qlge_dbg.c 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640
  1. #include "qlge.h"
  2. static int ql_get_ets_regs(struct ql_adapter *qdev, u32 * buf)
  3. {
  4. int status = 0;
  5. int i;
  6. for (i = 0; i < 8; i++, buf++) {
  7. ql_write32(qdev, NIC_ETS, i << 29 | 0x08000000);
  8. *buf = ql_read32(qdev, NIC_ETS);
  9. }
  10. for (i = 0; i < 2; i++, buf++) {
  11. ql_write32(qdev, CNA_ETS, i << 29 | 0x08000000);
  12. *buf = ql_read32(qdev, CNA_ETS);
  13. }
  14. return status;
  15. }
  16. static void ql_get_intr_states(struct ql_adapter *qdev, u32 * buf)
  17. {
  18. int i;
  19. for (i = 0; i < qdev->rx_ring_count; i++, buf++) {
  20. ql_write32(qdev, INTR_EN,
  21. qdev->intr_context[i].intr_read_mask);
  22. *buf = ql_read32(qdev, INTR_EN);
  23. }
  24. }
  25. static int ql_get_cam_entries(struct ql_adapter *qdev, u32 * buf)
  26. {
  27. int i, status;
  28. u32 value[3];
  29. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  30. if (status)
  31. return status;
  32. for (i = 0; i < 16; i++) {
  33. status = ql_get_mac_addr_reg(qdev,
  34. MAC_ADDR_TYPE_CAM_MAC, i, value);
  35. if (status) {
  36. QPRINTK(qdev, DRV, ERR,
  37. "Failed read of mac index register.\n");
  38. goto err;
  39. }
  40. *buf++ = value[0]; /* lower MAC address */
  41. *buf++ = value[1]; /* upper MAC address */
  42. *buf++ = value[2]; /* output */
  43. }
  44. for (i = 0; i < 32; i++) {
  45. status = ql_get_mac_addr_reg(qdev,
  46. MAC_ADDR_TYPE_MULTI_MAC, i, value);
  47. if (status) {
  48. QPRINTK(qdev, DRV, ERR,
  49. "Failed read of mac index register.\n");
  50. goto err;
  51. }
  52. *buf++ = value[0]; /* lower Mcast address */
  53. *buf++ = value[1]; /* upper Mcast address */
  54. }
  55. err:
  56. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  57. return status;
  58. }
  59. static int ql_get_routing_entries(struct ql_adapter *qdev, u32 * buf)
  60. {
  61. int status;
  62. u32 value, i;
  63. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  64. if (status)
  65. return status;
  66. for (i = 0; i < 16; i++) {
  67. status = ql_get_routing_reg(qdev, i, &value);
  68. if (status) {
  69. QPRINTK(qdev, DRV, ERR,
  70. "Failed read of routing index register.\n");
  71. goto err;
  72. } else {
  73. *buf++ = value;
  74. }
  75. }
  76. err:
  77. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  78. return status;
  79. }
  80. /* Read the MPI Processor shadow registers */
  81. static int ql_get_mpi_shadow_regs(struct ql_adapter *qdev, u32 * buf)
  82. {
  83. u32 i;
  84. int status;
  85. for (i = 0; i < MPI_CORE_SH_REGS_CNT; i++, buf++) {
  86. status = ql_write_mpi_reg(qdev, RISC_124,
  87. (SHADOW_OFFSET | i << SHADOW_REG_SHIFT));
  88. if (status)
  89. goto end;
  90. status = ql_read_mpi_reg(qdev, RISC_127, buf);
  91. if (status)
  92. goto end;
  93. }
  94. end:
  95. return status;
  96. }
  97. /* Read the MPI Processor core registers */
  98. static int ql_get_mpi_regs(struct ql_adapter *qdev, u32 * buf,
  99. u32 offset, u32 count)
  100. {
  101. int i, status = 0;
  102. for (i = 0; i < count; i++, buf++) {
  103. status = ql_read_mpi_reg(qdev, offset + i, buf);
  104. if (status)
  105. return status;
  106. }
  107. return status;
  108. }
  109. /* Read the ASIC probe dump */
  110. static unsigned int *ql_get_probe(struct ql_adapter *qdev, u32 clock,
  111. u32 valid, u32 *buf)
  112. {
  113. u32 module, mux_sel, probe, lo_val, hi_val;
  114. for (module = 0; module < PRB_MX_ADDR_MAX_MODS; module++) {
  115. if (!((valid >> module) & 1))
  116. continue;
  117. for (mux_sel = 0; mux_sel < PRB_MX_ADDR_MAX_MUX; mux_sel++) {
  118. probe = clock
  119. | PRB_MX_ADDR_ARE
  120. | mux_sel
  121. | (module << PRB_MX_ADDR_MOD_SEL_SHIFT);
  122. ql_write32(qdev, PRB_MX_ADDR, probe);
  123. lo_val = ql_read32(qdev, PRB_MX_DATA);
  124. if (mux_sel == 0) {
  125. *buf = probe;
  126. buf++;
  127. }
  128. probe |= PRB_MX_ADDR_UP;
  129. ql_write32(qdev, PRB_MX_ADDR, probe);
  130. hi_val = ql_read32(qdev, PRB_MX_DATA);
  131. *buf = lo_val;
  132. buf++;
  133. *buf = hi_val;
  134. buf++;
  135. }
  136. }
