ring_buffer.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ring_buffer.h>
  7. #include <linux/spinlock.h>
  8. #include <linux/debugfs.h>
  9. #include <linux/uaccess.h>
  10. #include <linux/module.h>
  11. #include <linux/percpu.h>
  12. #include <linux/mutex.h>
  13. #include <linux/sched.h> /* used for sched_clock() (for now) */
  14. #include <linux/init.h>
  15. #include <linux/hash.h>
  16. #include <linux/list.h>
  17. #include <linux/fs.h>
  18. #include "trace.h"
  19. /*
  20. * A fast way to enable or disable all ring buffers is to
  21. * call tracing_on or tracing_off. Turning off the ring buffers
  22. * prevents all ring buffers from being recorded to.
  23. * Turning this switch on, makes it OK to write to the
  24. * ring buffer, if the ring buffer is enabled itself.
  25. *
  26. * There's three layers that must be on in order to write
  27. * to the ring buffer.
  28. *
  29. * 1) This global flag must be set.
  30. * 2) The ring buffer must be enabled for recording.
  31. * 3) The per cpu buffer must be enabled for recording.
  32. *
  33. * In case of an anomaly, this global flag has a bit set that
  34. * will permantly disable all ring buffers.
  35. */
  36. /*
  37. * Global flag to disable all recording to ring buffers
  38. * This has two bits: ON, DISABLED
  39. *
  40. * ON DISABLED
  41. * ---- ----------
  42. * 0 0 : ring buffers are off
  43. * 1 0 : ring buffers are on
  44. * X 1 : ring buffers are permanently disabled
  45. */
  46. enum {
  47. RB_BUFFERS_ON_BIT = 0,
  48. RB_BUFFERS_DISABLED_BIT = 1,
  49. };
  50. enum {
  51. RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
  52. RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
  53. };
  54. static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
  55. /**
  56. * tracing_on - enable all tracing buffers
  57. *
  58. * This function enables all tracing buffers that may have been
  59. * disabled with tracing_off.
  60. */
  61. void tracing_on(void)
  62. {
  63. set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
  64. }
  65. /**
  66. * tracing_off - turn off all tracing buffers
  67. *
  68. * This function stops all tracing buffers from recording data.
  69. * It does not disable any overhead the tracers themselves may
  70. * be causing. This function simply causes all recording to
  71. * the ring buffers to fail.
  72. */
  73. void tracing_off(void)
  74. {
  75. clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
  76. }
  77. /**
  78. * tracing_off_permanent - permanently disable ring buffers
  79. *
  80. * This function, once called, will disable all ring buffers
  81. * permanenty.
  82. */
  83. void tracing_off_permanent(void)
  84. {
  85. set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
  86. }
  87. #include "trace.h"
  88. /* Up this if you want to test the TIME_EXTENTS and normalization */
  89. #define DEBUG_SHIFT 0
  90. /* FIXME!!! */
  91. u64 ring_buffer_time_stamp(int cpu)
  92. {
  93. u64 time;
  94. preempt_disable_notrace();
  95. /* shift to debug/test normalization and TIME_EXTENTS */
  96. time = sched_clock() << DEBUG_SHIFT;
  97. preempt_enable_no_resched_notrace();
  98. return time;
  99. }
  100. void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
  101. {
  102. /* Just stupid testing the normalize function and deltas */
  103. *ts >>= DEBUG_SHIFT;
  104. }
  105. #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
  106. #define RB_ALIGNMENT_SHIFT 2
  107. #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
  108. #define RB_MAX_SMALL_DATA 28
  109. enum {
  110. RB_LEN_TIME_EXTEND = 8,
  111. RB_LEN_TIME_STAMP = 16,
  112. };
  113. /* inline for ring buffer fast paths */
  114. static inline unsigned
  115. rb_event_length(struct ring_buffer_event *event)
  116. {
  117. unsigned length;
  118. switch (event->type) {
  119. case RINGBUF_TYPE_PADDING:
  120. /* undefined */
  121. return -1;
  122. case RINGBUF_TYPE_TIME_EXTEND:
  123. return RB_LEN_TIME_EXTEND;
  124. case RINGBUF_TYPE_TIME_STAMP:
  125. return RB_LEN_TIME_STAMP;
  126. case RINGBUF_TYPE_DATA:
  127. if (event->len)
  128. length = event->len << RB_ALIGNMENT_SHIFT;
  129. else
  130. length = event->array[0];
  131. return length + RB_EVNT_HDR_SIZE;
  132. default:
  133. BUG();
  134. }
  135. /* not hit */
  136. return 0;
  137. }
  138. /**
  139. * ring_buffer_event_length - return the length of the event
  140. * @event: the event to get the length of
  141. */
  142. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  143. {
  144. return rb_event_length(event);
  145. }
  146. /* inline for ring buffer fast paths */
  147. static inline void *
  148. rb_event_data(struct ring_buffer_event *event)
  149. {
  150. BUG_ON(event->type != RINGBUF_TYPE_DATA);
  151. /* If length is in len field, then array[0] has the data */
  152. if (event->len)
  153. return (void *)&event->array[0];
  154. /* Otherwise length is in array[0] and array[1] has the data */
  155. return (void *)&event->array[1];
  156. }
  157. /**
  158. * ring_buffer_event_data - return the data of the event
  159. * @event: the event to get the data from
  160. */
  161. void *ring_buffer_event_data(struct ring_buffer_event *event)
  162. {
  163. return rb_event_data(event);
  164. }
  165. #define for_each_buffer_cpu(buffer, cpu) \
  166. for_each_cpu_mask(cpu, buffer->cpumask)
  167. #define TS_SHIFT 27
  168. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  169. #define TS_DELTA_TEST (~TS_MASK)
  170. struct buffer_data_page {
  171. u64 time_stamp; /* page time stamp */
  172. local_t commit; /* write commited index */
  173. unsigned char data[]; /* data of buffer page */
  174. };
  175. struct buffer_page {
  176. local_t write; /* index for next write */
  177. unsigned read; /* index for next read */
  178. struct list_head list; /* list of free pages */
  179. struct buffer_data_page *page; /* Actual data page */
  180. };
  181. static void rb_init_page(struct buffer_data_page *bpage)
  182. {
  183. local_set(&bpage->commit, 0);
  184. }
  185. /*
  186. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  187. * this issue out.
  188. */
  189. static inline void free_buffer_page(struct buffer_page *bpage)
  190. {
  191. if (bpage->page)
  192. free_page((unsigned long)bpage->page);
  193. kfree(bpage);
  194. }
  195. /*
  196. * We need to fit the time_stamp delta into 27 bits.
  197. */
  198. static inline int test_time_stamp(u64 delta)
  199. {
  200. if (delta & TS_DELTA_TEST)
  201. return 1;
  202. return 0;
  203. }
  204. #define BUF_PAGE_SIZE (PAGE_SIZE - sizeof(struct buffer_data_page))
  205. /*
  206. * head_page == tail_page && head == tail then buffer is empty.
  207. */
  208. struct ring_buffer_per_cpu {
  209. int cpu;
  210. struct ring_buffer *buffer;
  211. spinlock_t reader_lock; /* serialize readers */
  212. raw_spinlock_t lock;
  213. struct lock_class_key lock_key;
  214. struct list_head pages;
  215. struct buffer_page *head_page; /* read from head */
  216. struct buffer_page *tail_page; /* write to tail */
  217. struct buffer_page *commit_page; /* commited pages */
  218. struct buffer_page *reader_page;
  219. unsigned long overrun;
  220. unsigned long entries;
  221. u64 write_stamp;
  222. u64 read_stamp;
  223. atomic_t record_disabled;
  224. };
  225. struct ring_buffer {
  226. unsigned long size;
  227. unsigned pages;
  228. unsigned flags;
  229. int cpus;
  230. cpumask_t cpumask;
  231. atomic_t record_disabled;
  232. struct mutex mutex;
  233. struct ring_buffer_per_cpu **buffers;
  234. };
  235. struct ring_buffer_iter {
  236. struct ring_buffer_per_cpu *cpu_buffer;
  237. unsigned long head;
  238. struct buffer_page *head_page;
  239. u64 read_stamp;
  240. };
  241. /* buffer may be either ring_buffer or ring_buffer_per_cpu */
  242. #define RB_WARN_ON(buffer, cond) \
  243. ({ \
  244. int _____ret = unlikely(cond); \
  245. if (_____ret) { \
  246. atomic_inc(&buffer->record_disabled); \
  247. WARN_ON(1); \
  248. } \
  249. _____ret; \
  250. })
  251. /**
  252. * check_pages - integrity check of buffer pages
  253. * @cpu_buffer: CPU buffer with pages to test
  254. *
  255. * As a safty measure we check to make sure the data pages have not
  256. * been corrupted.
