4xx.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. /*
  2. * Copyright 2007 David Gibson, IBM Corporation.
  3. *
  4. * Based on earlier code:
  5. * Matt Porter <mporter@kernel.crashing.org>
  6. * Copyright 2002-2005 MontaVista Software Inc.
  7. *
  8. * Eugene Surovegin <eugene.surovegin@zultys.com> or <ebs@ebshome.net>
  9. * Copyright (c) 2003, 2004 Zultys Technologies
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #include <stddef.h>
  17. #include "types.h"
  18. #include "string.h"
  19. #include "stdio.h"
  20. #include "ops.h"
  21. #include "reg.h"
  22. #include "dcr.h"
  23. static unsigned long chip_11_errata(unsigned long memsize)
  24. {
  25. unsigned long pvr;
  26. pvr = mfpvr();
  27. switch (pvr & 0xf0000ff0) {
  28. case 0x40000850:
  29. case 0x400008d0:
  30. case 0x200008d0:
  31. memsize -= 4096;
  32. break;
  33. default:
  34. break;
  35. }
  36. return memsize;
  37. }
  38. /* Read the 4xx SDRAM controller to get size of system memory. */
  39. void ibm4xx_sdram_fixup_memsize(void)
  40. {
  41. int i;
  42. unsigned long memsize, bank_config;
  43. memsize = 0;
  44. for (i = 0; i < ARRAY_SIZE(sdram_bxcr); i++) {
  45. bank_config = SDRAM0_READ(sdram_bxcr[i]);
  46. if (bank_config & SDRAM_CONFIG_BANK_ENABLE)
  47. memsize += SDRAM_CONFIG_BANK_SIZE(bank_config);
  48. }
  49. memsize = chip_11_errata(memsize);
  50. dt_fixup_memory(0, memsize);
  51. }
  52. /* Read the 440SPe MQ controller to get size of system memory. */
  53. #define DCRN_MQ0_B0BAS 0x40
  54. #define DCRN_MQ0_B1BAS 0x41
  55. #define DCRN_MQ0_B2BAS 0x42
  56. #define DCRN_MQ0_B3BAS 0x43
  57. static u64 ibm440spe_decode_bas(u32 bas)
  58. {
  59. u64 base = ((u64)(bas & 0xFFE00000u)) << 2;
  60. /* open coded because I'm paranoid about invalid values */
  61. switch ((bas >> 4) & 0xFFF) {
  62. case 0:
  63. return 0;
  64. case 0xffc:
  65. return base + 0x000800000ull;
  66. case 0xff8:
  67. return base + 0x001000000ull;
  68. case 0xff0:
  69. return base + 0x002000000ull;
  70. case 0xfe0:
  71. return base + 0x004000000ull;
  72. case 0xfc0:
  73. return base + 0x008000000ull;
  74. case 0xf80:
  75. return base + 0x010000000ull;
  76. case 0xf00:
  77. return base + 0x020000000ull;
  78. case 0xe00:
  79. return base + 0x040000000ull;
  80. case 0xc00:
  81. return base + 0x080000000ull;
  82. case 0x800:
  83. return base + 0x100000000ull;
  84. }
  85. printf("Memory BAS value 0x%08x unsupported !\n", bas);
  86. return 0;
  87. }
  88. void ibm440spe_fixup_memsize(void)
  89. {
  90. u64 banktop, memsize = 0;
  91. /* Ultimately, we should directly construct the memory node
  92. * so we are able to handle holes in the memory address space
  93. */
  94. banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B0BAS));
  95. if (banktop > memsize)
  96. memsize = banktop;
  97. banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B1BAS));
  98. if (banktop > memsize)
  99. memsize = banktop;
  100. banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B2BAS));
