kvm-ia64.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/fs.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/iommu.h>
  34. #include <linux/intel-iommu.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/gcc_intrin.h>
  37. #include <asm/pal.h>
  38. #include <asm/cacheflush.h>
  39. #include <asm/div64.h>
  40. #include <asm/tlb.h>
  41. #include <asm/elf.h>
  42. #include "misc.h"
  43. #include "vti.h"
  44. #include "iodev.h"
  45. #include "ioapic.h"
  46. #include "lapic.h"
  47. #include "irq.h"
  48. static unsigned long kvm_vmm_base;
  49. static unsigned long kvm_vsa_base;
  50. static unsigned long kvm_vm_buffer;
  51. static unsigned long kvm_vm_buffer_size;
  52. unsigned long kvm_vmm_gp;
  53. static long vp_env_info;
  54. static struct kvm_vmm_info *kvm_vmm_info;
  55. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  56. struct kvm_stats_debugfs_item debugfs_entries[] = {
  57. { NULL }
  58. };
  59. static void kvm_flush_icache(unsigned long start, unsigned long len)
  60. {
  61. int l;
  62. for (l = 0; l < (len + 32); l += 32)
  63. ia64_fc((void *)(start + l));
  64. ia64_sync_i();
  65. ia64_srlz_i();
  66. }
  67. static void kvm_flush_tlb_all(void)
  68. {
  69. unsigned long i, j, count0, count1, stride0, stride1, addr;
  70. long flags;
  71. addr = local_cpu_data->ptce_base;
  72. count0 = local_cpu_data->ptce_count[0];
  73. count1 = local_cpu_data->ptce_count[1];
  74. stride0 = local_cpu_data->ptce_stride[0];
  75. stride1 = local_cpu_data->ptce_stride[1];
  76. local_irq_save(flags);
  77. for (i = 0; i < count0; ++i) {
  78. for (j = 0; j < count1; ++j) {
  79. ia64_ptce(addr);
  80. addr += stride1;
  81. }
  82. addr += stride0;
  83. }
  84. local_irq_restore(flags);
  85. ia64_srlz_i(); /* srlz.i implies srlz.d */
  86. }
  87. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  88. {
  89. struct ia64_pal_retval iprv;
  90. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  91. (u64)opt_handler);
  92. return iprv.status;
  93. }
  94. static DEFINE_SPINLOCK(vp_lock);
  95. void kvm_arch_hardware_enable(void *garbage)
  96. {
  97. long status;
  98. long tmp_base;
  99. unsigned long pte;
  100. unsigned long saved_psr;
  101. int slot;
  102. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  103. PAGE_KERNEL));
  104. local_irq_save(saved_psr);
  105. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  106. local_irq_restore(saved_psr);
  107. if (slot < 0)
  108. return;
  109. spin_lock(&vp_lock);
  110. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  111. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  112. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  113. if (status != 0) {
  114. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  115. return ;
  116. }
  117. if (!kvm_vsa_base) {
  118. kvm_vsa_base = tmp_base;
  119. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  120. }
  121. spin_unlock(&vp_lock);
  122. ia64_ptr_entry(0x3, slot);
  123. }
  124. void kvm_arch_hardware_disable(void *garbage)
  125. {
  126. long status;
  127. int slot;
  128. unsigned long pte;
  129. unsigned long saved_psr;
  130. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  131. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  132. PAGE_KERNEL));
  133. local_irq_save(saved_psr);
  134. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  135. local_irq_restore(saved_psr);
  136. if (slot < 0)
  137. return;
  138. status = ia64_pal_vp_exit_env(host_iva);
  139. if (status)
  140. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  141. status);
  142. ia64_ptr_entry(0x3, slot);
  143. }
  144. void kvm_arch_check_processor_compat(void *rtn)
  145. {
  146. *(int *)rtn = 0;
  147. }
  148. int kvm_dev_ioctl_check_extension(long ext)
  149. {
  150. int r;
  151. switch (ext) {
  152. case KVM_CAP_IRQCHIP:
  153. case KVM_CAP_MP_STATE:
  154. case KVM_CAP_IRQ_INJECT_STATUS:
  155. r = 1;
  156. break;
  157. case KVM_CAP_COALESCED_MMIO:
  158. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  159. break;
  160. case KVM_CAP_IOMMU:
  161. r = iommu_found();
  162. break;
  163. default:
  164. r = 0;
  165. }
  166. return r;
  167. }
  168. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  169. gpa_t addr, int len, int is_write)
  170. {
  171. struct kvm_io_device *dev;
  172. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
  173. return dev;
  174. }
  175. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  176. {
  177. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  178. kvm_run->hw.hardware_exit_reason = 1;
  179. return 0;
  180. }
  181. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  182. {
  183. struct kvm_mmio_req *p;
  184. struct kvm_io_device *mmio_dev;
  185. p = kvm_get_vcpu_ioreq(vcpu);
  186. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  187. goto mmio;
  188. vcpu->mmio_needed = 1;
  189. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  190. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  191. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  192. if (vcpu->mmio_is_write)
  193. memcpy(vcpu->mmio_data, &p->data, p->size);
  194. memcpy(kvm_run->mmio.data, &p->data, p->size);
  195. kvm_run->exit_reason = KVM_EXIT_MMIO;
  196. return 0;
  197. mmio:
  198. mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
  199. if (mmio_dev) {
  200. if (!p->dir)
  201. kvm_iodevice_write(mmio_dev, p->addr, p->size,
  202. &p->data);
  203. else
  204. kvm_iodevice_read(mmio_dev, p->addr, p->size,
  205. &p->data);
  206. } else
  207. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  208. p->state = STATE_IORESP_READY;
  209. return 1;
  210. }
  211. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  212. {
  213. struct exit_ctl_data *p;
  214. p = kvm_get_exit_data(vcpu);
  215. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  216. return kvm_pal_emul(vcpu, kvm_run);
  217. else {
  218. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  219. kvm_run->hw.hardware_exit_reason = 2;
  220. return 0;
  221. }
  222. }
  223. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  224. {
  225. struct exit_ctl_data *p;
  226. p = kvm_get_exit_data(vcpu);
  227. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  228. kvm_sal_emul(vcpu);
  229. return 1;
  230. } else {
  231. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  232. kvm_run->hw.hardware_exit_reason = 3;
  233. return 0;
  234. }
  235. }
  236. /*
  237. * offset: address offset to IPI space.