  257. */
  258. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  259. {
  260. struct list_head *head = &cpu_buffer->pages;
  261. struct buffer_page *bpage, *tmp;
  262. if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
  263. return -1;
  264. if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
  265. return -1;
  266. list_for_each_entry_safe(bpage, tmp, head, list) {
  267. if (RB_WARN_ON(cpu_buffer,
  268. bpage->list.next->prev != &bpage->list))
  269. return -1;
  270. if (RB_WARN_ON(cpu_buffer,
  271. bpage->list.prev->next != &bpage->list))
  272. return -1;
  273. }
  274. return 0;
  275. }
  276. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  277. unsigned nr_pages)
  278. {
  279. struct list_head *head = &cpu_buffer->pages;
  280. struct buffer_page *bpage, *tmp;
  281. unsigned long addr;
  282. LIST_HEAD(pages);
  283. unsigned i;
  284. for (i = 0; i < nr_pages; i++) {
  285. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  286. GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
  287. if (!bpage)
  288. goto free_pages;
  289. list_add(&bpage->list, &pages);
  290. addr = __get_free_page(GFP_KERNEL);
  291. if (!addr)
  292. goto free_pages;
  293. bpage->page = (void *)addr;
  294. rb_init_page(bpage->page);
  295. }
  296. list_splice(&pages, head);
  297. rb_check_pages(cpu_buffer);
  298. return 0;
  299. free_pages:
  300. list_for_each_entry_safe(bpage, tmp, &pages, list) {
  301. list_del_init(&bpage->list);
  302. free_buffer_page(bpage);
  303. }
  304. return -ENOMEM;
  305. }
  306. static struct ring_buffer_per_cpu *
  307. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
  308. {
  309. struct ring_buffer_per_cpu *cpu_buffer;
  310. struct buffer_page *bpage;
  311. unsigned long addr;
  312. int ret;
  313. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  314. GFP_KERNEL, cpu_to_node(cpu));
  315. if (!cpu_buffer)
  316. return NULL;
  317. cpu_buffer->cpu = cpu;
  318. cpu_buffer->buffer = buffer;
  319. spin_lock_init(&cpu_buffer->reader_lock);
  320. cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  321. INIT_LIST_HEAD(&cpu_buffer->pages);
  322. bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
  323. GFP_KERNEL, cpu_to_node(cpu));
  324. if (!bpage)
  325. goto fail_free_buffer;
  326. cpu_buffer->reader_page = bpage;
  327. addr = __get_free_page(GFP_KERNEL);
  328. if (!addr)
  329. goto fail_free_reader;
  330. bpage->page = (void *)addr;
  331. rb_init_page(bpage->page);
  332. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  333. ret = rb_allocate_pages(cpu_buffer, buffer->pages);
  334. if (ret < 0)
  335. goto fail_free_reader;
  336. cpu_buffer->head_page
  337. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  338. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  339. return cpu_buffer;
  340. fail_free_reader:
  341. free_buffer_page(cpu_buffer->reader_page);
  342. fail_free_buffer:
  343. kfree(cpu_buffer);
  344. return NULL;
  345. }
  346. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  347. {
  348. struct list_head *head = &cpu_buffer->pages;
  349. struct buffer_page *bpage, *tmp;
  350. list_del_init(&cpu_buffer->reader_page->list);
  351. free_buffer_page(cpu_buffer->reader_page);
  352. list_for_each_entry_safe(bpage, tmp, head, list) {
  353. list_del_init(&bpage->list);
  354. free_buffer_page(bpage);
  355. }
  356. kfree(cpu_buffer);
  357. }
  358. /*
  359. * Causes compile errors if the struct buffer_page gets bigger
  360. * than the struct page.
  361. */
  362. extern int ring_buffer_page_too_big(void);
  363. /**
  364. * ring_buffer_alloc - allocate a new ring_buffer
  365. * @size: the size in bytes that is needed.
  366. * @flags: attributes to set for the ring buffer.
  367. *
  368. * Currently the only flag that is available is the RB_FL_OVERWRITE
  369. * flag. This flag means that the buffer will overwrite old data
  370. * when the buffer wraps. If this flag is not set, the buffer will
  371. * drop data when the tail hits the head.
  372. */
  373. struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
  374. {
  375. struct ring_buffer *buffer;
  376. int bsize;
  377. int cpu;
  378. /* Paranoid! Optimizes out when all is well */
  379. if (sizeof(struct buffer_page) > sizeof(struct page))
  380. ring_buffer_page_too_big();
  381. /* keep it in its own cache line */
  382. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  383. GFP_KERNEL);
  384. if (!buffer)
  385. return NULL;
  386. buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  387. buffer->flags = flags;
  388. /* need at least two pages */
  389. if (buffer->pages == 1)
  390. buffer->pages++;
  391. buffer->cpumask = cpu_possible_map;
  392. buffer->cpus = nr_cpu_ids;
  393. bsize = sizeof(void *) * nr_cpu_ids;
  394. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  395. GFP_KERNEL);
  396. if (!buffer->buffers)
  397. goto fail_free_buffer;
  398. for_each_buffer_cpu(buffer, cpu) {
  399. buffer->buffers[cpu] =
  400. rb_allocate_cpu_buffer(buffer, cpu);
  401. if (!buffer->buffers[cpu])
  402. goto fail_free_buffers;
  403. }
  404. mutex_init(&buffer->mutex);
  405. return buffer;
  406. fail_free_buffers:
  407. for_each_buffer_cpu(buffer, cpu) {
  408. if (buffer->buffers[cpu])
  409. rb_free_cpu_buffer(buffer->buffers[cpu]);
  410. }
  411. kfree(buffer->buffers);
  412. fail_free_buffer:
  413. kfree(buffer);
  414. return NULL;
  415. }
  416. /**
  417. * ring_buffer_free - free a ring buffer.
  418. * @buffer: the buffer to free.
  419. */
  420. void
  421. ring_buffer_free(struct ring_buffer *buffer)
  422. {
  423. int cpu;
  424. for_each_buffer_cpu(buffer, cpu)
  425. rb_free_cpu_buffer(buffer->buffers[cpu]);
  426. kfree(buffer);
  427. }
  428. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  429. static void
  430. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
  431. {
  432. struct buffer_page *bpage;
  433. struct list_head *p;
  434. unsigned i;
  435. atomic_inc(&cpu_buffer->record_disabled);
  436. synchronize_sched();
  437. for (i = 0; i < nr_pages; i++) {
  438. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  439. return;
  440. p = cpu_buffer->pages.next;
  441. bpage = list_entry(p, struct buffer_page, list);
  442. list_del_init(&bpage->list);
  443. free_buffer_page(bpage);
  444. }
  445. if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
  446. return;
  447. rb_reset_cpu(cpu_buffer);
  448. rb_check_pages(cpu_buffer);
  449. atomic_dec(&cpu_buffer->record_disabled);
  450. }
  451. static void
  452. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
  453. struct list_head *pages, unsigned nr_pages)
  454. {
  455. struct buffer_page *bpage;
  456. struct list_head *p;
  457. unsigned i;
  458. atomic_inc(&cpu_buffer->record_disabled);
  459. synchronize_sched();
  460. for (i = 0; i < nr_pages; i++) {
  461. if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
  462. return;
  463. p = pages->next;
  464. bpage = list_entry(p, struct buffer_page, list);
  465. list_del_init(&bpage->list);
  466. list_add_tail(&bpage->list, &cpu_buffer->pages);
  467. }
  468. rb_reset_cpu(cpu_buffer);
  469. rb_check_pages(cpu_buffer);
  470. atomic_dec(&cpu_buffer->record_disabled);
  471. }
  472. /**
  473. * ring_buffer_resize - resize the ring buffer
  474. * @buffer: the buffer to resize.
  475. * @size: the new size.
  476. *
  477. * The tracer is responsible for making sure that the buffer is
  478. * not being used while changing the size.
  479. * Note: We may be able to change the above requirement by using
  480. * RCU synchronizations.
  481. *
  482. * Minimum size is 2 * BUF_PAGE_SIZE.
  483. *
  484. * Returns -1 on failure.
