segment.c 84 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include "nilfs.h"
  35. #include "btnode.h"
  36. #include "page.h"
  37. #include "segment.h"
  38. #include "sufile.h"
  39. #include "cpfile.h"
  40. #include "ifile.h"
  41. #include "seglist.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_SKETCH,
  65. NILFS_ST_IFILE,
  66. NILFS_ST_CPFILE,
  67. NILFS_ST_SUFILE,
  68. NILFS_ST_DAT,
  69. NILFS_ST_SR, /* Super root */
  70. NILFS_ST_DSYNC, /* Data sync blocks */
  71. NILFS_ST_DONE,
  72. };
  73. /* State flags of collection */
  74. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  75. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  76. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED)
  77. /* Operations depending on the construction mode and file type */
  78. struct nilfs_sc_operations {
  79. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  80. struct inode *);
  81. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  82. struct inode *);
  83. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  84. struct inode *);
  85. void (*write_data_binfo)(struct nilfs_sc_info *,
  86. struct nilfs_segsum_pointer *,
  87. union nilfs_binfo *);
  88. void (*write_node_binfo)(struct nilfs_sc_info *,
  89. struct nilfs_segsum_pointer *,
  90. union nilfs_binfo *);
  91. };
  92. /*
  93. * Other definitions
  94. */
  95. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  96. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  97. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  98. static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
  99. int);
  100. #define nilfs_cnt32_gt(a, b) \
  101. (typecheck(__u32, a) && typecheck(__u32, b) && \
  102. ((__s32)(b) - (__s32)(a) < 0))
  103. #define nilfs_cnt32_ge(a, b) \
  104. (typecheck(__u32, a) && typecheck(__u32, b) && \
  105. ((__s32)(a) - (__s32)(b) >= 0))
  106. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  107. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  108. /*
  109. * Transaction
  110. */
  111. static struct kmem_cache *nilfs_transaction_cachep;
  112. /**
  113. * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
  114. *
  115. * nilfs_init_transaction_cache() creates a slab cache for the struct
  116. * nilfs_transaction_info.
  117. *
  118. * Return Value: On success, it returns 0. On error, one of the following
  119. * negative error code is returned.
  120. *
  121. * %-ENOMEM - Insufficient memory available.
  122. */
  123. int nilfs_init_transaction_cache(void)
  124. {
  125. nilfs_transaction_cachep =
  126. kmem_cache_create("nilfs2_transaction_cache",
  127. sizeof(struct nilfs_transaction_info),
  128. 0, SLAB_RECLAIM_ACCOUNT, NULL);
  129. return (nilfs_transaction_cachep == NULL) ? -ENOMEM : 0;
  130. }
  131. /**
  132. * nilfs_detroy_transaction_cache - destroy the cache for transaction info
  133. *
  134. * nilfs_destroy_transaction_cache() frees the slab cache for the struct
  135. * nilfs_transaction_info.
  136. */
  137. void nilfs_destroy_transaction_cache(void)
  138. {
  139. kmem_cache_destroy(nilfs_transaction_cachep);
  140. }
  141. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  142. {
  143. struct nilfs_transaction_info *cur_ti = current->journal_info;
  144. void *save = NULL;
  145. if (cur_ti) {
  146. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  147. return ++cur_ti->ti_count;
  148. else {
  149. /*
  150. * If journal_info field is occupied by other FS,
  151. * it is saved and will be restored on
  152. * nilfs_transaction_commit().
  153. */
  154. printk(KERN_WARNING
  155. "NILFS warning: journal info from a different "
  156. "FS\n");
  157. save = current->journal_info;
  158. }
  159. }
  160. if (!ti) {
  161. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  162. if (!ti)
  163. return -ENOMEM;
  164. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  165. } else {
  166. ti->ti_flags = 0;
  167. }
  168. ti->ti_count = 0;
  169. ti->ti_save = save;
  170. ti->ti_magic = NILFS_TI_MAGIC;
  171. current->journal_info = ti;
  172. return 0;
  173. }
  174. /**
  175. * nilfs_transaction_begin - start indivisible file operations.
  176. * @sb: super block
  177. * @ti: nilfs_transaction_info
  178. * @vacancy_check: flags for vacancy rate checks
  179. *
  180. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  181. * the segment semaphore, to make a segment construction and write tasks
  182. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  183. * The region enclosed by these two functions can be nested. To avoid a
  184. * deadlock, the semaphore is only acquired or released in the outermost call.
  185. *
  186. * This function allocates a nilfs_transaction_info struct to keep context
  187. * information on it. It is initialized and hooked onto the current task in
  188. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  189. * instead; othewise a new struct is assigned from a slab.
  190. *
  191. * When @vacancy_check flag is set, this function will check the amount of
  192. * free space, and will wait for the GC to reclaim disk space if low capacity.
  193. *
  194. * Return Value: On success, 0 is returned. On error, one of the following
  195. * negative error code is returned.
  196. *
  197. * %-ENOMEM - Insufficient memory available.
  198. *
  199. * %-ENOSPC - No space left on device
  200. */
  201. int nilfs_transaction_begin(struct super_block *sb,
  202. struct nilfs_transaction_info *ti,
  203. int vacancy_check)
  204. {
  205. struct nilfs_sb_info *sbi;
  206. struct the_nilfs *nilfs;
  207. int ret = nilfs_prepare_segment_lock(ti);
  208. if (unlikely(ret < 0))
  209. return ret;
  210. if (ret > 0)
  211. return 0;
  212. sbi = NILFS_SB(sb);
  213. nilfs = sbi->s_nilfs;
  214. down_read(&nilfs->ns_segctor_sem);
  215. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  216. up_read(&nilfs->ns_segctor_sem);
  217. ret = -ENOSPC;
  218. goto failed;
  219. }
  220. return 0;
  221. failed:
  222. ti = current->journal_info;
  223. current->journal_info = ti->ti_save;
  224. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  225. kmem_cache_free(nilfs_transaction_cachep, ti);
  226. return ret;
  227. }
  228. /**
  229. * nilfs_transaction_commit - commit indivisible file operations.
  230. * @sb: super block
  231. *
  232. * nilfs_transaction_commit() releases the read semaphore which is
  233. * acquired by nilfs_transaction_begin(). This is only performed
  234. * in outermost call of this function. If a commit flag is set,
  235. * nilfs_transaction_commit() sets a timer to start the segment
  236. * constructor. If a sync flag is set, it starts construction
  237. * directly.
  238. */
  239. int nilfs_transaction_commit(struct super_block *sb)
  240. {
  241. struct nilfs_transaction_info *ti = current->journal_info;
  242. struct nilfs_sb_info *sbi;
  243. struct nilfs_sc_info *sci;
  244. int err = 0;
  245. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  246. ti->ti_flags |= NILFS_TI_COMMIT;
  247. if (ti->ti_count > 0) {
  248. ti->ti_count--;
  249. return 0;
  250. }
  251. sbi = NILFS_SB(sb);
  252. sci = NILFS_SC(sbi);
  253. if (sci != NULL) {
  254. if (ti->ti_flags & NILFS_TI_COMMIT)
  255. nilfs_segctor_start_timer(sci);
  256. if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
  257. sci->sc_watermark)
  258. nilfs_segctor_do_flush(sci, 0);
  259. }
  260. up_read(&sbi->s_nilfs->ns_segctor_sem);
  261. current->journal_info = ti->ti_save;
  262. if (ti->ti_flags & NILFS_TI_SYNC)
  263. err = nilfs_construct_segment(sb);
  264. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  265. kmem_cache_free(nilfs_transaction_cachep, ti);
  266. return err;
  267. }
  268. void nilfs_transaction_abort(struct super_block *sb)
  269. {
  270. struct nilfs_transaction_info *ti = current->journal_info;
  271. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  272. if (ti->ti_count > 0) {
  273. ti->ti_count--;
  274. return;
  275. }
  276. up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
  277. current->journal_info = ti->ti_save;
  278. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  279. kmem_cache_free(nilfs_transaction_cachep, ti);
  280. }
  281. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  282. {
  283. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  284. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  285. struct the_nilfs *nilfs = sbi->s_nilfs;
  286. if (!sci || !sci->sc_flush_request)
  287. return;
  288. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  289. up_read(&nilfs->ns_segctor_sem);
  290. down_write(&nilfs->ns_segctor_sem);
  291. if (sci->sc_flush_request &&
  292. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  293. struct nilfs_transaction_info *ti = current->journal_info;
  294. ti->ti_flags |= NILFS_TI_WRITER;
  295. nilfs_segctor_do_immediate_flush(sci);
  296. ti->ti_flags &= ~NILFS_TI_WRITER;
  297. }
  298. downgrade_write(&nilfs->ns_segctor_sem);
  299. }
  300. static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
  301. struct nilfs_transaction_info *ti,
  302. int gcflag)
  303. {
  304. struct nilfs_transaction_info *cur_ti = current->journal_info;
  305. BUG_ON(cur_ti);
  306. BUG_ON(!ti);
  307. ti->ti_flags = NILFS_TI_WRITER;
  308. ti->ti_count = 0;
  309. ti->ti_save = cur_ti;
  310. ti->ti_magic = NILFS_TI_MAGIC;
  311. INIT_LIST_HEAD(&ti->ti_garbage);
  312. current->journal_info = ti;
  313. for (;;) {
  314. down_write(&sbi->s_nilfs->ns_segctor_sem);
  315. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
  316. break;
  317. nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
  318. up_write(&sbi->s_nilfs->ns_segctor_sem);
  319. yield();
  320. }
  321. if (gcflag)
  322. ti->ti_flags |= NILFS_TI_GC;
  323. }
  324. static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
  325. {
  326. struct nilfs_transaction_info *ti = current->journal_info;
  327. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  328. BUG_ON(ti->ti_count > 0);
  329. up_write(&sbi->s_nilfs->ns_segctor_sem);
  330. current->journal_info = ti->ti_save;
  331. if (!list_empty(&ti->ti_garbage))
  332. nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
  333. }
  334. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  335. struct nilfs_segsum_pointer *ssp,
  336. unsigned bytes)
  337. {
  338. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  339. unsigned blocksize = sci->sc_super->s_blocksize;
  340. void *p;
  341. if (unlikely(ssp->offset + bytes > blocksize)) {
  342. ssp->offset = 0;
  343. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  344. &segbuf->sb_segsum_buffers));
  345. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  346. }
  347. p = ssp->bh->b_data + ssp->offset;
  348. ssp->offset += bytes;
  349. return p;
  350. }
  351. /**
  352. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  353. * @sci: nilfs_sc_info
  354. */
  355. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  356. {
  357. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  358. struct buffer_head *sumbh;
  359. unsigned sumbytes;
  360. unsigned flags = 0;
  361. int err;
  362. if (nilfs_doing_gc())
  363. flags = NILFS_SS_GC;
  364. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime);
  365. if (unlikely(err))
  366. return err;
  367. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  368. sumbytes = segbuf->sb_sum.sumbytes;
  369. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  370. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  371. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  372. return 0;
  373. }
  374. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  375. {
  376. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  377. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  378. return -E2BIG; /* The current segment is filled up
  379. (internal code) */
  380. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  381. return nilfs_segctor_reset_segment_buffer(sci);
  382. }
  383. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  384. {
  385. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  386. int err;
  387. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  388. err = nilfs_segctor_feed_segment(sci);
  389. if (err)
  390. return err;
  391. segbuf = sci->sc_curseg;
  392. }
  393. err = nilfs_segbuf_extend_payload(segbuf, &sci->sc_super_root);
  394. if (likely(!err))
  395. segbuf->sb_sum.flags |= NILFS_SS_SR;
  396. return err;
  397. }
  398. /*
  399. * Functions for making segment summary and payloads
  400. */
  401. static int nilfs_segctor_segsum_block_required(
  402. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  403. unsigned binfo_size)
  404. {
  405. unsigned blocksize = sci->sc_super->s_blocksize;
  406. /* Size of finfo and binfo is enough small against blocksize */
  407. return ssp->offset + binfo_size +
  408. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  409. blocksize;
  410. }
  411. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  412. struct inode *inode)
  413. {
  414. sci->sc_curseg->sb_sum.nfinfo++;
  415. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  416. nilfs_segctor_map_segsum_entry(
  417. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  418. /* skip finfo */
  419. }
  420. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  421. struct inode *inode)
  422. {
  423. struct nilfs_finfo *finfo;
  424. struct nilfs_inode_info *ii;
  425. struct nilfs_segment_buffer *segbuf;
  426. if (sci->sc_blk_cnt == 0)
  427. return;
  428. ii = NILFS_I(inode);
  429. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  430. sizeof(*finfo));
  431. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  432. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  433. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  434. finfo->fi_cno = cpu_to_le64(ii->i_cno);
  435. segbuf = sci->sc_curseg;
  436. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  437. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  438. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  439. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  440. }
  441. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  442. struct buffer_head *bh,
  443. struct inode *inode,
  444. unsigned binfo_size)
  445. {
  446. struct nilfs_segment_buffer *segbuf;
  447. int required, err = 0;
  448. retry:
  449. segbuf = sci->sc_curseg;
