  598. struct device_node *cpu;
  599. const unsigned int *fp;
  600. int found = 0;
  601. /* The cpu node should have timebase and clock frequency properties */
  602. cpu = of_find_node_by_type(NULL, "cpu");
  603. if (cpu) {
  604. fp = of_get_property(cpu, name, NULL);
  605. if (fp) {
  606. found = 1;
  607. *val = of_read_ulong(fp, cells);
  608. }
  609. of_node_put(cpu);
  610. }
  611. return found;
  612. }
  613. void __init generic_calibrate_decr(void)
  614. {
  615. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  616. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  617. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  618. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  619. "(not found)\n");
  620. }
  621. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  622. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  623. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  624. printk(KERN_ERR "WARNING: Estimating processor frequency "
  625. "(not found)\n");
  626. }
  627. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  628. /* Clear any pending timer interrupts */
  629. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  630. /* Enable decrementer interrupt */
  631. mtspr(SPRN_TCR, TCR_DIE);
  632. #endif
  633. }
  634. int update_persistent_clock(struct timespec now)
  635. {
  636. struct rtc_time tm;
  637. if (!ppc_md.set_rtc_time)
  638. return 0;
  639. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  640. tm.tm_year -= 1900;
  641. tm.tm_mon -= 1;
  642. return ppc_md.set_rtc_time(&tm);
  643. }
  644. unsigned long read_persistent_clock(void)
  645. {
  646. struct rtc_time tm;
  647. static int first = 1;
  648. /* XXX this is a litle fragile but will work okay in the short term */
  649. if (first) {
  650. first = 0;
  651. if (ppc_md.time_init)
  652. timezone_offset = ppc_md.time_init();
  653. /* get_boot_time() isn't guaranteed to be safe to call late */
  654. if (ppc_md.get_boot_time)
  655. return ppc_md.get_boot_time() -timezone_offset;
  656. }
  657. if (!ppc_md.get_rtc_time)
  658. return 0;
  659. ppc_md.get_rtc_time(&tm);
  660. return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  661. tm.tm_hour, tm.tm_min, tm.tm_sec);
  662. }
  663. /* clocksource code */
  664. static cycle_t rtc_read(void)
  665. {
  666. return (cycle_t)get_rtc();
  667. }
  668. static cycle_t timebase_read(void)
  669. {
  670. return (cycle_t)get_tb();
  671. }
  672. void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
  673. {
  674. u64 t2x, stamp_xsec;
  675. if (clock != &clocksource_timebase)
  676. return;
  677. /* Make userspace gettimeofday spin until we're done. */
  678. ++vdso_data->tb_update_count;
  679. smp_mb();
  680. /* XXX this assumes clock->shift == 22 */
  681. /* 4611686018 ~= 2^(20+64-22) / 1e9 */
  682. t2x = (u64) clock->mult * 4611686018ULL;
  683. stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
  684. do_div(stamp_xsec, 1000000000);
  685. stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
  686. update_gtod(clock->cycle_last, stamp_xsec, t2x);
  687. }
  688. void update_vsyscall_tz(void)
  689. {
  690. /* Make userspace gettimeofday spin until we're done. */
  691. ++vdso_data->tb_update_count;
  692. smp_mb();
  693. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  694. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  695. smp_mb();
  696. ++vdso_data->tb_update_count;
  697. }
  698. static void __init clocksource_init(void)
  699. {
  700. struct clocksource *clock;
  701. if (__USE_RTC())
  702. clock = &clocksource_rtc;
  703. else
  704. clock = &clocksource_timebase;
  705. clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
  706. if (clocksource_register(clock)) {
  707. printk(KERN_ERR "clocksource: %s is already registered\n",
  708. clock->name);
  709. return;
  710. }
  711. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  712. clock->name, clock->mult, clock->shift);
  713. }
  714. static int decrementer_set_next_event(unsigned long evt,
  715. struct clock_event_device *dev)
  716. {
  717. __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
  718. set_dec(evt);