  485. */
  486. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
  487. {
  488. struct ring_buffer_per_cpu *cpu_buffer;
  489. unsigned nr_pages, rm_pages, new_pages;
  490. struct buffer_page *bpage, *tmp;
  491. unsigned long buffer_size;
  492. unsigned long addr;
  493. LIST_HEAD(pages);
  494. int i, cpu;
  495. /*
  496. * Always succeed at resizing a non-existent buffer:
  497. */
  498. if (!buffer)
  499. return size;
  500. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  501. size *= BUF_PAGE_SIZE;
  502. buffer_size = buffer->pages * BUF_PAGE_SIZE;
  503. /* we need a minimum of two pages */
  504. if (size < BUF_PAGE_SIZE * 2)
  505. size = BUF_PAGE_SIZE * 2;
  506. if (size == buffer_size)
  507. return size;
  508. mutex_lock(&buffer->mutex);
  509. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  510. if (size < buffer_size) {
  511. /* easy case, just free pages */
  512. if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
  513. mutex_unlock(&buffer->mutex);
  514. return -1;
  515. }
  516. rm_pages = buffer->pages - nr_pages;
  517. for_each_buffer_cpu(buffer, cpu) {
  518. cpu_buffer = buffer->buffers[cpu];
  519. rb_remove_pages(cpu_buffer, rm_pages);
  520. }
  521. goto out;
  522. }
  523. /*
  524. * This is a bit more difficult. We only want to add pages
  525. * when we can allocate enough for all CPUs. We do this
  526. * by allocating all the pages and storing them on a local
  527. * link list. If we succeed in our allocation, then we
  528. * add these pages to the cpu_buffers. Otherwise we just free
  529. * them all and return -ENOMEM;
  530. */
  531. if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
  532. mutex_unlock(&buffer->mutex);
  533. return -1;
  534. }
  535. new_pages = nr_pages - buffer->pages;
  536. for_each_buffer_cpu(buffer, cpu) {
  537. for (i = 0; i < new_pages; i++) {
  538. bpage = kzalloc_node(ALIGN(sizeof(*bpage),
  539. cache_line_size()),
  540. GFP_KERNEL, cpu_to_node(cpu));
  541. if (!bpage)
  542. goto free_pages;
  543. list_add(&bpage->list, &pages);
  544. addr = __get_free_page(GFP_KERNEL);
  545. if (!addr)
  546. goto free_pages;
  547. bpage->page = (void *)addr;
  548. rb_init_page(bpage->page);
  549. }
  550. }
  551. for_each_buffer_cpu(buffer, cpu) {
  552. cpu_buffer = buffer->buffers[cpu];
  553. rb_insert_pages(cpu_buffer, &pages, new_pages);
  554. }
  555. if (RB_WARN_ON(buffer, !list_empty(&pages))) {
  556. mutex_unlock(&buffer->mutex);
  557. return -1;
  558. }
  559. out:
  560. buffer->pages = nr_pages;
  561. mutex_unlock(&buffer->mutex);
  562. return size;
  563. free_pages:
  564. list_for_each_entry_safe(bpage, tmp, &pages, list) {
  565. list_del_init(&bpage->list);
  566. free_buffer_page(bpage);
  567. }
  568. mutex_unlock(&buffer->mutex);
  569. return -ENOMEM;
  570. }
  571. static inline int rb_null_event(struct ring_buffer_event *event)
  572. {
  573. return event->type == RINGBUF_TYPE_PADDING;
  574. }
  575. static inline void *
  576. __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
  577. {
  578. return bpage->data + index;
  579. }
  580. static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
  581. {
  582. return bpage->page->data + index;
  583. }
  584. static inline struct ring_buffer_event *
  585. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  586. {
  587. return __rb_page_index(cpu_buffer->reader_page,
  588. cpu_buffer->reader_page->read);
  589. }
  590. static inline struct ring_buffer_event *
  591. rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
  592. {
  593. return __rb_page_index(cpu_buffer->head_page,
  594. cpu_buffer->head_page->read);
  595. }
  596. static inline struct ring_buffer_event *
  597. rb_iter_head_event(struct ring_buffer_iter *iter)
  598. {
  599. return __rb_page_index(iter->head_page, iter->head);
  600. }
  601. static inline unsigned rb_page_write(struct buffer_page *bpage)
  602. {
  603. return local_read(&bpage->write);
  604. }
  605. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  606. {
  607. return local_read(&bpage->page->commit);
  608. }
  609. /* Size is determined by what has been commited */
  610. static inline unsigned rb_page_size(struct buffer_page *bpage)
  611. {
  612. return rb_page_commit(bpage);
  613. }
  614. static inline unsigned
  615. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  616. {
  617. return rb_page_commit(cpu_buffer->commit_page);
  618. }
  619. static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
  620. {
  621. return rb_page_commit(cpu_buffer->head_page);
  622. }
  623. /*
  624. * When the tail hits the head and the buffer is in overwrite mode,
  625. * the head jumps to the next page and all content on the previous
  626. * page is discarded. But before doing so, we update the overrun
  627. * variable of the buffer.
  628. */
  629. static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
  630. {
  631. struct ring_buffer_event *event;
  632. unsigned long head;
  633. for (head = 0; head < rb_head_size(cpu_buffer);
  634. head += rb_event_length(event)) {
  635. event = __rb_page_index(cpu_buffer->head_page, head);
  636. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  637. return;
  638. /* Only count data entries */
  639. if (event->type != RINGBUF_TYPE_DATA)
  640. continue;
  641. cpu_buffer->overrun++;
  642. cpu_buffer->entries--;
  643. }
  644. }
  645. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  646. struct buffer_page **bpage)
  647. {
  648. struct list_head *p = (*bpage)->list.next;
  649. if (p == &cpu_buffer->pages)
  650. p = p->next;
  651. *bpage = list_entry(p, struct buffer_page, list);
  652. }
  653. static inline unsigned
  654. rb_event_index(struct ring_buffer_event *event)
  655. {
  656. unsigned long addr = (unsigned long)event;
  657. return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
  658. }
  659. static inline int
  660. rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  661. struct ring_buffer_event *event)
  662. {
  663. unsigned long addr = (unsigned long)event;
  664. unsigned long index;
  665. index = rb_event_index(event);
  666. addr &= PAGE_MASK;
  667. return cpu_buffer->commit_page->page == (void *)addr &&
  668. rb_commit_index(cpu_buffer) == index;
  669. }
  670. static inline void
  671. rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
  672. struct ring_buffer_event *event)
  673. {
  674. unsigned long addr = (unsigned long)event;
  675. unsigned long index;
  676. index = rb_event_index(event);
  677. addr &= PAGE_MASK;
  678. while (cpu_buffer->commit_page->page != (void *)addr) {
  679. if (RB_WARN_ON(cpu_buffer,
  680. cpu_buffer->commit_page == cpu_buffer->tail_page))
  681. return;
  682. cpu_buffer->commit_page->page->commit =
  683. cpu_buffer->commit_page->write;
  684. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  685. cpu_buffer->write_stamp =
  686. cpu_buffer->commit_page->page->time_stamp;
  687. }
  688. /* Now set the commit to the event's index */
  689. local_set(&cpu_buffer->commit_page->page->commit, index);
  690. }
  691. static inline void
  692. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  693. {
  694. /*
  695. * We only race with interrupts and NMIs on this CPU.
  696. * If we own the commit event, then we can commit
  697. * all others that interrupted us, since the interruptions
  698. * are in stack format (they finish before they come
  699. * back to us). This allows us to do a simple loop to
  700. * assign the commit to the tail.
  701. */
  702. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  703. cpu_buffer->commit_page->page->commit =
  704. cpu_buffer->commit_page->write;
  705. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  706. cpu_buffer->write_stamp =
  707. cpu_buffer->commit_page->page->time_stamp;
  708. /* add barrier to keep gcc from optimizing too much */
  709. barrier();
  710. }
  711. while (rb_commit_index(cpu_buffer) !=
  712. rb_page_write(cpu_buffer->commit_page)) {
  713. cpu_buffer->commit_page->page->commit =
  714. cpu_buffer->commit_page->write;
  715. barrier();
  716. }
  717. }
  718. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  719. {
  720. cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
  721. cpu_buffer->reader_page->read = 0;
  722. }
  723. static inline void rb_inc_iter(struct ring_buffer_iter *iter)
  724. {
  725. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  726. /*
  727. * The iterator could be on the reader page (it starts there).
  728. * But the head could have moved, since the reader was
  729. * found. Check for this case and assign the iterator
  730. * to the head page instead of next.
  731. */
  732. if (iter->head_page == cpu_buffer->reader_page)
  733. iter->head_page = cpu_buffer->head_page;
  734. else
  735. rb_inc_page(cpu_buffer, &iter->head_page);
  736. iter->read_stamp = iter->head_page->page->time_stamp;
  737. iter->head = 0;
  738. }
  739. /**
  740. * ring_buffer_update_event - update event type and data
  741. * @event: the even to update
  742. * @type: the type of event
  743. * @length: the size of the event field in the ring buffer
  744. *
  745. * Update the type and data fields of the event. The length
  746. * is the actual size that is written to the ring buffer,
  747. * and with this, we can determine what to place into the
  748. * data field.
  749. */
  750. static inline void
  751. rb_update_event(struct ring_buffer_event *event,
  752. unsigned type, unsigned length)
  753. {
  754. event->type = type;
  755. switch (type) {
  756. case RINGBUF_TYPE_PADDING:
  757. break;
  758. case RINGBUF_TYPE_TIME_EXTEND:
  759. event->len =
  760. (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
  761. >> RB_ALIGNMENT_SHIFT;
  762. break;
  763. case RINGBUF_TYPE_TIME_STAMP:
  764. event->len =
  765. (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
  766. >> RB_ALIGNMENT_SHIFT;
  767. break;
  768. case RINGBUF_TYPE_DATA:
  769. length -= RB_EVNT_HDR_SIZE;
  770. if (length > RB_MAX_SMALL_DATA) {
  771. event->len = 0;
  772. event->array[0] = length;
  773. } else
  774. event->len =
  775. (length + (RB_ALIGNMENT-1))
  776. >> RB_ALIGNMENT_SHIFT;
  777. break;
  778. default:
  779. BUG();
  780. }
  781. }
  782. static inline unsigned rb_calculate_event_length(unsigned length)
  783. {
  784. struct ring_buffer_event event; /* Used only for sizeof array */
  785. /* zero length can cause confusions */
  786. if (!length)
  787. length = 1;
  788. if (length > RB_MAX_SMALL_DATA)
  789. length += sizeof(event.array[0]);
  790. length += RB_EVNT_HDR_SIZE;
  791. length = ALIGN(length, RB_ALIGNMENT);
  792. return length;
  793. }
  794. static struct ring_buffer_event *
  795. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  796. unsigned type, unsigned long length, u64 *ts)
  797. {
  798. struct buffer_page *tail_page, *head_page, *reader_page;
  799. unsigned long tail, write;
  800. struct ring_buffer *buffer = cpu_buffer->buffer;
  801. struct ring_buffer_event *event;
  802. unsigned long flags;
  803. tail_page = cpu_buffer->tail_page;
  804. write = local_add_return(length, &tail_page->write);
  805. tail = write - length;
  806. /* See if we shot pass the end of this buffer page */
  807. if (write > BUF_PAGE_SIZE) {
  808. struct buffer_page *next_page = tail_page;
  809. local_irq_save(flags);
  810. __raw_spin_lock(&cpu_buffer->lock);
  811. rb_inc_page(cpu_buffer, &next_page);
  812. head_page = cpu_buffer->head_page;
  813. reader_page = cpu_buffer->reader_page;
  814. /* we grabbed the lock before incrementing */
  815. if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
  816. goto out_unlock;
  817. /*
  818. * If for some reason, we had an interrupt storm that made
  819. * it all the way around the buffer, bail, and warn
  820. * about it.