  137. return buf;
  138. }
  139. static int ql_get_probe_dump(struct ql_adapter *qdev, unsigned int *buf)
  140. {
  141. /* First we have to enable the probe mux */
  142. ql_write_mpi_reg(qdev, MPI_TEST_FUNC_PRB_CTL, MPI_TEST_FUNC_PRB_EN);
  143. buf = ql_get_probe(qdev, PRB_MX_ADDR_SYS_CLOCK,
  144. PRB_MX_ADDR_VALID_SYS_MOD, buf);
  145. buf = ql_get_probe(qdev, PRB_MX_ADDR_PCI_CLOCK,
  146. PRB_MX_ADDR_VALID_PCI_MOD, buf);
  147. buf = ql_get_probe(qdev, PRB_MX_ADDR_XGM_CLOCK,
  148. PRB_MX_ADDR_VALID_XGM_MOD, buf);
  149. buf = ql_get_probe(qdev, PRB_MX_ADDR_FC_CLOCK,
  150. PRB_MX_ADDR_VALID_FC_MOD, buf);
  151. return 0;
  152. }
  153. /* Read out the routing index registers */
  154. static int ql_get_routing_index_registers(struct ql_adapter *qdev, u32 *buf)
  155. {
  156. int status;
  157. u32 type, index, index_max;
  158. u32 result_index;
  159. u32 result_data;
  160. u32 val;
  161. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  162. if (status)
  163. return status;
  164. for (type = 0; type < 4; type++) {
  165. if (type < 2)
  166. index_max = 8;
  167. else
  168. index_max = 16;
  169. for (index = 0; index < index_max; index++) {
  170. val = RT_IDX_RS
  171. | (type << RT_IDX_TYPE_SHIFT)
  172. | (index << RT_IDX_IDX_SHIFT);
  173. ql_write32(qdev, RT_IDX, val);
  174. result_index = 0;
  175. while ((result_index & RT_IDX_MR) == 0)
  176. result_index = ql_read32(qdev, RT_IDX);
  177. result_data = ql_read32(qdev, RT_DATA);
  178. *buf = type;
  179. buf++;
  180. *buf = index;
  181. buf++;
  182. *buf = result_index;
  183. buf++;
  184. *buf = result_data;
  185. buf++;
  186. }
  187. }
  188. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  189. return status;
  190. }
  191. /* Read out the MAC protocol registers */
  192. static void ql_get_mac_protocol_registers(struct ql_adapter *qdev, u32 *buf)
  193. {
  194. u32 result_index, result_data;
  195. u32 type;
  196. u32 index;
  197. u32 offset;
  198. u32 val;
  199. u32 initial_val = MAC_ADDR_RS;
  200. u32 max_index;
  201. u32 max_offset;
  202. for (type = 0; type < MAC_ADDR_TYPE_COUNT; type++) {
  203. switch (type) {
  204. case 0: /* CAM */
  205. initial_val |= MAC_ADDR_ADR;
  206. max_index = MAC_ADDR_MAX_CAM_ENTRIES;
  207. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  208. break;
  209. case 1: /* Multicast MAC Address */
  210. max_index = MAC_ADDR_MAX_CAM_WCOUNT;
  211. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  212. break;
  213. case 2: /* VLAN filter mask */
  214. case 3: /* MC filter mask */
  215. max_index = MAC_ADDR_MAX_CAM_WCOUNT;
  216. max_offset = MAC_ADDR_MAX_CAM_WCOUNT;
  217. break;
  218. case 4: /* FC MAC addresses */
  219. max_index = MAC_ADDR_MAX_FC_MAC_ENTRIES;
  220. max_offset = MAC_ADDR_MAX_FC_MAC_WCOUNT;
  221. break;
  222. case 5: /* Mgmt MAC addresses */
  223. max_index = MAC_ADDR_MAX_MGMT_MAC_ENTRIES;
  224. max_offset = MAC_ADDR_MAX_MGMT_MAC_WCOUNT;
  225. break;
  226. case 6: /* Mgmt VLAN addresses */
  227. max_index = MAC_ADDR_MAX_MGMT_VLAN_ENTRIES;
  228. max_offset = MAC_ADDR_MAX_MGMT_VLAN_WCOUNT;
  229. break;
  230. case 7: /* Mgmt IPv4 address */
  231. max_index = MAC_ADDR_MAX_MGMT_V4_ENTRIES;
  232. max_offset = MAC_ADDR_MAX_MGMT_V4_WCOUNT;
  233. break;
  234. case 8: /* Mgmt IPv6 address */
  235. max_index = MAC_ADDR_MAX_MGMT_V6_ENTRIES;
  236. max_offset = MAC_ADDR_MAX_MGMT_V6_WCOUNT;
  237. break;
  238. case 9: /* Mgmt TCP/UDP Dest port */
  239. max_index = MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES;
  240. max_offset = MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT;
  241. break;
  242. default:
  243. printk(KERN_ERR"Bad type!!! 0x%08x\n", type);
  244. max_index = 0;
  245. max_offset = 0;
  246. break;
  247. }
  248. for (index = 0; index < max_index; index++) {
  249. for (offset = 0; offset < max_offset; offset++) {
  250. val = initial_val
  251. | (type << MAC_ADDR_TYPE_SHIFT)
  252. | (index << MAC_ADDR_IDX_SHIFT)
  253. | (offset);
  254. ql_write32(qdev, MAC_ADDR_IDX, val);
  255. result_index = 0;
  256. while ((result_index & MAC_ADDR_MR) == 0) {