  101. if (banktop > memsize)
  102. memsize = banktop;
  103. banktop = ibm440spe_decode_bas(mfdcr(DCRN_MQ0_B3BAS));
  104. if (banktop > memsize)
  105. memsize = banktop;
  106. dt_fixup_memory(0, memsize);
  107. }
  108. /* 4xx DDR1/2 Denali memory controller support */
  109. /* DDR0 registers */
  110. #define DDR0_02 2
  111. #define DDR0_08 8
  112. #define DDR0_10 10
  113. #define DDR0_14 14
  114. #define DDR0_42 42
  115. #define DDR0_43 43
  116. /* DDR0_02 */
  117. #define DDR_START 0x1
  118. #define DDR_START_SHIFT 0
  119. #define DDR_MAX_CS_REG 0x3
  120. #define DDR_MAX_CS_REG_SHIFT 24
  121. #define DDR_MAX_COL_REG 0xf
  122. #define DDR_MAX_COL_REG_SHIFT 16
  123. #define DDR_MAX_ROW_REG 0xf
  124. #define DDR_MAX_ROW_REG_SHIFT 8
  125. /* DDR0_08 */
  126. #define DDR_DDR2_MODE 0x1
  127. #define DDR_DDR2_MODE_SHIFT 0
  128. /* DDR0_10 */
  129. #define DDR_CS_MAP 0x3
  130. #define DDR_CS_MAP_SHIFT 8
  131. /* DDR0_14 */
  132. #define DDR_REDUC 0x1
  133. #define DDR_REDUC_SHIFT 16
  134. /* DDR0_42 */
  135. #define DDR_APIN 0x7
  136. #define DDR_APIN_SHIFT 24
  137. /* DDR0_43 */
  138. #define DDR_COL_SZ 0x7
  139. #define DDR_COL_SZ_SHIFT 8
  140. #define DDR_BANK8 0x1
  141. #define DDR_BANK8_SHIFT 0
  142. #define DDR_GET_VAL(val, mask, shift) (((val) >> (shift)) & (mask))
  143. void ibm4xx_denali_fixup_memsize(void)
  144. {
  145. u32 val, max_cs, max_col, max_row;
  146. u32 cs, col, row, bank, dpath;
  147. unsigned long memsize;
  148. val = SDRAM0_READ(DDR0_02);
  149. if (!DDR_GET_VAL(val, DDR_START, DDR_START_SHIFT))
  150. fatal("DDR controller is not initialized\n");
  151. /* get maximum cs col and row values */
  152. max_cs = DDR_GET_VAL(val, DDR_MAX_CS_REG, DDR_MAX_CS_REG_SHIFT);
  153. max_col = DDR_GET_VAL(val, DDR_MAX_COL_REG, DDR_MAX_COL_REG_SHIFT);
  154. max_row = DDR_GET_VAL(val, DDR_MAX_ROW_REG, DDR_MAX_ROW_REG_SHIFT);
  155. /* get CS value */
  156. val = SDRAM0_READ(DDR0_10);
  157. val = DDR_GET_VAL(val, DDR_CS_MAP, DDR_CS_MAP_SHIFT);
  158. cs = 0;
  159. while (val) {
  160. if (val & 0x1)
  161. cs++;
  162. val = val >> 1;
  163. }
  164. if (!cs)
  165. fatal("No memory installed\n");
  166. if (cs > max_cs)
  167. fatal("DDR wrong CS configuration\n");
  168. /* get data path bytes */
  169. val = SDRAM0_READ(DDR0_14);
  170. if (DDR_GET_VAL(val, DDR_REDUC, DDR_REDUC_SHIFT))
  171. dpath = 8; /* 64 bits */
  172. else
  173. dpath = 4; /* 32 bits */
  174. /* get address pins (rows) */
  175. val = SDRAM0_READ(DDR0_42);
  176. row = DDR_GET_VAL(val, DDR_APIN, DDR_APIN_SHIFT);
  177. if (row > max_row)
  178. fatal("DDR wrong APIN configuration\n");
  179. row = max_row - row;
  180. /* get collomn size and banks */
  181. val = SDRAM0_READ(DDR0_43);
  182. col = DDR_GET_VAL(val, DDR_COL_SZ, DDR_COL_SZ_SHIFT);
  183. if (col > max_col)
  184. fatal("DDR wrong COL configuration\n");
  185. col = max_col - col;
  186. if (DDR_GET_VAL(val, DDR_BANK8, DDR_BANK8_SHIFT))
  187. bank = 8; /* 8 banks */
  188. else
  189. bank = 4; /* 4 banks */