  450. required = nilfs_segctor_segsum_block_required(
  451. sci, &sci->sc_binfo_ptr, binfo_size);
  452. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  453. nilfs_segctor_end_finfo(sci, inode);
  454. err = nilfs_segctor_feed_segment(sci);
  455. if (err)
  456. return err;
  457. goto retry;
  458. }
  459. if (unlikely(required)) {
  460. err = nilfs_segbuf_extend_segsum(segbuf);
  461. if (unlikely(err))
  462. goto failed;
  463. }
  464. if (sci->sc_blk_cnt == 0)
  465. nilfs_segctor_begin_finfo(sci, inode);
  466. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  467. /* Substitution to vblocknr is delayed until update_blocknr() */
  468. nilfs_segbuf_add_file_buffer(segbuf, bh);
  469. sci->sc_blk_cnt++;
  470. failed:
  471. return err;
  472. }
  473. static int nilfs_handle_bmap_error(int err, const char *fname,
  474. struct inode *inode, struct super_block *sb)
  475. {
  476. if (err == -EINVAL) {
  477. nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
  478. inode->i_ino);
  479. err = -EIO;
  480. }
  481. return err;
  482. }
  483. /*
  484. * Callback functions that enumerate, mark, and collect dirty blocks
  485. */
  486. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  487. struct buffer_head *bh, struct inode *inode)
  488. {
  489. int err;
  490. /* BUG_ON(!buffer_dirty(bh)); */
  491. /* excluded by scan_dirty_data_buffers() */
  492. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  493. if (unlikely(err < 0))
  494. return nilfs_handle_bmap_error(err, __func__, inode,
  495. sci->sc_super);
  496. err = nilfs_segctor_add_file_block(sci, bh, inode,
  497. sizeof(struct nilfs_binfo_v));
  498. if (!err)
  499. sci->sc_datablk_cnt++;
  500. return err;
  501. }
  502. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  503. struct buffer_head *bh,
  504. struct inode *inode)
  505. {
  506. int err;
  507. /* BUG_ON(!buffer_dirty(bh)); */
  508. /* excluded by scan_dirty_node_buffers() */
  509. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  510. if (unlikely(err < 0))
  511. return nilfs_handle_bmap_error(err, __func__, inode,
  512. sci->sc_super);
  513. return 0;
  514. }
  515. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  516. struct buffer_head *bh,
  517. struct inode *inode)
  518. {
  519. BUG_ON(!buffer_dirty(bh));
  520. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  521. }
  522. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  523. struct nilfs_segsum_pointer *ssp,
  524. union nilfs_binfo *binfo)
  525. {
  526. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  527. sci, ssp, sizeof(*binfo_v));
  528. *binfo_v = binfo->bi_v;
  529. }
  530. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  531. struct nilfs_segsum_pointer *ssp,
  532. union nilfs_binfo *binfo)
  533. {
  534. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  535. sci, ssp, sizeof(*vblocknr));
  536. *vblocknr = binfo->bi_v.bi_vblocknr;
  537. }
  538. struct nilfs_sc_operations nilfs_sc_file_ops = {
  539. .collect_data = nilfs_collect_file_data,
  540. .collect_node = nilfs_collect_file_node,
  541. .collect_bmap = nilfs_collect_file_bmap,
  542. .write_data_binfo = nilfs_write_file_data_binfo,
  543. .write_node_binfo = nilfs_write_file_node_binfo,
  544. };
  545. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  546. struct buffer_head *bh, struct inode *inode)
  547. {
  548. int err;
  549. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  550. if (unlikely(err < 0))
  551. return nilfs_handle_bmap_error(err, __func__, inode,
  552. sci->sc_super);
  553. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  554. if (!err)
  555. sci->sc_datablk_cnt++;
  556. return err;
  557. }
  558. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  559. struct buffer_head *bh, struct inode *inode)
  560. {
  561. BUG_ON(!buffer_dirty(bh));
  562. return nilfs_segctor_add_file_block(sci, bh, inode,
  563. sizeof(struct nilfs_binfo_dat));
  564. }
  565. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  566. struct nilfs_segsum_pointer *ssp,
  567. union nilfs_binfo *binfo)
  568. {
  569. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  570. sizeof(*blkoff));
  571. *blkoff = binfo->bi_dat.bi_blkoff;
  572. }
  573. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  574. struct nilfs_segsum_pointer *ssp,
  575. union nilfs_binfo *binfo)
  576. {
  577. struct nilfs_binfo_dat *binfo_dat =
  578. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  579. *binfo_dat = binfo->bi_dat;
  580. }
  581. struct nilfs_sc_operations nilfs_sc_dat_ops = {
  582. .collect_data = nilfs_collect_dat_data,
  583. .collect_node = nilfs_collect_file_node,
  584. .collect_bmap = nilfs_collect_dat_bmap,
  585. .write_data_binfo = nilfs_write_dat_data_binfo,
  586. .write_node_binfo = nilfs_write_dat_node_binfo,
  587. };
  588. struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  589. .collect_data = nilfs_collect_file_data,
  590. .collect_node = NULL,
  591. .collect_bmap = NULL,
  592. .write_data_binfo = nilfs_write_file_data_binfo,
  593. .write_node_binfo = NULL,
  594. };
  595. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  596. struct list_head *listp,
  597. size_t nlimit,
  598. loff_t start, loff_t end)
  599. {
  600. struct address_space *mapping = inode->i_mapping;
  601. struct pagevec pvec;
  602. pgoff_t index = 0, last = ULONG_MAX;
  603. size_t ndirties = 0;
  604. int i;
  605. if (unlikely(start != 0 || end != LLONG_MAX)) {
  606. /*
  607. * A valid range is given for sync-ing data pages. The
  608. * range is rounded to per-page; extra dirty buffers
  609. * may be included if blocksize < pagesize.
  610. */
  611. index = start >> PAGE_SHIFT;
  612. last = end >> PAGE_SHIFT;
  613. }
  614. pagevec_init(&pvec, 0);
  615. repeat:
  616. if (unlikely(index > last) ||
  617. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  618. min_t(pgoff_t, last - index,
  619. PAGEVEC_SIZE - 1) + 1))
  620. return ndirties;
  621. for (i = 0; i < pagevec_count(&pvec); i++) {
  622. struct buffer_head *bh, *head;
  623. struct page *page = pvec.pages[i];
  624. if (unlikely(page->index > last))
  625. break;
  626. if (mapping->host) {
  627. lock_page(page);
  628. if (!page_has_buffers(page))
  629. create_empty_buffers(page,
  630. 1 << inode->i_blkbits, 0);
  631. unlock_page(page);
  632. }
  633. bh = head = page_buffers(page);
  634. do {
  635. if (!buffer_dirty(bh))
  636. continue;
  637. get_bh(bh);
  638. list_add_tail(&bh->b_assoc_buffers, listp);
  639. ndirties++;
  640. if (unlikely(ndirties >= nlimit)) {
  641. pagevec_release(&pvec);
  642. cond_resched();
  643. return ndirties;
  644. }
  645. } while (bh = bh->b_this_page, bh != head);
  646. }
  647. pagevec_release(&pvec);
  648. cond_resched();
  649. goto repeat;
  650. }
  651. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  652. struct list_head *listp)
  653. {
  654. struct nilfs_inode_info *ii = NILFS_I(inode);
  655. struct address_space *mapping = &ii->i_btnode_cache;
  656. struct pagevec pvec;
  657. struct buffer_head *bh, *head;
  658. unsigned int i;
  659. pgoff_t index = 0;
  660. pagevec_init(&pvec, 0);
  661. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  662. PAGEVEC_SIZE)) {
  663. for (i = 0; i < pagevec_count(&pvec); i++) {
  664. bh = head = page_buffers(pvec.pages[i]);
  665. do {
  666. if (buffer_dirty(bh)) {
  667. get_bh(bh);
  668. list_add_tail(&bh->b_assoc_buffers,
  669. listp);
  670. }
  671. bh = bh->b_this_page;
  672. } while (bh != head);
  673. }
  674. pagevec_release(&pvec);
  675. cond_resched();
  676. }
  677. }
  678. static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
  679. struct list_head *head, int force)
  680. {
  681. struct nilfs_inode_info *ii, *n;
  682. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  683. unsigned nv = 0;
  684. while (!list_empty(head)) {
  685. spin_lock(&sbi->s_inode_lock);
  686. list_for_each_entry_safe(ii, n, head, i_dirty) {
  687. list_del_init(&ii->i_dirty);
  688. if (force) {
  689. if (unlikely(ii->i_bh)) {
  690. brelse(ii->i_bh);
  691. ii->i_bh = NULL;
  692. }
  693. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  694. set_bit(NILFS_I_QUEUED, &ii->i_state);
  695. list_add_tail(&ii->i_dirty,
  696. &sbi->s_dirty_files);
  697. continue;
  698. }
  699. ivec[nv++] = ii;
  700. if (nv == SC_N_INODEVEC)
  701. break;
  702. }
  703. spin_unlock(&sbi->s_inode_lock);
  704. for (pii = ivec; nv > 0; pii++, nv--)
  705. iput(&(*pii)->vfs_inode);
  706. }
  707. }
  708. static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
  709. {
  710. struct the_nilfs *nilfs = sbi->s_nilfs;
  711. int ret = 0;
  712. if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
  713. ret++;
  714. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  715. ret++;
  716. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  717. ret++;
  718. if (ret || nilfs_doing_gc())
  719. if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
  720. ret++;
  721. return ret;
  722. }
  723. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  724. {
  725. return list_empty(&sci->sc_dirty_files) &&
  726. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  727. list_empty(&sci->sc_cleaning_segments) &&
  728. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  729. }
  730. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  731. {
  732. struct nilfs_sb_info *sbi = sci->sc_sbi;
  733. int ret = 0;
  734. if (nilfs_test_metadata_dirty(sbi))
  735. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  736. spin_lock(&sbi->s_inode_lock);
  737. if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
  738. ret++;
  739. spin_unlock(&sbi->s_inode_lock);
  740. return ret;
  741. }
  742. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  743. {
  744. struct nilfs_sb_info *sbi = sci->sc_sbi;
  745. struct the_nilfs *nilfs = sbi->s_nilfs;
  746. nilfs_mdt_clear_dirty(sbi->s_ifile);
  747. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  748. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  749. nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
  750. }
  751. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  752. {
  753. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  754. struct buffer_head *bh_cp;
  755. struct nilfs_checkpoint *raw_cp;
  756. int err;
  757. /* XXX: this interface will be changed */
  758. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  759. &raw_cp, &bh_cp);
  760. if (likely(!err)) {
  761. /* The following code is duplicated with cpfile. But, it is
  762. needed to collect the checkpoint even if it was not newly
  763. created */
  764. nilfs_mdt_mark_buffer_dirty(bh_cp);
  765. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  766. nilfs_cpfile_put_checkpoint(
  767. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  768. } else {
  769. BUG_ON(err == -EINVAL || err == -ENOENT);
  770. }
  771. return err;
  772. }
  773. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  774. {
  775. struct nilfs_sb_info *sbi = sci->sc_sbi;
  776. struct the_nilfs *nilfs = sbi->s_nilfs;
  777. struct buffer_head *bh_cp;
  778. struct nilfs_checkpoint *raw_cp;
  779. int err;
  780. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  781. &raw_cp, &bh_cp);
  782. if (unlikely(err)) {
  783. BUG_ON(err == -EINVAL || err == -ENOENT);
  784. goto failed_ibh;
  785. }
  786. raw_cp->cp_snapshot_list.ssl_next = 0;
  787. raw_cp->cp_snapshot_list.ssl_prev = 0;
  788. raw_cp->cp_inodes_count =
  789. cpu_to_le64(atomic_read(&sbi->s_inodes_count));
  790. raw_cp->cp_blocks_count =
  791. cpu_to_le64(atomic_read(&sbi->s_blocks_count));
  792. raw_cp->cp_nblk_inc =
  793. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  794. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  795. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  796. if (sci->sc_sketch_inode && i_size_read(sci->sc_sketch_inode) > 0)
  797. nilfs_checkpoint_set_sketch(raw_cp);
  798. nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
  799. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  800. return 0;
  801. failed_ibh:
  802. return err;
  803. }
  804. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  805. struct nilfs_inode_info *ii)
  806. {
  807. struct buffer_head *ibh;
  808. struct nilfs_inode *raw_inode;
  809. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  810. ibh = ii->i_bh;
  811. BUG_ON(!ibh);
  812. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  813. ibh);
  814. nilfs_bmap_write(ii->i_bmap, raw_inode);
  815. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  816. }
  817. }
  818. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
  819. struct inode *ifile)
  820. {
  821. struct nilfs_inode_info *ii;
  822. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  823. nilfs_fill_in_file_bmap(ifile, ii);
  824. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  825. }
  826. if (sci->sc_sketch_inode) {
  827. ii = NILFS_I(sci->sc_sketch_inode);
  828. if (test_bit(NILFS_I_DIRTY, &ii->i_state))
  829. nilfs_fill_in_file_bmap(ifile, ii);
  830. }
  831. }
  832. /*
  833. * CRC calculation routines
  834. */
  835. static void nilfs_fill_in_super_root_crc(struct buffer_head *bh_sr, u32 seed)
  836. {
  837. struct nilfs_super_root *raw_sr =
  838. (struct nilfs_super_root *)bh_sr->b_data;
  839. u32 crc;
  840. BUG_ON(NILFS_SR_BYTES > bh_sr->b_size);
  841. crc = crc32_le(seed,
  842. (unsigned char *)raw_sr + sizeof(raw_sr->sr_sum),
  843. NILFS_SR_BYTES - sizeof(raw_sr->sr_sum));
  844. raw_sr->sr_sum = cpu_to_le32(crc);
  845. }
  846. static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info *sci,
  847. u32 seed)
  848. {
  849. struct nilfs_segment_buffer *segbuf;
  850. if (sci->sc_super_root)
  851. nilfs_fill_in_super_root_crc(sci->sc_super_root, seed);
  852. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  853. nilfs_segbuf_fill_in_segsum_crc(segbuf, seed);
  854. nilfs_segbuf_fill_in_data_crc(segbuf, seed);
  855. }
  856. }
  857. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  858. struct the_nilfs *nilfs)
  859. {
  860. struct buffer_head *bh_sr = sci->sc_super_root;
  861. struct nilfs_super_root *raw_sr =
  862. (struct nilfs_super_root *)bh_sr->b_data;
  863. unsigned isz = nilfs->ns_inode_size;
  864. raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
  865. raw_sr->sr_nongc_ctime
  866. = cpu_to_le64(nilfs_doing_gc() ?