  238. * value: deliver value.
  239. */
  240. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  241. uint64_t vector)
  242. {
  243. switch (dm) {
  244. case SAPIC_FIXED:
  245. kvm_apic_set_irq(vcpu, vector, 0);
  246. break;
  247. case SAPIC_NMI:
  248. kvm_apic_set_irq(vcpu, 2, 0);
  249. break;
  250. case SAPIC_EXTINT:
  251. kvm_apic_set_irq(vcpu, 0, 0);
  252. break;
  253. case SAPIC_INIT:
  254. case SAPIC_PMI:
  255. default:
  256. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  257. break;
  258. }
  259. }
  260. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  261. unsigned long eid)
  262. {
  263. union ia64_lid lid;
  264. int i;
  265. for (i = 0; i < kvm->arch.online_vcpus; i++) {
  266. if (kvm->vcpus[i]) {
  267. lid.val = VCPU_LID(kvm->vcpus[i]);
  268. if (lid.id == id && lid.eid == eid)
  269. return kvm->vcpus[i];
  270. }
  271. }
  272. return NULL;
  273. }
  274. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  275. {
  276. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  277. struct kvm_vcpu *target_vcpu;
  278. struct kvm_pt_regs *regs;
  279. union ia64_ipi_a addr = p->u.ipi_data.addr;
  280. union ia64_ipi_d data = p->u.ipi_data.data;
  281. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  282. if (!target_vcpu)
  283. return handle_vm_error(vcpu, kvm_run);
  284. if (!target_vcpu->arch.launched) {
  285. regs = vcpu_regs(target_vcpu);
  286. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  287. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  288. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  289. if (waitqueue_active(&target_vcpu->wq))
  290. wake_up_interruptible(&target_vcpu->wq);
  291. } else {
  292. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  293. if (target_vcpu != vcpu)
  294. kvm_vcpu_kick(target_vcpu);
  295. }
  296. return 1;
  297. }
  298. struct call_data {
  299. struct kvm_ptc_g ptc_g_data;
  300. struct kvm_vcpu *vcpu;
  301. };
  302. static void vcpu_global_purge(void *info)
  303. {
  304. struct call_data *p = (struct call_data *)info;
  305. struct kvm_vcpu *vcpu = p->vcpu;
  306. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  307. return;
  308. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  309. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  310. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  311. p->ptc_g_data;
  312. } else {
  313. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  314. vcpu->arch.ptc_g_count = 0;
  315. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  316. }
  317. }
  318. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  319. {
  320. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  321. struct kvm *kvm = vcpu->kvm;
  322. struct call_data call_data;
  323. int i;
  324. call_data.ptc_g_data = p->u.ptc_g_data;
  325. for (i = 0; i < kvm->arch.online_vcpus; i++) {
  326. if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
  327. KVM_MP_STATE_UNINITIALIZED ||
  328. vcpu == kvm->vcpus[i])
  329. continue;
  330. if (waitqueue_active(&kvm->vcpus[i]->wq))
  331. wake_up_interruptible(&kvm->vcpus[i]->wq);
  332. if (kvm->vcpus[i]->cpu != -1) {
  333. call_data.vcpu = kvm->vcpus[i];
  334. smp_call_function_single(kvm->vcpus[i]->cpu,
  335. vcpu_global_purge, &call_data, 1);
  336. } else
  337. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  338. }
  339. return 1;
  340. }
  341. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  342. {
  343. return 1;
  344. }
  345. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  346. {
  347. ktime_t kt;
  348. long itc_diff;
  349. unsigned long vcpu_now_itc;
  350. unsigned long expires;
  351. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  352. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  353. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  354. if (irqchip_in_kernel(vcpu->kvm)) {
  355. vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
  356. if (time_after(vcpu_now_itc, vpd->itm)) {
  357. vcpu->arch.timer_check = 1;
  358. return 1;
  359. }
  360. itc_diff = vpd->itm - vcpu_now_itc;
  361. if (itc_diff < 0)
  362. itc_diff = -itc_diff;
  363. expires = div64_u64(itc_diff, cyc_per_usec);
  364. kt = ktime_set(0, 1000 * expires);
  365. vcpu->arch.ht_active = 1;
  366. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  367. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  368. kvm_vcpu_block(vcpu);
  369. hrtimer_cancel(p_ht);
  370. vcpu->arch.ht_active = 0;
  371. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  372. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  373. vcpu->arch.mp_state =
  374. KVM_MP_STATE_RUNNABLE;
  375. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  376. return -EINTR;
  377. return 1;
  378. } else {
  379. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  380. return 0;
  381. }
  382. }
  383. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  384. struct kvm_run *kvm_run)
  385. {
  386. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  387. return 0;
  388. }
  389. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  390. struct kvm_run *kvm_run)
  391. {
  392. return 1;
  393. }
  394. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  395. struct kvm_run *kvm_run)
  396. {
  397. printk("VMM: %s", vcpu->arch.log_buf);
  398. return 1;
  399. }
  400. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  401. struct kvm_run *kvm_run) = {
  402. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  403. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  404. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  405. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  406. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  407. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  408. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  409. [EXIT_REASON_IPI] = handle_ipi,
  410. [EXIT_REASON_PTC_G] = handle_global_purge,
  411. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  412. };
  413. static const int kvm_vti_max_exit_handlers =
  414. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  415. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  416. {
  417. struct exit_ctl_data *p_exit_data;
  418. p_exit_data = kvm_get_exit_data(vcpu);
  419. return p_exit_data->exit_reason;
  420. }
  421. /*
  422. * The guest has exited. See if we can fix it or if we need userspace
  423. * assistance.