  190. memsize = cs * (1 << (col+row)) * bank * dpath;
  191. memsize = chip_11_errata(memsize);
  192. dt_fixup_memory(0, memsize);
  193. }
  194. #define SPRN_DBCR0_40X 0x3F2
  195. #define SPRN_DBCR0_44X 0x134
  196. #define DBCR0_RST_SYSTEM 0x30000000
  197. void ibm44x_dbcr_reset(void)
  198. {
  199. unsigned long tmp;
  200. asm volatile (
  201. "mfspr %0,%1\n"
  202. "oris %0,%0,%2@h\n"
  203. "mtspr %1,%0"
  204. : "=&r"(tmp) : "i"(SPRN_DBCR0_44X), "i"(DBCR0_RST_SYSTEM)
  205. );
  206. }
  207. void ibm40x_dbcr_reset(void)
  208. {
  209. unsigned long tmp;
  210. asm volatile (
  211. "mfspr %0,%1\n"
  212. "oris %0,%0,%2@h\n"
  213. "mtspr %1,%0"
  214. : "=&r"(tmp) : "i"(SPRN_DBCR0_40X), "i"(DBCR0_RST_SYSTEM)
  215. );
  216. }
  217. #define EMAC_RESET 0x20000000
  218. void ibm4xx_quiesce_eth(u32 *emac0, u32 *emac1)
  219. {
  220. /* Quiesce the MAL and EMAC(s) since PIBS/OpenBIOS don't
  221. * do this for us
  222. */
  223. if (emac0)
  224. *emac0 = EMAC_RESET;
  225. if (emac1)
  226. *emac1 = EMAC_RESET;
  227. mtdcr(DCRN_MAL0_CFG, MAL_RESET);
  228. while (mfdcr(DCRN_MAL0_CFG) & MAL_RESET)
  229. ; /* loop until reset takes effect */
  230. }
  231. /* Read 4xx EBC bus bridge registers to get mappings of the peripheral
  232. * banks into the OPB address space */
  233. void ibm4xx_fixup_ebc_ranges(const char *ebc)
  234. {
  235. void *devp;
  236. u32 bxcr;
  237. u32 ranges[EBC_NUM_BANKS*4];
  238. u32 *p = ranges;
  239. int i;
  240. for (i = 0; i < EBC_NUM_BANKS; i++) {
  241. mtdcr(DCRN_EBC0_CFGADDR, EBC_BXCR(i));
  242. bxcr = mfdcr(DCRN_EBC0_CFGDATA);
  243. if ((bxcr & EBC_BXCR_BU) != EBC_BXCR_BU_OFF) {
  244. *p++ = i;
  245. *p++ = 0;
  246. *p++ = bxcr & EBC_BXCR_BAS;
  247. *p++ = EBC_BXCR_BANK_SIZE(bxcr);
  248. }
  249. }
  250. devp = finddevice(ebc);
  251. if (! devp)
  252. fatal("Couldn't locate EBC node %s\n\r", ebc);
  253. setprop(devp, "ranges", ranges, (p - ranges) * sizeof(u32));
  254. }
  255. /* Calculate 440GP clocks */
  256. void ibm440gp_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk)
  257. {
  258. u32 sys0 = mfdcr(DCRN_CPC0_SYS0);
  259. u32 cr0 = mfdcr(DCRN_CPC0_CR0);
  260. u32 cpu, plb, opb, ebc, tb, uart0, uart1, m;
  261. u32 opdv = CPC0_SYS0_OPDV(sys0);
  262. u32 epdv = CPC0_SYS0_EPDV(sys0);
  263. if (sys0 & CPC0_SYS0_BYPASS) {
  264. /* Bypass system PLL */
  265. cpu = plb = sys_clk;
  266. } else {
  267. if (sys0 & CPC0_SYS0_EXTSL)
  268. /* PerClk */
  269. m = CPC0_SYS0_FWDVB(sys0) * opdv * epdv;
  270. else
  271. /* CPU clock */
  272. m = CPC0_SYS0_FBDV(sys0) * CPC0_SYS0_FWDVA(sys0);
  273. cpu = sys_clk * m / CPC0_SYS0_FWDVA(sys0);
  274. plb = sys_clk * m / CPC0_SYS0_FWDVB(sys0);
  275. }
  276. opb = plb / opdv;
  277. ebc = opb / epdv;
  278. /* FIXME: Check if this is for all 440GP, or just Ebony */
  279. if ((mfpvr() & 0xf0000fff) == 0x40000440)
  280. /* Rev. B 440GP, use external system clock */
  281. tb = sys_clk;
  282. else
  283. /* Rev. C 440GP, errata force us to use internal clock */