  821. */
  822. if (unlikely(next_page == cpu_buffer->commit_page)) {
  823. WARN_ON_ONCE(1);
  824. goto out_unlock;
  825. }
  826. if (next_page == head_page) {
  827. if (!(buffer->flags & RB_FL_OVERWRITE)) {
  828. /* reset write */
  829. if (tail <= BUF_PAGE_SIZE)
  830. local_set(&tail_page->write, tail);
  831. goto out_unlock;
  832. }
  833. /* tail_page has not moved yet? */
  834. if (tail_page == cpu_buffer->tail_page) {
  835. /* count overflows */
  836. rb_update_overflow(cpu_buffer);
  837. rb_inc_page(cpu_buffer, &head_page);
  838. cpu_buffer->head_page = head_page;
  839. cpu_buffer->head_page->read = 0;
  840. }
  841. }
  842. /*
  843. * If the tail page is still the same as what we think
  844. * it is, then it is up to us to update the tail
  845. * pointer.
  846. */
  847. if (tail_page == cpu_buffer->tail_page) {
  848. local_set(&next_page->write, 0);
  849. local_set(&next_page->page->commit, 0);
  850. cpu_buffer->tail_page = next_page;
  851. /* reread the time stamp */
  852. *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  853. cpu_buffer->tail_page->page->time_stamp = *ts;
  854. }
  855. /*
  856. * The actual tail page has moved forward.
  857. */
  858. if (tail < BUF_PAGE_SIZE) {
  859. /* Mark the rest of the page with padding */
  860. event = __rb_page_index(tail_page, tail);
  861. event->type = RINGBUF_TYPE_PADDING;
  862. }
  863. if (tail <= BUF_PAGE_SIZE)
  864. /* Set the write back to the previous setting */
  865. local_set(&tail_page->write, tail);
  866. /*
  867. * If this was a commit entry that failed,
  868. * increment that too
  869. */
  870. if (tail_page == cpu_buffer->commit_page &&
  871. tail == rb_commit_index(cpu_buffer)) {
  872. rb_set_commit_to_write(cpu_buffer);
  873. }
  874. __raw_spin_unlock(&cpu_buffer->lock);
  875. local_irq_restore(flags);
  876. /* fail and let the caller try again */
  877. return ERR_PTR(-EAGAIN);
  878. }
  879. /* We reserved something on the buffer */
  880. if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
  881. return NULL;
  882. event = __rb_page_index(tail_page, tail);
  883. rb_update_event(event, type, length);
  884. /*
  885. * If this is a commit and the tail is zero, then update
  886. * this page's time stamp.
  887. */
  888. if (!tail && rb_is_commit(cpu_buffer, event))
  889. cpu_buffer->commit_page->page->time_stamp = *ts;
  890. return event;
  891. out_unlock:
  892. __raw_spin_unlock(&cpu_buffer->lock);
  893. local_irq_restore(flags);
  894. return NULL;
  895. }
  896. static int
  897. rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  898. u64 *ts, u64 *delta)
  899. {
  900. struct ring_buffer_event *event;
  901. static int once;
  902. int ret;
  903. if (unlikely(*delta > (1ULL << 59) && !once++)) {
  904. printk(KERN_WARNING "Delta way too big! %llu"
  905. " ts=%llu write stamp = %llu\n",
  906. (unsigned long long)*delta,
  907. (unsigned long long)*ts,
  908. (unsigned long long)cpu_buffer->write_stamp);
  909. WARN_ON(1);
  910. }
  911. /*
  912. * The delta is too big, we to add a
  913. * new timestamp.
  914. */
  915. event = __rb_reserve_next(cpu_buffer,
  916. RINGBUF_TYPE_TIME_EXTEND,
  917. RB_LEN_TIME_EXTEND,
  918. ts);
  919. if (!event)
  920. return -EBUSY;
  921. if (PTR_ERR(event) == -EAGAIN)
  922. return -EAGAIN;
  923. /* Only a commited time event can update the write stamp */
  924. if (rb_is_commit(cpu_buffer, event)) {
  925. /*
  926. * If this is the first on the page, then we need to
  927. * update the page itself, and just put in a zero.
  928. */
  929. if (rb_event_index(event)) {
  930. event->time_delta = *delta & TS_MASK;
  931. event->array[0] = *delta >> TS_SHIFT;
  932. } else {
  933. cpu_buffer->commit_page->page->time_stamp = *ts;
  934. event->time_delta = 0;
  935. event->array[0] = 0;
  936. }
  937. cpu_buffer->write_stamp = *ts;
  938. /* let the caller know this was the commit */
  939. ret = 1;
  940. } else {
  941. /* Darn, this is just wasted space */
  942. event->time_delta = 0;
  943. event->array[0] = 0;
  944. ret = 0;
  945. }
  946. *delta = 0;
  947. return ret;
  948. }
  949. static struct ring_buffer_event *
  950. rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
  951. unsigned type, unsigned long length)
  952. {
  953. struct ring_buffer_event *event;
  954. u64 ts, delta;
  955. int commit = 0;
  956. int nr_loops = 0;
  957. again:
  958. /*
  959. * We allow for interrupts to reenter here and do a trace.
  960. * If one does, it will cause this original code to loop
  961. * back here. Even with heavy interrupts happening, this
  962. * should only happen a few times in a row. If this happens
  963. * 1000 times in a row, there must be either an interrupt
  964. * storm or we have something buggy.
  965. * Bail!
  966. */
  967. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
  968. return NULL;
  969. ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  970. /*
  971. * Only the first commit can update the timestamp.
  972. * Yes there is a race here. If an interrupt comes in
  973. * just after the conditional and it traces too, then it
  974. * will also check the deltas. More than one timestamp may
  975. * also be made. But only the entry that did the actual
  976. * commit will be something other than zero.
  977. */
  978. if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
  979. rb_page_write(cpu_buffer->tail_page) ==
  980. rb_commit_index(cpu_buffer)) {
  981. delta = ts - cpu_buffer->write_stamp;
  982. /* make sure this delta is calculated here */
  983. barrier();
  984. /* Did the write stamp get updated already? */
  985. if (unlikely(ts < cpu_buffer->write_stamp))
  986. delta = 0;
  987. if (test_time_stamp(delta)) {
  988. commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
  989. if (commit == -EBUSY)
  990. return NULL;
  991. if (commit == -EAGAIN)
  992. goto again;
  993. RB_WARN_ON(cpu_buffer, commit < 0);
  994. }
  995. } else
  996. /* Non commits have zero deltas */
  997. delta = 0;
  998. event = __rb_reserve_next(cpu_buffer, type, length, &ts);
  999. if (PTR_ERR(event) == -EAGAIN)
  1000. goto again;
  1001. if (!event) {
  1002. if (unlikely(commit))
  1003. /*
  1004. * Ouch! We needed a timestamp and it was commited. But
  1005. * we didn't get our event reserved.
  1006. */
  1007. rb_set_commit_to_write(cpu_buffer);
  1008. return NULL;
  1009. }
  1010. /*
  1011. * If the timestamp was commited, make the commit our entry
  1012. * now so that we will update it when needed.
  1013. */
  1014. if (commit)
  1015. rb_set_commit_event(cpu_buffer, event);
  1016. else if (!rb_is_commit(cpu_buffer, event))
  1017. delta = 0;
  1018. event->time_delta = delta;
  1019. return event;
  1020. }
  1021. static DEFINE_PER_CPU(int, rb_need_resched);
  1022. /**
  1023. * ring_buffer_lock_reserve - reserve a part of the buffer
  1024. * @buffer: the ring buffer to reserve from
  1025. * @length: the length of the data to reserve (excluding event header)
  1026. * @flags: a pointer to save the interrupt flags
  1027. *
  1028. * Returns a reseverd event on the ring buffer to copy directly to.
  1029. * The user of this interface will need to get the body to write into
  1030. * and can use the ring_buffer_event_data() interface.
  1031. *
  1032. * The length is the length of the data needed, not the event length
  1033. * which also includes the event header.
  1034. *
  1035. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  1036. * If NULL is returned, then nothing has been allocated or locked.
  1037. */
  1038. struct ring_buffer_event *
  1039. ring_buffer_lock_reserve(struct ring_buffer *buffer,
  1040. unsigned long length,
  1041. unsigned long *flags)
  1042. {
  1043. struct ring_buffer_per_cpu *cpu_buffer;
  1044. struct ring_buffer_event *event;
  1045. int cpu, resched;
  1046. if (ring_buffer_flags != RB_BUFFERS_ON)
  1047. return NULL;
  1048. if (atomic_read(&buffer->record_disabled))
  1049. return NULL;
  1050. /* If we are tracing schedule, we don't want to recurse */
  1051. resched = ftrace_preempt_disable();
  1052. cpu = raw_smp_processor_id();
  1053. if (!cpu_isset(cpu, buffer->cpumask))
  1054. goto out;
  1055. cpu_buffer = buffer->buffers[cpu];
  1056. if (atomic_read(&cpu_buffer->record_disabled))
  1057. goto out;
  1058. length = rb_calculate_event_length(length);
  1059. if (length > BUF_PAGE_SIZE)
  1060. goto out;
  1061. event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
  1062. if (!event)
  1063. goto out;
  1064. /*
  1065. * Need to store resched state on this cpu.