  257. result_index = ql_read32(qdev,
  258. MAC_ADDR_IDX);
  259. }
  260. result_data = ql_read32(qdev, MAC_ADDR_DATA);
  261. *buf = result_index;
  262. buf++;
  263. *buf = result_data;
  264. buf++;
  265. }
  266. }
  267. }
  268. }
  269. static void ql_get_sem_registers(struct ql_adapter *qdev, u32 *buf)
  270. {
  271. u32 func_num, reg, reg_val;
  272. int status;
  273. for (func_num = 0; func_num < MAX_SEMAPHORE_FUNCTIONS ; func_num++) {
  274. reg = MPI_NIC_REG_BLOCK
  275. | (func_num << MPI_NIC_FUNCTION_SHIFT)
  276. | (SEM / 4);
  277. status = ql_read_mpi_reg(qdev, reg, &reg_val);
  278. *buf = reg_val;
  279. /* if the read failed then dead fill the element. */
  280. if (!status)
  281. *buf = 0xdeadbeef;
  282. buf++;
  283. }
  284. }
  285. /* Create a coredump segment header */
  286. static void ql_build_coredump_seg_header(
  287. struct mpi_coredump_segment_header *seg_hdr,
  288. u32 seg_number, u32 seg_size, u8 *desc)
  289. {
  290. memset(seg_hdr, 0, sizeof(struct mpi_coredump_segment_header));
  291. seg_hdr->cookie = MPI_COREDUMP_COOKIE;
  292. seg_hdr->segNum = seg_number;
  293. seg_hdr->segSize = seg_size;
  294. memcpy(seg_hdr->description, desc, (sizeof(seg_hdr->description)) - 1);
  295. }
  296. /*
  297. * This function should be called when a coredump / probedump
  298. * is to be extracted from the HBA. It is assumed there is a
  299. * qdev structure that contains the base address of the register
  300. * space for this function as well as a coredump structure that
  301. * will contain the dump.
  302. */
  303. int ql_core_dump(struct ql_adapter *qdev, struct ql_mpi_coredump *mpi_coredump)
  304. {
  305. int status;
  306. int i;
  307. if (!mpi_coredump) {
  308. QPRINTK(qdev, DRV, ERR,
  309. "No memory available.\n");
  310. return -ENOMEM;
  311. }
  312. /* Try to get the spinlock, but dont worry if
  313. * it isn't available. If the firmware died it
  314. * might be holding the sem.
  315. */
  316. ql_sem_spinlock(qdev, SEM_PROC_REG_MASK);
  317. status = ql_pause_mpi_risc(qdev);
  318. if (status) {
  319. QPRINTK(qdev, DRV, ERR,
  320. "Failed RISC pause. Status = 0x%.08x\n", status);
  321. goto err;
  322. }
  323. /* Insert the global header */
  324. memset(&(mpi_coredump->mpi_global_header), 0,
  325. sizeof(struct mpi_coredump_global_header));
  326. mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
  327. mpi_coredump->mpi_global_header.headerSize =
  328. sizeof(struct mpi_coredump_global_header);
  329. mpi_coredump->mpi_global_header.imageSize =
  330. sizeof(struct ql_mpi_coredump);
  331. memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
  332. sizeof(mpi_coredump->mpi_global_header.idString));
  333. /* Get generic NIC reg dump */
  334. ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
  335. NIC1_CONTROL_SEG_NUM,
  336. sizeof(struct mpi_coredump_segment_header) +
  337. sizeof(mpi_coredump->nic_regs), "NIC1 Registers");
  338. if (qdev->func & 1) {
  339. /* Odd means our function is NIC 2 */
  340. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  341. mpi_coredump->nic2_regs[i] =
  342. ql_read32(qdev, i * sizeof(u32));
  343. } else {
  344. /* Even means our function is NIC 1 */
  345. for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++)
  346. mpi_coredump->nic_regs[i] =
  347. ql_read32(qdev, i * sizeof(u32));
  348. }
  349. ql_build_coredump_seg_header(&mpi_coredump->core_regs_seg_hdr,
  350. CORE_SEG_NUM,
  351. sizeof(mpi_coredump->core_regs_seg_hdr) +
  352. sizeof(mpi_coredump->mpi_core_regs) +
  353. sizeof(mpi_coredump->mpi_core_sh_regs),
  354. "Core Registers");
  355. /* Get the MPI Core Registers */
  356. status = ql_get_mpi_regs(qdev, &mpi_coredump->mpi_core_regs[0],
  357. MPI_CORE_REGS_ADDR, MPI_CORE_REGS_CNT);
  358. if (status)
  359. goto err;
  360. /* Get the 16 MPI shadow registers */
  361. status = ql_get_mpi_shadow_regs(qdev,
  362. &mpi_coredump->mpi_core_sh_regs[0]);
  363. if (status)
  364. goto err;
  365. /* Get the Test Logic Registers */
  366. ql_build_coredump_seg_header(&mpi_coredump->test_logic_regs_seg_hdr,
  367. TEST_LOGIC_SEG_NUM,