  284. tb = cpu;
  285. if (cr0 & CPC0_CR0_U0EC)
  286. /* External UART clock */
  287. uart0 = ser_clk;
  288. else
  289. /* Internal UART clock */
  290. uart0 = plb / CPC0_CR0_UDIV(cr0);
  291. if (cr0 & CPC0_CR0_U1EC)
  292. /* External UART clock */
  293. uart1 = ser_clk;
  294. else
  295. /* Internal UART clock */
  296. uart1 = plb / CPC0_CR0_UDIV(cr0);
  297. printf("PPC440GP: SysClk = %dMHz (%x)\n\r",
  298. (sys_clk + 500000) / 1000000, sys_clk);
  299. dt_fixup_cpu_clocks(cpu, tb, 0);
  300. dt_fixup_clock("/plb", plb);
  301. dt_fixup_clock("/plb/opb", opb);
  302. dt_fixup_clock("/plb/opb/ebc", ebc);
  303. dt_fixup_clock("/plb/opb/serial@40000200", uart0);
  304. dt_fixup_clock("/plb/opb/serial@40000300", uart1);
  305. }
  306. #define SPRN_CCR1 0x378
  307. static inline u32 __fix_zero(u32 v, u32 def)
  308. {
  309. return v ? v : def;
  310. }
  311. static unsigned int __ibm440eplike_fixup_clocks(unsigned int sys_clk,
  312. unsigned int tmr_clk,
  313. int per_clk_from_opb)
  314. {
  315. /* PLL config */
  316. u32 pllc = CPR0_READ(DCRN_CPR0_PLLC);
  317. u32 plld = CPR0_READ(DCRN_CPR0_PLLD);
  318. /* Dividers */
  319. u32 fbdv = __fix_zero((plld >> 24) & 0x1f, 32);
  320. u32 fwdva = __fix_zero((plld >> 16) & 0xf, 16);
  321. u32 fwdvb = __fix_zero((plld >> 8) & 7, 8);
  322. u32 lfbdv = __fix_zero(plld & 0x3f, 64);
  323. u32 pradv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PRIMAD) >> 24) & 7, 8);
  324. u32 prbdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PRIMBD) >> 24) & 7, 8);
  325. u32 opbdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_OPBD) >> 24) & 3, 4);
  326. u32 perdv0 = __fix_zero((CPR0_READ(DCRN_CPR0_PERD) >> 24) & 3, 4);
  327. /* Input clocks for primary dividers */
  328. u32 clk_a, clk_b;
  329. /* Resulting clocks */
  330. u32 cpu, plb, opb, ebc, vco;
  331. /* Timebase */
  332. u32 ccr1, tb = tmr_clk;
  333. if (pllc & 0x40000000) {
  334. u32 m;
  335. /* Feedback path */
  336. switch ((pllc >> 24) & 7) {
  337. case 0:
  338. /* PLLOUTx */
  339. m = ((pllc & 0x20000000) ? fwdvb : fwdva) * lfbdv;
  340. break;
  341. case 1:
  342. /* CPU */
  343. m = fwdva * pradv0;
  344. break;
  345. case 5:
  346. /* PERClk */
  347. m = fwdvb * prbdv0 * opbdv0 * perdv0;
  348. break;
  349. default:
  350. printf("WARNING ! Invalid PLL feedback source !\n");
  351. goto bypass;
  352. }
  353. m *= fbdv;
  354. vco = sys_clk * m;
  355. clk_a = vco / fwdva;
  356. clk_b = vco / fwdvb;
  357. } else {
  358. bypass:
  359. /* Bypass system PLL */
  360. vco = 0;
  361. clk_a = clk_b = sys_clk;
  362. }
  363. cpu = clk_a / pradv0;
  364. plb = clk_b / prbdv0;
  365. opb = plb / opbdv0;
  366. ebc = (per_clk_from_opb ? opb : plb) / perdv0;
  367. /* Figure out timebase. Either CPU or default TmrClk */
  368. ccr1 = mfspr(SPRN_CCR1);
  369. /* If passed a 0 tmr_clk, force CPU clock */
  370. if (tb == 0) {
  371. ccr1 &= ~0x80u;
  372. mtspr(SPRN_CCR1, ccr1);
  373. }
  374. if ((ccr1 & 0x0080) == 0)
  375. tb = cpu;