  1066. * Only the first needs to.
  1067. */
  1068. if (preempt_count() == 1)
  1069. per_cpu(rb_need_resched, cpu) = resched;
  1070. return event;
  1071. out:
  1072. ftrace_preempt_enable(resched);
  1073. return NULL;
  1074. }
  1075. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  1076. struct ring_buffer_event *event)
  1077. {
  1078. cpu_buffer->entries++;
  1079. /* Only process further if we own the commit */
  1080. if (!rb_is_commit(cpu_buffer, event))
  1081. return;
  1082. cpu_buffer->write_stamp += event->time_delta;
  1083. rb_set_commit_to_write(cpu_buffer);
  1084. }
  1085. /**
  1086. * ring_buffer_unlock_commit - commit a reserved
  1087. * @buffer: The buffer to commit to
  1088. * @event: The event pointer to commit.
  1089. * @flags: the interrupt flags received from ring_buffer_lock_reserve.
  1090. *
  1091. * This commits the data to the ring buffer, and releases any locks held.
  1092. *
  1093. * Must be paired with ring_buffer_lock_reserve.
  1094. */
  1095. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  1096. struct ring_buffer_event *event,
  1097. unsigned long flags)
  1098. {
  1099. struct ring_buffer_per_cpu *cpu_buffer;
  1100. int cpu = raw_smp_processor_id();
  1101. cpu_buffer = buffer->buffers[cpu];
  1102. rb_commit(cpu_buffer, event);
  1103. /*
  1104. * Only the last preempt count needs to restore preemption.
  1105. */
  1106. if (preempt_count() == 1)
  1107. ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
  1108. else
  1109. preempt_enable_no_resched_notrace();
  1110. return 0;
  1111. }
  1112. /**
  1113. * ring_buffer_write - write data to the buffer without reserving
  1114. * @buffer: The ring buffer to write to.
  1115. * @length: The length of the data being written (excluding the event header)
  1116. * @data: The data to write to the buffer.
  1117. *
  1118. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  1119. * one function. If you already have the data to write to the buffer, it
  1120. * may be easier to simply call this function.
  1121. *
  1122. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  1123. * and not the length of the event which would hold the header.
  1124. */
  1125. int ring_buffer_write(struct ring_buffer *buffer,
  1126. unsigned long length,
  1127. void *data)
  1128. {
  1129. struct ring_buffer_per_cpu *cpu_buffer;
  1130. struct ring_buffer_event *event;
  1131. unsigned long event_length;
  1132. void *body;
  1133. int ret = -EBUSY;
  1134. int cpu, resched;
  1135. if (ring_buffer_flags != RB_BUFFERS_ON)
  1136. return -EBUSY;
  1137. if (atomic_read(&buffer->record_disabled))
  1138. return -EBUSY;
  1139. resched = ftrace_preempt_disable();
  1140. cpu = raw_smp_processor_id();
  1141. if (!cpu_isset(cpu, buffer->cpumask))
  1142. goto out;
  1143. cpu_buffer = buffer->buffers[cpu];
  1144. if (atomic_read(&cpu_buffer->record_disabled))
  1145. goto out;
  1146. event_length = rb_calculate_event_length(length);
  1147. event = rb_reserve_next_event(cpu_buffer,
  1148. RINGBUF_TYPE_DATA, event_length);
  1149. if (!event)
  1150. goto out;
  1151. body = rb_event_data(event);
  1152. memcpy(body, data, length);
  1153. rb_commit(cpu_buffer, event);
  1154. ret = 0;
  1155. out:
  1156. ftrace_preempt_enable(resched);
  1157. return ret;
  1158. }
  1159. static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  1160. {
  1161. struct buffer_page *reader = cpu_buffer->reader_page;
  1162. struct buffer_page *head = cpu_buffer->head_page;
  1163. struct buffer_page *commit = cpu_buffer->commit_page;
  1164. return reader->read == rb_page_commit(reader) &&
  1165. (commit == reader ||
  1166. (commit == head &&
  1167. head->read == rb_page_commit(commit)));
  1168. }
  1169. /**
  1170. * ring_buffer_record_disable - stop all writes into the buffer
  1171. * @buffer: The ring buffer to stop writes to.
  1172. *
  1173. * This prevents all writes to the buffer. Any attempt to write
  1174. * to the buffer after this will fail and return NULL.
  1175. *
  1176. * The caller should call synchronize_sched() after this.
  1177. */
  1178. void ring_buffer_record_disable(struct ring_buffer *buffer)
  1179. {
  1180. atomic_inc(&buffer->record_disabled);
  1181. }
  1182. /**
  1183. * ring_buffer_record_enable - enable writes to the buffer
  1184. * @buffer: The ring buffer to enable writes
  1185. *
  1186. * Note, multiple disables will need the same number of enables
  1187. * to truely enable the writing (much like preempt_disable).
  1188. */
  1189. void ring_buffer_record_enable(struct ring_buffer *buffer)
  1190. {
  1191. atomic_dec(&buffer->record_disabled);
  1192. }
  1193. /**
  1194. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  1195. * @buffer: The ring buffer to stop writes to.
  1196. * @cpu: The CPU buffer to stop
  1197. *
  1198. * This prevents all writes to the buffer. Any attempt to write
  1199. * to the buffer after this will fail and return NULL.
  1200. *
  1201. * The caller should call synchronize_sched() after this.
  1202. */
  1203. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  1204. {
  1205. struct ring_buffer_per_cpu *cpu_buffer;
  1206. if (!cpu_isset(cpu, buffer->cpumask))
  1207. return;
  1208. cpu_buffer = buffer->buffers[cpu];
  1209. atomic_inc(&cpu_buffer->record_disabled);
  1210. }
  1211. /**
  1212. * ring_buffer_record_enable_cpu - enable writes to the buffer
  1213. * @buffer: The ring buffer to enable writes
  1214. * @cpu: The CPU to enable.
  1215. *
  1216. * Note, multiple disables will need the same number of enables
  1217. * to truely enable the writing (much like preempt_disable).
  1218. */
  1219. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  1220. {
  1221. struct ring_buffer_per_cpu *cpu_buffer;
  1222. if (!cpu_isset(cpu, buffer->cpumask))
  1223. return;
  1224. cpu_buffer = buffer->buffers[cpu];
  1225. atomic_dec(&cpu_buffer->record_disabled);
  1226. }
  1227. /**
  1228. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  1229. * @buffer: The ring buffer
  1230. * @cpu: The per CPU buffer to get the entries from.
  1231. */
  1232. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  1233. {
  1234. struct ring_buffer_per_cpu *cpu_buffer;
  1235. if (!cpu_isset(cpu, buffer->cpumask))
  1236. return 0;
  1237. cpu_buffer = buffer->buffers[cpu];
  1238. return cpu_buffer->entries;
  1239. }
  1240. /**
  1241. * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
  1242. * @buffer: The ring buffer
  1243. * @cpu: The per CPU buffer to get the number of overruns from
  1244. */
  1245. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  1246. {
  1247. struct ring_buffer_per_cpu *cpu_buffer;
  1248. if (!cpu_isset(cpu, buffer->cpumask))
  1249. return 0;
  1250. cpu_buffer = buffer->buffers[cpu];
  1251. return cpu_buffer->overrun;
  1252. }
  1253. /**
  1254. * ring_buffer_entries - get the number of entries in a buffer
  1255. * @buffer: The ring buffer
  1256. *
  1257. * Returns the total number of entries in the ring buffer
  1258. * (all CPU entries)
  1259. */
  1260. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  1261. {
  1262. struct ring_buffer_per_cpu *cpu_buffer;
  1263. unsigned long entries = 0;
  1264. int cpu;
  1265. /* if you care about this being correct, lock the buffer */
  1266. for_each_buffer_cpu(buffer, cpu) {
  1267. cpu_buffer = buffer->buffers[cpu];
  1268. entries += cpu_buffer->entries;
  1269. }
  1270. return entries;
  1271. }
  1272. /**
  1273. * ring_buffer_overrun_cpu - get the number of overruns in buffer
  1274. * @buffer: The ring buffer
  1275. *
  1276. * Returns the total number of overruns in the ring buffer
  1277. * (all CPU entries)
  1278. */
  1279. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  1280. {
  1281. struct ring_buffer_per_cpu *cpu_buffer;
  1282. unsigned long overruns = 0;
  1283. int cpu;
  1284. /* if you care about this being correct, lock the buffer */
  1285. for_each_buffer_cpu(buffer, cpu) {
  1286. cpu_buffer = buffer->buffers[cpu];
  1287. overruns += cpu_buffer->overrun;
  1288. }
  1289. return overruns;
  1290. }
  1291. static void rb_iter_reset(struct ring_buffer_iter *iter)
  1292. {
  1293. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1294. /* Iterator usage is expected to have record disabled */
  1295. if (list_empty(&cpu_buffer->reader_page->list)) {
  1296. iter->head_page = cpu_buffer->head_page;
  1297. iter->head = cpu_buffer->head_page->read;
  1298. } else {
  1299. iter->head_page = cpu_buffer->reader_page;
  1300. iter->head = cpu_buffer->reader_page->read;
  1301. }
  1302. if (iter->head)
  1303. iter->read_stamp = cpu_buffer->read_stamp;
  1304. else
  1305. iter->read_stamp = iter->head_page->page->time_stamp;
  1306. }
  1307. /**
  1308. * ring_buffer_iter_reset - reset an iterator
  1309. * @iter: The iterator to reset
  1310. *
  1311. * Resets the iterator, so that it will start from the beginning
  1312. * again.