  424. */
  425. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  426. {
  427. u32 exit_reason = kvm_get_exit_reason(vcpu);
  428. vcpu->arch.last_exit = exit_reason;
  429. if (exit_reason < kvm_vti_max_exit_handlers
  430. && kvm_vti_exit_handlers[exit_reason])
  431. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  432. else {
  433. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  434. kvm_run->hw.hardware_exit_reason = exit_reason;
  435. }
  436. return 0;
  437. }
  438. static inline void vti_set_rr6(unsigned long rr6)
  439. {
  440. ia64_set_rr(RR6, rr6);
  441. ia64_srlz_i();
  442. }
  443. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  444. {
  445. unsigned long pte;
  446. struct kvm *kvm = vcpu->kvm;
  447. int r;
  448. /*Insert a pair of tr to map vmm*/
  449. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  450. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  451. if (r < 0)
  452. goto out;
  453. vcpu->arch.vmm_tr_slot = r;
  454. /*Insert a pairt of tr to map data of vm*/
  455. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  456. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  457. pte, KVM_VM_DATA_SHIFT);
  458. if (r < 0)
  459. goto out;
  460. vcpu->arch.vm_tr_slot = r;
  461. r = 0;
  462. out:
  463. return r;
  464. }
  465. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  466. {
  467. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  468. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  469. }
  470. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  471. {
  472. int cpu = smp_processor_id();
  473. if (vcpu->arch.last_run_cpu != cpu ||
  474. per_cpu(last_vcpu, cpu) != vcpu) {
  475. per_cpu(last_vcpu, cpu) = vcpu;
  476. vcpu->arch.last_run_cpu = cpu;
  477. kvm_flush_tlb_all();
  478. }
  479. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  480. vti_set_rr6(vcpu->arch.vmm_rr);
  481. return kvm_insert_vmm_mapping(vcpu);
  482. }
  483. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  484. {
  485. kvm_purge_vmm_mapping(vcpu);
  486. vti_set_rr6(vcpu->arch.host_rr6);
  487. }
  488. static int vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  489. {
  490. union context *host_ctx, *guest_ctx;
  491. int r;
  492. /*Get host and guest context with guest address space.*/
  493. host_ctx = kvm_get_host_context(vcpu);
  494. guest_ctx = kvm_get_guest_context(vcpu);
  495. r = kvm_vcpu_pre_transition(vcpu);
  496. if (r < 0)
  497. goto out;
  498. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  499. kvm_vcpu_post_transition(vcpu);
  500. r = 0;
  501. out:
  502. return r;
  503. }
  504. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  505. {
  506. int r;
  507. again:
  508. preempt_disable();
  509. local_irq_disable();
  510. if (signal_pending(current)) {
  511. local_irq_enable();
  512. preempt_enable();
  513. r = -EINTR;
  514. kvm_run->exit_reason = KVM_EXIT_INTR;
  515. goto out;
  516. }
  517. vcpu->guest_mode = 1;
  518. kvm_guest_enter();
  519. down_read(&vcpu->kvm->slots_lock);
  520. r = vti_vcpu_run(vcpu, kvm_run);
  521. if (r < 0) {
  522. local_irq_enable();
  523. preempt_enable();
  524. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  525. goto out;
  526. }
  527. vcpu->arch.launched = 1;
  528. vcpu->guest_mode = 0;
  529. local_irq_enable();
  530. /*
  531. * We must have an instruction between local_irq_enable() and
  532. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  533. * the interrupt shadow. The stat.exits increment will do nicely.
  534. * But we need to prevent reordering, hence this barrier():
  535. */
  536. barrier();
  537. kvm_guest_exit();
  538. up_read(&vcpu->kvm->slots_lock);
  539. preempt_enable();
  540. r = kvm_handle_exit(kvm_run, vcpu);
  541. if (r > 0) {
  542. if (!need_resched())
  543. goto again;
  544. }
  545. out:
  546. if (r > 0) {
  547. kvm_resched(vcpu);
  548. goto again;
  549. }
  550. return r;
  551. }
  552. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  553. {
  554. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  555. if (!vcpu->mmio_is_write)
  556. memcpy(&p->data, vcpu->mmio_data, 8);
  557. p->state = STATE_IORESP_READY;
  558. }
  559. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  560. {
  561. int r;
  562. sigset_t sigsaved;
  563. vcpu_load(vcpu);
  564. if (vcpu->sigset_active)
  565. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  566. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  567. kvm_vcpu_block(vcpu);
  568. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  569. r = -EAGAIN;
  570. goto out;
  571. }
  572. if (vcpu->mmio_needed) {
  573. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  574. kvm_set_mmio_data(vcpu);
  575. vcpu->mmio_read_completed = 1;
  576. vcpu->mmio_needed = 0;
  577. }
  578. r = __vcpu_run(vcpu, kvm_run);
  579. out:
  580. if (vcpu->sigset_active)
  581. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  582. vcpu_put(vcpu);
  583. return r;
  584. }
  585. static struct kvm *kvm_alloc_kvm(void)
  586. {
  587. struct kvm *kvm;
  588. uint64_t vm_base;
  589. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  590. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  591. if (!vm_base)
  592. return ERR_PTR(-ENOMEM);
  593. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  594. kvm = (struct kvm *)(vm_base +
  595. offsetof(struct kvm_vm_data, kvm_vm_struct));
  596. kvm->arch.vm_base = vm_base;
  597. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  598. return kvm;
  599. }
  600. struct kvm_io_range {
  601. unsigned long start;
  602. unsigned long size;
  603. unsigned long type;
  604. };
  605. static const struct kvm_io_range io_ranges[] = {
  606. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  607. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  608. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  609. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  610. {PIB_START, PIB_SIZE, GPFN_PIB},
  611. };
  612. static void kvm_build_io_pmt(struct kvm *kvm)
  613. {
  614. unsigned long i, j;
  615. /* Mark I/O ranges */
  616. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  617. i++) {
  618. for (j = io_ranges[i].start;
  619. j < io_ranges[i].start + io_ranges[i].size;
  620. j += PAGE_SIZE)