  368. sizeof(struct mpi_coredump_segment_header)
  369. + sizeof(mpi_coredump->test_logic_regs),
  370. "Test Logic Regs");
  371. status = ql_get_mpi_regs(qdev, &mpi_coredump->test_logic_regs[0],
  372. TEST_REGS_ADDR, TEST_REGS_CNT);
  373. if (status)
  374. goto err;
  375. /* Get the RMII Registers */
  376. ql_build_coredump_seg_header(&mpi_coredump->rmii_regs_seg_hdr,
  377. RMII_SEG_NUM,
  378. sizeof(struct mpi_coredump_segment_header)
  379. + sizeof(mpi_coredump->rmii_regs),
  380. "RMII Registers");
  381. status = ql_get_mpi_regs(qdev, &mpi_coredump->rmii_regs[0],
  382. RMII_REGS_ADDR, RMII_REGS_CNT);
  383. if (status)
  384. goto err;
  385. /* Get the FCMAC1 Registers */
  386. ql_build_coredump_seg_header(&mpi_coredump->fcmac1_regs_seg_hdr,
  387. FCMAC1_SEG_NUM,
  388. sizeof(struct mpi_coredump_segment_header)
  389. + sizeof(mpi_coredump->fcmac1_regs),
  390. "FCMAC1 Registers");
  391. status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac1_regs[0],
  392. FCMAC1_REGS_ADDR, FCMAC_REGS_CNT);
  393. if (status)
  394. goto err;
  395. /* Get the FCMAC2 Registers */
  396. ql_build_coredump_seg_header(&mpi_coredump->fcmac2_regs_seg_hdr,
  397. FCMAC2_SEG_NUM,
  398. sizeof(struct mpi_coredump_segment_header)
  399. + sizeof(mpi_coredump->fcmac2_regs),
  400. "FCMAC2 Registers");
  401. status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac2_regs[0],
  402. FCMAC2_REGS_ADDR, FCMAC_REGS_CNT);
  403. if (status)
  404. goto err;
  405. /* Get the FC1 MBX Registers */
  406. ql_build_coredump_seg_header(&mpi_coredump->fc1_mbx_regs_seg_hdr,
  407. FC1_MBOX_SEG_NUM,
  408. sizeof(struct mpi_coredump_segment_header)
  409. + sizeof(mpi_coredump->fc1_mbx_regs),
  410. "FC1 MBox Regs");
  411. status = ql_get_mpi_regs(qdev, &mpi_coredump->fc1_mbx_regs[0],
  412. FC1_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
  413. if (status)
  414. goto err;
  415. /* Get the IDE Registers */
  416. ql_build_coredump_seg_header(&mpi_coredump->ide_regs_seg_hdr,
  417. IDE_SEG_NUM,
  418. sizeof(struct mpi_coredump_segment_header)
  419. + sizeof(mpi_coredump->ide_regs),
  420. "IDE Registers");
  421. status = ql_get_mpi_regs(qdev, &mpi_coredump->ide_regs[0],
  422. IDE_REGS_ADDR, IDE_REGS_CNT);
  423. if (status)
  424. goto err;
  425. /* Get the NIC1 MBX Registers */
  426. ql_build_coredump_seg_header(&mpi_coredump->nic1_mbx_regs_seg_hdr,
  427. NIC1_MBOX_SEG_NUM,
  428. sizeof(struct mpi_coredump_segment_header)
  429. + sizeof(mpi_coredump->nic1_mbx_regs),
  430. "NIC1 MBox Regs");
  431. status = ql_get_mpi_regs(qdev, &mpi_coredump->nic1_mbx_regs[0],
  432. NIC1_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
  433. if (status)
  434. goto err;
  435. /* Get the SMBus Registers */
  436. ql_build_coredump_seg_header(&mpi_coredump->smbus_regs_seg_hdr,
  437. SMBUS_SEG_NUM,
  438. sizeof(struct mpi_coredump_segment_header)
  439. + sizeof(mpi_coredump->smbus_regs),
  440. "SMBus Registers");
  441. status = ql_get_mpi_regs(qdev, &mpi_coredump->smbus_regs[0],
  442. SMBUS_REGS_ADDR, SMBUS_REGS_CNT);
  443. if (status)
  444. goto err;
  445. /* Get the FC2 MBX Registers */
  446. ql_build_coredump_seg_header(&mpi_coredump->fc2_mbx_regs_seg_hdr,
  447. FC2_MBOX_SEG_NUM,
  448. sizeof(struct mpi_coredump_segment_header)
  449. + sizeof(mpi_coredump->fc2_mbx_regs),
  450. "FC2 MBox Regs");
  451. status = ql_get_mpi_regs(qdev, &mpi_coredump->fc2_mbx_regs[0],
  452. FC2_MBX_REGS_ADDR, FC_MBX_REGS_CNT);
  453. if (status)
  454. goto err;
  455. /* Get the NIC2 MBX Registers */
  456. ql_build_coredump_seg_header(&mpi_coredump->nic2_mbx_regs_seg_hdr,
  457. NIC2_MBOX_SEG_NUM,
  458. sizeof(struct mpi_coredump_segment_header)
  459. + sizeof(mpi_coredump->nic2_mbx_regs),
  460. "NIC2 MBox Regs");
  461. status = ql_get_mpi_regs(qdev, &mpi_coredump->nic2_mbx_regs[0],
  462. NIC2_MBX_REGS_ADDR, NIC_MBX_REGS_CNT);
  463. if (status)
  464. goto err;
  465. /* Get the I2C Registers */
  466. ql_build_coredump_seg_header(&mpi_coredump->i2c_regs_seg_hdr,
  467. I2C_SEG_NUM,
  468. sizeof(struct mpi_coredump_segment_header)
  469. + sizeof(mpi_coredump->i2c_regs),