  1313. */
  1314. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  1315. {
  1316. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1317. unsigned long flags;
  1318. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1319. rb_iter_reset(iter);
  1320. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1321. }
  1322. /**
  1323. * ring_buffer_iter_empty - check if an iterator has no more to read
  1324. * @iter: The iterator to check
  1325. */
  1326. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  1327. {
  1328. struct ring_buffer_per_cpu *cpu_buffer;
  1329. cpu_buffer = iter->cpu_buffer;
  1330. return iter->head_page == cpu_buffer->commit_page &&
  1331. iter->head == rb_commit_index(cpu_buffer);
  1332. }
  1333. static void
  1334. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  1335. struct ring_buffer_event *event)
  1336. {
  1337. u64 delta;
  1338. switch (event->type) {
  1339. case RINGBUF_TYPE_PADDING:
  1340. return;
  1341. case RINGBUF_TYPE_TIME_EXTEND:
  1342. delta = event->array[0];
  1343. delta <<= TS_SHIFT;
  1344. delta += event->time_delta;
  1345. cpu_buffer->read_stamp += delta;
  1346. return;
  1347. case RINGBUF_TYPE_TIME_STAMP:
  1348. /* FIXME: not implemented */
  1349. return;
  1350. case RINGBUF_TYPE_DATA:
  1351. cpu_buffer->read_stamp += event->time_delta;
  1352. return;
  1353. default:
  1354. BUG();
  1355. }
  1356. return;
  1357. }
  1358. static void
  1359. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  1360. struct ring_buffer_event *event)
  1361. {
  1362. u64 delta;
  1363. switch (event->type) {
  1364. case RINGBUF_TYPE_PADDING:
  1365. return;
  1366. case RINGBUF_TYPE_TIME_EXTEND:
  1367. delta = event->array[0];
  1368. delta <<= TS_SHIFT;
  1369. delta += event->time_delta;
  1370. iter->read_stamp += delta;
  1371. return;
  1372. case RINGBUF_TYPE_TIME_STAMP:
  1373. /* FIXME: not implemented */
  1374. return;
  1375. case RINGBUF_TYPE_DATA:
  1376. iter->read_stamp += event->time_delta;
  1377. return;
  1378. default:
  1379. BUG();
  1380. }
  1381. return;
  1382. }
  1383. static struct buffer_page *
  1384. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1385. {
  1386. struct buffer_page *reader = NULL;
  1387. unsigned long flags;
  1388. int nr_loops = 0;
  1389. local_irq_save(flags);
  1390. __raw_spin_lock(&cpu_buffer->lock);
  1391. again:
  1392. /*
  1393. * This should normally only loop twice. But because the
  1394. * start of the reader inserts an empty page, it causes
  1395. * a case where we will loop three times. There should be no
  1396. * reason to loop four times (that I know of).
  1397. */
  1398. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
  1399. reader = NULL;
  1400. goto out;
  1401. }
  1402. reader = cpu_buffer->reader_page;
  1403. /* If there's more to read, return this page */
  1404. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  1405. goto out;
  1406. /* Never should we have an index greater than the size */
  1407. if (RB_WARN_ON(cpu_buffer,
  1408. cpu_buffer->reader_page->read > rb_page_size(reader)))
  1409. goto out;
  1410. /* check if we caught up to the tail */
  1411. reader = NULL;
  1412. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  1413. goto out;
  1414. /*
  1415. * Splice the empty reader page into the list around the head.
  1416. * Reset the reader page to size zero.
  1417. */
  1418. reader = cpu_buffer->head_page;
  1419. cpu_buffer->reader_page->list.next = reader->list.next;
  1420. cpu_buffer->reader_page->list.prev = reader->list.prev;
  1421. local_set(&cpu_buffer->reader_page->write, 0);
  1422. local_set(&cpu_buffer->reader_page->page->commit, 0);
  1423. /* Make the reader page now replace the head */
  1424. reader->list.prev->next = &cpu_buffer->reader_page->list;
  1425. reader->list.next->prev = &cpu_buffer->reader_page->list;
  1426. /*
  1427. * If the tail is on the reader, then we must set the head
  1428. * to the inserted page, otherwise we set it one before.
  1429. */
  1430. cpu_buffer->head_page = cpu_buffer->reader_page;
  1431. if (cpu_buffer->commit_page != reader)
  1432. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  1433. /* Finally update the reader page to the new head */
  1434. cpu_buffer->reader_page = reader;
  1435. rb_reset_reader_page(cpu_buffer);
  1436. goto again;
  1437. out:
  1438. __raw_spin_unlock(&cpu_buffer->lock);
  1439. local_irq_restore(flags);
  1440. return reader;
  1441. }
  1442. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  1443. {
  1444. struct ring_buffer_event *event;
  1445. struct buffer_page *reader;
  1446. unsigned length;
  1447. reader = rb_get_reader_page(cpu_buffer);
  1448. /* This function should not be called when buffer is empty */
  1449. if (RB_WARN_ON(cpu_buffer, !reader))
  1450. return;
  1451. event = rb_reader_event(cpu_buffer);
  1452. if (event->type == RINGBUF_TYPE_DATA)
  1453. cpu_buffer->entries--;
  1454. rb_update_read_stamp(cpu_buffer, event);
  1455. length = rb_event_length(event);
  1456. cpu_buffer->reader_page->read += length;
  1457. }
  1458. static void rb_advance_iter(struct ring_buffer_iter *iter)
  1459. {
  1460. struct ring_buffer *buffer;
  1461. struct ring_buffer_per_cpu *cpu_buffer;
  1462. struct ring_buffer_event *event;
  1463. unsigned length;
  1464. cpu_buffer = iter->cpu_buffer;
  1465. buffer = cpu_buffer->buffer;
  1466. /*
  1467. * Check if we are at the end of the buffer.
  1468. */
  1469. if (iter->head >= rb_page_size(iter->head_page)) {
  1470. if (RB_WARN_ON(buffer,
  1471. iter->head_page == cpu_buffer->commit_page))
  1472. return;
  1473. rb_inc_iter(iter);
  1474. return;
  1475. }
  1476. event = rb_iter_head_event(iter);
  1477. length = rb_event_length(event);
  1478. /*
  1479. * This should not be called to advance the header if we are
  1480. * at the tail of the buffer.
  1481. */
  1482. if (RB_WARN_ON(cpu_buffer,
  1483. (iter->head_page == cpu_buffer->commit_page) &&
  1484. (iter->head + length > rb_commit_index(cpu_buffer))))
  1485. return;
  1486. rb_update_iter_read_stamp(iter, event);
  1487. iter->head += length;
  1488. /* check for end of page padding */
  1489. if ((iter->head >= rb_page_size(iter->head_page)) &&
  1490. (iter->head_page != cpu_buffer->commit_page))
  1491. rb_advance_iter(iter);
  1492. }
  1493. static struct ring_buffer_event *
  1494. rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1495. {
  1496. struct ring_buffer_per_cpu *cpu_buffer;
  1497. struct ring_buffer_event *event;
  1498. struct buffer_page *reader;
  1499. int nr_loops = 0;
  1500. if (!cpu_isset(cpu, buffer->cpumask))
  1501. return NULL;
  1502. cpu_buffer = buffer->buffers[cpu];
  1503. again:
  1504. /*
  1505. * We repeat when a timestamp is encountered. It is possible
  1506. * to get multiple timestamps from an interrupt entering just
  1507. * as one timestamp is about to be written. The max times
  1508. * that this can happen is the number of nested interrupts we
  1509. * can have. Nesting 10 deep of interrupts is clearly
  1510. * an anomaly.
  1511. */
  1512. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1513. return NULL;
  1514. reader = rb_get_reader_page(cpu_buffer);
  1515. if (!reader)
  1516. return NULL;
  1517. event = rb_reader_event(cpu_buffer);
  1518. switch (event->type) {
  1519. case RINGBUF_TYPE_PADDING:
  1520. RB_WARN_ON(cpu_buffer, 1);
  1521. rb_advance_reader(cpu_buffer);
  1522. return NULL;
  1523. case RINGBUF_TYPE_TIME_EXTEND:
  1524. /* Internal data, OK to advance */
  1525. rb_advance_reader(cpu_buffer);
  1526. goto again;
  1527. case RINGBUF_TYPE_TIME_STAMP:
  1528. /* FIXME: not implemented */
  1529. rb_advance_reader(cpu_buffer);
  1530. goto again;
  1531. case RINGBUF_TYPE_DATA:
  1532. if (ts) {
  1533. *ts = cpu_buffer->read_stamp + event->time_delta;
  1534. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1535. }
  1536. return event;
  1537. default:
  1538. BUG();
  1539. }
  1540. return NULL;
  1541. }
  1542. static struct ring_buffer_event *
  1543. rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1544. {
  1545. struct ring_buffer *buffer;
  1546. struct ring_buffer_per_cpu *cpu_buffer;
  1547. struct ring_buffer_event *event;
  1548. int nr_loops = 0;
  1549. if (ring_buffer_iter_empty(iter))
  1550. return NULL;
  1551. cpu_buffer = iter->cpu_buffer;
  1552. buffer = cpu_buffer->buffer;
  1553. again:
  1554. /*
  1555. * We repeat when a timestamp is encountered. It is possible
  1556. * to get multiple timestamps from an interrupt entering just
  1557. * as one timestamp is about to be written. The max times
  1558. * that this can happen is the number of nested interrupts we
  1559. * can have. Nesting 10 deep of interrupts is clearly
  1560. * an anomaly.