  867. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  868. raw_sr->sr_flags = 0;
  869. nilfs_mdt_write_inode_direct(
  870. nilfs_dat_inode(nilfs), bh_sr, NILFS_SR_DAT_OFFSET(isz));
  871. nilfs_mdt_write_inode_direct(
  872. nilfs->ns_cpfile, bh_sr, NILFS_SR_CPFILE_OFFSET(isz));
  873. nilfs_mdt_write_inode_direct(
  874. nilfs->ns_sufile, bh_sr, NILFS_SR_SUFILE_OFFSET(isz));
  875. }
  876. static void nilfs_redirty_inodes(struct list_head *head)
  877. {
  878. struct nilfs_inode_info *ii;
  879. list_for_each_entry(ii, head, i_dirty) {
  880. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  881. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  882. }
  883. }
  884. static void nilfs_drop_collected_inodes(struct list_head *head)
  885. {
  886. struct nilfs_inode_info *ii;
  887. list_for_each_entry(ii, head, i_dirty) {
  888. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  889. continue;
  890. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  891. set_bit(NILFS_I_UPDATED, &ii->i_state);
  892. }
  893. }
  894. static void nilfs_segctor_cancel_free_segments(struct nilfs_sc_info *sci,
  895. struct inode *sufile)
  896. {
  897. struct list_head *head = &sci->sc_cleaning_segments;
  898. struct nilfs_segment_entry *ent;
  899. int err;
  900. list_for_each_entry(ent, head, list) {
  901. if (!(ent->flags & NILFS_SLH_FREED))
  902. break;
  903. err = nilfs_sufile_cancel_free(sufile, ent->segnum);
  904. BUG_ON(err);
  905. ent->flags &= ~NILFS_SLH_FREED;
  906. }
  907. }
  908. static int nilfs_segctor_prepare_free_segments(struct nilfs_sc_info *sci,
  909. struct inode *sufile)
  910. {
  911. struct list_head *head = &sci->sc_cleaning_segments;
  912. struct nilfs_segment_entry *ent;
  913. int err;
  914. list_for_each_entry(ent, head, list) {
  915. err = nilfs_sufile_free(sufile, ent->segnum);
  916. if (unlikely(err))
  917. return err;
  918. ent->flags |= NILFS_SLH_FREED;
  919. }
  920. return 0;
  921. }
  922. static void nilfs_segctor_commit_free_segments(struct nilfs_sc_info *sci)
  923. {
  924. nilfs_dispose_segment_list(&sci->sc_cleaning_segments);
  925. }
  926. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  927. struct inode *inode,
  928. struct list_head *listp,
  929. int (*collect)(struct nilfs_sc_info *,
  930. struct buffer_head *,
  931. struct inode *))
  932. {
  933. struct buffer_head *bh, *n;
  934. int err = 0;
  935. if (collect) {
  936. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  937. list_del_init(&bh->b_assoc_buffers);
  938. err = collect(sci, bh, inode);
  939. brelse(bh);
  940. if (unlikely(err))
  941. goto dispose_buffers;
  942. }
  943. return 0;
  944. }
  945. dispose_buffers:
  946. while (!list_empty(listp)) {
  947. bh = list_entry(listp->next, struct buffer_head,
  948. b_assoc_buffers);
  949. list_del_init(&bh->b_assoc_buffers);
  950. brelse(bh);
  951. }
  952. return err;
  953. }
  954. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  955. {
  956. /* Remaining number of blocks within segment buffer */
  957. return sci->sc_segbuf_nblocks -
  958. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  959. }
  960. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  961. struct inode *inode,
  962. struct nilfs_sc_operations *sc_ops)
  963. {
  964. LIST_HEAD(data_buffers);
  965. LIST_HEAD(node_buffers);
  966. int err;
  967. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  968. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  969. n = nilfs_lookup_dirty_data_buffers(
  970. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  971. if (n > rest) {
  972. err = nilfs_segctor_apply_buffers(
  973. sci, inode, &data_buffers,
  974. sc_ops->collect_data);
  975. BUG_ON(!err); /* always receive -E2BIG or true error */
  976. goto break_or_fail;
  977. }
  978. }
  979. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  980. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  981. err = nilfs_segctor_apply_buffers(
  982. sci, inode, &data_buffers, sc_ops->collect_data);
  983. if (unlikely(err)) {
  984. /* dispose node list */
  985. nilfs_segctor_apply_buffers(
  986. sci, inode, &node_buffers, NULL);
  987. goto break_or_fail;
  988. }
  989. sci->sc_stage.flags |= NILFS_CF_NODE;
  990. }
  991. /* Collect node */
  992. err = nilfs_segctor_apply_buffers(
  993. sci, inode, &node_buffers, sc_ops->collect_node);
  994. if (unlikely(err))
  995. goto break_or_fail;
  996. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  997. err = nilfs_segctor_apply_buffers(
  998. sci, inode, &node_buffers, sc_ops->collect_bmap);
  999. if (unlikely(err))
  1000. goto break_or_fail;
  1001. nilfs_segctor_end_finfo(sci, inode);
  1002. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  1003. break_or_fail:
  1004. return err;
  1005. }
  1006. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  1007. struct inode *inode)
  1008. {
  1009. LIST_HEAD(data_buffers);
  1010. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  1011. int err;
  1012. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  1013. sci->sc_dsync_start,
  1014. sci->sc_dsync_end);
  1015. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  1016. nilfs_collect_file_data);
  1017. if (!err) {
  1018. nilfs_segctor_end_finfo(sci, inode);
  1019. BUG_ON(n > rest);
  1020. /* always receive -E2BIG or true error if n > rest */
  1021. }
  1022. return err;
  1023. }
  1024. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  1025. {
  1026. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1027. struct the_nilfs *nilfs = sbi->s_nilfs;
  1028. struct list_head *head;
  1029. struct nilfs_inode_info *ii;
  1030. int err = 0;
  1031. switch (sci->sc_stage.scnt) {
  1032. case NILFS_ST_INIT:
  1033. /* Pre-processes */
  1034. sci->sc_stage.flags = 0;
  1035. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  1036. sci->sc_nblk_inc = 0;
  1037. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  1038. if (mode == SC_LSEG_DSYNC) {
  1039. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  1040. goto dsync_mode;
  1041. }
  1042. }
  1043. sci->sc_stage.dirty_file_ptr = NULL;
  1044. sci->sc_stage.gc_inode_ptr = NULL;
  1045. if (mode == SC_FLUSH_DAT) {
  1046. sci->sc_stage.scnt = NILFS_ST_DAT;
  1047. goto dat_stage;
  1048. }
  1049. sci->sc_stage.scnt++; /* Fall through */
  1050. case NILFS_ST_GC:
  1051. if (nilfs_doing_gc()) {
  1052. head = &sci->sc_gc_inodes;
  1053. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  1054. head, i_dirty);
  1055. list_for_each_entry_continue(ii, head, i_dirty) {
  1056. err = nilfs_segctor_scan_file(
  1057. sci, &ii->vfs_inode,
  1058. &nilfs_sc_file_ops);
  1059. if (unlikely(err)) {
  1060. sci->sc_stage.gc_inode_ptr = list_entry(
  1061. ii->i_dirty.prev,
  1062. struct nilfs_inode_info,
  1063. i_dirty);
  1064. goto break_or_fail;
  1065. }
  1066. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  1067. }
  1068. sci->sc_stage.gc_inode_ptr = NULL;
  1069. }
  1070. sci->sc_stage.scnt++; /* Fall through */
  1071. case NILFS_ST_FILE:
  1072. head = &sci->sc_dirty_files;
  1073. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  1074. i_dirty);
  1075. list_for_each_entry_continue(ii, head, i_dirty) {
  1076. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  1077. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  1078. &nilfs_sc_file_ops);
  1079. if (unlikely(err)) {
  1080. sci->sc_stage.dirty_file_ptr =
  1081. list_entry(ii->i_dirty.prev,
  1082. struct nilfs_inode_info,
  1083. i_dirty);
  1084. goto break_or_fail;
  1085. }
  1086. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  1087. /* XXX: required ? */
  1088. }
  1089. sci->sc_stage.dirty_file_ptr = NULL;
  1090. if (mode == SC_FLUSH_FILE) {
  1091. sci->sc_stage.scnt = NILFS_ST_DONE;
  1092. return 0;
  1093. }
  1094. sci->sc_stage.scnt++; /* Fall through */
  1095. case NILFS_ST_SKETCH:
  1096. if (mode == SC_LSEG_SR && sci->sc_sketch_inode) {
  1097. ii = NILFS_I(sci->sc_sketch_inode);
  1098. if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  1099. sci->sc_sketch_inode->i_ctime.tv_sec
  1100. = sci->sc_seg_ctime;
  1101. sci->sc_sketch_inode->i_mtime.tv_sec
  1102. = sci->sc_seg_ctime;
  1103. err = nilfs_mark_inode_dirty(
  1104. sci->sc_sketch_inode);
  1105. if (unlikely(err))
  1106. goto break_or_fail;
  1107. }
  1108. err = nilfs_segctor_scan_file(sci,
  1109. sci->sc_sketch_inode,
  1110. &nilfs_sc_file_ops);
  1111. if (unlikely(err))
  1112. goto break_or_fail;
  1113. }
  1114. sci->sc_stage.scnt++;
  1115. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  1116. /* Fall through */
  1117. case NILFS_ST_IFILE:
  1118. err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
  1119. &nilfs_sc_file_ops);
  1120. if (unlikely(err))
  1121. break;
  1122. sci->sc_stage.scnt++;
  1123. /* Creating a checkpoint */
  1124. err = nilfs_segctor_create_checkpoint(sci);
  1125. if (unlikely(err))
  1126. break;
  1127. /* Fall through */
  1128. case NILFS_ST_CPFILE:
  1129. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1130. &nilfs_sc_file_ops);
  1131. if (unlikely(err))
  1132. break;
  1133. sci->sc_stage.scnt++; /* Fall through */
  1134. case NILFS_ST_SUFILE:
  1135. err = nilfs_segctor_prepare_free_segments(sci,
  1136. nilfs->ns_sufile);
  1137. if (unlikely(err))
  1138. break;
  1139. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1140. &nilfs_sc_file_ops);
  1141. if (unlikely(err))
  1142. break;
  1143. sci->sc_stage.scnt++; /* Fall through */
  1144. case NILFS_ST_DAT:
  1145. dat_stage:
  1146. err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
  1147. &nilfs_sc_dat_ops);
  1148. if (unlikely(err))
  1149. break;
  1150. if (mode == SC_FLUSH_DAT) {
  1151. sci->sc_stage.scnt = NILFS_ST_DONE;
  1152. return 0;
  1153. }
  1154. sci->sc_stage.scnt++; /* Fall through */
  1155. case NILFS_ST_SR:
  1156. if (mode == SC_LSEG_SR) {
  1157. /* Appending a super root */
  1158. err = nilfs_segctor_add_super_root(sci);
  1159. if (unlikely(err))
  1160. break;
  1161. }
  1162. /* End of a logical segment */
  1163. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1164. sci->sc_stage.scnt = NILFS_ST_DONE;
  1165. return 0;
  1166. case NILFS_ST_DSYNC:
  1167. dsync_mode:
  1168. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1169. ii = sci->sc_dsync_inode;
  1170. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1171. break;
  1172. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1173. if (unlikely(err))
  1174. break;
  1175. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1176. sci->sc_stage.scnt = NILFS_ST_DONE;
  1177. return 0;
  1178. case NILFS_ST_DONE:
  1179. return 0;
  1180. default:
  1181. BUG();
  1182. }
  1183. break_or_fail:
  1184. return err;
  1185. }
  1186. static int nilfs_segctor_terminate_segment(struct nilfs_sc_info *sci,
  1187. struct nilfs_segment_buffer *segbuf,
  1188. struct inode *sufile)
  1189. {
  1190. struct nilfs_segment_entry *ent = segbuf->sb_segent;
  1191. int err;
  1192. err = nilfs_open_segment_entry(ent, sufile);
  1193. if (unlikely(err))
  1194. return err;
  1195. nilfs_mdt_mark_buffer_dirty(ent->bh_su);