  621. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  622. io_ranges[i].type, 0);
  623. }
  624. }
  625. /*Use unused rids to virtualize guest rid.*/
  626. #define GUEST_PHYSICAL_RR0 0x1739
  627. #define GUEST_PHYSICAL_RR4 0x2739
  628. #define VMM_INIT_RR 0x1660
  629. static void kvm_init_vm(struct kvm *kvm)
  630. {
  631. BUG_ON(!kvm);
  632. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  633. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  634. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  635. /*
  636. *Fill P2M entries for MMIO/IO ranges
  637. */
  638. kvm_build_io_pmt(kvm);
  639. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  640. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  641. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  642. }
  643. struct kvm *kvm_arch_create_vm(void)
  644. {
  645. struct kvm *kvm = kvm_alloc_kvm();
  646. if (IS_ERR(kvm))
  647. return ERR_PTR(-ENOMEM);
  648. kvm_init_vm(kvm);
  649. kvm->arch.online_vcpus = 0;
  650. return kvm;
  651. }
  652. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  653. struct kvm_irqchip *chip)
  654. {
  655. int r;
  656. r = 0;
  657. switch (chip->chip_id) {
  658. case KVM_IRQCHIP_IOAPIC:
  659. memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
  660. sizeof(struct kvm_ioapic_state));
  661. break;
  662. default:
  663. r = -EINVAL;
  664. break;
  665. }
  666. return r;
  667. }
  668. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  669. {
  670. int r;
  671. r = 0;
  672. switch (chip->chip_id) {
  673. case KVM_IRQCHIP_IOAPIC:
  674. memcpy(ioapic_irqchip(kvm),
  675. &chip->chip.ioapic,
  676. sizeof(struct kvm_ioapic_state));
  677. break;
  678. default:
  679. r = -EINVAL;
  680. break;
  681. }
  682. return r;
  683. }
  684. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  685. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  686. {
  687. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  688. int i;
  689. vcpu_load(vcpu);
  690. for (i = 0; i < 16; i++) {
  691. vpd->vgr[i] = regs->vpd.vgr[i];
  692. vpd->vbgr[i] = regs->vpd.vbgr[i];
  693. }
  694. for (i = 0; i < 128; i++)
  695. vpd->vcr[i] = regs->vpd.vcr[i];
  696. vpd->vhpi = regs->vpd.vhpi;
  697. vpd->vnat = regs->vpd.vnat;
  698. vpd->vbnat = regs->vpd.vbnat;
  699. vpd->vpsr = regs->vpd.vpsr;
  700. vpd->vpr = regs->vpd.vpr;
  701. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  702. RESTORE_REGS(mp_state);
  703. RESTORE_REGS(vmm_rr);
  704. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  705. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  706. RESTORE_REGS(itr_regions);
  707. RESTORE_REGS(dtr_regions);
  708. RESTORE_REGS(tc_regions);
  709. RESTORE_REGS(irq_check);
  710. RESTORE_REGS(itc_check);
  711. RESTORE_REGS(timer_check);
  712. RESTORE_REGS(timer_pending);
  713. RESTORE_REGS(last_itc);
  714. for (i = 0; i < 8; i++) {
  715. vcpu->arch.vrr[i] = regs->vrr[i];
  716. vcpu->arch.ibr[i] = regs->ibr[i];
  717. vcpu->arch.dbr[i] = regs->dbr[i];
  718. }
  719. for (i = 0; i < 4; i++)
  720. vcpu->arch.insvc[i] = regs->insvc[i];
  721. RESTORE_REGS(xtp);
  722. RESTORE_REGS(metaphysical_rr0);
  723. RESTORE_REGS(metaphysical_rr4);
  724. RESTORE_REGS(metaphysical_saved_rr0);
  725. RESTORE_REGS(metaphysical_saved_rr4);
  726. RESTORE_REGS(fp_psr);
  727. RESTORE_REGS(saved_gp);
  728. vcpu->arch.irq_new_pending = 1;
  729. vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
  730. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  731. vcpu_put(vcpu);
  732. return 0;
  733. }
  734. long kvm_arch_vm_ioctl(struct file *filp,
  735. unsigned int ioctl, unsigned long arg)
  736. {
  737. struct kvm *kvm = filp->private_data;
  738. void __user *argp = (void __user *)arg;
  739. int r = -EINVAL;
  740. switch (ioctl) {
  741. case KVM_SET_MEMORY_REGION: {
  742. struct kvm_memory_region kvm_mem;
  743. struct kvm_userspace_memory_region kvm_userspace_mem;
  744. r = -EFAULT;
  745. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  746. goto out;
  747. kvm_userspace_mem.slot = kvm_mem.slot;
  748. kvm_userspace_mem.flags = kvm_mem.flags;
  749. kvm_userspace_mem.guest_phys_addr =
  750. kvm_mem.guest_phys_addr;
  751. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  752. r = kvm_vm_ioctl_set_memory_region(kvm,
  753. &kvm_userspace_mem, 0);
  754. if (r)
  755. goto out;
  756. break;
  757. }
  758. case KVM_CREATE_IRQCHIP:
  759. r = -EFAULT;
  760. r = kvm_ioapic_init(kvm);
  761. if (r)
  762. goto out;
  763. r = kvm_setup_default_irq_routing(kvm);
  764. if (r) {
  765. kfree(kvm->arch.vioapic);
  766. goto out;
  767. }
  768. break;
  769. case KVM_IRQ_LINE_STATUS:
  770. case KVM_IRQ_LINE: {
  771. struct kvm_irq_level irq_event;
  772. r = -EFAULT;
  773. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  774. goto out;
  775. if (irqchip_in_kernel(kvm)) {
  776. __s32 status;
  777. mutex_lock(&kvm->lock);
  778. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  779. irq_event.irq, irq_event.level);
  780. mutex_unlock(&kvm->lock);
  781. if (ioctl == KVM_IRQ_LINE_STATUS) {
  782. irq_event.status = status;
  783. if (copy_to_user(argp, &irq_event,
  784. sizeof irq_event))
  785. goto out;
  786. }
  787. r = 0;
  788. }
  789. break;
  790. }
  791. case KVM_GET_IRQCHIP: {
  792. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  793. struct kvm_irqchip chip;
  794. r = -EFAULT;
  795. if (copy_from_user(&chip, argp, sizeof chip))
  796. goto out;
  797. r = -ENXIO;
  798. if (!irqchip_in_kernel(kvm))
  799. goto out;
  800. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  801. if (r)
  802. goto out;
  803. r = -EFAULT;
  804. if (copy_to_user(argp, &chip, sizeof chip))
  805. goto out;
  806. r = 0;
  807. break;
  808. }
  809. case KVM_SET_IRQCHIP: {
  810. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  811. struct kvm_irqchip chip;
  812. r = -EFAULT;
  813. if (copy_from_user(&chip, argp, sizeof chip))
  814. goto out;
  815. r = -ENXIO;
  816. if (!irqchip_in_kernel(kvm))
  817. goto out;
  818. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  819. if (r)
  820. goto out;
  821. r = 0;
  822. break;
  823. }
  824. default:
  825. ;
  826. }
  827. out:
  828. return r;
  829. }
