mmu-hash64.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475
  1. #ifndef _ASM_POWERPC_MMU_HASH64_H_
  2. #define _ASM_POWERPC_MMU_HASH64_H_
  3. /*
  4. * PowerPC64 memory management structures
  5. *
  6. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  7. * PPC64 rework.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #include <asm/asm-compat.h>
  15. #include <asm/page.h>
  16. /*
  17. * Segment table
  18. */
  19. #define STE_ESID_V 0x80
  20. #define STE_ESID_KS 0x20
  21. #define STE_ESID_KP 0x10
  22. #define STE_ESID_N 0x08
  23. #define STE_VSID_SHIFT 12
  24. /* Location of cpu0's segment table */
  25. #define STAB0_PAGE 0x6
  26. #define STAB0_OFFSET (STAB0_PAGE << 12)
  27. #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
  28. #ifndef __ASSEMBLY__
  29. extern char initial_stab[];
  30. #endif /* ! __ASSEMBLY */
  31. /*
  32. * SLB
  33. */
  34. #define SLB_NUM_BOLTED 3
  35. #define SLB_CACHE_ENTRIES 8
  36. /* Bits in the SLB ESID word */
  37. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  38. /* Bits in the SLB VSID word */
  39. #define SLB_VSID_SHIFT 12
  40. #define SLB_VSID_SHIFT_1T 24
  41. #define SLB_VSID_SSIZE_SHIFT 62
  42. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  43. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  44. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  45. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  46. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  47. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  48. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  49. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  50. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  51. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  52. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  53. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  54. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  55. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  56. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  57. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  58. #define SLBIE_C (0x08000000)
  59. #define SLBIE_SSIZE_SHIFT 25
  60. /*
  61. * Hash table
  62. */
  63. #define HPTES_PER_GROUP 8
  64. #define HPTE_V_SSIZE_SHIFT 62
  65. #define HPTE_V_AVPN_SHIFT 7
  66. #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
  67. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  68. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  69. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  70. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  71. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  72. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  73. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  74. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  75. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  76. #define HPTE_R_RPN_SHIFT 12
  77. #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
  78. #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
  79. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  80. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  81. #define HPTE_R_C ASM_CONST(0x0000000000000080)
  82. #define HPTE_R_R ASM_CONST(0x0000000000000100)
  83. #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
  84. #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
  85. /* Values for PP (assumes Ks=0, Kp=1) */
  86. /* pp0 will always be 0 for linux */
  87. #define PP_RWXX 0 /* Supervisor read/write, User none */
  88. #define PP_RWRX 1 /* Supervisor read/write, User read */
  89. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  90. #define PP_RXRX 3 /* Supervisor read, User read */
  91. #ifndef __ASSEMBLY__
  92. struct hash_pte {
  93. unsigned long v;
  94. unsigned long r;
  95. };
  96. extern struct hash_pte *htab_address;
  97. extern unsigned long htab_size_bytes;
  98. extern unsigned long htab_hash_mask;
  99. /*
  100. * Page size definition
  101. *
  102. * shift : is the "PAGE_SHIFT" value for that page size
  103. * sllp : is a bit mask with the value of SLB L || LP to be or'ed
  104. * directly to a slbmte "vsid" value
  105. * penc : is the HPTE encoding mask for the "LP" field:
  106. *
  107. */
  108. struct mmu_psize_def
  109. {
  110. unsigned int shift; /* number of bits */
  111. unsigned int penc; /* HPTE encoding */
  112. unsigned int tlbiel; /* tlbiel supported for that page size */
  113. unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
  114. unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
  115. };
  116. #endif /* __ASSEMBLY__ */
  117. /*
  118. * The kernel use the constants below to index in the page sizes array.
  119. * The use of fixed constants for this purpose is better for performances
  120. * of the low level hash refill handlers.
  121. *
  122. * A non supported page size has a "shift" field set to 0
  123. *
  124. * Any new page size being implemented can get a new entry in here. Whether
  125. * the kernel will use it or not is a different matter though. The actual page
  126. * size used by hugetlbfs is not defined here and may be made variable
  127. */
  128. #define MMU_PAGE_4K 0 /* 4K */
  129. #define MMU_PAGE_64K 1 /* 64K */
  130. #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
  131. #define MMU_PAGE_1M 3 /* 1M */
  132. #define MMU_PAGE_16M 4 /* 16M */
  133. #define MMU_PAGE_16G 5 /* 16G */
  134. #define MMU_PAGE_COUNT 6
  135. /*
  136. * Segment sizes.
  137. * These are the values used by hardware in the B field of
  138. * SLB entries and the first dword of MMU hashtable entries.
  139. * The B field is 2 bits; the values 2 and 3 are unused and reserved.
