time.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505
  1. /*
  2. * linux/arch/ia64/kernel/time.c
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * Stephane Eranian <eranian@hpl.hp.com>
  6. * David Mosberger <davidm@hpl.hp.com>
  7. * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  8. * Copyright (C) 1999-2000 VA Linux Systems
  9. * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/profile.h>
  16. #include <linux/sched.h>
  17. #include <linux/time.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/efi.h>
  20. #include <linux/timex.h>
  21. #include <linux/clocksource.h>
  22. #include <linux/platform_device.h>
  23. #include <asm/machvec.h>
  24. #include <asm/delay.h>
  25. #include <asm/hw_irq.h>
  26. #include <asm/paravirt.h>
  27. #include <asm/ptrace.h>
  28. #include <asm/sal.h>
  29. #include <asm/sections.h>
  30. #include <asm/system.h>
  31. #include "fsyscall_gtod_data.h"
  32. static cycle_t itc_get_cycles(void);
  33. struct fsyscall_gtod_data_t fsyscall_gtod_data = {
  34. .lock = SEQLOCK_UNLOCKED,
  35. };
  36. struct itc_jitter_data_t itc_jitter_data;
  37. volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  38. #ifdef CONFIG_IA64_DEBUG_IRQ
  39. unsigned long last_cli_ip;
  40. EXPORT_SYMBOL(last_cli_ip);
  41. #endif
  42. #ifdef CONFIG_PARAVIRT
  43. /* We need to define a real function for sched_clock, to override the
  44. weak default version */
  45. unsigned long long sched_clock(void)
  46. {
  47. return paravirt_sched_clock();
  48. }
  49. #endif
  50. #ifdef CONFIG_PARAVIRT
  51. static void
  52. paravirt_clocksource_resume(void)
  53. {
  54. if (pv_time_ops.clocksource_resume)
  55. pv_time_ops.clocksource_resume();
  56. }
  57. #endif
  58. static struct clocksource clocksource_itc = {
  59. .name = "itc",
  60. .rating = 350,
  61. .read = itc_get_cycles,
  62. .mask = CLOCKSOURCE_MASK(64),
  63. .mult = 0, /*to be calculated*/
  64. .shift = 16,
  65. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  66. #ifdef CONFIG_PARAVIRT
  67. .resume = paravirt_clocksource_resume,
  68. #endif
  69. };
  70. static struct clocksource *itc_clocksource;
  71. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  72. #include <linux/kernel_stat.h>
  73. extern cputime_t cycle_to_cputime(u64 cyc);
  74. /*
  75. * Called from the context switch with interrupts disabled, to charge all
  76. * accumulated times to the current process, and to prepare accounting on
  77. * the next process.
  78. */
  79. void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
  80. {
  81. struct thread_info *pi = task_thread_info(prev);
  82. struct thread_info *ni = task_thread_info(next);
  83. cputime_t delta_stime, delta_utime;
  84. __u64 now;
  85. now = ia64_get_itc();
  86. delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
  87. if (idle_task(smp_processor_id()) != prev)
  88. account_system_time(prev, 0, delta_stime, delta_stime);
  89. else
  90. account_idle_time(delta_stime);
  91. if (pi->ac_utime) {
  92. delta_utime = cycle_to_cputime(pi->ac_utime);
  93. account_user_time(prev, delta_utime, delta_utime);
  94. }
  95. pi->ac_stamp = ni->ac_stamp = now;
  96. ni->ac_stime = ni->ac_utime = 0;
  97. }
  98. /*
  99. * Account time for a transition between system, hard irq or soft irq state.
  100. * Note that this function is called with interrupts enabled.
  101. */
  102. void account_system_vtime(struct task_struct *tsk)
  103. {
  104. struct thread_info *ti = task_thread_info(tsk);
  105. unsigned long flags;
  106. cputime_t delta_stime;
  107. __u64 now;
  108. local_irq_save(flags);
  109. now = ia64_get_itc();
  110. delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
  111. if (irq_count() || idle_task(smp_processor_id()) != tsk)
  112. account_system_time(tsk, 0, delta_stime, delta_stime);
  113. else
  114. account_idle_time(delta_stime);
  115. ti->ac_stime = 0;
  116. ti->ac_stamp = now;
  117. local_irq_restore(flags);
  118. }
  119. EXPORT_SYMBOL_GPL(account_system_vtime);
  120. /*
  121. * Called from the timer interrupt handler to charge accumulated user time
  122. * to the current process. Must be called with interrupts disabled.