  830. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  831. struct kvm_sregs *sregs)
  832. {
  833. return -EINVAL;
  834. }
  835. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  836. struct kvm_sregs *sregs)
  837. {
  838. return -EINVAL;
  839. }
  840. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  841. struct kvm_translation *tr)
  842. {
  843. return -EINVAL;
  844. }
  845. static int kvm_alloc_vmm_area(void)
  846. {
  847. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  848. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  849. get_order(KVM_VMM_SIZE));
  850. if (!kvm_vmm_base)
  851. return -ENOMEM;
  852. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  853. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  854. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  855. kvm_vmm_base, kvm_vm_buffer);
  856. }
  857. return 0;
  858. }
  859. static void kvm_free_vmm_area(void)
  860. {
  861. if (kvm_vmm_base) {
  862. /*Zero this area before free to avoid bits leak!!*/
  863. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  864. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  865. kvm_vmm_base = 0;
  866. kvm_vm_buffer = 0;
  867. kvm_vsa_base = 0;
  868. }
  869. }
  870. static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  871. {
  872. }
  873. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  874. {
  875. int i;
  876. union cpuid3_t cpuid3;
  877. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  878. if (IS_ERR(vpd))
  879. return PTR_ERR(vpd);
  880. /* CPUID init */
  881. for (i = 0; i < 5; i++)
  882. vpd->vcpuid[i] = ia64_get_cpuid(i);
  883. /* Limit the CPUID number to 5 */
  884. cpuid3.value = vpd->vcpuid[3];
  885. cpuid3.number = 4; /* 5 - 1 */
  886. vpd->vcpuid[3] = cpuid3.value;
  887. /*Set vac and vdc fields*/
  888. vpd->vac.a_from_int_cr = 1;
  889. vpd->vac.a_to_int_cr = 1;
  890. vpd->vac.a_from_psr = 1;
  891. vpd->vac.a_from_cpuid = 1;
  892. vpd->vac.a_cover = 1;
  893. vpd->vac.a_bsw = 1;
  894. vpd->vac.a_int = 1;
  895. vpd->vdc.d_vmsw = 1;
  896. /*Set virtual buffer*/
  897. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  898. return 0;
  899. }
  900. static int vti_create_vp(struct kvm_vcpu *vcpu)
  901. {
  902. long ret;
  903. struct vpd *vpd = vcpu->arch.vpd;
  904. unsigned long vmm_ivt;
  905. vmm_ivt = kvm_vmm_info->vmm_ivt;
  906. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  907. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  908. if (ret) {
  909. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  910. return -EINVAL;
  911. }
  912. return 0;
  913. }
  914. static void init_ptce_info(struct kvm_vcpu *vcpu)
  915. {
  916. ia64_ptce_info_t ptce = {0};
  917. ia64_get_ptce(&ptce);
  918. vcpu->arch.ptce_base = ptce.base;
  919. vcpu->arch.ptce_count[0] = ptce.count[0];
  920. vcpu->arch.ptce_count[1] = ptce.count[1];
  921. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  922. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  923. }
  924. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  925. {
  926. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  927. if (hrtimer_cancel(p_ht))
  928. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  929. }
  930. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  931. {
  932. struct kvm_vcpu *vcpu;
  933. wait_queue_head_t *q;
  934. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  935. q = &vcpu->wq;
  936. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  937. goto out;
  938. if (waitqueue_active(q))
  939. wake_up_interruptible(q);
  940. out:
  941. vcpu->arch.timer_fired = 1;
  942. vcpu->arch.timer_check = 1;
  943. return HRTIMER_NORESTART;
  944. }
  945. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  946. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  947. {
  948. struct kvm_vcpu *v;
  949. int r;
  950. int i;
  951. long itc_offset;
  952. struct kvm *kvm = vcpu->kvm;
  953. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  954. union context *p_ctx = &vcpu->arch.guest;
  955. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  956. /*Init vcpu context for first run.*/
  957. if (IS_ERR(vmm_vcpu))
  958. return PTR_ERR(vmm_vcpu);
  959. if (vcpu->vcpu_id == 0) {
  960. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  961. /*Set entry address for first run.*/
  962. regs->cr_iip = PALE_RESET_ENTRY;
  963. /*Initialize itc offset for vcpus*/
  964. itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
  965. for (i = 0; i < kvm->arch.online_vcpus; i++) {
  966. v = (struct kvm_vcpu *)((char *)vcpu +
  967. sizeof(struct kvm_vcpu_data) * i);
  968. v->arch.itc_offset = itc_offset;
  969. v->arch.last_itc = 0;
  970. }
  971. } else
  972. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  973. r = -ENOMEM;
  974. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  975. if (!vcpu->arch.apic)
  976. goto out;
  977. vcpu->arch.apic->vcpu = vcpu;
  978. p_ctx->gr[1] = 0;
  979. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  980. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  981. p_ctx->psr = 0x1008522000UL;
  982. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  983. p_ctx->caller_unat = 0;
  984. p_ctx->pr = 0x0;
  985. p_ctx->ar[36] = 0x0; /*unat*/
  986. p_ctx->ar[19] = 0x0; /*rnat*/
  987. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  988. ((sizeof(struct kvm_vcpu)+15) & ~15);
  989. p_ctx->ar[64] = 0x0; /*pfs*/
  990. p_ctx->cr[0] = 0x7e04UL;
  991. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  992. p_ctx->cr[8] = 0x3c;
  993. /*Initilize region register*/
  994. p_ctx->rr[0] = 0x30;
  995. p_ctx->rr[1] = 0x30;
  996. p_ctx->rr[2] = 0x30;
  997. p_ctx->rr[3] = 0x30;
  998. p_ctx->rr[4] = 0x30;
  999. p_ctx->rr[5] = 0x30;
  1000. p_ctx->rr[7] = 0x30;
  1001. /*Initilize branch register 0*/
  1002. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  1003. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  1004. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  1005. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1006. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1007. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1008. vcpu->arch.last_run_cpu = -1;
  1009. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  1010. vcpu->arch.vsa_base = kvm_vsa_base;