  1561. */
  1562. if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
  1563. return NULL;
  1564. if (rb_per_cpu_empty(cpu_buffer))
  1565. return NULL;
  1566. event = rb_iter_head_event(iter);
  1567. switch (event->type) {
  1568. case RINGBUF_TYPE_PADDING:
  1569. rb_inc_iter(iter);
  1570. goto again;
  1571. case RINGBUF_TYPE_TIME_EXTEND:
  1572. /* Internal data, OK to advance */
  1573. rb_advance_iter(iter);
  1574. goto again;
  1575. case RINGBUF_TYPE_TIME_STAMP:
  1576. /* FIXME: not implemented */
  1577. rb_advance_iter(iter);
  1578. goto again;
  1579. case RINGBUF_TYPE_DATA:
  1580. if (ts) {
  1581. *ts = iter->read_stamp + event->time_delta;
  1582. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1583. }
  1584. return event;
  1585. default:
  1586. BUG();
  1587. }
  1588. return NULL;
  1589. }
  1590. /**
  1591. * ring_buffer_peek - peek at the next event to be read
  1592. * @buffer: The ring buffer to read
  1593. * @cpu: The cpu to peak at
  1594. * @ts: The timestamp counter of this event.
  1595. *
  1596. * This will return the event that will be read next, but does
  1597. * not consume the data.
  1598. */
  1599. struct ring_buffer_event *
  1600. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1601. {
  1602. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1603. struct ring_buffer_event *event;
  1604. unsigned long flags;
  1605. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1606. event = rb_buffer_peek(buffer, cpu, ts);
  1607. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1608. return event;
  1609. }
  1610. /**
  1611. * ring_buffer_iter_peek - peek at the next event to be read
  1612. * @iter: The ring buffer iterator
  1613. * @ts: The timestamp counter of this event.
  1614. *
  1615. * This will return the event that will be read next, but does
  1616. * not increment the iterator.
  1617. */
  1618. struct ring_buffer_event *
  1619. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1620. {
  1621. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1622. struct ring_buffer_event *event;
  1623. unsigned long flags;
  1624. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1625. event = rb_iter_peek(iter, ts);
  1626. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1627. return event;
  1628. }
  1629. /**
  1630. * ring_buffer_consume - return an event and consume it
  1631. * @buffer: The ring buffer to get the next event from
  1632. *
  1633. * Returns the next event in the ring buffer, and that event is consumed.
  1634. * Meaning, that sequential reads will keep returning a different event,
  1635. * and eventually empty the ring buffer if the producer is slower.
  1636. */
  1637. struct ring_buffer_event *
  1638. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
  1639. {
  1640. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1641. struct ring_buffer_event *event;
  1642. unsigned long flags;
  1643. if (!cpu_isset(cpu, buffer->cpumask))
  1644. return NULL;
  1645. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1646. event = rb_buffer_peek(buffer, cpu, ts);
  1647. if (!event)
  1648. goto out;
  1649. rb_advance_reader(cpu_buffer);
  1650. out:
  1651. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1652. return event;
  1653. }
  1654. /**
  1655. * ring_buffer_read_start - start a non consuming read of the buffer
  1656. * @buffer: The ring buffer to read from
  1657. * @cpu: The cpu buffer to iterate over
  1658. *
  1659. * This starts up an iteration through the buffer. It also disables
  1660. * the recording to the buffer until the reading is finished.
  1661. * This prevents the reading from being corrupted. This is not
  1662. * a consuming read, so a producer is not expected.
  1663. *
  1664. * Must be paired with ring_buffer_finish.
  1665. */
  1666. struct ring_buffer_iter *
  1667. ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
  1668. {
  1669. struct ring_buffer_per_cpu *cpu_buffer;
  1670. struct ring_buffer_iter *iter;
  1671. unsigned long flags;
  1672. if (!cpu_isset(cpu, buffer->cpumask))
  1673. return NULL;
  1674. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  1675. if (!iter)
  1676. return NULL;
  1677. cpu_buffer = buffer->buffers[cpu];
  1678. iter->cpu_buffer = cpu_buffer;
  1679. atomic_inc(&cpu_buffer->record_disabled);
  1680. synchronize_sched();
  1681. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1682. __raw_spin_lock(&cpu_buffer->lock);
  1683. rb_iter_reset(iter);
  1684. __raw_spin_unlock(&cpu_buffer->lock);
  1685. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1686. return iter;
  1687. }
  1688. /**
  1689. * ring_buffer_finish - finish reading the iterator of the buffer
  1690. * @iter: The iterator retrieved by ring_buffer_start
  1691. *
  1692. * This re-enables the recording to the buffer, and frees the
  1693. * iterator.
  1694. */
  1695. void
  1696. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  1697. {
  1698. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1699. atomic_dec(&cpu_buffer->record_disabled);
  1700. kfree(iter);
  1701. }
  1702. /**
  1703. * ring_buffer_read - read the next item in the ring buffer by the iterator
  1704. * @iter: The ring buffer iterator
  1705. * @ts: The time stamp of the event read.
  1706. *
  1707. * This reads the next event in the ring buffer and increments the iterator.
  1708. */
  1709. struct ring_buffer_event *
  1710. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  1711. {
  1712. struct ring_buffer_event *event;
  1713. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1714. unsigned long flags;
  1715. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1716. event = rb_iter_peek(iter, ts);
  1717. if (!event)
  1718. goto out;
  1719. rb_advance_iter(iter);
  1720. out:
  1721. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1722. return event;
  1723. }
  1724. /**
  1725. * ring_buffer_size - return the size of the ring buffer (in bytes)
  1726. * @buffer: The ring buffer.
  1727. */
  1728. unsigned long ring_buffer_size(struct ring_buffer *buffer)
  1729. {
  1730. return BUF_PAGE_SIZE * buffer->pages;
  1731. }
  1732. static void
  1733. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  1734. {
  1735. cpu_buffer->head_page
  1736. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  1737. local_set(&cpu_buffer->head_page->write, 0);
  1738. local_set(&cpu_buffer->head_page->page->commit, 0);
  1739. cpu_buffer->head_page->read = 0;
  1740. cpu_buffer->tail_page = cpu_buffer->head_page;
  1741. cpu_buffer->commit_page = cpu_buffer->head_page;
  1742. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1743. local_set(&cpu_buffer->reader_page->write, 0);
  1744. local_set(&cpu_buffer->reader_page->page->commit, 0);
  1745. cpu_buffer->reader_page->read = 0;
  1746. cpu_buffer->overrun = 0;
  1747. cpu_buffer->entries = 0;
  1748. }
  1749. /**
  1750. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  1751. * @buffer: The ring buffer to reset a per cpu buffer of
  1752. * @cpu: The CPU buffer to be reset
  1753. */
  1754. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  1755. {
  1756. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1757. unsigned long flags;
  1758. if (!cpu_isset(cpu, buffer->cpumask))
  1759. return;
  1760. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1761. __raw_spin_lock(&cpu_buffer->lock);
  1762. rb_reset_cpu(cpu_buffer);
  1763. __raw_spin_unlock(&cpu_buffer->lock);
  1764. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1765. }
  1766. /**
  1767. * ring_buffer_reset - reset a ring buffer
  1768. * @buffer: The ring buffer to reset all cpu buffers
  1769. */
  1770. void ring_buffer_reset(struct ring_buffer *buffer)
  1771. {
  1772. int cpu;
  1773. for_each_buffer_cpu(buffer, cpu)
  1774. ring_buffer_reset_cpu(buffer, cpu);
  1775. }
  1776. /**
  1777. * rind_buffer_empty - is the ring buffer empty?
  1778. * @buffer: The ring buffer to test
  1779. */
  1780. int ring_buffer_empty(struct ring_buffer *buffer)
  1781. {
  1782. struct ring_buffer_per_cpu *cpu_buffer;
  1783. int cpu;
  1784. /* yes this is racy, but if you don't like the race, lock the buffer */
  1785. for_each_buffer_cpu(buffer, cpu) {
  1786. cpu_buffer = buffer->buffers[cpu];
  1787. if (!rb_per_cpu_empty(cpu_buffer))
  1788. return 0;
  1789. }
  1790. return 1;
  1791. }
  1792. /**
  1793. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  1794. * @buffer: The ring buffer
  1795. * @cpu: The CPU buffer to test
  1796. */
  1797. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  1798. {
  1799. struct ring_buffer_per_cpu *cpu_buffer;
  1800. if (!cpu_isset(cpu, buffer->cpumask))
  1801. return 1;
  1802. cpu_buffer = buffer->buffers[cpu];
  1803. return rb_per_cpu_empty(cpu_buffer);
  1804. }
  1805. /**
  1806. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  1807. * @buffer_a: One buffer to swap with
  1808. * @buffer_b: The other buffer to swap with
  1809. *
  1810. * This function is useful for tracers that want to take a "snapshot"
  1811. * of a CPU buffer and has another back up buffer lying around.