  1196. nilfs_mdt_mark_dirty(sufile);
  1197. nilfs_close_segment_entry(ent, sufile);
  1198. list_add_tail(&ent->list, &sci->sc_active_segments);
  1199. segbuf->sb_segent = NULL;
  1200. return 0;
  1201. }
  1202. static int nilfs_touch_segusage(struct inode *sufile, __u64 segnum)
  1203. {
  1204. struct buffer_head *bh_su;
  1205. struct nilfs_segment_usage *raw_su;
  1206. int err;
  1207. err = nilfs_sufile_get_segment_usage(sufile, segnum, &raw_su, &bh_su);
  1208. if (unlikely(err))
  1209. return err;
  1210. nilfs_mdt_mark_buffer_dirty(bh_su);
  1211. nilfs_mdt_mark_dirty(sufile);
  1212. nilfs_sufile_put_segment_usage(sufile, segnum, bh_su);
  1213. return 0;
  1214. }
  1215. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1216. struct the_nilfs *nilfs)
  1217. {
  1218. struct nilfs_segment_buffer *segbuf, *n;
  1219. struct inode *sufile = nilfs->ns_sufile;
  1220. __u64 nextnum;
  1221. int err;
  1222. if (list_empty(&sci->sc_segbufs)) {
  1223. segbuf = nilfs_segbuf_new(sci->sc_super);
  1224. if (unlikely(!segbuf))
  1225. return -ENOMEM;
  1226. list_add(&segbuf->sb_list, &sci->sc_segbufs);
  1227. } else
  1228. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1229. err = nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1230. nilfs->ns_pseg_offset, nilfs);
  1231. if (unlikely(err))
  1232. return err;
  1233. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1234. err = nilfs_segctor_terminate_segment(sci, segbuf, sufile);
  1235. if (unlikely(err))
  1236. return err;
  1237. nilfs_shift_to_next_segment(nilfs);
  1238. err = nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1239. }
  1240. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1241. err = nilfs_touch_segusage(sufile, segbuf->sb_segnum);
  1242. if (unlikely(err))
  1243. return err;
  1244. if (nilfs->ns_segnum == nilfs->ns_nextnum) {
  1245. /* Start from the head of a new full segment */
  1246. err = nilfs_sufile_alloc(sufile, &nextnum);
  1247. if (unlikely(err))
  1248. return err;
  1249. } else
  1250. nextnum = nilfs->ns_nextnum;
  1251. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1252. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1253. /* truncating segment buffers */
  1254. list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
  1255. sb_list) {
  1256. list_del_init(&segbuf->sb_list);
  1257. nilfs_segbuf_free(segbuf);
  1258. }
  1259. return err;
  1260. }
  1261. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1262. struct the_nilfs *nilfs, int nadd)
  1263. {
  1264. struct nilfs_segment_buffer *segbuf, *prev, *n;
  1265. struct inode *sufile = nilfs->ns_sufile;
  1266. __u64 nextnextnum;
  1267. LIST_HEAD(list);
  1268. int err, ret, i;
  1269. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1270. /*
  1271. * Since the segment specified with nextnum might be allocated during
  1272. * the previous construction, the buffer including its segusage may
  1273. * not be dirty. The following call ensures that the buffer is dirty
  1274. * and will pin the buffer on memory until the sufile is written.
  1275. */
  1276. err = nilfs_touch_segusage(sufile, prev->sb_nextnum);
  1277. if (unlikely(err))
  1278. return err;
  1279. for (i = 0; i < nadd; i++) {
  1280. /* extend segment info */
  1281. err = -ENOMEM;
  1282. segbuf = nilfs_segbuf_new(sci->sc_super);
  1283. if (unlikely(!segbuf))
  1284. goto failed;
  1285. /* map this buffer to region of segment on-disk */
  1286. err = nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1287. if (unlikely(err))
  1288. goto failed_segbuf;
  1289. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1290. /* allocate the next next full segment */
  1291. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1292. if (unlikely(err))
  1293. goto failed_segbuf;
  1294. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1295. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1296. list_add_tail(&segbuf->sb_list, &list);
  1297. prev = segbuf;
  1298. }
  1299. list_splice(&list, sci->sc_segbufs.prev);
  1300. return 0;
  1301. failed_segbuf:
  1302. nilfs_segbuf_free(segbuf);
  1303. failed:
  1304. list_for_each_entry_safe(segbuf, n, &list, sb_list) {
  1305. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1306. BUG_ON(ret);
  1307. list_del_init(&segbuf->sb_list);
  1308. nilfs_segbuf_free(segbuf);
  1309. }
  1310. return err;
  1311. }
  1312. static void nilfs_segctor_free_incomplete_segments(struct nilfs_sc_info *sci,
  1313. struct the_nilfs *nilfs)
  1314. {
  1315. struct nilfs_segment_buffer *segbuf;
  1316. int ret, done = 0;
  1317. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1318. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1319. ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
  1320. BUG_ON(ret);
  1321. }
  1322. if (segbuf->sb_io_error) {
  1323. /* Case 1: The first segment failed */
  1324. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1325. /* Case 1a: Partial segment appended into an existing
  1326. segment */
  1327. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1328. segbuf->sb_fseg_end);
  1329. else /* Case 1b: New full segment */
  1330. set_nilfs_discontinued(nilfs);
  1331. done++;
  1332. }
  1333. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1334. ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
  1335. BUG_ON(ret);
  1336. if (!done && segbuf->sb_io_error) {
  1337. if (segbuf->sb_segnum != nilfs->ns_nextnum)
  1338. /* Case 2: extended segment (!= next) failed */
  1339. nilfs_sufile_set_error(nilfs->ns_sufile,
  1340. segbuf->sb_segnum);
  1341. done++;
  1342. }
  1343. }
  1344. }
  1345. static void nilfs_segctor_clear_segment_buffers(struct nilfs_sc_info *sci)
  1346. {
  1347. struct nilfs_segment_buffer *segbuf;
  1348. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list)
  1349. nilfs_segbuf_clear(segbuf);
  1350. sci->sc_super_root = NULL;
  1351. }
  1352. static void nilfs_segctor_destroy_segment_buffers(struct nilfs_sc_info *sci)
  1353. {
  1354. struct nilfs_segment_buffer *segbuf;
  1355. while (!list_empty(&sci->sc_segbufs)) {
  1356. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1357. list_del_init(&segbuf->sb_list);
  1358. nilfs_segbuf_free(segbuf);
  1359. }
  1360. /* sci->sc_curseg = NULL; */
  1361. }
  1362. static void nilfs_segctor_end_construction(struct nilfs_sc_info *sci,
  1363. struct the_nilfs *nilfs, int err)
  1364. {
  1365. if (unlikely(err)) {
  1366. nilfs_segctor_free_incomplete_segments(sci, nilfs);
  1367. nilfs_segctor_cancel_free_segments(sci, nilfs->ns_sufile);
  1368. }
  1369. nilfs_segctor_clear_segment_buffers(sci);
  1370. }
  1371. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1372. struct inode *sufile)
  1373. {
  1374. struct nilfs_segment_buffer *segbuf;
  1375. struct buffer_head *bh_su;
  1376. struct nilfs_segment_usage *raw_su;
  1377. unsigned long live_blocks;
  1378. int ret;
  1379. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1380. ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
  1381. &raw_su, &bh_su);
  1382. BUG_ON(ret); /* always succeed because bh_su is dirty */
  1383. live_blocks = segbuf->sb_sum.nblocks +
  1384. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1385. raw_su->su_lastmod = cpu_to_le64(sci->sc_seg_ctime);
  1386. raw_su->su_nblocks = cpu_to_le32(live_blocks);
  1387. nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum,
  1388. bh_su);
  1389. }
  1390. }
  1391. static void nilfs_segctor_cancel_segusage(struct nilfs_sc_info *sci,
  1392. struct inode *sufile)
  1393. {
  1394. struct nilfs_segment_buffer *segbuf;
  1395. struct buffer_head *bh_su;
  1396. struct nilfs_segment_usage *raw_su;
  1397. int ret;
  1398. segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1399. ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
  1400. &raw_su, &bh_su);
  1401. BUG_ON(ret); /* always succeed because bh_su is dirty */
  1402. raw_su->su_nblocks = cpu_to_le32(segbuf->sb_pseg_start -
  1403. segbuf->sb_fseg_start);
  1404. nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum, bh_su);
  1405. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1406. ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
  1407. &raw_su, &bh_su);
  1408. BUG_ON(ret); /* always succeed */
  1409. raw_su->su_nblocks = 0;
  1410. nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum,
  1411. bh_su);
  1412. }
  1413. }
  1414. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1415. struct nilfs_segment_buffer *last,
  1416. struct inode *sufile)
  1417. {
  1418. struct nilfs_segment_buffer *segbuf = last, *n;
  1419. int ret;
  1420. list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
  1421. sb_list) {
  1422. list_del_init(&segbuf->sb_list);
  1423. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1424. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1425. BUG_ON(ret);
  1426. nilfs_segbuf_free(segbuf);
  1427. }
  1428. }
  1429. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1430. struct the_nilfs *nilfs, int mode)
  1431. {
  1432. struct nilfs_cstage prev_stage = sci->sc_stage;
  1433. int err, nadd = 1;
  1434. /* Collection retry loop */
  1435. for (;;) {
  1436. sci->sc_super_root = NULL;
  1437. sci->sc_nblk_this_inc = 0;
  1438. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1439. err = nilfs_segctor_reset_segment_buffer(sci);
  1440. if (unlikely(err))
  1441. goto failed;
  1442. err = nilfs_segctor_collect_blocks(sci, mode);
  1443. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1444. if (!err)
  1445. break;
  1446. if (unlikely(err != -E2BIG))
  1447. goto failed;
  1448. /* The current segment is filled up */
  1449. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1450. break;
  1451. nilfs_segctor_cancel_free_segments(sci, nilfs->ns_sufile);
  1452. nilfs_segctor_clear_segment_buffers(sci);
  1453. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1454. if (unlikely(err))
  1455. return err;
  1456. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1457. sci->sc_stage = prev_stage;
  1458. }
  1459. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1460. return 0;
  1461. failed:
  1462. return err;
  1463. }
  1464. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1465. struct buffer_head *new_bh)
  1466. {
  1467. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1468. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1469. /* The caller must release old_bh */
  1470. }
  1471. static int
  1472. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1473. struct nilfs_segment_buffer *segbuf,
  1474. int mode)
  1475. {
  1476. struct inode *inode = NULL;
  1477. sector_t blocknr;
  1478. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1479. unsigned long nblocks = 0, ndatablk = 0;
  1480. struct nilfs_sc_operations *sc_op = NULL;
  1481. struct nilfs_segsum_pointer ssp;
  1482. struct nilfs_finfo *finfo = NULL;
  1483. union nilfs_binfo binfo;
  1484. struct buffer_head *bh, *bh_org;
  1485. ino_t ino = 0;
  1486. int err = 0;
  1487. if (!nfinfo)
  1488. goto out;
  1489. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1490. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1491. ssp.offset = sizeof(struct nilfs_segment_summary);