  470. "I2C Registers");
  471. status = ql_get_mpi_regs(qdev, &mpi_coredump->i2c_regs[0],
  472. I2C_REGS_ADDR, I2C_REGS_CNT);
  473. if (status)
  474. goto err;
  475. /* Get the MEMC Registers */
  476. ql_build_coredump_seg_header(&mpi_coredump->memc_regs_seg_hdr,
  477. MEMC_SEG_NUM,
  478. sizeof(struct mpi_coredump_segment_header)
  479. + sizeof(mpi_coredump->memc_regs),
  480. "MEMC Registers");
  481. status = ql_get_mpi_regs(qdev, &mpi_coredump->memc_regs[0],
  482. MEMC_REGS_ADDR, MEMC_REGS_CNT);
  483. if (status)
  484. goto err;
  485. /* Get the PBus Registers */
  486. ql_build_coredump_seg_header(&mpi_coredump->pbus_regs_seg_hdr,
  487. PBUS_SEG_NUM,
  488. sizeof(struct mpi_coredump_segment_header)
  489. + sizeof(mpi_coredump->pbus_regs),
  490. "PBUS Registers");
  491. status = ql_get_mpi_regs(qdev, &mpi_coredump->pbus_regs[0],
  492. PBUS_REGS_ADDR, PBUS_REGS_CNT);
  493. if (status)
  494. goto err;
  495. /* Get the MDE Registers */
  496. ql_build_coredump_seg_header(&mpi_coredump->mde_regs_seg_hdr,
  497. MDE_SEG_NUM,
  498. sizeof(struct mpi_coredump_segment_header)
  499. + sizeof(mpi_coredump->mde_regs),
  500. "MDE Registers");
  501. status = ql_get_mpi_regs(qdev, &mpi_coredump->mde_regs[0],
  502. MDE_REGS_ADDR, MDE_REGS_CNT);
  503. if (status)
  504. goto err;
  505. ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
  506. MISC_NIC_INFO_SEG_NUM,
  507. sizeof(struct mpi_coredump_segment_header)
  508. + sizeof(mpi_coredump->misc_nic_info),
  509. "MISC NIC INFO");
  510. mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
  511. mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
  512. mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
  513. mpi_coredump->misc_nic_info.function = qdev->func;
  514. /* Segment 31 */
  515. /* Get indexed register values. */
  516. ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
  517. INTR_STATES_SEG_NUM,
  518. sizeof(struct mpi_coredump_segment_header)
  519. + sizeof(mpi_coredump->intr_states),
  520. "INTR States");
  521. ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
  522. ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
  523. CAM_ENTRIES_SEG_NUM,
  524. sizeof(struct mpi_coredump_segment_header)
  525. + sizeof(mpi_coredump->cam_entries),
  526. "CAM Entries");
  527. status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
  528. if (status)
  529. goto err;
  530. ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
  531. ROUTING_WORDS_SEG_NUM,
  532. sizeof(struct mpi_coredump_segment_header)
  533. + sizeof(mpi_coredump->nic_routing_words),
  534. "Routing Words");
  535. status = ql_get_routing_entries(qdev,
  536. &mpi_coredump->nic_routing_words[0]);
  537. if (status)
  538. goto err;
  539. /* Segment 34 (Rev C. step 23) */
  540. ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
  541. ETS_SEG_NUM,
  542. sizeof(struct mpi_coredump_segment_header)
  543. + sizeof(mpi_coredump->ets),
  544. "ETS Registers");
  545. status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
  546. if (status)
  547. goto err;
  548. ql_build_coredump_seg_header(&mpi_coredump->probe_dump_seg_hdr,
  549. PROBE_DUMP_SEG_NUM,
  550. sizeof(struct mpi_coredump_segment_header)
  551. + sizeof(mpi_coredump->probe_dump),
  552. "Probe Dump");
  553. ql_get_probe_dump(qdev, &mpi_coredump->probe_dump[0]);
  554. ql_build_coredump_seg_header(&mpi_coredump->routing_reg_seg_hdr,
  555. ROUTING_INDEX_SEG_NUM,
  556. sizeof(struct mpi_coredump_segment_header)
  557. + sizeof(mpi_coredump->routing_regs),
  558. "Routing Regs");
  559. status = ql_get_routing_index_registers(qdev,
  560. &mpi_coredump->routing_regs[0]);
  561. if (status)
  562. goto err;
  563. ql_build_coredump_seg_header(&mpi_coredump->mac_prot_reg_seg_hdr,
  564. MAC_PROTOCOL_SEG_NUM,
  565. sizeof(struct mpi_coredump_segment_header)
  566. + sizeof(mpi_coredump->mac_prot_regs),
  567. "MAC Prot Regs");
  568. ql_get_mac_protocol_registers(qdev, &mpi_coredump->mac_prot_regs[0]);
  569. /* Get the semaphore registers for all 5 functions */
  570. ql_build_coredump_seg_header(&mpi_coredump->sem_regs_seg_hdr,