  1011. vcpu->arch.__gp = kvm_vmm_gp;
  1012. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1013. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  1014. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1015. init_ptce_info(vcpu);
  1016. r = 0;
  1017. out:
  1018. return r;
  1019. }
  1020. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1021. {
  1022. unsigned long psr;
  1023. int r;
  1024. local_irq_save(psr);
  1025. r = kvm_insert_vmm_mapping(vcpu);
  1026. if (r)
  1027. goto fail;
  1028. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1029. if (r)
  1030. goto fail;
  1031. r = vti_init_vpd(vcpu);
  1032. if (r) {
  1033. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1034. goto uninit;
  1035. }
  1036. r = vti_create_vp(vcpu);
  1037. if (r)
  1038. goto uninit;
  1039. kvm_purge_vmm_mapping(vcpu);
  1040. local_irq_restore(psr);
  1041. return 0;
  1042. uninit:
  1043. kvm_vcpu_uninit(vcpu);
  1044. fail:
  1045. local_irq_restore(psr);
  1046. return r;
  1047. }
  1048. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1049. unsigned int id)
  1050. {
  1051. struct kvm_vcpu *vcpu;
  1052. unsigned long vm_base = kvm->arch.vm_base;
  1053. int r;
  1054. int cpu;
  1055. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1056. r = -EINVAL;
  1057. if (id >= KVM_MAX_VCPUS) {
  1058. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1059. KVM_MAX_VCPUS);
  1060. goto fail;
  1061. }
  1062. r = -ENOMEM;
  1063. if (!vm_base) {
  1064. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1065. goto fail;
  1066. }
  1067. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1068. vcpu_data[id].vcpu_struct));
  1069. vcpu->kvm = kvm;
  1070. cpu = get_cpu();
  1071. vti_vcpu_load(vcpu, cpu);
  1072. r = vti_vcpu_setup(vcpu, id);
  1073. put_cpu();
  1074. if (r) {
  1075. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1076. goto fail;
  1077. }
  1078. kvm->arch.online_vcpus++;
  1079. return vcpu;
  1080. fail:
  1081. return ERR_PTR(r);
  1082. }
  1083. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1084. {
  1085. return 0;
  1086. }
  1087. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1088. {
  1089. return -EINVAL;
  1090. }
  1091. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1092. {
  1093. return -EINVAL;
  1094. }
  1095. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  1096. struct kvm_guest_debug *dbg)
  1097. {
  1098. return -EINVAL;
  1099. }
  1100. static void free_kvm(struct kvm *kvm)
  1101. {
  1102. unsigned long vm_base = kvm->arch.vm_base;
  1103. if (vm_base) {
  1104. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1105. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1106. }
  1107. }
  1108. static void kvm_release_vm_pages(struct kvm *kvm)
  1109. {
  1110. struct kvm_memory_slot *memslot;
  1111. int i, j;
  1112. unsigned long base_gfn;
  1113. for (i = 0; i < kvm->nmemslots; i++) {
  1114. memslot = &kvm->memslots[i];
  1115. base_gfn = memslot->base_gfn;
  1116. for (j = 0; j < memslot->npages; j++) {
  1117. if (memslot->rmap[j])
  1118. put_page((struct page *)memslot->rmap[j]);
  1119. }
  1120. }
  1121. }
  1122. void kvm_arch_sync_events(struct kvm *kvm)
  1123. {
  1124. }
  1125. void kvm_arch_destroy_vm(struct kvm *kvm)
  1126. {
  1127. kvm_iommu_unmap_guest(kvm);
  1128. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1129. kvm_free_all_assigned_devices(kvm);
  1130. #endif
  1131. kfree(kvm->arch.vioapic);
  1132. kvm_release_vm_pages(kvm);
  1133. kvm_free_physmem(kvm);
  1134. free_kvm(kvm);
  1135. }
  1136. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1137. {
  1138. }
  1139. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1140. {
  1141. if (cpu != vcpu->cpu) {
  1142. vcpu->cpu = cpu;
  1143. if (vcpu->arch.ht_active)
  1144. kvm_migrate_hlt_timer(vcpu);
  1145. }
  1146. }
  1147. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1148. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1149. {
  1150. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1151. int i;
  1152. vcpu_load(vcpu);
  1153. for (i = 0; i < 16; i++) {
  1154. regs->vpd.vgr[i] = vpd->vgr[i];
  1155. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1156. }
  1157. for (i = 0; i < 128; i++)
  1158. regs->vpd.vcr[i] = vpd->vcr[i];
  1159. regs->vpd.vhpi = vpd->vhpi;
  1160. regs->vpd.vnat = vpd->vnat;
  1161. regs->vpd.vbnat = vpd->vbnat;
  1162. regs->vpd.vpsr = vpd->vpsr;
  1163. regs->vpd.vpr = vpd->vpr;
  1164. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1165. SAVE_REGS(mp_state);
  1166. SAVE_REGS(vmm_rr);
  1167. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1168. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1169. SAVE_REGS(itr_regions);
  1170. SAVE_REGS(dtr_regions);
  1171. SAVE_REGS(tc_regions);
  1172. SAVE_REGS(irq_check);
  1173. SAVE_REGS(itc_check);
  1174. SAVE_REGS(timer_check);
  1175. SAVE_REGS(timer_pending);
  1176. SAVE_REGS(last_itc);
  1177. for (i = 0; i < 8; i++) {
  1178. regs->vrr[i] = vcpu->arch.vrr[i];
  1179. regs->ibr[i] = vcpu->arch.ibr[i];
  1180. regs->dbr[i] = vcpu->arch.dbr[i];
  1181. }
  1182. for (i = 0; i < 4; i++)
  1183. regs->insvc[i] = vcpu->arch.insvc[i];
  1184. regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
  1185. SAVE_REGS(xtp);
  1186. SAVE_REGS(metaphysical_rr0);
  1187. SAVE_REGS(metaphysical_rr4);
  1188. SAVE_REGS(metaphysical_saved_rr0);
  1189. SAVE_REGS(metaphysical_saved_rr4);
  1190. SAVE_REGS(fp_psr);
  1191. SAVE_REGS(saved_gp);
  1192. vcpu_put(vcpu);
  1193. return 0;
  1194. }
  1195. int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
  1196. struct kvm_ia64_vcpu_stack *stack)
  1197. {
  1198. memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
  1199. return 0;
  1200. }
  1201. int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
  1202. struct kvm_ia64_vcpu_stack *stack)
  1203. {
  1204. memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
  1205. sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
  1206. vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
  1207. return 0;
  1208. }
  1209. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1210. {
  1211. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1212. kfree(vcpu->arch.apic);
  1213. }