  1492. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1493. if (bh == sci->sc_super_root)
  1494. break;
  1495. if (!finfo) {
  1496. finfo = nilfs_segctor_map_segsum_entry(
  1497. sci, &ssp, sizeof(*finfo));
  1498. ino = le64_to_cpu(finfo->fi_ino);
  1499. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1500. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1501. if (buffer_nilfs_node(bh))
  1502. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1503. else
  1504. inode = NILFS_AS_I(bh->b_page->mapping);
  1505. if (mode == SC_LSEG_DSYNC)
  1506. sc_op = &nilfs_sc_dsync_ops;
  1507. else if (ino == NILFS_DAT_INO)
  1508. sc_op = &nilfs_sc_dat_ops;
  1509. else /* file blocks */
  1510. sc_op = &nilfs_sc_file_ops;
  1511. }
  1512. bh_org = bh;
  1513. get_bh(bh_org);
  1514. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1515. &binfo);
  1516. if (bh != bh_org)
  1517. nilfs_list_replace_buffer(bh_org, bh);
  1518. brelse(bh_org);
  1519. if (unlikely(err))
  1520. goto failed_bmap;
  1521. if (ndatablk > 0)
  1522. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1523. else
  1524. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1525. blocknr++;
  1526. if (--nblocks == 0) {
  1527. finfo = NULL;
  1528. if (--nfinfo == 0)
  1529. break;
  1530. } else if (ndatablk > 0)
  1531. ndatablk--;
  1532. }
  1533. out:
  1534. return 0;
  1535. failed_bmap:
  1536. err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
  1537. return err;
  1538. }
  1539. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1540. {
  1541. struct nilfs_segment_buffer *segbuf;
  1542. int err;
  1543. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1544. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1545. if (unlikely(err))
  1546. return err;
  1547. nilfs_segbuf_fill_in_segsum(segbuf);
  1548. }
  1549. return 0;
  1550. }
  1551. static int
  1552. nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
  1553. {
  1554. struct page *clone_page;
  1555. struct buffer_head *bh, *head, *bh2;
  1556. void *kaddr;
  1557. bh = head = page_buffers(page);
  1558. clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
  1559. if (unlikely(!clone_page))
  1560. return -ENOMEM;
  1561. bh2 = page_buffers(clone_page);
  1562. kaddr = kmap_atomic(page, KM_USER0);
  1563. do {
  1564. if (list_empty(&bh->b_assoc_buffers))
  1565. continue;
  1566. get_bh(bh2);
  1567. page_cache_get(clone_page); /* for each bh */
  1568. memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
  1569. bh2->b_blocknr = bh->b_blocknr;
  1570. list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
  1571. list_add_tail(&bh->b_assoc_buffers, out);
  1572. } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
  1573. kunmap_atomic(kaddr, KM_USER0);
  1574. if (!TestSetPageWriteback(clone_page))
  1575. inc_zone_page_state(clone_page, NR_WRITEBACK);
  1576. unlock_page(clone_page);
  1577. return 0;
  1578. }
  1579. static int nilfs_test_page_to_be_frozen(struct page *page)
  1580. {
  1581. struct address_space *mapping = page->mapping;
  1582. if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
  1583. return 0;
  1584. if (page_mapped(page)) {
  1585. ClearPageChecked(page);
  1586. return 1;
  1587. }
  1588. return PageChecked(page);
  1589. }
  1590. static int nilfs_begin_page_io(struct page *page, struct list_head *out)
  1591. {
  1592. if (!page || PageWriteback(page))
  1593. /* For split b-tree node pages, this function may be called
  1594. twice. We ignore the 2nd or later calls by this check. */
  1595. return 0;
  1596. lock_page(page);
  1597. clear_page_dirty_for_io(page);
  1598. set_page_writeback(page);
  1599. unlock_page(page);
  1600. if (nilfs_test_page_to_be_frozen(page)) {
  1601. int err = nilfs_copy_replace_page_buffers(page, out);
  1602. if (unlikely(err))
  1603. return err;
  1604. }
  1605. return 0;
  1606. }
  1607. static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
  1608. struct page **failed_page)
  1609. {
  1610. struct nilfs_segment_buffer *segbuf;
  1611. struct page *bd_page = NULL, *fs_page = NULL;
  1612. struct list_head *list = &sci->sc_copied_buffers;
  1613. int err;
  1614. *failed_page = NULL;
  1615. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1616. struct buffer_head *bh;
  1617. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1618. b_assoc_buffers) {
  1619. if (bh->b_page != bd_page) {
  1620. if (bd_page) {
  1621. lock_page(bd_page);
  1622. clear_page_dirty_for_io(bd_page);
  1623. set_page_writeback(bd_page);
  1624. unlock_page(bd_page);
  1625. }
  1626. bd_page = bh->b_page;
  1627. }
  1628. }
  1629. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1630. b_assoc_buffers) {
  1631. if (bh == sci->sc_super_root) {
  1632. if (bh->b_page != bd_page) {
  1633. lock_page(bd_page);
  1634. clear_page_dirty_for_io(bd_page);
  1635. set_page_writeback(bd_page);
  1636. unlock_page(bd_page);
  1637. bd_page = bh->b_page;
  1638. }
  1639. break;
  1640. }
  1641. if (bh->b_page != fs_page) {
  1642. err = nilfs_begin_page_io(fs_page, list);
  1643. if (unlikely(err)) {
  1644. *failed_page = fs_page;
  1645. goto out;
  1646. }
  1647. fs_page = bh->b_page;
  1648. }
  1649. }
  1650. }
  1651. if (bd_page) {
  1652. lock_page(bd_page);
  1653. clear_page_dirty_for_io(bd_page);
  1654. set_page_writeback(bd_page);
  1655. unlock_page(bd_page);
  1656. }
  1657. err = nilfs_begin_page_io(fs_page, list);
  1658. if (unlikely(err))
  1659. *failed_page = fs_page;
  1660. out:
  1661. return err;
  1662. }
  1663. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1664. struct backing_dev_info *bdi)
  1665. {
  1666. struct nilfs_segment_buffer *segbuf;
  1667. struct nilfs_write_info wi;
  1668. int err, res;
  1669. wi.sb = sci->sc_super;
  1670. wi.bh_sr = sci->sc_super_root;
  1671. wi.bdi = bdi;
  1672. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1673. nilfs_segbuf_prepare_write(segbuf, &wi);
  1674. err = nilfs_segbuf_write(segbuf, &wi);
  1675. res = nilfs_segbuf_wait(segbuf, &wi);
  1676. err = unlikely(err) ? : res;
  1677. if (unlikely(err))
  1678. return err;
  1679. }
  1680. return 0;
  1681. }
  1682. static int nilfs_page_has_uncleared_buffer(struct page *page)
  1683. {
  1684. struct buffer_head *head, *bh;
  1685. head = bh = page_buffers(page);
  1686. do {
  1687. if (buffer_dirty(bh) && !list_empty(&bh->b_assoc_buffers))
  1688. return 1;
  1689. bh = bh->b_this_page;
  1690. } while (bh != head);
  1691. return 0;
  1692. }
  1693. static void __nilfs_end_page_io(struct page *page, int err)
  1694. {
  1695. /* BUG_ON(err > 0); */
  1696. if (!err) {
  1697. if (!nilfs_page_buffers_clean(page))
  1698. __set_page_dirty_nobuffers(page);
  1699. ClearPageError(page);
  1700. } else {
  1701. __set_page_dirty_nobuffers(page);
  1702. SetPageError(page);
  1703. }
  1704. if (buffer_nilfs_allocated(page_buffers(page))) {
  1705. if (TestClearPageWriteback(page))
  1706. dec_zone_page_state(page, NR_WRITEBACK);
  1707. } else
  1708. end_page_writeback(page);
  1709. }
  1710. static void nilfs_end_page_io(struct page *page, int err)
  1711. {
  1712. if (!page)
  1713. return;
  1714. if (buffer_nilfs_node(page_buffers(page)) &&
  1715. nilfs_page_has_uncleared_buffer(page))
  1716. /* For b-tree node pages, this function may be called twice
  1717. or more because they might be split in a segment.
  1718. This check assures that cleanup has been done for all
  1719. buffers in a split btnode page. */
  1720. return;
  1721. __nilfs_end_page_io(page, err);
  1722. }
  1723. static void nilfs_clear_copied_buffers(struct list_head *list, int err)
  1724. {
  1725. struct buffer_head *bh, *head;
  1726. struct page *page;
  1727. while (!list_empty(list)) {
  1728. bh = list_entry(list->next, struct buffer_head,
  1729. b_assoc_buffers);
  1730. page = bh->b_page;
  1731. page_cache_get(page);
  1732. head = bh = page_buffers(page);
  1733. do {
  1734. if (!list_empty(&bh->b_assoc_buffers)) {
  1735. list_del_init(&bh->b_assoc_buffers);
  1736. if (!err) {
  1737. set_buffer_uptodate(bh);
  1738. clear_buffer_dirty(bh);
  1739. clear_buffer_nilfs_volatile(bh);
  1740. }
  1741. brelse(bh); /* for b_assoc_buffers */
  1742. }
  1743. } while ((bh = bh->b_this_page) != head);
  1744. __nilfs_end_page_io(page, err);
  1745. page_cache_release(page);
  1746. }
  1747. }
  1748. static void nilfs_segctor_abort_write(struct nilfs_sc_info *sci,
  1749. struct page *failed_page, int err)
  1750. {
  1751. struct nilfs_segment_buffer *segbuf;
  1752. struct page *bd_page = NULL, *fs_page = NULL;
  1753. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1754. struct buffer_head *bh;
  1755. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1756. b_assoc_buffers) {
  1757. if (bh->b_page != bd_page) {
  1758. if (bd_page)
  1759. end_page_writeback(bd_page);
  1760. bd_page = bh->b_page;
  1761. }
  1762. }
  1763. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1764. b_assoc_buffers) {
  1765. if (bh == sci->sc_super_root) {
  1766. if (bh->b_page != bd_page) {
  1767. end_page_writeback(bd_page);
  1768. bd_page = bh->b_page;
  1769. }
  1770. break;
  1771. }
  1772. if (bh->b_page != fs_page) {
  1773. nilfs_end_page_io(fs_page, err);
  1774. if (unlikely(fs_page == failed_page))
  1775. goto done;
  1776. fs_page = bh->b_page;
  1777. }
  1778. }
  1779. }
  1780. if (bd_page)
  1781. end_page_writeback(bd_page);
  1782. nilfs_end_page_io(fs_page, err);
  1783. done:
  1784. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
  1785. }
  1786. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1787. struct nilfs_segment_buffer *segbuf)
  1788. {
  1789. nilfs->ns_segnum = segbuf->sb_segnum;
  1790. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1791. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1792. + segbuf->sb_sum.nblocks;
  1793. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1794. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1795. }
  1796. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1797. {
  1798. struct nilfs_segment_buffer *segbuf;
  1799. struct page *bd_page = NULL, *fs_page = NULL;
  1800. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1801. struct the_nilfs *nilfs = sbi->s_nilfs;
  1802. int update_sr = (sci->sc_super_root != NULL);
  1803. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1804. struct buffer_head *bh;
  1805. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1806. b_assoc_buffers) {
  1807. set_buffer_uptodate(bh);
  1808. clear_buffer_dirty(bh);
  1809. if (bh->b_page != bd_page) {
  1810. if (bd_page)
  1811. end_page_writeback(bd_page);
  1812. bd_page = bh->b_page;
  1813. }
  1814. }
  1815. /*
  1816. * We assume that the buffers which belong to the same page
  1817. * continue over the buffer list.
  1818. * Under this assumption, the last BHs of pages is
  1819. * identifiable by the discontinuity of bh->b_page
  1820. * (page != fs_page).
  1821. *
  1822. * For B-tree node blocks, however, this assumption is not
  1823. * guaranteed. The cleanup code of B-tree node pages needs
  1824. * special care.