  376. dt_fixup_cpu_clocks(cpu, tb, 0);
  377. dt_fixup_clock("/plb", plb);
  378. dt_fixup_clock("/plb/opb", opb);
  379. dt_fixup_clock("/plb/opb/ebc", ebc);
  380. return plb;
  381. }
  382. static void eplike_fixup_uart_clk(int index, const char *path,
  383. unsigned int ser_clk,
  384. unsigned int plb_clk)
  385. {
  386. unsigned int sdr;
  387. unsigned int clock;
  388. switch (index) {
  389. case 0:
  390. sdr = SDR0_READ(DCRN_SDR0_UART0);
  391. break;
  392. case 1:
  393. sdr = SDR0_READ(DCRN_SDR0_UART1);
  394. break;
  395. case 2:
  396. sdr = SDR0_READ(DCRN_SDR0_UART2);
  397. break;
  398. case 3:
  399. sdr = SDR0_READ(DCRN_SDR0_UART3);
  400. break;
  401. default:
  402. return;
  403. }
  404. if (sdr & 0x00800000u)
  405. clock = ser_clk;
  406. else
  407. clock = plb_clk / __fix_zero(sdr & 0xff, 256);
  408. dt_fixup_clock(path, clock);
  409. }
  410. void ibm440ep_fixup_clocks(unsigned int sys_clk,
  411. unsigned int ser_clk,
  412. unsigned int tmr_clk)
  413. {
  414. unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 0);
  415. /* serial clocks beed fixup based on int/ext */
  416. eplike_fixup_uart_clk(0, "/plb/opb/serial@ef600300", ser_clk, plb_clk);
  417. eplike_fixup_uart_clk(1, "/plb/opb/serial@ef600400", ser_clk, plb_clk);
  418. eplike_fixup_uart_clk(2, "/plb/opb/serial@ef600500", ser_clk, plb_clk);
  419. eplike_fixup_uart_clk(3, "/plb/opb/serial@ef600600", ser_clk, plb_clk);
  420. }
  421. void ibm440gx_fixup_clocks(unsigned int sys_clk,
  422. unsigned int ser_clk,
  423. unsigned int tmr_clk)
  424. {
  425. unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 1);
  426. /* serial clocks beed fixup based on int/ext */
  427. eplike_fixup_uart_clk(0, "/plb/opb/serial@40000200", ser_clk, plb_clk);
  428. eplike_fixup_uart_clk(1, "/plb/opb/serial@40000300", ser_clk, plb_clk);
  429. }
  430. void ibm440spe_fixup_clocks(unsigned int sys_clk,
  431. unsigned int ser_clk,
  432. unsigned int tmr_clk)
  433. {
  434. unsigned int plb_clk = __ibm440eplike_fixup_clocks(sys_clk, tmr_clk, 1);
  435. /* serial clocks beed fixup based on int/ext */
  436. eplike_fixup_uart_clk(0, "/plb/opb/serial@10000200", ser_clk, plb_clk);
  437. eplike_fixup_uart_clk(1, "/plb/opb/serial@10000300", ser_clk, plb_clk);
  438. eplike_fixup_uart_clk(2, "/plb/opb/serial@10000600", ser_clk, plb_clk);
  439. }
  440. void ibm405gp_fixup_clocks(unsigned int sys_clk, unsigned int ser_clk)
  441. {
  442. u32 pllmr = mfdcr(DCRN_CPC0_PLLMR);
  443. u32 cpc0_cr0 = mfdcr(DCRN_405_CPC0_CR0);
  444. u32 cpc0_cr1 = mfdcr(DCRN_405_CPC0_CR1);
  445. u32 psr = mfdcr(DCRN_405_CPC0_PSR);
  446. u32 cpu, plb, opb, ebc, tb, uart0, uart1, m;
  447. u32 fwdv, fwdvb, fbdv, cbdv, opdv, epdv, ppdv, udiv;
  448. fwdv = (8 - ((pllmr & 0xe0000000) >> 29));
  449. fbdv = (pllmr & 0x1e000000) >> 25;
  450. if (fbdv == 0)
  451. fbdv = 16;
  452. cbdv = ((pllmr & 0x00060000) >> 17) + 1; /* CPU:PLB */
  453. opdv = ((pllmr & 0x00018000) >> 15) + 1; /* PLB:OPB */
  454. ppdv = ((pllmr & 0x00001800) >> 13) + 1; /* PLB:PCI */