  719. return 0;
  720. }
  721. static void decrementer_set_mode(enum clock_event_mode mode,
  722. struct clock_event_device *dev)
  723. {
  724. if (mode != CLOCK_EVT_MODE_ONESHOT)
  725. decrementer_set_next_event(DECREMENTER_MAX, dev);
  726. }
  727. static void register_decrementer_clockevent(int cpu)
  728. {
  729. struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
  730. *dec = decrementer_clockevent;
  731. dec->cpumask = cpumask_of(cpu);
  732. printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
  733. dec->name, dec->mult, dec->shift, cpu);
  734. clockevents_register_device(dec);
  735. }
  736. static void __init init_decrementer_clockevent(void)
  737. {
  738. int cpu = smp_processor_id();
  739. decrementer_clockevent.mult = div_sc(ppc_tb_freq, NSEC_PER_SEC,
  740. decrementer_clockevent.shift);
  741. decrementer_clockevent.max_delta_ns =
  742. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  743. decrementer_clockevent.min_delta_ns =
  744. clockevent_delta2ns(2, &decrementer_clockevent);
  745. register_decrementer_clockevent(cpu);
  746. }
  747. void secondary_cpu_time_init(void)
  748. {
  749. /* FIME: Should make unrelatred change to move snapshot_timebase
  750. * call here ! */
  751. register_decrementer_clockevent(smp_processor_id());
  752. }
  753. /* This function is only called on the boot processor */
  754. void __init time_init(void)
  755. {
  756. unsigned long flags;
  757. struct div_result res;
  758. u64 scale, x;
  759. unsigned shift;
  760. if (__USE_RTC()) {
  761. /* 601 processor: dec counts down by 128 every 128ns */
  762. ppc_tb_freq = 1000000000;
  763. tb_last_jiffy = get_rtcl();
  764. } else {
  765. /* Normal PowerPC with timebase register */
  766. ppc_md.calibrate_decr();
  767. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  768. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  769. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  770. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  771. tb_last_jiffy = get_tb();
  772. }
  773. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  774. tb_ticks_per_sec = ppc_tb_freq;
  775. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  776. tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
  777. calc_cputime_factors();
  778. /*
  779. * Calculate the length of each tick in ns. It will not be
  780. * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
  781. * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
  782. * rounded up.
  783. */
  784. x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
  785. do_div(x, ppc_tb_freq);
  786. tick_nsec = x;
  787. last_tick_len = x << TICKLEN_SCALE;
  788. /*
  789. * Compute ticklen_to_xs, which is a factor which gets multiplied
  790. * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
  791. * It is computed as:
  792. * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
  793. * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
  794. * which turns out to be N = 51 - SHIFT_HZ.
  795. * This gives the result as a 0.64 fixed-point fraction.
  796. * That value is reduced by an offset amounting to 1 xsec per
  797. * 2^31 timebase ticks to avoid problems with time going backwards
  798. * by 1 xsec when we do timer_recalc_offset due to losing the
  799. * fractional xsec. That offset is equal to ppc_tb_freq/2^51
  800. * since there are 2^20 xsec in a second.
  801. */
  802. div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
  803. tb_ticks_per_jiffy << SHIFT_HZ, &res);
  804. div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
  805. ticklen_to_xs = res.result_low;
  806. /* Compute tb_to_xs from tick_nsec */
  807. tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
  808. /*
  809. * Compute scale factor for sched_clock.
  810. * The calibrate_decr() function has set tb_ticks_per_sec,
  811. * which is the timebase frequency.
  812. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  813. * the 128-bit result as a 64.64 fixed-point number.
  814. * We then shift that number right until it is less than 1.0,
  815. * giving us the scale factor and shift count to use in
  816. * sched_clock().
