uaccess.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496
  1. #ifndef _ARCH_POWERPC_UACCESS_H
  2. #define _ARCH_POWERPC_UACCESS_H
  3. #ifdef __KERNEL__
  4. #ifndef __ASSEMBLY__
  5. #include <linux/sched.h>
  6. #include <linux/errno.h>
  7. #include <asm/asm-compat.h>
  8. #include <asm/processor.h>
  9. #include <asm/page.h>
  10. #define VERIFY_READ 0
  11. #define VERIFY_WRITE 1
  12. /*
  13. * The fs value determines whether argument validity checking should be
  14. * performed or not. If get_fs() == USER_DS, checking is performed, with
  15. * get_fs() == KERNEL_DS, checking is bypassed.
  16. *
  17. * For historical reasons, these macros are grossly misnamed.
  18. *
  19. * The fs/ds values are now the highest legal address in the "segment".
  20. * This simplifies the checking in the routines below.
  21. */
  22. #define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })
  23. #define KERNEL_DS MAKE_MM_SEG(~0UL)
  24. #ifdef __powerpc64__
  25. /* We use TASK_SIZE_USER64 as TASK_SIZE is not constant */
  26. #define USER_DS MAKE_MM_SEG(TASK_SIZE_USER64 - 1)
  27. #else
  28. #define USER_DS MAKE_MM_SEG(TASK_SIZE - 1)
  29. #endif
  30. #define get_ds() (KERNEL_DS)
  31. #define get_fs() (current->thread.fs)
  32. #define set_fs(val) (current->thread.fs = (val))
  33. #define segment_eq(a, b) ((a).seg == (b).seg)
  34. #ifdef __powerpc64__
  35. /*
  36. * This check is sufficient because there is a large enough
  37. * gap between user addresses and the kernel addresses
  38. */
  39. #define __access_ok(addr, size, segment) \
  40. (((addr) <= (segment).seg) && ((size) <= (segment).seg))
  41. #else
  42. #define __access_ok(addr, size, segment) \
  43. (((addr) <= (segment).seg) && \
  44. (((size) == 0) || (((size) - 1) <= ((segment).seg - (addr)))))
  45. #endif
  46. #define access_ok(type, addr, size) \
  47. (__chk_user_ptr(addr), \
  48. __access_ok((__force unsigned long)(addr), (size), get_fs()))
  49. /*
  50. * The exception table consists of pairs of addresses: the first is the
  51. * address of an instruction that is allowed to fault, and the second is
  52. * the address at which the program should continue. No registers are
  53. * modified, so it is entirely up to the continuation code to figure out
  54. * what to do.
  55. *
  56. * All the routines below use bits of fixup code that are out of line
  57. * with the main instruction path. This means when everything is well,
  58. * we don't even have to jump over them. Further, they do not intrude
  59. * on our cache or tlb entries.
  60. */
  61. struct exception_table_entry {
  62. unsigned long insn;
  63. unsigned long fixup;
  64. };
  65. /*
  66. * These are the main single-value transfer routines. They automatically
  67. * use the right size if we just have the right pointer type.
  68. *
  69. * This gets kind of ugly. We want to return _two_ values in "get_user()"
  70. * and yet we don't want to do any pointers, because that is too much
  71. * of a performance impact. Thus we have a few rather ugly macros here,
  72. * and hide all the ugliness from the user.
  73. *
  74. * The "__xxx" versions of the user access functions are versions that
  75. * do not verify the address space, that must have been done previously
  76. * with a separate "access_ok()" call (this is used when we do multiple
  77. * accesses to the same area of user memory).
  78. *
  79. * As we use the same address space for kernel and user data on the
  80. * PowerPC, we can just do these as direct assignments. (Of course, the
  81. * exception handling means that it's no longer "just"...)
  82. *
  83. * The "user64" versions of the user access functions are versions that
  84. * allow access of 64-bit data. The "get_user" functions do not
  85. * properly handle 64-bit data because the value gets down cast to a long.
  86. * The "put_user" functions already handle 64-bit data properly but we add
  87. * "user64" versions for completeness
  88. */
  89. #define get_user(x, ptr) \
  90. __get_user_check((x), (ptr), sizeof(*(ptr)))
  91. #define put_user(x, ptr) \
  92. __put_user_check((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)))
  93. #define __get_user(x, ptr) \
  94. __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
  95. #define __put_user(x, ptr) \
  96. __put_user_nocheck((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)))
  97. #ifndef __powerpc64__
  98. #define __get_user64(x, ptr) \
  99. __get_user64_nocheck((x), (ptr), sizeof(*(ptr)))
  100. #define __put_user64(x, ptr) __put_user(x, ptr)
  101. #endif
  102. #define __get_user_inatomic(x, ptr) \
  103. __get_user_nosleep((x), (ptr), sizeof(*(ptr)))
  104. #define __put_user_inatomic(x, ptr) \
  105. __put_user_nosleep((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)))
  106. #define __get_user_unaligned __get_user
  107. #define __put_user_unaligned __put_user
  108. extern long __put_user_bad(void);
  109. /*
  110. * We don't tell gcc that we are accessing memory, but this is OK
  111. * because we do not write to any memory gcc knows about, so there
  112. * are no aliasing issues.