  123. */
  124. void account_process_tick(struct task_struct *p, int user_tick)
  125. {
  126. struct thread_info *ti = task_thread_info(p);
  127. cputime_t delta_utime;
  128. if (ti->ac_utime) {
  129. delta_utime = cycle_to_cputime(ti->ac_utime);
  130. account_user_time(p, delta_utime, delta_utime);
  131. ti->ac_utime = 0;
  132. }
  133. }
  134. #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
  135. static irqreturn_t
  136. timer_interrupt (int irq, void *dev_id)
  137. {
  138. unsigned long new_itm;
  139. if (unlikely(cpu_is_offline(smp_processor_id()))) {
  140. return IRQ_HANDLED;
  141. }
  142. platform_timer_interrupt(irq, dev_id);
  143. new_itm = local_cpu_data->itm_next;
  144. if (!time_after(ia64_get_itc(), new_itm))
  145. printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
  146. ia64_get_itc(), new_itm);
  147. profile_tick(CPU_PROFILING);
  148. if (paravirt_do_steal_accounting(&new_itm))
  149. goto skip_process_time_accounting;
  150. while (1) {
  151. update_process_times(user_mode(get_irq_regs()));
  152. new_itm += local_cpu_data->itm_delta;
  153. if (smp_processor_id() == time_keeper_id) {
  154. /*
  155. * Here we are in the timer irq handler. We have irqs locally
  156. * disabled, but we don't know if the timer_bh is running on
  157. * another CPU. We need to avoid to SMP race by acquiring the
  158. * xtime_lock.
  159. */
  160. write_seqlock(&xtime_lock);
  161. do_timer(1);
  162. local_cpu_data->itm_next = new_itm;
  163. write_sequnlock(&xtime_lock);
  164. } else
  165. local_cpu_data->itm_next = new_itm;
  166. if (time_after(new_itm, ia64_get_itc()))
  167. break;
  168. /*
  169. * Allow IPIs to interrupt the timer loop.
  170. */
  171. local_irq_enable();
  172. local_irq_disable();
  173. }
  174. skip_process_time_accounting:
  175. do {
  176. /*
  177. * If we're too close to the next clock tick for
  178. * comfort, we increase the safety margin by
  179. * intentionally dropping the next tick(s). We do NOT
  180. * update itm.next because that would force us to call
  181. * do_timer() which in turn would let our clock run
  182. * too fast (with the potentially devastating effect
  183. * of losing monotony of time).
  184. */
  185. while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
  186. new_itm += local_cpu_data->itm_delta;
  187. ia64_set_itm(new_itm);
  188. /* double check, in case we got hit by a (slow) PMI: */
  189. } while (time_after_eq(ia64_get_itc(), new_itm));
  190. return IRQ_HANDLED;
  191. }
  192. /*
  193. * Encapsulate access to the itm structure for SMP.
  194. */
  195. void
  196. ia64_cpu_local_tick (void)
  197. {
  198. int cpu = smp_processor_id();
  199. unsigned long shift = 0, delta;
  200. /* arrange for the cycle counter to generate a timer interrupt: */
  201. ia64_set_itv(IA64_TIMER_VECTOR);
  202. delta = local_cpu_data->itm_delta;
  203. /*
  204. * Stagger the timer tick for each CPU so they don't occur all at (almost) the
  205. * same time:
  206. */
  207. if (cpu) {
  208. unsigned long hi = 1UL << ia64_fls(cpu);
  209. shift = (2*(cpu - hi) + 1) * delta/hi/2;
  210. }
  211. local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
  212. ia64_set_itm(local_cpu_data->itm_next);
  213. }
  214. static int nojitter;
  215. static int __init nojitter_setup(char *str)
  216. {
  217. nojitter = 1;
  218. printk("Jitter checking for ITC timers disabled\n");
  219. return 1;
  220. }
  221. __setup("nojitter", nojitter_setup);
  222. void __devinit
  223. ia64_init_itm (void)
  224. {
  225. unsigned long platform_base_freq, itc_freq;
  226. struct pal_freq_ratio itc_ratio, proc_ratio;
  227. long status, platform_base_drift, itc_drift;
  228. /*
  229. * According to SAL v2.6, we need to use a SAL call to determine the platform base
  230. * frequency and then a PAL call to determine the frequency ratio between the ITC
  231. * and the base frequency.
  232. */
  233. status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
  234. &platform_base_freq, &platform_base_drift);
  235. if (status != 0) {
  236. printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
  237. } else {
  238. status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
  239. if (status != 0)
  240. printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
  241. }
  242. if (status != 0) {
  243. /* invent "random" values */
  244. printk(KERN_ERR
  245. "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
  246. platform_base_freq = 100000000;
  247. platform_base_drift = -1; /* no drift info */
  248. itc_ratio.num = 3;
  249. itc_ratio.den = 1;
  250. }
  251. if (platform_base_freq < 40000000) {
  252. printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
  253. platform_base_freq);
  254. platform_base_freq = 75000000;
  255. platform_base_drift = -1;
  256. }
  257. if (!proc_ratio.den)
  258. proc_ratio.den = 1; /* avoid division by zero */
  259. if (!itc_ratio.den)
  260. itc_ratio.den = 1; /* avoid division by zero */
  261. itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
  262. local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
  263. printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
  264. "ITC freq=%lu.%03luMHz", smp_processor_id(),
  265. platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
  266. itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
  267. if (platform_base_drift != -1) {
  268. itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
  269. printk("+/-%ldppm\n", itc_drift);
  270. } else {
  271. itc_drift = -1;
  272. printk("\n");
  273. }
  274. local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
  275. local_cpu_data->itc_freq = itc_freq;
  276. local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
  277. local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
  278. + itc_freq/2)/itc_freq;
  279. if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
  280. #ifdef CONFIG_SMP
  281. /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
  282. * Jitter compensation requires a cmpxchg which may limit
  283. * the scalability of the syscalls for retrieving time.