  140. */
  141. #define MMU_SEGSIZE_256M 0
  142. #define MMU_SEGSIZE_1T 1
  143. #ifndef __ASSEMBLY__
  144. /*
  145. * The current system page and segment sizes
  146. */
  147. extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  148. extern int mmu_linear_psize;
  149. extern int mmu_virtual_psize;
  150. extern int mmu_vmalloc_psize;
  151. extern int mmu_vmemmap_psize;
  152. extern int mmu_io_psize;
  153. extern int mmu_kernel_ssize;
  154. extern int mmu_highuser_ssize;
  155. extern u16 mmu_slb_size;
  156. extern unsigned long tce_alloc_start, tce_alloc_end;
  157. /*
  158. * If the processor supports 64k normal pages but not 64k cache
  159. * inhibited pages, we have to be prepared to switch processes
  160. * to use 4k pages when they create cache-inhibited mappings.
  161. * If this is the case, mmu_ci_restrictions will be set to 1.
  162. */
  163. extern int mmu_ci_restrictions;
  164. #ifdef CONFIG_HUGETLB_PAGE
  165. /*
  166. * The page size indexes of the huge pages for use by hugetlbfs
  167. */
  168. extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT];
  169. #endif /* CONFIG_HUGETLB_PAGE */
  170. /*
  171. * This function sets the AVPN and L fields of the HPTE appropriately
  172. * for the page size
  173. */
  174. static inline unsigned long hpte_encode_v(unsigned long va, int psize,
  175. int ssize)
  176. {
  177. unsigned long v;
  178. v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
  179. v <<= HPTE_V_AVPN_SHIFT;
  180. if (psize != MMU_PAGE_4K)
  181. v |= HPTE_V_LARGE;
  182. v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
  183. return v;
  184. }
  185. /*
  186. * This function sets the ARPN, and LP fields of the HPTE appropriately
  187. * for the page size. We assume the pa is already "clean" that is properly
  188. * aligned for the requested page size
  189. */
  190. static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
  191. {
  192. unsigned long r;
  193. /* A 4K page needs no special encoding */
  194. if (psize == MMU_PAGE_4K)
  195. return pa & HPTE_R_RPN;
  196. else {
  197. unsigned int penc = mmu_psize_defs[psize].penc;
  198. unsigned int shift = mmu_psize_defs[psize].shift;
  199. return (pa & ~((1ul << shift) - 1)) | (penc << 12);
  200. }
  201. return r;
  202. }
  203. /*
  204. * Build a VA given VSID, EA and segment size
  205. */
  206. static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
  207. int ssize)
  208. {
  209. if (ssize == MMU_SEGSIZE_256M)
  210. return (vsid << 28) | (ea & 0xfffffffUL);
  211. return (vsid << 40) | (ea & 0xffffffffffUL);
  212. }
  213. /*
  214. * This hashes a virtual address
  215. */
  216. static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
  217. int ssize)
  218. {
  219. unsigned long hash, vsid;
  220. if (ssize == MMU_SEGSIZE_256M) {
  221. hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
  222. } else {
  223. vsid = va >> 40;
  224. hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
  225. }
  226. return hash & 0x7fffffffffUL;
  227. }
  228. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  229. unsigned long vsid, pte_t *ptep, unsigned long trap,
  230. unsigned int local, int ssize, int subpage_prot);
  231. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  232. unsigned long vsid, pte_t *ptep, unsigned long trap,
  233. unsigned int local, int ssize);
  234. struct mm_struct;
  235. extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
  236. extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
  237. unsigned long ea, unsigned long vsid, int local,
  238. unsigned long trap);
  239. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  240. unsigned long pstart, unsigned long prot,
  241. int psize, int ssize);
  242. extern void add_gpage(unsigned long addr, unsigned long page_size,
  243. unsigned long number_of_pages);
  244. extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
  245. extern void hpte_init_native(void);
  246. extern void hpte_init_lpar(void);
  247. extern void hpte_init_iSeries(void);
  248. extern void hpte_init_beat(void);
  249. extern void hpte_init_beat_v3(void);
  250. extern void stabs_alloc(void);
  251. extern void slb_initialize(void);
  252. extern void slb_flush_and_rebolt(void);
  253. extern void stab_initialize(unsigned long stab);
  254. extern void slb_vmalloc_update(void);
  255. #endif /* __ASSEMBLY__ */
  256. /*
  257. * VSID allocation
  258. *
  259. * We first generate a 36-bit "proto-VSID". For kernel addresses this
  260. * is equal to the ESID, for user addresses it is:
  261. * (context << 15) | (esid & 0x7fff)
  262. *
  263. * The two forms are distinguishable because the top bit is 0 for user
  264. * addresses, whereas the top two bits are 1 for kernel addresses.
  265. * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
  266. * now.
  267. *
  268. * The proto-VSIDs are then scrambled into real VSIDs with the
  269. * multiplicative hash:
  270. *
  271. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  272. * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
  273. * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
  274. *
  275. * This scramble is only well defined for proto-VSIDs below
  276. * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
  277. * reserved. VSID_MULTIPLIER is prime, so in particular it is
  278. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  279. * Because the modulus is 2^n-1 we can compute it efficiently without
  280. * a divide or extra multiply (see below).