  571. SEM_REGS_SEG_NUM,
  572. sizeof(struct mpi_coredump_segment_header) +
  573. sizeof(mpi_coredump->sem_regs), "Sem Registers");
  574. ql_get_sem_registers(qdev, &mpi_coredump->sem_regs[0]);
  575. /* Prevent the mpi restarting while we dump the memory.*/
  576. ql_write_mpi_reg(qdev, MPI_TEST_FUNC_RST_STS, MPI_TEST_FUNC_RST_FRC);
  577. /* clear the pause */
  578. status = ql_unpause_mpi_risc(qdev);
  579. if (status) {
  580. QPRINTK(qdev, DRV, ERR,
  581. "Failed RISC unpause. Status = 0x%.08x\n", status);
  582. goto err;
  583. }
  584. /* Reset the RISC so we can dump RAM */
  585. status = ql_hard_reset_mpi_risc(qdev);
  586. if (status) {
  587. QPRINTK(qdev, DRV, ERR,
  588. "Failed RISC reset. Status = 0x%.08x\n", status);
  589. goto err;
  590. }
  591. ql_build_coredump_seg_header(&mpi_coredump->code_ram_seg_hdr,
  592. WCS_RAM_SEG_NUM,
  593. sizeof(struct mpi_coredump_segment_header)
  594. + sizeof(mpi_coredump->code_ram),
  595. "WCS RAM");
  596. status = ql_dump_risc_ram_area(qdev, &mpi_coredump->code_ram[0],
  597. CODE_RAM_ADDR, CODE_RAM_CNT);
  598. if (status) {
  599. QPRINTK(qdev, DRV, ERR,
  600. "Failed Dump of CODE RAM. Status = 0x%.08x\n", status);
  601. goto err;
  602. }
  603. /* Insert the segment header */
  604. ql_build_coredump_seg_header(&mpi_coredump->memc_ram_seg_hdr,
  605. MEMC_RAM_SEG_NUM,
  606. sizeof(struct mpi_coredump_segment_header)
  607. + sizeof(mpi_coredump->memc_ram),
  608. "MEMC RAM");
  609. status = ql_dump_risc_ram_area(qdev, &mpi_coredump->memc_ram[0],
  610. MEMC_RAM_ADDR, MEMC_RAM_CNT);
  611. if (status) {
  612. QPRINTK(qdev, DRV, ERR,
  613. "Failed Dump of MEMC RAM. Status = 0x%.08x\n", status);
  614. goto err;
  615. }
  616. err:
  617. ql_sem_unlock(qdev, SEM_PROC_REG_MASK); /* does flush too */
  618. return status;
  619. }
  620. void ql_gen_reg_dump(struct ql_adapter *qdev,
  621. struct ql_reg_dump *mpi_coredump)
  622. {
  623. int i, status;
  624. memset(&(mpi_coredump->mpi_global_header), 0,
  625. sizeof(struct mpi_coredump_global_header));
  626. mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE;
  627. mpi_coredump->mpi_global_header.headerSize =
  628. sizeof(struct mpi_coredump_global_header);
  629. mpi_coredump->mpi_global_header.imageSize =
  630. sizeof(struct ql_reg_dump);
  631. memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump",
  632. sizeof(mpi_coredump->mpi_global_header.idString));
  633. /* segment 16 */
  634. ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr,
  635. MISC_NIC_INFO_SEG_NUM,
  636. sizeof(struct mpi_coredump_segment_header)
  637. + sizeof(mpi_coredump->misc_nic_info),
  638. "MISC NIC INFO");
  639. mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count;
  640. mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count;
  641. mpi_coredump->misc_nic_info.intr_count = qdev->intr_count;
  642. mpi_coredump->misc_nic_info.function = qdev->func;
  643. /* Segment 16, Rev C. Step 18 */
  644. ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr,
  645. NIC1_CONTROL_SEG_NUM,
  646. sizeof(struct mpi_coredump_segment_header)
  647. + sizeof(mpi_coredump->nic_regs),
  648. "NIC Registers");
  649. /* Get generic reg dump */
  650. for (i = 0; i < 64; i++)
  651. mpi_coredump->nic_regs[i] = ql_read32(qdev, i * sizeof(u32));
  652. /* Segment 31 */
  653. /* Get indexed register values. */
  654. ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr,
  655. INTR_STATES_SEG_NUM,
  656. sizeof(struct mpi_coredump_segment_header)
  657. + sizeof(mpi_coredump->intr_states),
  658. "INTR States");
  659. ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]);
  660. ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr,
  661. CAM_ENTRIES_SEG_NUM,
  662. sizeof(struct mpi_coredump_segment_header)
  663. + sizeof(mpi_coredump->cam_entries),
  664. "CAM Entries");
  665. status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]);
  666. if (status)
  667. return;
  668. ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr,
  669. ROUTING_WORDS_SEG_NUM,
  670. sizeof(struct mpi_coredump_segment_header)