  1825. */
  1826. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1827. b_assoc_buffers) {
  1828. set_buffer_uptodate(bh);
  1829. clear_buffer_dirty(bh);
  1830. clear_buffer_nilfs_volatile(bh);
  1831. if (bh == sci->sc_super_root) {
  1832. if (bh->b_page != bd_page) {
  1833. end_page_writeback(bd_page);
  1834. bd_page = bh->b_page;
  1835. }
  1836. break;
  1837. }
  1838. if (bh->b_page != fs_page) {
  1839. nilfs_end_page_io(fs_page, 0);
  1840. fs_page = bh->b_page;
  1841. }
  1842. }
  1843. if (!NILFS_SEG_SIMPLEX(&segbuf->sb_sum)) {
  1844. if (NILFS_SEG_LOGBGN(&segbuf->sb_sum)) {
  1845. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1846. sci->sc_lseg_stime = jiffies;
  1847. }
  1848. if (NILFS_SEG_LOGEND(&segbuf->sb_sum))
  1849. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1850. }
  1851. }
  1852. /*
  1853. * Since pages may continue over multiple segment buffers,
  1854. * end of the last page must be checked outside of the loop.
  1855. */
  1856. if (bd_page)
  1857. end_page_writeback(bd_page);
  1858. nilfs_end_page_io(fs_page, 0);
  1859. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
  1860. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1861. if (nilfs_doing_gc()) {
  1862. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1863. if (update_sr)
  1864. nilfs_commit_gcdat_inode(nilfs);
  1865. } else
  1866. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1867. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1868. segbuf = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1869. nilfs_set_next_segment(nilfs, segbuf);
  1870. if (update_sr) {
  1871. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1872. segbuf->sb_sum.seg_seq, nilfs->ns_cno);
  1873. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1874. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1875. } else
  1876. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1877. }
  1878. static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
  1879. struct nilfs_sb_info *sbi)
  1880. {
  1881. struct nilfs_inode_info *ii, *n;
  1882. __u64 cno = sbi->s_nilfs->ns_cno;
  1883. spin_lock(&sbi->s_inode_lock);
  1884. retry:
  1885. list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
  1886. if (!ii->i_bh) {
  1887. struct buffer_head *ibh;
  1888. int err;
  1889. spin_unlock(&sbi->s_inode_lock);
  1890. err = nilfs_ifile_get_inode_block(
  1891. sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
  1892. if (unlikely(err)) {
  1893. nilfs_warning(sbi->s_super, __func__,
  1894. "failed to get inode block.\n");
  1895. return err;
  1896. }
  1897. nilfs_mdt_mark_buffer_dirty(ibh);
  1898. nilfs_mdt_mark_dirty(sbi->s_ifile);
  1899. spin_lock(&sbi->s_inode_lock);
  1900. if (likely(!ii->i_bh))
  1901. ii->i_bh = ibh;
  1902. else
  1903. brelse(ibh);
  1904. goto retry;
  1905. }
  1906. ii->i_cno = cno;
  1907. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1908. set_bit(NILFS_I_BUSY, &ii->i_state);
  1909. list_del(&ii->i_dirty);
  1910. list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1911. }
  1912. spin_unlock(&sbi->s_inode_lock);
  1913. NILFS_I(sbi->s_ifile)->i_cno = cno;
  1914. return 0;
  1915. }
  1916. static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
  1917. struct nilfs_sb_info *sbi)
  1918. {
  1919. struct nilfs_transaction_info *ti = current->journal_info;
  1920. struct nilfs_inode_info *ii, *n;
  1921. __u64 cno = sbi->s_nilfs->ns_cno;
  1922. spin_lock(&sbi->s_inode_lock);
  1923. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1924. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1925. test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  1926. /* The current checkpoint number (=nilfs->ns_cno) is
  1927. changed between check-in and check-out only if the
  1928. super root is written out. So, we can update i_cno
  1929. for the inodes that remain in the dirty list. */
  1930. ii->i_cno = cno;
  1931. continue;
  1932. }
  1933. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1934. brelse(ii->i_bh);
  1935. ii->i_bh = NULL;
  1936. list_del(&ii->i_dirty);
  1937. list_add_tail(&ii->i_dirty, &ti->ti_garbage);
  1938. }
  1939. spin_unlock(&sbi->s_inode_lock);
  1940. }
  1941. /*
  1942. * Nasty routines to manipulate active flags on sufile.
  1943. * These would be removed in a future release.
  1944. */
  1945. static void nilfs_segctor_reactivate_segments(struct nilfs_sc_info *sci,
  1946. struct the_nilfs *nilfs)
  1947. {
  1948. struct nilfs_segment_buffer *segbuf, *last;
  1949. struct nilfs_segment_entry *ent, *n;
  1950. struct inode *sufile = nilfs->ns_sufile;
  1951. struct list_head *head;
  1952. last = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1953. nilfs_for_each_segbuf_before(segbuf, last, &sci->sc_segbufs) {
  1954. ent = segbuf->sb_segent;
  1955. if (!ent)
  1956. break; /* ignore unmapped segments (should check it?)*/
  1957. nilfs_segment_usage_set_active(ent->raw_su);
  1958. nilfs_close_segment_entry(ent, sufile);
  1959. }
  1960. head = &sci->sc_active_segments;
  1961. list_for_each_entry_safe(ent, n, head, list) {
  1962. nilfs_segment_usage_set_active(ent->raw_su);
  1963. nilfs_close_segment_entry(ent, sufile);
  1964. }
  1965. }
  1966. static int nilfs_segctor_deactivate_segments(struct nilfs_sc_info *sci,
  1967. struct the_nilfs *nilfs)
  1968. {
  1969. struct nilfs_segment_buffer *segbuf, *last;
  1970. struct nilfs_segment_entry *ent;
  1971. struct inode *sufile = nilfs->ns_sufile;
  1972. int err;
  1973. last = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1974. nilfs_for_each_segbuf_before(segbuf, last, &sci->sc_segbufs) {
  1975. /*
  1976. * Deactivate ongoing full segments. The last segment is kept
  1977. * active because it is a start point of recovery, and is not
  1978. * relocatable until the super block points to a newer
  1979. * checkpoint.
  1980. */
  1981. ent = segbuf->sb_segent;
  1982. if (!ent)
  1983. break; /* ignore unmapped segments (should check it?)*/
  1984. err = nilfs_open_segment_entry(ent, sufile);
  1985. if (unlikely(err))
  1986. goto failed;
  1987. nilfs_segment_usage_clear_active(ent->raw_su);
  1988. BUG_ON(!buffer_dirty(ent->bh_su));
  1989. }
  1990. list_for_each_entry(ent, &sci->sc_active_segments, list) {
  1991. err = nilfs_open_segment_entry(ent, sufile);
  1992. if (unlikely(err))
  1993. goto failed;
  1994. nilfs_segment_usage_clear_active(ent->raw_su);
  1995. BUG_ON(!buffer_dirty(ent->bh_su));
  1996. }
  1997. return 0;
  1998. failed:
  1999. nilfs_segctor_reactivate_segments(sci, nilfs);
  2000. return err;
  2001. }
  2002. static void nilfs_segctor_bead_completed_segments(struct nilfs_sc_info *sci)
  2003. {
  2004. struct nilfs_segment_buffer *segbuf, *last;
  2005. struct nilfs_segment_entry *ent;
  2006. /* move each segbuf->sb_segent to the list of used active segments */
  2007. last = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  2008. nilfs_for_each_segbuf_before(segbuf, last, &sci->sc_segbufs) {
  2009. ent = segbuf->sb_segent;
  2010. if (!ent)
  2011. break; /* ignore unmapped segments (should check it?)*/
  2012. list_add_tail(&ent->list, &sci->sc_active_segments);
  2013. segbuf->sb_segent = NULL;
  2014. }
  2015. }
  2016. static void nilfs_segctor_commit_deactivate_segments(struct nilfs_sc_info *sci,
  2017. struct the_nilfs *nilfs)
  2018. {
  2019. struct nilfs_segment_entry *ent, *n;
  2020. list_for_each_entry_safe(ent, n, &sci->sc_active_segments, list) {
  2021. list_del(&ent->list);
  2022. nilfs_close_segment_entry(ent, nilfs->ns_sufile);
  2023. nilfs_free_segment_entry(ent);
  2024. }
  2025. }
  2026. /*
  2027. * Main procedure of segment constructor
  2028. */
  2029. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  2030. {
  2031. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2032. struct the_nilfs *nilfs = sbi->s_nilfs;
  2033. struct page *failed_page;
  2034. int err, has_sr = 0;
  2035. sci->sc_stage.scnt = NILFS_ST_INIT;
  2036. err = nilfs_segctor_check_in_files(sci, sbi);
  2037. if (unlikely(err))
  2038. goto out;
  2039. if (nilfs_test_metadata_dirty(sbi))
  2040. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  2041. if (nilfs_segctor_clean(sci))
  2042. goto out;
  2043. do {
  2044. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  2045. err = nilfs_segctor_begin_construction(sci, nilfs);
  2046. if (unlikely(err))
  2047. goto out;
  2048. /* Update time stamp */
  2049. sci->sc_seg_ctime = get_seconds();
  2050. err = nilfs_segctor_collect(sci, nilfs, mode);
  2051. if (unlikely(err))
  2052. goto failed;
  2053. has_sr = (sci->sc_super_root != NULL);
  2054. /* Avoid empty segment */
  2055. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  2056. NILFS_SEG_EMPTY(&sci->sc_curseg->sb_sum)) {
  2057. BUG_ON(mode == SC_LSEG_SR);
  2058. nilfs_segctor_end_construction(sci, nilfs, 1);
  2059. goto out;
  2060. }
  2061. err = nilfs_segctor_assign(sci, mode);
  2062. if (unlikely(err))
  2063. goto failed;
  2064. if (has_sr) {
  2065. err = nilfs_segctor_deactivate_segments(sci, nilfs);
  2066. if (unlikely(err))
  2067. goto failed;
  2068. }
  2069. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  2070. nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
  2071. if (has_sr) {
  2072. err = nilfs_segctor_fill_in_checkpoint(sci);
  2073. if (unlikely(err))
  2074. goto failed_to_make_up;
  2075. nilfs_segctor_fill_in_super_root(sci, nilfs);
  2076. }
  2077. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  2078. /* Write partial segments */
  2079. err = nilfs_segctor_prepare_write(sci, &failed_page);
  2080. if (unlikely(err))
  2081. goto failed_to_write;
  2082. nilfs_segctor_fill_in_checksums(sci, nilfs->ns_crc_seed);
  2083. err = nilfs_segctor_write(sci, nilfs->ns_bdi);
  2084. if (unlikely(err))
  2085. goto failed_to_write;
  2086. nilfs_segctor_complete_write(sci);
  2087. /* Commit segments */
  2088. nilfs_segctor_bead_completed_segments(sci);
  2089. if (has_sr) {
  2090. down_write(&nilfs->ns_sem);
  2091. nilfs_update_last_segment(sbi, 1);
  2092. up_write(&nilfs->ns_sem);
  2093. nilfs_segctor_commit_deactivate_segments(sci, nilfs);
  2094. nilfs_segctor_commit_free_segments(sci);
  2095. nilfs_segctor_clear_metadata_dirty(sci);
  2096. }
  2097. nilfs_segctor_end_construction(sci, nilfs, 0);
  2098. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  2099. /* Clearing sketch data */
  2100. if (has_sr && sci->sc_sketch_inode) {
  2101. if (i_size_read(sci->sc_sketch_inode) == 0)
  2102. clear_bit(NILFS_I_DIRTY,
  2103. &NILFS_I(sci->sc_sketch_inode)->i_state);
  2104. i_size_write(sci->sc_sketch_inode, 0);
  2105. }
  2106. out:
  2107. nilfs_segctor_destroy_segment_buffers(sci);
  2108. nilfs_segctor_check_out_files(sci, sbi);
  2109. return err;
  2110. failed_to_write:
  2111. nilfs_segctor_abort_write(sci, failed_page, err);
  2112. nilfs_segctor_cancel_segusage(sci, nilfs->ns_sufile);
  2113. failed_to_make_up:
  2114. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  2115. nilfs_redirty_inodes(&sci->sc_dirty_files);
  2116. if (has_sr)
  2117. nilfs_segctor_reactivate_segments(sci, nilfs);
  2118. failed:
  2119. if (nilfs_doing_gc())
  2120. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  2121. nilfs_segctor_end_construction(sci, nilfs, err);
  2122. goto out;
  2123. }
  2124. /**
  2125. * nilfs_secgtor_start_timer - set timer of background write
  2126. * @sci: nilfs_sc_info
  2127. *
  2128. * If the timer has already been set, it ignores the new request.