  1214. long kvm_arch_vcpu_ioctl(struct file *filp,
  1215. unsigned int ioctl, unsigned long arg)
  1216. {
  1217. struct kvm_vcpu *vcpu = filp->private_data;
  1218. void __user *argp = (void __user *)arg;
  1219. struct kvm_ia64_vcpu_stack *stack = NULL;
  1220. long r;
  1221. switch (ioctl) {
  1222. case KVM_IA64_VCPU_GET_STACK: {
  1223. struct kvm_ia64_vcpu_stack __user *user_stack;
  1224. void __user *first_p = argp;
  1225. r = -EFAULT;
  1226. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1227. goto out;
  1228. if (!access_ok(VERIFY_WRITE, user_stack,
  1229. sizeof(struct kvm_ia64_vcpu_stack))) {
  1230. printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
  1231. "Illegal user destination address for stack\n");
  1232. goto out;
  1233. }
  1234. stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1235. if (!stack) {
  1236. r = -ENOMEM;
  1237. goto out;
  1238. }
  1239. r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
  1240. if (r)
  1241. goto out;
  1242. if (copy_to_user(user_stack, stack,
  1243. sizeof(struct kvm_ia64_vcpu_stack)))
  1244. goto out;
  1245. break;
  1246. }
  1247. case KVM_IA64_VCPU_SET_STACK: {
  1248. struct kvm_ia64_vcpu_stack __user *user_stack;
  1249. void __user *first_p = argp;
  1250. r = -EFAULT;
  1251. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1252. goto out;
  1253. if (!access_ok(VERIFY_READ, user_stack,
  1254. sizeof(struct kvm_ia64_vcpu_stack))) {
  1255. printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
  1256. "Illegal user address for stack\n");
  1257. goto out;
  1258. }
  1259. stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1260. if (!stack) {
  1261. r = -ENOMEM;
  1262. goto out;
  1263. }
  1264. if (copy_from_user(stack, user_stack,
  1265. sizeof(struct kvm_ia64_vcpu_stack)))
  1266. goto out;
  1267. r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
  1268. break;
  1269. }
  1270. default:
  1271. r = -EINVAL;
  1272. }
  1273. out:
  1274. kfree(stack);
  1275. return r;
  1276. }
  1277. int kvm_arch_set_memory_region(struct kvm *kvm,
  1278. struct kvm_userspace_memory_region *mem,
  1279. struct kvm_memory_slot old,
  1280. int user_alloc)
  1281. {
  1282. unsigned long i;
  1283. unsigned long pfn;
  1284. int npages = mem->memory_size >> PAGE_SHIFT;
  1285. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  1286. unsigned long base_gfn = memslot->base_gfn;
  1287. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1288. return -ENOMEM;
  1289. for (i = 0; i < npages; i++) {
  1290. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1291. if (!kvm_is_mmio_pfn(pfn)) {
  1292. kvm_set_pmt_entry(kvm, base_gfn + i,
  1293. pfn << PAGE_SHIFT,
  1294. _PAGE_AR_RWX | _PAGE_MA_WB);
  1295. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1296. } else {
  1297. kvm_set_pmt_entry(kvm, base_gfn + i,
  1298. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1299. _PAGE_MA_UC);
  1300. memslot->rmap[i] = 0;
  1301. }
  1302. }
  1303. return 0;
  1304. }
  1305. void kvm_arch_flush_shadow(struct kvm *kvm)
  1306. {
  1307. }
  1308. long kvm_arch_dev_ioctl(struct file *filp,
  1309. unsigned int ioctl, unsigned long arg)
  1310. {
  1311. return -EINVAL;
  1312. }
  1313. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1314. {
  1315. kvm_vcpu_uninit(vcpu);
  1316. }
  1317. static int vti_cpu_has_kvm_support(void)
  1318. {
  1319. long avail = 1, status = 1, control = 1;
  1320. long ret;
  1321. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1322. if (ret)
  1323. goto out;
  1324. if (!(avail & PAL_PROC_VM_BIT))
  1325. goto out;
  1326. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1327. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1328. if (ret)
  1329. goto out;
  1330. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1331. if (!(vp_env_info & VP_OPCODE)) {
  1332. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1333. "vm_env_info:0x%lx\n", vp_env_info);
  1334. }
  1335. return 1;
  1336. out:
  1337. return 0;
  1338. }
  1339. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1340. struct module *module)
  1341. {
  1342. unsigned long module_base;
  1343. unsigned long vmm_size;
  1344. unsigned long vmm_offset, func_offset, fdesc_offset;
  1345. struct fdesc *p_fdesc;
  1346. BUG_ON(!module);
  1347. if (!kvm_vmm_base) {
  1348. printk("kvm: kvm area hasn't been initilized yet!!\n");
  1349. return -EFAULT;
  1350. }
  1351. /*Calculate new position of relocated vmm module.*/
  1352. module_base = (unsigned long)module->module_core;
  1353. vmm_size = module->core_size;
  1354. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1355. return -EFAULT;
  1356. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1357. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1358. /*Recalculate kvm_vmm_info based on new VMM*/
  1359. vmm_offset = vmm_info->vmm_ivt - module_base;
  1360. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1361. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1362. kvm_vmm_info->vmm_ivt);
  1363. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1364. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1365. fdesc_offset);
  1366. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1367. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1368. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1369. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1370. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1371. KVM_VMM_BASE+func_offset);
  1372. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1373. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1374. fdesc_offset);
  1375. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1376. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1377. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1378. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1379. kvm_vmm_gp = p_fdesc->gp;
  1380. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1381. kvm_vmm_info->vmm_entry);
  1382. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1383. KVM_VMM_BASE + func_offset);
  1384. return 0;
  1385. }
  1386. int kvm_arch_init(void *opaque)
  1387. {
  1388. int r;
  1389. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1390. if (!vti_cpu_has_kvm_support()) {