  455. epdv = ((pllmr & 0x00001800) >> 11) + 2; /* PLB:EBC */
  456. udiv = ((cpc0_cr0 & 0x3e) >> 1) + 1;
  457. /* check for 405GPr */
  458. if ((mfpvr() & 0xfffffff0) == (0x50910951 & 0xfffffff0)) {
  459. fwdvb = 8 - (pllmr & 0x00000007);
  460. if (!(psr & 0x00001000)) /* PCI async mode enable == 0 */
  461. if (psr & 0x00000020) /* New mode enable */
  462. m = fwdvb * 2 * ppdv;
  463. else
  464. m = fwdvb * cbdv * ppdv;
  465. else if (psr & 0x00000020) /* New mode enable */
  466. if (psr & 0x00000800) /* PerClk synch mode */
  467. m = fwdvb * 2 * epdv;
  468. else
  469. m = fbdv * fwdv;
  470. else if (epdv == fbdv)
  471. m = fbdv * cbdv * epdv;
  472. else
  473. m = fbdv * fwdvb * cbdv;
  474. cpu = sys_clk * m / fwdv;
  475. plb = sys_clk * m / (fwdvb * cbdv);
  476. } else {
  477. m = fwdv * fbdv * cbdv;
  478. cpu = sys_clk * m / fwdv;
  479. plb = cpu / cbdv;
  480. }
  481. opb = plb / opdv;
  482. ebc = plb / epdv;
  483. if (cpc0_cr0 & 0x80)
  484. /* uart0 uses the external clock */
  485. uart0 = ser_clk;
  486. else
  487. uart0 = cpu / udiv;
  488. if (cpc0_cr0 & 0x40)
  489. /* uart1 uses the external clock */
  490. uart1 = ser_clk;
  491. else
  492. uart1 = cpu / udiv;
  493. /* setup the timebase clock to tick at the cpu frequency */
  494. cpc0_cr1 = cpc0_cr1 & ~0x00800000;
  495. mtdcr(DCRN_405_CPC0_CR1, cpc0_cr1);
  496. tb = cpu;
  497. dt_fixup_cpu_clocks(cpu, tb, 0);
  498. dt_fixup_clock("/plb", plb);
  499. dt_fixup_clock("/plb/opb", opb);
  500. dt_fixup_clock("/plb/ebc", ebc);
  501. dt_fixup_clock("/plb/opb/serial@ef600300", uart0);
  502. dt_fixup_clock("/plb/opb/serial@ef600400", uart1);
  503. }
  504. void ibm405ep_fixup_clocks(unsigned int sys_clk)
  505. {
  506. u32 pllmr0 = mfdcr(DCRN_CPC0_PLLMR0);
  507. u32 pllmr1 = mfdcr(DCRN_CPC0_PLLMR1);
  508. u32 cpc0_ucr = mfdcr(DCRN_CPC0_UCR);
  509. u32 cpu, plb, opb, ebc, uart0, uart1;
  510. u32 fwdva, fwdvb, fbdv, cbdv, opdv, epdv;
  511. u32 pllmr0_ccdv, tb, m;
  512. fwdva = 8 - ((pllmr1 & 0x00070000) >> 16);
  513. fwdvb = 8 - ((pllmr1 & 0x00007000) >> 12);
  514. fbdv = (pllmr1 & 0x00f00000) >> 20;
  515. if (fbdv == 0)
  516. fbdv = 16;
  517. cbdv = ((pllmr0 & 0x00030000) >> 16) + 1; /* CPU:PLB */
  518. epdv = ((pllmr0 & 0x00000300) >> 8) + 2; /* PLB:EBC */
  519. opdv = ((pllmr0 & 0x00003000) >> 12) + 1; /* PLB:OPB */
  520. m = fbdv * fwdvb;
  521. pllmr0_ccdv = ((pllmr0 & 0x00300000) >> 20) + 1;
  522. if (pllmr1 & 0x80000000)
  523. cpu = sys_clk * m / (fwdva * pllmr0_ccdv);
  524. else
  525. cpu = sys_clk / pllmr0_ccdv;
  526. plb = cpu / cbdv;
  527. opb = plb / opdv;
  528. ebc = plb / epdv;
  529. tb = cpu;
  530. uart0 = cpu / (cpc0_ucr & 0x0000007f);
  531. uart1 = cpu / ((cpc0_ucr & 0x00007f00) >> 8);
  532. dt_fixup_cpu_clocks(cpu, tb, 0);
  533. dt_fixup_clock("/plb", plb);
  534. dt_fixup_clock("/plb/opb", opb);
  535. dt_fixup_clock("/plb/ebc", ebc);
  536. dt_fixup_clock("/plb/opb/serial@ef600300", uart0);
  537. dt_fixup_clock("/plb/opb/serial@ef600400", uart1);
  538. }