  2129. * This function MUST be called within a section locking the segment
  2130. * semaphore.
  2131. */
  2132. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  2133. {
  2134. spin_lock(&sci->sc_state_lock);
  2135. if (sci->sc_timer && !(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  2136. sci->sc_timer->expires = jiffies + sci->sc_interval;
  2137. add_timer(sci->sc_timer);
  2138. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  2139. }
  2140. spin_unlock(&sci->sc_state_lock);
  2141. }
  2142. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  2143. {
  2144. spin_lock(&sci->sc_state_lock);
  2145. if (!(sci->sc_flush_request & (1 << bn))) {
  2146. unsigned long prev_req = sci->sc_flush_request;
  2147. sci->sc_flush_request |= (1 << bn);
  2148. if (!prev_req)
  2149. wake_up(&sci->sc_wait_daemon);
  2150. }
  2151. spin_unlock(&sci->sc_state_lock);
  2152. }
  2153. /**
  2154. * nilfs_flush_segment - trigger a segment construction for resource control
  2155. * @sb: super block
  2156. * @ino: inode number of the file to be flushed out.
  2157. */
  2158. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  2159. {
  2160. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2161. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2162. if (!sci || nilfs_doing_construction())
  2163. return;
  2164. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  2165. /* assign bit 0 to data files */
  2166. }
  2167. int nilfs_segctor_add_segments_to_be_freed(struct nilfs_sc_info *sci,
  2168. __u64 *segnum, size_t nsegs)
  2169. {
  2170. struct nilfs_segment_entry *ent;
  2171. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  2172. struct inode *sufile = nilfs->ns_sufile;
  2173. LIST_HEAD(list);
  2174. __u64 *pnum;
  2175. const char *flag_name;
  2176. size_t i;
  2177. int err, err2 = 0;
  2178. for (pnum = segnum, i = 0; i < nsegs; pnum++, i++) {
  2179. ent = nilfs_alloc_segment_entry(*pnum);
  2180. if (unlikely(!ent)) {
  2181. err = -ENOMEM;
  2182. goto failed;
  2183. }
  2184. list_add_tail(&ent->list, &list);
  2185. err = nilfs_open_segment_entry(ent, sufile);
  2186. if (unlikely(err))
  2187. goto failed;
  2188. if (unlikely(le32_to_cpu(ent->raw_su->su_flags) !=
  2189. (1UL << NILFS_SEGMENT_USAGE_DIRTY))) {
  2190. if (nilfs_segment_usage_clean(ent->raw_su))
  2191. flag_name = "clean";
  2192. else if (nilfs_segment_usage_active(ent->raw_su))
  2193. flag_name = "active";
  2194. else if (nilfs_segment_usage_volatile_active(
  2195. ent->raw_su))
  2196. flag_name = "volatile active";
  2197. else if (!nilfs_segment_usage_dirty(ent->raw_su))
  2198. flag_name = "non-dirty";
  2199. else
  2200. flag_name = "erroneous";
  2201. printk(KERN_ERR
  2202. "NILFS: %s segment is requested to be cleaned "
  2203. "(segnum=%llu)\n",
  2204. flag_name, (unsigned long long)ent->segnum);
  2205. err2 = -EINVAL;
  2206. }
  2207. nilfs_close_segment_entry(ent, sufile);
  2208. }
  2209. if (unlikely(err2)) {
  2210. err = err2;
  2211. goto failed;
  2212. }
  2213. list_splice(&list, sci->sc_cleaning_segments.prev);
  2214. return 0;
  2215. failed:
  2216. nilfs_dispose_segment_list(&list);
  2217. return err;
  2218. }
  2219. void nilfs_segctor_clear_segments_to_be_freed(struct nilfs_sc_info *sci)
  2220. {
  2221. nilfs_dispose_segment_list(&sci->sc_cleaning_segments);
  2222. }
  2223. struct nilfs_segctor_wait_request {
  2224. wait_queue_t wq;
  2225. __u32 seq;
  2226. int err;
  2227. atomic_t done;
  2228. };
  2229. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  2230. {
  2231. struct nilfs_segctor_wait_request wait_req;
  2232. int err = 0;
  2233. spin_lock(&sci->sc_state_lock);
  2234. init_wait(&wait_req.wq);
  2235. wait_req.err = 0;
  2236. atomic_set(&wait_req.done, 0);
  2237. wait_req.seq = ++sci->sc_seq_request;
  2238. spin_unlock(&sci->sc_state_lock);
  2239. init_waitqueue_entry(&wait_req.wq, current);
  2240. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  2241. set_current_state(TASK_INTERRUPTIBLE);
  2242. wake_up(&sci->sc_wait_daemon);
  2243. for (;;) {
  2244. if (atomic_read(&wait_req.done)) {
  2245. err = wait_req.err;
  2246. break;
  2247. }
  2248. if (!signal_pending(current)) {
  2249. schedule();
  2250. continue;
  2251. }
  2252. err = -ERESTARTSYS;
  2253. break;
  2254. }
  2255. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  2256. return err;
  2257. }
  2258. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  2259. {
  2260. struct nilfs_segctor_wait_request *wrq, *n;
  2261. unsigned long flags;
  2262. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  2263. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  2264. wq.task_list) {
  2265. if (!atomic_read(&wrq->done) &&
  2266. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  2267. wrq->err = err;
  2268. atomic_set(&wrq->done, 1);
  2269. }
  2270. if (atomic_read(&wrq->done)) {
  2271. wrq->wq.func(&wrq->wq,
  2272. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2273. 0, NULL);
  2274. }
  2275. }
  2276. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  2277. }
  2278. /**
  2279. * nilfs_construct_segment - construct a logical segment
  2280. * @sb: super block
  2281. *
  2282. * Return Value: On success, 0 is retured. On errors, one of the following
  2283. * negative error code is returned.
  2284. *
  2285. * %-EROFS - Read only filesystem.
  2286. *
  2287. * %-EIO - I/O error
  2288. *
  2289. * %-ENOSPC - No space left on device (only in a panic state).
  2290. *
  2291. * %-ERESTARTSYS - Interrupted.
  2292. *
  2293. * %-ENOMEM - Insufficient memory available.
  2294. */
  2295. int nilfs_construct_segment(struct super_block *sb)
  2296. {
  2297. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2298. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2299. struct nilfs_transaction_info *ti;
  2300. int err;
  2301. if (!sci)
  2302. return -EROFS;
  2303. /* A call inside transactions causes a deadlock. */
  2304. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  2305. err = nilfs_segctor_sync(sci);
  2306. return err;
  2307. }
  2308. /**
  2309. * nilfs_construct_dsync_segment - construct a data-only logical segment
  2310. * @sb: super block
  2311. * @inode: inode whose data blocks should be written out
  2312. * @start: start byte offset
  2313. * @end: end byte offset (inclusive)
  2314. *
  2315. * Return Value: On success, 0 is retured. On errors, one of the following
  2316. * negative error code is returned.
  2317. *
  2318. * %-EROFS - Read only filesystem.
  2319. *
  2320. * %-EIO - I/O error
  2321. *
  2322. * %-ENOSPC - No space left on device (only in a panic state).
  2323. *
  2324. * %-ERESTARTSYS - Interrupted.
  2325. *
  2326. * %-ENOMEM - Insufficient memory available.
  2327. */
  2328. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  2329. loff_t start, loff_t end)
  2330. {
  2331. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2332. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2333. struct nilfs_inode_info *ii;
  2334. struct nilfs_transaction_info ti;
  2335. int err = 0;
  2336. if (!sci)
  2337. return -EROFS;
  2338. nilfs_transaction_lock(sbi, &ti, 0);
  2339. ii = NILFS_I(inode);
  2340. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  2341. nilfs_test_opt(sbi, STRICT_ORDER) ||
  2342. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2343. nilfs_discontinued(sbi->s_nilfs)) {
  2344. nilfs_transaction_unlock(sbi);
  2345. err = nilfs_segctor_sync(sci);
  2346. return err;
  2347. }
  2348. spin_lock(&sbi->s_inode_lock);
  2349. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2350. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2351. spin_unlock(&sbi->s_inode_lock);
  2352. nilfs_transaction_unlock(sbi);
  2353. return 0;
  2354. }
  2355. spin_unlock(&sbi->s_inode_lock);
  2356. sci->sc_dsync_inode = ii;
  2357. sci->sc_dsync_start = start;
  2358. sci->sc_dsync_end = end;
  2359. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2360. nilfs_transaction_unlock(sbi);
  2361. return err;
  2362. }
  2363. struct nilfs_segctor_req {
  2364. int mode;
  2365. __u32 seq_accepted;
  2366. int sc_err; /* construction failure */
  2367. int sb_err; /* super block writeback failure */
  2368. };
  2369. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2370. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2371. static void nilfs_segctor_accept(struct nilfs_sc_info *sci,
  2372. struct nilfs_segctor_req *req)
  2373. {
  2374. BUG_ON(!sci);
  2375. req->sc_err = req->sb_err = 0;
  2376. spin_lock(&sci->sc_state_lock);
  2377. req->seq_accepted = sci->sc_seq_request;
  2378. spin_unlock(&sci->sc_state_lock);
  2379. if (sci->sc_timer)
  2380. del_timer_sync(sci->sc_timer);
  2381. }
  2382. static void nilfs_segctor_notify(struct nilfs_sc_info *sci,
  2383. struct nilfs_segctor_req *req)
  2384. {
  2385. /* Clear requests (even when the construction failed) */
  2386. spin_lock(&sci->sc_state_lock);
  2387. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2388. if (req->mode == SC_LSEG_SR) {
  2389. sci->sc_seq_done = req->seq_accepted;
  2390. nilfs_segctor_wakeup(sci, req->sc_err ? : req->sb_err);
  2391. sci->sc_flush_request = 0;
  2392. } else if (req->mode == SC_FLUSH_FILE)
  2393. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2394. else if (req->mode == SC_FLUSH_DAT)
  2395. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2396. spin_unlock(&sci->sc_state_lock);
  2397. }
  2398. static int nilfs_segctor_construct(struct nilfs_sc_info *sci,
  2399. struct nilfs_segctor_req *req)
  2400. {
  2401. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2402. struct the_nilfs *nilfs = sbi->s_nilfs;
  2403. int err = 0;
  2404. if (nilfs_discontinued(nilfs))
  2405. req->mode = SC_LSEG_SR;
  2406. if (!nilfs_segctor_confirm(sci)) {
  2407. err = nilfs_segctor_do_construct(sci, req->mode);
  2408. req->sc_err = err;
  2409. }
  2410. if (likely(!err)) {
  2411. if (req->mode != SC_FLUSH_DAT)
  2412. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2413. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2414. nilfs_discontinued(nilfs)) {
  2415. down_write(&nilfs->ns_sem);
  2416. req->sb_err = nilfs_commit_super(sbi);
  2417. up_write(&nilfs->ns_sem);
  2418. }
  2419. }
  2420. return err;
  2421. }
  2422. static void nilfs_construction_timeout(unsigned long data)
  2423. {
  2424. struct task_struct *p = (struct task_struct *)data;
  2425. wake_up_process(p);
  2426. }
  2427. static void
  2428. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2429. {
  2430. struct nilfs_inode_info *ii, *n;
  2431. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2432. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2433. continue;
  2434. hlist_del_init(&ii->vfs_inode.i_hash);
  2435. list_del_init(&ii->i_dirty);
  2436. nilfs_clear_gcinode(&ii->vfs_inode);
  2437. }
  2438. }
  2439. int nilfs_clean_segments(struct super_block *sb, void __user *argp)
  2440. {
  2441. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2442. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2443. struct the_nilfs *nilfs = sbi->s_nilfs;
  2444. struct nilfs_transaction_info ti;
  2445. struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
  2446. int err;
  2447. if (unlikely(!sci))
  2448. return -EROFS;
  2449. nilfs_transaction_lock(sbi, &ti, 1);
  2450. err = nilfs_init_gcdat_inode(nilfs);
  2451. if (unlikely(err))
  2452. goto out_unlock;
  2453. err = nilfs_ioctl_prepare_clean_segments(nilfs, argp);
  2454. if (unlikely(err))
  2455. goto out_unlock;
  2456. list_splice_init(&nilfs->ns_gc_inodes, sci->sc_gc_inodes.prev);
  2457. for (;;) {
  2458. nilfs_segctor_accept(sci, &req);
  2459. err = nilfs_segctor_construct(sci, &req);
  2460. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2461. nilfs_segctor_notify(sci, &req);
  2462. if (likely(!err))
  2463. break;
  2464. nilfs_warning(sb, __func__,
  2465. "segment construction failed. (err=%d)", err);
  2466. set_current_state(TASK_INTERRUPTIBLE);
  2467. schedule_timeout(sci->sc_interval);
  2468. }
  2469. out_unlock:
  2470. nilfs_clear_gcdat_inode(nilfs);
  2471. nilfs_transaction_unlock(sbi);
  2472. return err;
  2473. }
  2474. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2475. {
  2476. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2477. struct nilfs_transaction_info ti;
  2478. struct nilfs_segctor_req req = { .mode = mode };
  2479. nilfs_transaction_lock(sbi, &ti, 0);
  2480. nilfs_segctor_accept(sci, &req);
  2481. nilfs_segctor_construct(sci, &req);
  2482. nilfs_segctor_notify(sci, &req);
  2483. /*
  2484. * Unclosed segment should be retried. We do this using sc_timer.