  1391. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1392. r = -EOPNOTSUPP;
  1393. goto out;
  1394. }
  1395. if (kvm_vmm_info) {
  1396. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1397. r = -EEXIST;
  1398. goto out;
  1399. }
  1400. r = -ENOMEM;
  1401. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1402. if (!kvm_vmm_info)
  1403. goto out;
  1404. if (kvm_alloc_vmm_area())
  1405. goto out_free0;
  1406. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1407. if (r)
  1408. goto out_free1;
  1409. return 0;
  1410. out_free1:
  1411. kvm_free_vmm_area();
  1412. out_free0:
  1413. kfree(kvm_vmm_info);
  1414. out:
  1415. return r;
  1416. }
  1417. void kvm_arch_exit(void)
  1418. {
  1419. kvm_free_vmm_area();
  1420. kfree(kvm_vmm_info);
  1421. kvm_vmm_info = NULL;
  1422. }
  1423. static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1424. struct kvm_dirty_log *log)
  1425. {
  1426. struct kvm_memory_slot *memslot;
  1427. int r, i;
  1428. long n, base;
  1429. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1430. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1431. r = -EINVAL;
  1432. if (log->slot >= KVM_MEMORY_SLOTS)
  1433. goto out;
  1434. memslot = &kvm->memslots[log->slot];
  1435. r = -ENOENT;
  1436. if (!memslot->dirty_bitmap)
  1437. goto out;
  1438. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1439. base = memslot->base_gfn / BITS_PER_LONG;
  1440. for (i = 0; i < n/sizeof(long); ++i) {
  1441. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1442. dirty_bitmap[base + i] = 0;
  1443. }
  1444. r = 0;
  1445. out:
  1446. return r;
  1447. }
  1448. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1449. struct kvm_dirty_log *log)
  1450. {
  1451. int r;
  1452. int n;
  1453. struct kvm_memory_slot *memslot;
  1454. int is_dirty = 0;
  1455. spin_lock(&kvm->arch.dirty_log_lock);
  1456. r = kvm_ia64_sync_dirty_log(kvm, log);
  1457. if (r)
  1458. goto out;
  1459. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1460. if (r)
  1461. goto out;
  1462. /* If nothing is dirty, don't bother messing with page tables. */
  1463. if (is_dirty) {
  1464. kvm_flush_remote_tlbs(kvm);
  1465. memslot = &kvm->memslots[log->slot];
  1466. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1467. memset(memslot->dirty_bitmap, 0, n);
  1468. }
  1469. r = 0;
  1470. out:
  1471. spin_unlock(&kvm->arch.dirty_log_lock);
  1472. return r;
  1473. }
  1474. int kvm_arch_hardware_setup(void)
  1475. {
  1476. return 0;
  1477. }
  1478. void kvm_arch_hardware_unsetup(void)
  1479. {
  1480. }
  1481. static void vcpu_kick_intr(void *info)
  1482. {
  1483. #ifdef DEBUG
  1484. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  1485. printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
  1486. #endif
  1487. }
  1488. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1489. {
  1490. int ipi_pcpu = vcpu->cpu;
  1491. int cpu = get_cpu();
  1492. if (waitqueue_active(&vcpu->wq))
  1493. wake_up_interruptible(&vcpu->wq);
  1494. if (vcpu->guest_mode && cpu != ipi_pcpu)
  1495. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  1496. put_cpu();
  1497. }
  1498. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
  1499. {
  1500. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1501. if (!test_and_set_bit(vec, &vpd->irr[0])) {
  1502. vcpu->arch.irq_new_pending = 1;
  1503. kvm_vcpu_kick(vcpu);
  1504. return 1;
  1505. }
  1506. return 0;
  1507. }
  1508. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1509. {
  1510. return apic->vcpu->vcpu_id == dest;
  1511. }
  1512. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1513. {
  1514. return 0;
  1515. }
  1516. struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
  1517. unsigned long bitmap)
  1518. {
  1519. struct kvm_vcpu *lvcpu = kvm->vcpus[0];
  1520. int i;
  1521. for (i = 1; i < kvm->arch.online_vcpus; i++) {
  1522. if (!kvm->vcpus[i])
  1523. continue;
  1524. if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
  1525. lvcpu = kvm->vcpus[i];
  1526. }
  1527. return lvcpu;
  1528. }
  1529. static int find_highest_bits(int *dat)
  1530. {
  1531. u32 bits, bitnum;
  1532. int i;
  1533. /* loop for all 256 bits */
  1534. for (i = 7; i >= 0 ; i--) {
  1535. bits = dat[i];
  1536. if (bits) {
  1537. bitnum = fls(bits);
  1538. return i * 32 + bitnum - 1;
  1539. }
  1540. }
  1541. return -1;
  1542. }
  1543. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1544. {
  1545. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1546. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1547. return NMI_VECTOR;
  1548. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1549. return ExtINT_VECTOR;
  1550. return find_highest_bits((int *)&vpd->irr[0]);
  1551. }
  1552. int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
  1553. {
  1554. if (kvm_highest_pending_irq(vcpu) != -1)
  1555. return 1;
  1556. return 0;
  1557. }
  1558. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1559. {
  1560. return vcpu->arch.timer_fired;
  1561. }
  1562. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1563. {
  1564. return gfn;
  1565. }
  1566. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1567. {
  1568. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
  1569. }
  1570. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1571. struct kvm_mp_state *mp_state)
  1572. {
  1573. vcpu_load(vcpu);
  1574. mp_state->mp_state = vcpu->arch.mp_state;
  1575. vcpu_put(vcpu);
  1576. return 0;
  1577. }
  1578. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1579. {
  1580. int r;
  1581. long psr;
  1582. local_irq_save(psr);
  1583. r = kvm_insert_vmm_mapping(vcpu);
  1584. if (r)
  1585. goto fail;
  1586. vcpu->arch.launched = 0;
  1587. kvm_arch_vcpu_uninit(vcpu);
  1588. r = kvm_arch_vcpu_init(vcpu);
  1589. if (r)
  1590. goto fail;
  1591. kvm_purge_vmm_mapping(vcpu);
  1592. r = 0;
  1593. fail:
  1594. local_irq_restore(psr);
  1595. return r;
  1596. }
  1597. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1598. struct kvm_mp_state *mp_state)
  1599. {
  1600. int r = 0;
  1601. vcpu_load(vcpu);
  1602. vcpu->arch.mp_state = mp_state->mp_state;
  1603. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1604. r = vcpu_reset(vcpu);
  1605. vcpu_put(vcpu);
  1606. return r;
  1607. }