  284. * The ITC synchronization is usually successful to within a few
  285. * ITC ticks but this is not a sure thing. If you need to improve
  286. * timer performance in SMP situations then boot the kernel with the
  287. * "nojitter" option. However, doing so may result in time fluctuating (maybe
  288. * even going backward) if the ITC offsets between the individual CPUs
  289. * are too large.
  290. */
  291. if (!nojitter)
  292. itc_jitter_data.itc_jitter = 1;
  293. #endif
  294. } else
  295. /*
  296. * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
  297. * ITC values may fluctuate significantly between processors.
  298. * Clock should not be used for hrtimers. Mark itc as only
  299. * useful for boot and testing.
  300. *
  301. * Note that jitter compensation is off! There is no point of
  302. * synchronizing ITCs since they may be large differentials
  303. * that change over time.
  304. *
  305. * The only way to fix this would be to repeatedly sync the
  306. * ITCs. Until that time we have to avoid ITC.
  307. */
  308. clocksource_itc.rating = 50;
  309. paravirt_init_missing_ticks_accounting(smp_processor_id());
  310. /* avoid softlock up message when cpu is unplug and plugged again. */
  311. touch_softlockup_watchdog();
  312. /* Setup the CPU local timer tick */
  313. ia64_cpu_local_tick();
  314. if (!itc_clocksource) {
  315. /* Sort out mult/shift values: */
  316. clocksource_itc.mult =
  317. clocksource_hz2mult(local_cpu_data->itc_freq,
  318. clocksource_itc.shift);
  319. clocksource_register(&clocksource_itc);
  320. itc_clocksource = &clocksource_itc;
  321. }
  322. }
  323. static cycle_t itc_get_cycles(void)
  324. {
  325. u64 lcycle, now, ret;
  326. if (!itc_jitter_data.itc_jitter)
  327. return get_cycles();
  328. lcycle = itc_jitter_data.itc_lastcycle;
  329. now = get_cycles();
  330. if (lcycle && time_after(lcycle, now))
  331. return lcycle;
  332. /*
  333. * Keep track of the last timer value returned.
  334. * In an SMP environment, you could lose out in contention of
  335. * cmpxchg. If so, your cmpxchg returns new value which the
  336. * winner of contention updated to. Use the new value instead.
  337. */
  338. ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
  339. if (unlikely(ret != lcycle))
  340. return ret;
  341. return now;
  342. }
  343. static struct irqaction timer_irqaction = {
  344. .handler = timer_interrupt,
  345. .flags = IRQF_DISABLED | IRQF_IRQPOLL,
  346. .name = "timer"
  347. };
  348. static struct platform_device rtc_efi_dev = {
  349. .name = "rtc-efi",
  350. .id = -1,
  351. };
  352. static int __init rtc_init(void)
  353. {
  354. if (platform_device_register(&rtc_efi_dev) < 0)
  355. printk(KERN_ERR "unable to register rtc device...\n");
  356. /* not necessarily an error */
  357. return 0;
  358. }
  359. module_init(rtc_init);
  360. void __init
  361. time_init (void)
  362. {
  363. register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
  364. efi_gettimeofday(&xtime);
  365. ia64_init_itm();
  366. /*
  367. * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
  368. * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
  369. */
  370. set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
  371. }
  372. /*
  373. * Generic udelay assumes that if preemption is allowed and the thread
  374. * migrates to another CPU, that the ITC values are synchronized across
  375. * all CPUs.
  376. */
  377. static void
  378. ia64_itc_udelay (unsigned long usecs)
  379. {
  380. unsigned long start = ia64_get_itc();
  381. unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
  382. while (time_before(ia64_get_itc(), end))
  383. cpu_relax();
  384. }
  385. void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
  386. void
  387. udelay (unsigned long usecs)
  388. {
  389. (*ia64_udelay)(usecs);
  390. }
  391. EXPORT_SYMBOL(udelay);
  392. /* IA64 doesn't cache the timezone */
  393. void update_vsyscall_tz(void)
  394. {
  395. }
  396. void update_vsyscall(struct timespec *wall, struct clocksource *c)
  397. {
  398. unsigned long flags;
  399. write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
  400. /* copy fsyscall clock data */
  401. fsyscall_gtod_data.clk_mask = c->mask;
  402. fsyscall_gtod_data.clk_mult = c->mult;
  403. fsyscall_gtod_data.clk_shift = c->shift;
  404. fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
  405. fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
  406. /* copy kernel time structures */
  407. fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
  408. fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
  409. fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
  410. + wall->tv_sec;
  411. fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
  412. + wall->tv_nsec;
  413. /* normalize */
  414. while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
  415. fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
  416. fsyscall_gtod_data.monotonic_time.tv_sec++;
  417. }
  418. write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
  419. }