  671. + sizeof(mpi_coredump->nic_routing_words),
  672. "Routing Words");
  673. status = ql_get_routing_entries(qdev,
  674. &mpi_coredump->nic_routing_words[0]);
  675. if (status)
  676. return;
  677. /* Segment 34 (Rev C. step 23) */
  678. ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr,
  679. ETS_SEG_NUM,
  680. sizeof(struct mpi_coredump_segment_header)
  681. + sizeof(mpi_coredump->ets),
  682. "ETS Registers");
  683. status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]);
  684. if (status)
  685. return;
  686. }
  687. /* Coredump to messages log file using separate worker thread */
  688. void ql_mpi_core_to_log(struct work_struct *work)
  689. {
  690. struct ql_adapter *qdev =
  691. container_of(work, struct ql_adapter, mpi_core_to_log.work);
  692. u32 *tmp, count;
  693. int i;
  694. count = sizeof(struct ql_mpi_coredump) / sizeof(u32);
  695. tmp = (u32 *)qdev->mpi_coredump;
  696. QPRINTK(qdev, DRV, DEBUG, "Core is dumping to log file!\n");
  697. for (i = 0; i < count; i += 8) {
  698. printk(KERN_ERR "%.08x: %.08x %.08x %.08x %.08x %.08x "
  699. "%.08x %.08x %.08x \n", i,
  700. tmp[i + 0],
  701. tmp[i + 1],
  702. tmp[i + 2],
  703. tmp[i + 3],
  704. tmp[i + 4],
  705. tmp[i + 5],
  706. tmp[i + 6],
  707. tmp[i + 7]);
  708. msleep(5);
  709. }
  710. }
  711. #ifdef QL_REG_DUMP
  712. static void ql_dump_intr_states(struct ql_adapter *qdev)
  713. {
  714. int i;
  715. u32 value;
  716. for (i = 0; i < qdev->intr_count; i++) {
  717. ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask);
  718. value = ql_read32(qdev, INTR_EN);
  719. printk(KERN_ERR PFX
  720. "%s: Interrupt %d is %s.\n",
  721. qdev->ndev->name, i,
  722. (value & INTR_EN_EN ? "enabled" : "disabled"));
  723. }
  724. }
  725. void ql_dump_xgmac_control_regs(struct ql_adapter *qdev)
  726. {
  727. u32 data;
  728. if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) {
  729. printk(KERN_ERR "%s: Couldn't get xgmac sem.\n", __func__);
  730. return;
  731. }
  732. ql_read_xgmac_reg(qdev, PAUSE_SRC_LO, &data);
  733. printk(KERN_ERR PFX "%s: PAUSE_SRC_LO = 0x%.08x.\n", qdev->ndev->name,
  734. data);
  735. ql_read_xgmac_reg(qdev, PAUSE_SRC_HI, &data);
  736. printk(KERN_ERR PFX "%s: PAUSE_SRC_HI = 0x%.08x.\n", qdev->ndev->name,
  737. data);
  738. ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  739. printk(KERN_ERR PFX "%s: GLOBAL_CFG = 0x%.08x.\n", qdev->ndev->name,
  740. data);
  741. ql_read_xgmac_reg(qdev, TX_CFG, &data);
  742. printk(KERN_ERR PFX "%s: TX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
  743. ql_read_xgmac_reg(qdev, RX_CFG, &data);
  744. printk(KERN_ERR PFX "%s: RX_CFG = 0x%.08x.\n", qdev->ndev->name, data);
  745. ql_read_xgmac_reg(qdev, FLOW_CTL, &data);
  746. printk(KERN_ERR PFX "%s: FLOW_CTL = 0x%.08x.\n", qdev->ndev->name,
  747. data);
  748. ql_read_xgmac_reg(qdev, PAUSE_OPCODE, &data);
  749. printk(KERN_ERR PFX "%s: PAUSE_OPCODE = 0x%.08x.\n", qdev->ndev->name,
  750. data);
  751. ql_read_xgmac_reg(qdev, PAUSE_TIMER, &data);
  752. printk(KERN_ERR PFX "%s: PAUSE_TIMER = 0x%.08x.\n", qdev->ndev->name,
  753. data);
  754. ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_LO, &data);
  755. printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_LO = 0x%.08x.\n",
  756. qdev->ndev->name, data);
  757. ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_HI, &data);
  758. printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_HI = 0x%.08x.\n",
  759. qdev->ndev->name, data);
  760. ql_read_xgmac_reg(qdev, MAC_TX_PARAMS, &data);
  761. printk(KERN_ERR PFX "%s: MAC_TX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
  762. data);
  763. ql_read_xgmac_reg(qdev, MAC_RX_PARAMS, &data);
  764. printk(KERN_ERR PFX "%s: MAC_RX_PARAMS = 0x%.08x.\n", qdev->ndev->name,
  765. data);
  766. ql_read_xgmac_reg(qdev, MAC_SYS_INT, &data);
  767. printk(KERN_ERR PFX "%s: MAC_SYS_INT = 0x%.08x.\n", qdev->ndev->name,
  768. data);
  769. ql_read_xgmac_reg(qdev, MAC_SYS_INT_MASK, &data);
  770. printk(KERN_ERR PFX "%s: MAC_SYS_INT_MASK = 0x%.08x.\n",
  771. qdev->ndev->name, data);