  817. */
  818. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  819. scale = res.result_low;
  820. for (shift = 0; res.result_high != 0; ++shift) {
  821. scale = (scale >> 1) | (res.result_high << 63);
  822. res.result_high >>= 1;
  823. }
  824. tb_to_ns_scale = scale;
  825. tb_to_ns_shift = shift;
  826. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  827. boot_tb = get_tb_or_rtc();
  828. write_seqlock_irqsave(&xtime_lock, flags);
  829. /* If platform provided a timezone (pmac), we correct the time */
  830. if (timezone_offset) {
  831. sys_tz.tz_minuteswest = -timezone_offset / 60;
  832. sys_tz.tz_dsttime = 0;
  833. }
  834. vdso_data->tb_orig_stamp = tb_last_jiffy;
  835. vdso_data->tb_update_count = 0;
  836. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  837. vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
  838. vdso_data->tb_to_xs = tb_to_xs;
  839. write_sequnlock_irqrestore(&xtime_lock, flags);
  840. /* Register the clocksource, if we're not running on iSeries */
  841. if (!firmware_has_feature(FW_FEATURE_ISERIES))
  842. clocksource_init();
  843. init_decrementer_clockevent();
  844. }
  845. #define FEBRUARY 2
  846. #define STARTOFTIME 1970
  847. #define SECDAY 86400L
  848. #define SECYR (SECDAY * 365)
  849. #define leapyear(year) ((year) % 4 == 0 && \
  850. ((year) % 100 != 0 || (year) % 400 == 0))
  851. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  852. #define days_in_month(a) (month_days[(a) - 1])
  853. static int month_days[12] = {
  854. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  855. };
  856. /*
  857. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  858. */
  859. void GregorianDay(struct rtc_time * tm)
  860. {
  861. int leapsToDate;
  862. int lastYear;
  863. int day;
  864. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  865. lastYear = tm->tm_year - 1;
  866. /*
  867. * Number of leap corrections to apply up to end of last year
  868. */
  869. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  870. /*
  871. * This year is a leap year if it is divisible by 4 except when it is
  872. * divisible by 100 unless it is divisible by 400
  873. *
  874. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  875. */
  876. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  877. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  878. tm->tm_mday;
  879. tm->tm_wday = day % 7;
  880. }
  881. void to_tm(int tim, struct rtc_time * tm)
  882. {
  883. register int i;
  884. register long hms, day;
  885. day = tim / SECDAY;
  886. hms = tim % SECDAY;
  887. /* Hours, minutes, seconds are easy */
  888. tm->tm_hour = hms / 3600;
  889. tm->tm_min = (hms % 3600) / 60;
  890. tm->tm_sec = (hms % 3600) % 60;
  891. /* Number of years in days */
  892. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  893. day -= days_in_year(i);
  894. tm->tm_year = i;
  895. /* Number of months in days left */
  896. if (leapyear(tm->tm_year))
  897. days_in_month(FEBRUARY) = 29;
  898. for (i = 1; day >= days_in_month(i); i++)
  899. day -= days_in_month(i);
  900. days_in_month(FEBRUARY) = 28;
  901. tm->tm_mon = i;
  902. /* Days are what is left over (+1) from all that. */
  903. tm->tm_mday = day + 1;
  904. /*
  905. * Determine the day of week
  906. */
  907. GregorianDay(tm);
  908. }
  909. /* Auxiliary function to compute scaling factors */
  910. /* Actually the choice of a timebase running at 1/4 the of the bus
  911. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  912. * It makes this computation very precise (27-28 bits typically) which
  913. * is optimistic considering the stability of most processor clock
  914. * oscillators and the precision with which the timebase frequency
  915. * is measured but does not harm.
  916. */
  917. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
  918. {
  919. unsigned mlt=0, tmp, err;
  920. /* No concern for performance, it's done once: use a stupid
  921. * but safe and compact method to find the multiplier.
  922. */
  923. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  924. if (mulhwu(inscale, mlt|tmp) < outscale)
  925. mlt |= tmp;
  926. }
  927. /* We might still be off by 1 for the best approximation.
  928. * A side effect of this is that if outscale is too large
  929. * the returned value will be zero.
  930. * Many corner cases have been checked and seem to work,
  931. * some might have been forgotten in the test however.
  932. */
  933. err = inscale * (mlt+1);
  934. if (err <= inscale/2)
  935. mlt++;
  936. return mlt;
  937. }
  938. /*
  939. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  940. * result.
  941. */
  942. void div128_by_32(u64 dividend_high, u64 dividend_low,
  943. unsigned divisor, struct div_result *dr)
  944. {
  945. unsigned long a, b, c, d;
  946. unsigned long w, x, y, z;
  947. u64 ra, rb, rc;
  948. a = dividend_high >> 32;
  949. b = dividend_high & 0xffffffff;
  950. c = dividend_low >> 32;
  951. d = dividend_low & 0xffffffff;
  952. w = a / divisor;
  953. ra = ((u64)(a - (w * divisor)) << 32) + b;
  954. rb = ((u64) do_div(ra, divisor) << 32) + c;
  955. x = ra;
  956. rc = ((u64) do_div(rb, divisor) << 32) + d;
  957. y = rb;
  958. do_div(rc, divisor);
  959. z = rc;
  960. dr->result_high = ((u64)w << 32) + x;
  961. dr->result_low = ((u64)y << 32) + z;
  962. }
  963. static int __init rtc_init(void)
  964. {
  965. struct platform_device *pdev;
  966. if (!ppc_md.get_rtc_time)
  967. return -ENODEV;
  968. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  969. if (IS_ERR(pdev))
  970. return PTR_ERR(pdev);
  971. return 0;
  972. }
  973. module_init(rtc_init);