  2485. * Timeout of sc_timer will invoke complete construction which leads
  2486. * to close the current logical segment.
  2487. */
  2488. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2489. nilfs_segctor_start_timer(sci);
  2490. nilfs_transaction_unlock(sbi);
  2491. }
  2492. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2493. {
  2494. int mode = 0;
  2495. int err;
  2496. spin_lock(&sci->sc_state_lock);
  2497. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2498. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2499. spin_unlock(&sci->sc_state_lock);
  2500. if (mode) {
  2501. err = nilfs_segctor_do_construct(sci, mode);
  2502. spin_lock(&sci->sc_state_lock);
  2503. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2504. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2505. spin_unlock(&sci->sc_state_lock);
  2506. }
  2507. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2508. }
  2509. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2510. {
  2511. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2512. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2513. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2514. return SC_FLUSH_FILE;
  2515. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2516. return SC_FLUSH_DAT;
  2517. }
  2518. return SC_LSEG_SR;
  2519. }
  2520. /**
  2521. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2522. * @arg: pointer to a struct nilfs_sc_info.
  2523. *
  2524. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2525. * to execute segment constructions.
  2526. */
  2527. static int nilfs_segctor_thread(void *arg)
  2528. {
  2529. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2530. struct timer_list timer;
  2531. int timeout = 0;
  2532. init_timer(&timer);
  2533. timer.data = (unsigned long)current;
  2534. timer.function = nilfs_construction_timeout;
  2535. sci->sc_timer = &timer;
  2536. /* start sync. */
  2537. sci->sc_task = current;
  2538. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2539. printk(KERN_INFO
  2540. "segctord starting. Construction interval = %lu seconds, "
  2541. "CP frequency < %lu seconds\n",
  2542. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2543. spin_lock(&sci->sc_state_lock);
  2544. loop:
  2545. for (;;) {
  2546. int mode;
  2547. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2548. goto end_thread;
  2549. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2550. mode = SC_LSEG_SR;
  2551. else if (!sci->sc_flush_request)
  2552. break;
  2553. else
  2554. mode = nilfs_segctor_flush_mode(sci);
  2555. spin_unlock(&sci->sc_state_lock);
  2556. nilfs_segctor_thread_construct(sci, mode);
  2557. spin_lock(&sci->sc_state_lock);
  2558. timeout = 0;
  2559. }
  2560. if (freezing(current)) {
  2561. spin_unlock(&sci->sc_state_lock);
  2562. refrigerator();
  2563. spin_lock(&sci->sc_state_lock);
  2564. } else {
  2565. DEFINE_WAIT(wait);
  2566. int should_sleep = 1;
  2567. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2568. TASK_INTERRUPTIBLE);
  2569. if (sci->sc_seq_request != sci->sc_seq_done)
  2570. should_sleep = 0;
  2571. else if (sci->sc_flush_request)
  2572. should_sleep = 0;
  2573. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2574. should_sleep = time_before(jiffies,
  2575. sci->sc_timer->expires);
  2576. if (should_sleep) {
  2577. spin_unlock(&sci->sc_state_lock);
  2578. schedule();
  2579. spin_lock(&sci->sc_state_lock);
  2580. }
  2581. finish_wait(&sci->sc_wait_daemon, &wait);
  2582. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2583. time_after_eq(jiffies, sci->sc_timer->expires));
  2584. }
  2585. goto loop;
  2586. end_thread:
  2587. spin_unlock(&sci->sc_state_lock);
  2588. del_timer_sync(sci->sc_timer);
  2589. sci->sc_timer = NULL;
  2590. /* end sync. */
  2591. sci->sc_task = NULL;
  2592. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2593. return 0;
  2594. }
  2595. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2596. {
  2597. struct task_struct *t;
  2598. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2599. if (IS_ERR(t)) {
  2600. int err = PTR_ERR(t);
  2601. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2602. err);
  2603. return err;
  2604. }
  2605. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2606. return 0;
  2607. }
  2608. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2609. {
  2610. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2611. while (sci->sc_task) {
  2612. wake_up(&sci->sc_wait_daemon);
  2613. spin_unlock(&sci->sc_state_lock);
  2614. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2615. spin_lock(&sci->sc_state_lock);
  2616. }
  2617. }
  2618. static int nilfs_segctor_init(struct nilfs_sc_info *sci,
  2619. struct nilfs_recovery_info *ri)
  2620. {
  2621. int err;
  2622. struct inode *inode = nilfs_iget(sci->sc_super, NILFS_SKETCH_INO);
  2623. sci->sc_sketch_inode = IS_ERR(inode) ? NULL : inode;
  2624. if (sci->sc_sketch_inode)
  2625. i_size_write(sci->sc_sketch_inode, 0);
  2626. sci->sc_seq_done = sci->sc_seq_request;
  2627. if (ri)
  2628. list_splice_init(&ri->ri_used_segments,
  2629. sci->sc_active_segments.prev);
  2630. err = nilfs_segctor_start_thread(sci);
  2631. if (err) {
  2632. if (ri)
  2633. list_splice_init(&sci->sc_active_segments,
  2634. ri->ri_used_segments.prev);
  2635. if (sci->sc_sketch_inode) {
  2636. iput(sci->sc_sketch_inode);
  2637. sci->sc_sketch_inode = NULL;
  2638. }
  2639. }
  2640. return err;
  2641. }
  2642. /*
  2643. * Setup & clean-up functions
  2644. */
  2645. static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
  2646. {
  2647. struct nilfs_sc_info *sci;
  2648. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2649. if (!sci)
  2650. return NULL;
  2651. sci->sc_sbi = sbi;
  2652. sci->sc_super = sbi->s_super;
  2653. init_waitqueue_head(&sci->sc_wait_request);
  2654. init_waitqueue_head(&sci->sc_wait_daemon);
  2655. init_waitqueue_head(&sci->sc_wait_task);
  2656. spin_lock_init(&sci->sc_state_lock);
  2657. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2658. INIT_LIST_HEAD(&sci->sc_segbufs);
  2659. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2660. INIT_LIST_HEAD(&sci->sc_active_segments);
  2661. INIT_LIST_HEAD(&sci->sc_cleaning_segments);
  2662. INIT_LIST_HEAD(&sci->sc_copied_buffers);
  2663. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2664. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2665. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2666. if (sbi->s_interval)
  2667. sci->sc_interval = sbi->s_interval;
  2668. if (sbi->s_watermark)
  2669. sci->sc_watermark = sbi->s_watermark;
  2670. return sci;
  2671. }
  2672. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2673. {
  2674. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2675. /* The segctord thread was stopped and its timer was removed.
  2676. But some tasks remain. */
  2677. do {
  2678. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2679. struct nilfs_transaction_info ti;
  2680. struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
  2681. nilfs_transaction_lock(sbi, &ti, 0);
  2682. nilfs_segctor_accept(sci, &req);
  2683. ret = nilfs_segctor_construct(sci, &req);
  2684. nilfs_segctor_notify(sci, &req);
  2685. nilfs_transaction_unlock(sbi);
  2686. } while (ret && retrycount-- > 0);
  2687. }
  2688. /**
  2689. * nilfs_segctor_destroy - destroy the segment constructor.
  2690. * @sci: nilfs_sc_info
  2691. *
  2692. * nilfs_segctor_destroy() kills the segctord thread and frees
  2693. * the nilfs_sc_info struct.
  2694. * Caller must hold the segment semaphore.
  2695. */
  2696. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2697. {
  2698. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2699. int flag;
  2700. up_write(&sbi->s_nilfs->ns_segctor_sem);
  2701. spin_lock(&sci->sc_state_lock);
  2702. nilfs_segctor_kill_thread(sci);
  2703. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2704. || sci->sc_seq_request != sci->sc_seq_done);
  2705. spin_unlock(&sci->sc_state_lock);
  2706. if (flag || nilfs_segctor_confirm(sci))
  2707. nilfs_segctor_write_out(sci);
  2708. BUG_ON(!list_empty(&sci->sc_copied_buffers));
  2709. if (!list_empty(&sci->sc_dirty_files)) {
  2710. nilfs_warning(sbi->s_super, __func__,
  2711. "dirty file(s) after the final construction\n");
  2712. nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
  2713. }
  2714. if (!list_empty(&sci->sc_active_segments))
  2715. nilfs_dispose_segment_list(&sci->sc_active_segments);
  2716. if (!list_empty(&sci->sc_cleaning_segments))
  2717. nilfs_dispose_segment_list(&sci->sc_cleaning_segments);
  2718. BUG_ON(!list_empty(&sci->sc_segbufs));
  2719. if (sci->sc_sketch_inode) {
  2720. iput(sci->sc_sketch_inode);
  2721. sci->sc_sketch_inode = NULL;
  2722. }
  2723. down_write(&sbi->s_nilfs->ns_segctor_sem);
  2724. kfree(sci);
  2725. }
  2726. /**
  2727. * nilfs_attach_segment_constructor - attach a segment constructor
  2728. * @sbi: nilfs_sb_info
  2729. * @ri: nilfs_recovery_info
  2730. *
  2731. * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
  2732. * initilizes it, and starts the segment constructor.
  2733. *
  2734. * Return Value: On success, 0 is returned. On error, one of the following
  2735. * negative error code is returned.
  2736. *
  2737. * %-ENOMEM - Insufficient memory available.
  2738. */
  2739. int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi,
  2740. struct nilfs_recovery_info *ri)
  2741. {
  2742. struct the_nilfs *nilfs = sbi->s_nilfs;
  2743. int err;
  2744. /* Each field of nilfs_segctor is cleared through the initialization
  2745. of super-block info */
  2746. sbi->s_sc_info = nilfs_segctor_new(sbi);
  2747. if (!sbi->s_sc_info)
  2748. return -ENOMEM;
  2749. nilfs_attach_writer(nilfs, sbi);
  2750. err = nilfs_segctor_init(NILFS_SC(sbi), ri);
  2751. if (err) {
  2752. nilfs_detach_writer(nilfs, sbi);
  2753. kfree(sbi->s_sc_info);
  2754. sbi->s_sc_info = NULL;
  2755. }
  2756. return err;
  2757. }
  2758. /**
  2759. * nilfs_detach_segment_constructor - destroy the segment constructor
  2760. * @sbi: nilfs_sb_info
  2761. *
  2762. * nilfs_detach_segment_constructor() kills the segment constructor daemon,
  2763. * frees the struct nilfs_sc_info, and destroy the dirty file list.
  2764. */
  2765. void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
  2766. {
  2767. struct the_nilfs *nilfs = sbi->s_nilfs;
  2768. LIST_HEAD(garbage_list);
  2769. down_write(&nilfs->ns_segctor_sem);
  2770. if (NILFS_SC(sbi)) {
  2771. nilfs_segctor_destroy(NILFS_SC(sbi));
  2772. sbi->s_sc_info = NULL;
  2773. }
  2774. /* Force to free the list of dirty files */
  2775. spin_lock(&sbi->s_inode_lock);
  2776. if (!list_empty(&sbi->s_dirty_files)) {
  2777. list_splice_init(&sbi->s_dirty_files, &garbage_list);
  2778. nilfs_warning(sbi->s_super, __func__,
  2779. "Non empty dirty list after the last "
  2780. "segment construction\n");
  2781. }
  2782. spin_unlock(&sbi->s_inode_lock);
  2783. up_write(&nilfs->ns_segctor_sem);
  2784. nilfs_dispose_list(sbi, &garbage_list, 1);
  2785. nilfs_detach_writer(nilfs, sbi);
  2786. }