  1812. * it is expected that the tracer handles the cpu buffer not being
  1813. * used at the moment.
  1814. */
  1815. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  1816. struct ring_buffer *buffer_b, int cpu)
  1817. {
  1818. struct ring_buffer_per_cpu *cpu_buffer_a;
  1819. struct ring_buffer_per_cpu *cpu_buffer_b;
  1820. if (!cpu_isset(cpu, buffer_a->cpumask) ||
  1821. !cpu_isset(cpu, buffer_b->cpumask))
  1822. return -EINVAL;
  1823. /* At least make sure the two buffers are somewhat the same */
  1824. if (buffer_a->size != buffer_b->size ||
  1825. buffer_a->pages != buffer_b->pages)
  1826. return -EINVAL;
  1827. cpu_buffer_a = buffer_a->buffers[cpu];
  1828. cpu_buffer_b = buffer_b->buffers[cpu];
  1829. /*
  1830. * We can't do a synchronize_sched here because this
  1831. * function can be called in atomic context.
  1832. * Normally this will be called from the same CPU as cpu.
  1833. * If not it's up to the caller to protect this.
  1834. */
  1835. atomic_inc(&cpu_buffer_a->record_disabled);
  1836. atomic_inc(&cpu_buffer_b->record_disabled);
  1837. buffer_a->buffers[cpu] = cpu_buffer_b;
  1838. buffer_b->buffers[cpu] = cpu_buffer_a;
  1839. cpu_buffer_b->buffer = buffer_a;
  1840. cpu_buffer_a->buffer = buffer_b;
  1841. atomic_dec(&cpu_buffer_a->record_disabled);
  1842. atomic_dec(&cpu_buffer_b->record_disabled);
  1843. return 0;
  1844. }
  1845. static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
  1846. struct buffer_data_page *bpage)
  1847. {
  1848. struct ring_buffer_event *event;
  1849. unsigned long head;
  1850. __raw_spin_lock(&cpu_buffer->lock);
  1851. for (head = 0; head < local_read(&bpage->commit);
  1852. head += rb_event_length(event)) {
  1853. event = __rb_data_page_index(bpage, head);
  1854. if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
  1855. return;
  1856. /* Only count data entries */
  1857. if (event->type != RINGBUF_TYPE_DATA)
  1858. continue;
  1859. cpu_buffer->entries--;
  1860. }
  1861. __raw_spin_unlock(&cpu_buffer->lock);
  1862. }
  1863. /**
  1864. * ring_buffer_alloc_read_page - allocate a page to read from buffer
  1865. * @buffer: the buffer to allocate for.
  1866. *
  1867. * This function is used in conjunction with ring_buffer_read_page.
  1868. * When reading a full page from the ring buffer, these functions
  1869. * can be used to speed up the process. The calling function should
  1870. * allocate a few pages first with this function. Then when it
  1871. * needs to get pages from the ring buffer, it passes the result
  1872. * of this function into ring_buffer_read_page, which will swap
  1873. * the page that was allocated, with the read page of the buffer.
  1874. *
  1875. * Returns:
  1876. * The page allocated, or NULL on error.
  1877. */
  1878. void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
  1879. {
  1880. unsigned long addr;
  1881. struct buffer_data_page *bpage;
  1882. addr = __get_free_page(GFP_KERNEL);
  1883. if (!addr)
  1884. return NULL;
  1885. bpage = (void *)addr;
  1886. return bpage;
  1887. }
  1888. /**
  1889. * ring_buffer_free_read_page - free an allocated read page
  1890. * @buffer: the buffer the page was allocate for
  1891. * @data: the page to free
  1892. *
  1893. * Free a page allocated from ring_buffer_alloc_read_page.
  1894. */
  1895. void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
  1896. {
  1897. free_page((unsigned long)data);
  1898. }
  1899. /**
  1900. * ring_buffer_read_page - extract a page from the ring buffer
  1901. * @buffer: buffer to extract from
  1902. * @data_page: the page to use allocated from ring_buffer_alloc_read_page
  1903. * @cpu: the cpu of the buffer to extract
  1904. * @full: should the extraction only happen when the page is full.
  1905. *
  1906. * This function will pull out a page from the ring buffer and consume it.
  1907. * @data_page must be the address of the variable that was returned
  1908. * from ring_buffer_alloc_read_page. This is because the page might be used
  1909. * to swap with a page in the ring buffer.
  1910. *
  1911. * for example:
  1912. * rpage = ring_buffer_alloc_page(buffer);
  1913. * if (!rpage)
  1914. * return error;
  1915. * ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
  1916. * if (ret)
  1917. * process_page(rpage);
  1918. *
  1919. * When @full is set, the function will not return true unless
  1920. * the writer is off the reader page.
  1921. *
  1922. * Note: it is up to the calling functions to handle sleeps and wakeups.
  1923. * The ring buffer can be used anywhere in the kernel and can not
  1924. * blindly call wake_up. The layer that uses the ring buffer must be
  1925. * responsible for that.
  1926. *
  1927. * Returns:
  1928. * 1 if data has been transferred
  1929. * 0 if no data has been transferred.
  1930. */
  1931. int ring_buffer_read_page(struct ring_buffer *buffer,
  1932. void **data_page, int cpu, int full)
  1933. {
  1934. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1935. struct ring_buffer_event *event;
  1936. struct buffer_data_page *bpage;
  1937. unsigned long flags;
  1938. int ret = 0;
  1939. if (!data_page)
  1940. return 0;
  1941. bpage = *data_page;
  1942. if (!bpage)
  1943. return 0;
  1944. spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
  1945. /*
  1946. * rb_buffer_peek will get the next ring buffer if
  1947. * the current reader page is empty.
  1948. */
  1949. event = rb_buffer_peek(buffer, cpu, NULL);
  1950. if (!event)
  1951. goto out;
  1952. /* check for data */
  1953. if (!local_read(&cpu_buffer->reader_page->page->commit))
  1954. goto out;
  1955. /*
  1956. * If the writer is already off of the read page, then simply
  1957. * switch the read page with the given page. Otherwise
  1958. * we need to copy the data from the reader to the writer.
  1959. */
  1960. if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
  1961. unsigned int read = cpu_buffer->reader_page->read;
  1962. if (full)
  1963. goto out;
  1964. /* The writer is still on the reader page, we must copy */
  1965. bpage = cpu_buffer->reader_page->page;
  1966. memcpy(bpage->data,
  1967. cpu_buffer->reader_page->page->data + read,
  1968. local_read(&bpage->commit) - read);
  1969. /* consume what was read */
  1970. cpu_buffer->reader_page += read;
  1971. } else {
  1972. /* swap the pages */
  1973. rb_init_page(bpage);
  1974. bpage = cpu_buffer->reader_page->page;
  1975. cpu_buffer->reader_page->page = *data_page;
  1976. cpu_buffer->reader_page->read = 0;
  1977. *data_page = bpage;
  1978. }
  1979. ret = 1;
  1980. /* update the entry counter */
  1981. rb_remove_entries(cpu_buffer, bpage);
  1982. out:
  1983. spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
  1984. return ret;
  1985. }
  1986. static ssize_t
  1987. rb_simple_read(struct file *filp, char __user *ubuf,
  1988. size_t cnt, loff_t *ppos)
  1989. {
  1990. long *p = filp->private_data;
  1991. char buf[64];
  1992. int r;
  1993. if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
  1994. r = sprintf(buf, "permanently disabled\n");
  1995. else
  1996. r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
  1997. return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  1998. }
  1999. static ssize_t
  2000. rb_simple_write(struct file *filp, const char __user *ubuf,
  2001. size_t cnt, loff_t *ppos)
  2002. {
  2003. long *p = filp->private_data;
  2004. char buf[64];
  2005. long val;
  2006. int ret;
  2007. if (cnt >= sizeof(buf))
  2008. return -EINVAL;
  2009. if (copy_from_user(&buf, ubuf, cnt))
  2010. return -EFAULT;
  2011. buf[cnt] = 0;
  2012. ret = strict_strtoul(buf, 10, &val);
  2013. if (ret < 0)
  2014. return ret;
  2015. if (val)
  2016. set_bit(RB_BUFFERS_ON_BIT, p);
  2017. else
  2018. clear_bit(RB_BUFFERS_ON_BIT, p);
  2019. (*ppos)++;
  2020. return cnt;
  2021. }
  2022. static struct file_operations rb_simple_fops = {
  2023. .open = tracing_open_generic,
  2024. .read = rb_simple_read,
  2025. .write = rb_simple_write,
  2026. };
  2027. static __init int rb_init_debugfs(void)
  2028. {
  2029. struct dentry *d_tracer;
  2030. struct dentry *entry;
  2031. d_tracer = tracing_init_dentry();
  2032. entry = debugfs_create_file("tracing_on", 0644, d_tracer,
  2033. &ring_buffer_flags, &rb_simple_fops);
  2034. if (!entry)
  2035. pr_warning("Could not create debugfs 'tracing_on' entry\n");
  2036. return 0;
  2037. }
  2038. fs_initcall(rb_init_debugfs);