  113. */
  114. #define __put_user_asm(x, addr, err, op) \
  115. __asm__ __volatile__( \
  116. "1: " op " %1,0(%2) # put_user\n" \
  117. "2:\n" \
  118. ".section .fixup,\"ax\"\n" \
  119. "3: li %0,%3\n" \
  120. " b 2b\n" \
  121. ".previous\n" \
  122. ".section __ex_table,\"a\"\n" \
  123. PPC_LONG_ALIGN "\n" \
  124. PPC_LONG "1b,3b\n" \
  125. ".previous" \
  126. : "=r" (err) \
  127. : "r" (x), "b" (addr), "i" (-EFAULT), "0" (err))
  128. #ifdef __powerpc64__
  129. #define __put_user_asm2(x, ptr, retval) \
  130. __put_user_asm(x, ptr, retval, "std")
  131. #else /* __powerpc64__ */
  132. #define __put_user_asm2(x, addr, err) \
  133. __asm__ __volatile__( \
  134. "1: stw %1,0(%2)\n" \
  135. "2: stw %1+1,4(%2)\n" \
  136. "3:\n" \
  137. ".section .fixup,\"ax\"\n" \
  138. "4: li %0,%3\n" \
  139. " b 3b\n" \
  140. ".previous\n" \
  141. ".section __ex_table,\"a\"\n" \
  142. PPC_LONG_ALIGN "\n" \
  143. PPC_LONG "1b,4b\n" \
  144. PPC_LONG "2b,4b\n" \
  145. ".previous" \
  146. : "=r" (err) \
  147. : "r" (x), "b" (addr), "i" (-EFAULT), "0" (err))
  148. #endif /* __powerpc64__ */
  149. #define __put_user_size(x, ptr, size, retval) \
  150. do { \
  151. retval = 0; \
  152. switch (size) { \
  153. case 1: __put_user_asm(x, ptr, retval, "stb"); break; \
  154. case 2: __put_user_asm(x, ptr, retval, "sth"); break; \
  155. case 4: __put_user_asm(x, ptr, retval, "stw"); break; \
  156. case 8: __put_user_asm2(x, ptr, retval); break; \
  157. default: __put_user_bad(); \
  158. } \
  159. } while (0)
  160. #define __put_user_nocheck(x, ptr, size) \
  161. ({ \
  162. long __pu_err; \
  163. __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
  164. if (!is_kernel_addr((unsigned long)__pu_addr)) \
  165. might_sleep(); \
  166. __chk_user_ptr(ptr); \
  167. __put_user_size((x), __pu_addr, (size), __pu_err); \
  168. __pu_err; \
  169. })
  170. #define __put_user_check(x, ptr, size) \
  171. ({ \
  172. long __pu_err = -EFAULT; \
  173. __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
  174. might_sleep(); \
  175. if (access_ok(VERIFY_WRITE, __pu_addr, size)) \
  176. __put_user_size((x), __pu_addr, (size), __pu_err); \
  177. __pu_err; \
  178. })
  179. #define __put_user_nosleep(x, ptr, size) \
  180. ({ \
  181. long __pu_err; \
  182. __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
  183. __chk_user_ptr(ptr); \
  184. __put_user_size((x), __pu_addr, (size), __pu_err); \
  185. __pu_err; \
  186. })
  187. extern long __get_user_bad(void);
  188. #define __get_user_asm(x, addr, err, op) \
  189. __asm__ __volatile__( \
  190. "1: "op" %1,0(%2) # get_user\n" \
  191. "2:\n" \
  192. ".section .fixup,\"ax\"\n" \
  193. "3: li %0,%3\n" \
  194. " li %1,0\n" \
  195. " b 2b\n" \
  196. ".previous\n" \
  197. ".section __ex_table,\"a\"\n" \
  198. PPC_LONG_ALIGN "\n" \
  199. PPC_LONG "1b,3b\n" \
  200. ".previous" \
  201. : "=r" (err), "=r" (x) \
  202. : "b" (addr), "i" (-EFAULT), "0" (err))
  203. #ifdef __powerpc64__
  204. #define __get_user_asm2(x, addr, err) \
  205. __get_user_asm(x, addr, err, "ld")
  206. #else /* __powerpc64__ */
  207. #define __get_user_asm2(x, addr, err) \
  208. __asm__ __volatile__( \
  209. "1: lwz %1,0(%2)\n" \
  210. "2: lwz %1+1,4(%2)\n" \
  211. "3:\n" \
  212. ".section .fixup,\"ax\"\n" \
  213. "4: li %0,%3\n" \
  214. " li %1,0\n" \
  215. " li %1+1,0\n" \
  216. " b 3b\n" \
  217. ".previous\n" \
  218. ".section __ex_table,\"a\"\n" \
  219. PPC_LONG_ALIGN "\n" \
  220. PPC_LONG "1b,4b\n" \
  221. PPC_LONG "2b,4b\n" \
  222. ".previous" \
  223. : "=r" (err), "=&r" (x) \
  224. : "b" (addr), "i" (-EFAULT), "0" (err))
  225. #endif /* __powerpc64__ */
  226. #define __get_user_size(x, ptr, size, retval) \