  281. *
  282. * This scheme has several advantages over older methods:
  283. *
  284. * - We have VSIDs allocated for every kernel address
  285. * (i.e. everything above 0xC000000000000000), except the very top
  286. * segment, which simplifies several things.
  287. *
  288. * - We allow for 15 significant bits of ESID and 20 bits of
  289. * context for user addresses. i.e. 8T (43 bits) of address space for
  290. * up to 1M contexts (although the page table structure and context
  291. * allocation will need changes to take advantage of this).
  292. *
  293. * - The scramble function gives robust scattering in the hash
  294. * table (at least based on some initial results). The previous
  295. * method was more susceptible to pathological cases giving excessive
  296. * hash collisions.
  297. */
  298. /*
  299. * WARNING - If you change these you must make sure the asm
  300. * implementations in slb_allocate (slb_low.S), do_stab_bolted
  301. * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
  302. *
  303. * You'll also need to change the precomputed VSID values in head.S
  304. * which are used by the iSeries firmware.
  305. */
  306. #define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
  307. #define VSID_BITS_256M 36
  308. #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
  309. #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
  310. #define VSID_BITS_1T 24
  311. #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
  312. #define CONTEXT_BITS 19
  313. #define USER_ESID_BITS 16
  314. #define USER_ESID_BITS_1T 4
  315. #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
  316. /*
  317. * This macro generates asm code to compute the VSID scramble
  318. * function. Used in slb_allocate() and do_stab_bolted. The function
  319. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  320. *
  321. * rt = register continaing the proto-VSID and into which the
  322. * VSID will be stored
  323. * rx = scratch register (clobbered)
  324. *
  325. * - rt and rx must be different registers
  326. * - The answer will end up in the low VSID_BITS bits of rt. The higher
  327. * bits may contain other garbage, so you may need to mask the
  328. * result.
  329. */
  330. #define ASM_VSID_SCRAMBLE(rt, rx, size) \
  331. lis rx,VSID_MULTIPLIER_##size@h; \
  332. ori rx,rx,VSID_MULTIPLIER_##size@l; \
  333. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  334. \
  335. srdi rx,rt,VSID_BITS_##size; \
  336. clrldi rt,rt,(64-VSID_BITS_##size); \
  337. add rt,rt,rx; /* add high and low bits */ \
  338. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  339. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  340. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  341. * the bit clear, r3 already has the answer we want, if it \
  342. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  343. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  344. addi rx,rt,1; \
  345. srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
  346. add rt,rt,rx
  347. #ifndef __ASSEMBLY__
  348. typedef unsigned long mm_context_id_t;
  349. typedef struct {
  350. mm_context_id_t id;
  351. u16 user_psize; /* page size index */
  352. #ifdef CONFIG_PPC_MM_SLICES
  353. u64 low_slices_psize; /* SLB page size encodings */
  354. u64 high_slices_psize; /* 4 bits per slice for now */
  355. #else
  356. u16 sllp; /* SLB page size encoding */
  357. #endif
  358. unsigned long vdso_base;
  359. } mm_context_t;
  360. #if 0
  361. /*
  362. * The code below is equivalent to this function for arguments
  363. * < 2^VSID_BITS, which is all this should ever be called
  364. * with. However gcc is not clever enough to compute the
  365. * modulus (2^n-1) without a second multiply.
  366. */
  367. #define vsid_scrample(protovsid, size) \
  368. ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
  369. #else /* 1 */
  370. #define vsid_scramble(protovsid, size) \
  371. ({ \
  372. unsigned long x; \
  373. x = (protovsid) * VSID_MULTIPLIER_##size; \
  374. x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
  375. (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
  376. })
  377. #endif /* 1 */
  378. /* This is only valid for addresses >= PAGE_OFFSET */
  379. static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
  380. {
  381. if (ssize == MMU_SEGSIZE_256M)
  382. return vsid_scramble(ea >> SID_SHIFT, 256M);
  383. return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
  384. }
  385. /* Returns the segment size indicator for a user address */
  386. static inline int user_segment_size(unsigned long addr)
  387. {
  388. /* Use 1T segments if possible for addresses >= 1T */
  389. if (addr >= (1UL << SID_SHIFT_1T))
  390. return mmu_highuser_ssize;
  391. return MMU_SEGSIZE_256M;
  392. }
  393. /* This is only valid for user addresses (which are below 2^44) */
  394. static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
  395. int ssize)
  396. {
  397. if (ssize == MMU_SEGSIZE_256M)
  398. return vsid_scramble((context << USER_ESID_BITS)
  399. | (ea >> SID_SHIFT), 256M);
  400. return vsid_scramble((context << USER_ESID_BITS_1T)
  401. | (ea >> SID_SHIFT_1T), 1T);
  402. }
  403. /*
  404. * This is only used on legacy iSeries in lparmap.c,
  405. * hence the 256MB segment assumption.
  406. */
  407. #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
  408. VSID_MODULUS_256M)
  409. #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
  410. #endif /* __ASSEMBLY__ */
  411. #endif /* _ASM_POWERPC_MMU_HASH64_H_ */