  227. do { \
  228. retval = 0; \
  229. __chk_user_ptr(ptr); \
  230. if (size > sizeof(x)) \
  231. (x) = __get_user_bad(); \
  232. switch (size) { \
  233. case 1: __get_user_asm(x, ptr, retval, "lbz"); break; \
  234. case 2: __get_user_asm(x, ptr, retval, "lhz"); break; \
  235. case 4: __get_user_asm(x, ptr, retval, "lwz"); break; \
  236. case 8: __get_user_asm2(x, ptr, retval); break; \
  237. default: (x) = __get_user_bad(); \
  238. } \
  239. } while (0)
  240. #define __get_user_nocheck(x, ptr, size) \
  241. ({ \
  242. long __gu_err; \
  243. unsigned long __gu_val; \
  244. const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \
  245. __chk_user_ptr(ptr); \
  246. if (!is_kernel_addr((unsigned long)__gu_addr)) \
  247. might_sleep(); \
  248. __get_user_size(__gu_val, __gu_addr, (size), __gu_err); \
  249. (x) = (__typeof__(*(ptr)))__gu_val; \
  250. __gu_err; \
  251. })
  252. #ifndef __powerpc64__
  253. #define __get_user64_nocheck(x, ptr, size) \
  254. ({ \
  255. long __gu_err; \
  256. long long __gu_val; \
  257. const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \
  258. __chk_user_ptr(ptr); \
  259. if (!is_kernel_addr((unsigned long)__gu_addr)) \
  260. might_sleep(); \
  261. __get_user_size(__gu_val, __gu_addr, (size), __gu_err); \
  262. (x) = (__typeof__(*(ptr)))__gu_val; \
  263. __gu_err; \
  264. })
  265. #endif /* __powerpc64__ */
  266. #define __get_user_check(x, ptr, size) \
  267. ({ \
  268. long __gu_err = -EFAULT; \
  269. unsigned long __gu_val = 0; \
  270. const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \
  271. might_sleep(); \
  272. if (access_ok(VERIFY_READ, __gu_addr, (size))) \
  273. __get_user_size(__gu_val, __gu_addr, (size), __gu_err); \
  274. (x) = (__typeof__(*(ptr)))__gu_val; \
  275. __gu_err; \
  276. })
  277. #define __get_user_nosleep(x, ptr, size) \
  278. ({ \
  279. long __gu_err; \
  280. unsigned long __gu_val; \
  281. const __typeof__(*(ptr)) __user *__gu_addr = (ptr); \
  282. __chk_user_ptr(ptr); \
  283. __get_user_size(__gu_val, __gu_addr, (size), __gu_err); \
  284. (x) = (__typeof__(*(ptr)))__gu_val; \
  285. __gu_err; \
  286. })
  287. /* more complex routines */
  288. extern unsigned long __copy_tofrom_user(void __user *to,
  289. const void __user *from, unsigned long size);
  290. #ifndef __powerpc64__
  291. static inline unsigned long copy_from_user(void *to,
  292. const void __user *from, unsigned long n)
  293. {
  294. unsigned long over;
  295. if (access_ok(VERIFY_READ, from, n))
  296. return __copy_tofrom_user((__force void __user *)to, from, n);
  297. if ((unsigned long)from < TASK_SIZE) {
  298. over = (unsigned long)from + n - TASK_SIZE;
  299. return __copy_tofrom_user((__force void __user *)to, from,
  300. n - over) + over;
  301. }
  302. return n;
  303. }
  304. static inline unsigned long copy_to_user(void __user *to,
  305. const void *from, unsigned long n)
  306. {
  307. unsigned long over;
  308. if (access_ok(VERIFY_WRITE, to, n))
  309. return __copy_tofrom_user(to, (__force void __user *)from, n);
  310. if ((unsigned long)to < TASK_SIZE) {
  311. over = (unsigned long)to + n - TASK_SIZE;
  312. return __copy_tofrom_user(to, (__force void __user *)from,
  313. n - over) + over;
  314. }
  315. return n;
  316. }
  317. #else /* __powerpc64__ */
  318. #define __copy_in_user(to, from, size) \
  319. __copy_tofrom_user((to), (from), (size))
  320. extern unsigned long copy_from_user(void *to, const void __user *from,
  321. unsigned long n);
  322. extern unsigned long copy_to_user(void __user *to, const void *from,
  323. unsigned long n);
  324. extern unsigned long copy_in_user(void __user *to, const void __user *from,
  325. unsigned long n);
  326. #endif /* __powerpc64__ */
  327. static inline unsigned long __copy_from_user_inatomic(void *to,
  328. const void __user *from, unsigned long n)
  329. {
  330. if (__builtin_constant_p(n) && (n <= 8)) {
  331. unsigned long ret = 1;
  332. switch (n) {
  333. case 1:
  334. __get_user_size(*(u8 *)to, from, 1, ret);
  335. break;
  336. case 2:
  337. __get_user_size(*(u16 *)to, from, 2, ret);
  338. break;
  339. case 4:
  340. __get_user_size(*(u32 *)to, from, 4, ret);
  341. break;
  342. case 8:
  343. __get_user_size(*(u64 *)to, from, 8, ret);
  344. break;
  345. }
  346. if (ret == 0)
  347. return 0;
  348. }
  349. return __copy_tofrom_user((__force void __user *)to, from, n);
  350. }
  351. static inline unsigned long __copy_to_user_inatomic(void __user *to,
  352. const void *from, unsigned long n)
  353. {
  354. if (__builtin_constant_p(n) && (n <= 8)) {
  355. unsigned long ret = 1;
  356. switch (n) {
  357. case 1:
  358. __put_user_size(*(u8 *)from, (u8 __user *)to, 1, ret);
  359. break;
  360. case 2:
  361. __put_user_size(*(u16 *)from, (u16 __user *)to, 2, ret);
  362. break;
  363. case 4:
  364. __put_user_size(*(u32 *)from, (u32 __user *)to, 4, ret);
  365. break;
  366. case 8:
  367. __put_user_size(*(u64 *)from, (u64 __user *)to, 8, ret);
  368. break;
  369. }
  370. if (ret == 0)
  371. return 0;
  372. }
  373. return __copy_tofrom_user(to, (__force const void __user *)from, n);
  374. }
  375. static inline unsigned long __copy_from_user(void *to,
  376. const void __user *from, unsigned long size)
  377. {
  378. might_sleep();
  379. return __copy_from_user_inatomic(to, from, size);
  380. }
  381. static inline unsigned long __copy_to_user(void __user *to,
  382. const void *from, unsigned long size)
  383. {
  384. might_sleep();
  385. return __copy_to_user_inatomic(to, from, size);
  386. }
  387. extern unsigned long __clear_user(void __user *addr, unsigned long size);
  388. static inline unsigned long clear_user(void __user *addr, unsigned long size)
  389. {
  390. might_sleep();
  391. if (likely(access_ok(VERIFY_WRITE, addr, size)))
  392. return __clear_user(addr, size);
  393. if ((unsigned long)addr < TASK_SIZE) {
  394. unsigned long over = (unsigned long)addr + size - TASK_SIZE;
  395. return __clear_user(addr, size - over) + over;
  396. }
  397. return size;
  398. }
  399. extern int __strncpy_from_user(char *dst, const char __user *src, long count);
  400. static inline long strncpy_from_user(char *dst, const char __user *src,
  401. long count)
  402. {
  403. might_sleep();
  404. if (likely(access_ok(VERIFY_READ, src, 1)))
  405. return __strncpy_from_user(dst, src, count);
  406. return -EFAULT;
  407. }
  408. /*
  409. * Return the size of a string (including the ending 0)
  410. *
  411. * Return 0 for error
  412. */
  413. extern int __strnlen_user(const char __user *str, long len, unsigned long top);
  414. /*
  415. * Returns the length of the string at str (including the null byte),
  416. * or 0 if we hit a page we can't access,
  417. * or something > len if we didn't find a null byte.
  418. *
  419. * The `top' parameter to __strnlen_user is to make sure that
  420. * we can never overflow from the user area into kernel space.
  421. */
  422. static inline int strnlen_user(const char __user *str, long len)
  423. {
  424. unsigned long top = current->thread.fs.seg;
  425. if ((unsigned long)str > top)
  426. return 0;
  427. return __strnlen_user(str, len, top);
  428. }
  429. #define strlen_user(str) strnlen_user((str), 0x7ffffffe)
  430. #endif /* __ASSEMBLY__ */
  431. #endif /* __KERNEL__ */
  432. #endif /* _ARCH_POWERPC_UACCESS_H */