  772. ql_read_xgmac_reg(qdev, MAC_MGMT_INT, &data);
  773. printk(KERN_ERR PFX "%s: MAC_MGMT_INT = 0x%.08x.\n", qdev->ndev->name,
  774. data);
  775. ql_read_xgmac_reg(qdev, MAC_MGMT_IN_MASK, &data);
  776. printk(KERN_ERR PFX "%s: MAC_MGMT_IN_MASK = 0x%.08x.\n",
  777. qdev->ndev->name, data);
  778. ql_read_xgmac_reg(qdev, EXT_ARB_MODE, &data);
  779. printk(KERN_ERR PFX "%s: EXT_ARB_MODE = 0x%.08x.\n", qdev->ndev->name,
  780. data);
  781. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  782. }
  783. static void ql_dump_ets_regs(struct ql_adapter *qdev)
  784. {
  785. }
  786. static void ql_dump_cam_entries(struct ql_adapter *qdev)
  787. {
  788. int i;
  789. u32 value[3];
  790. i = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  791. if (i)
  792. return;
  793. for (i = 0; i < 4; i++) {
  794. if (ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value)) {
  795. printk(KERN_ERR PFX
  796. "%s: Failed read of mac index register.\n",
  797. __func__);
  798. return;
  799. } else {
  800. if (value[0])
  801. printk(KERN_ERR PFX
  802. "%s: CAM index %d CAM Lookup Lower = 0x%.08x:%.08x, Output = 0x%.08x.\n",
  803. qdev->ndev->name, i, value[1], value[0],
  804. value[2]);
  805. }
  806. }
  807. for (i = 0; i < 32; i++) {
  808. if (ql_get_mac_addr_reg
  809. (qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value)) {
  810. printk(KERN_ERR PFX
  811. "%s: Failed read of mac index register.\n",
  812. __func__);
  813. return;
  814. } else {
  815. if (value[0])
  816. printk(KERN_ERR PFX
  817. "%s: MCAST index %d CAM Lookup Lower = 0x%.08x:%.08x.\n",
  818. qdev->ndev->name, i, value[1], value[0]);
  819. }
  820. }
  821. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  822. }
  823. void ql_dump_routing_entries(struct ql_adapter *qdev)
  824. {
  825. int i;
  826. u32 value;
  827. i = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  828. if (i)
  829. return;
  830. for (i = 0; i < 16; i++) {
  831. value = 0;
  832. if (ql_get_routing_reg(qdev, i, &value)) {
  833. printk(KERN_ERR PFX
  834. "%s: Failed read of routing index register.\n",
  835. __func__);
  836. return;
  837. } else {
  838. if (value)
  839. printk(KERN_ERR PFX
  840. "%s: Routing Mask %d = 0x%.08x.\n",
  841. qdev->ndev->name, i, value);
  842. }
  843. }
  844. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  845. }
  846. void ql_dump_regs(struct ql_adapter *qdev)
  847. {
  848. printk(KERN_ERR PFX "reg dump for function #%d.\n", qdev->func);
  849. printk(KERN_ERR PFX "SYS = 0x%x.\n",
  850. ql_read32(qdev, SYS));
  851. printk(KERN_ERR PFX "RST_FO = 0x%x.\n",
  852. ql_read32(qdev, RST_FO));
  853. printk(KERN_ERR PFX "FSC = 0x%x.\n",
  854. ql_read32(qdev, FSC));
  855. printk(KERN_ERR PFX "CSR = 0x%x.\n",
  856. ql_read32(qdev, CSR));
  857. printk(KERN_ERR PFX "ICB_RID = 0x%x.\n",
  858. ql_read32(qdev, ICB_RID));
  859. printk(KERN_ERR PFX "ICB_L = 0x%x.\n",
  860. ql_read32(qdev, ICB_L));
  861. printk(KERN_ERR PFX "ICB_H = 0x%x.\n",
  862. ql_read32(qdev, ICB_H));
  863. printk(KERN_ERR PFX "CFG = 0x%x.\n",
  864. ql_read32(qdev, CFG));
  865. printk(KERN_ERR PFX "BIOS_ADDR = 0x%x.\n",
  866. ql_read32(qdev, BIOS_ADDR));
  867. printk(KERN_ERR PFX "STS = 0x%x.\n",
  868. ql_read32(qdev, STS));
  869. printk(KERN_ERR PFX "INTR_EN = 0x%x.\n",
  870. ql_read32(qdev, INTR_EN));
  871. printk(KERN_ERR PFX "INTR_MASK = 0x%x.\n",
  872. ql_read32(qdev, INTR_MASK));
  873. printk(KERN_ERR PFX "ISR1 = 0x%x.\n",
  874. ql_read32(qdev, ISR1));
  875. printk(KERN_ERR PFX "ISR2 = 0x%x.\n",
  876. ql_read32(qdev, ISR2));
  877. printk(KERN_ERR PFX "ISR3 = 0x%x.\n",
  878. ql_read32(qdev, ISR3));
  879. printk(KERN_ERR PFX "ISR4 = 0x%x.\n",
  880. ql_read32(qdev, ISR4));
  881. printk(KERN_ERR PFX "REV_ID = 0x%x.\n",
  882. ql_read32(qdev, REV_ID));
  883. printk(KERN_ERR PFX "FRC_ECC_ERR = 0x%x.\n",
  884. ql_read32(qdev, FRC_ECC_ERR));
  885. printk(KERN_ERR PFX "ERR_STS = 0x%x.\n",
  886. ql_read32(qdev, ERR_STS));
  887. printk(KERN_ERR PFX "RAM_DBG_ADDR = 0x%x.\n",
  888. ql_read32(qdev, RAM_DBG_ADDR));
  889. printk(KERN_ERR PFX "RAM_DBG_DATA = 0x%x.\n",
  890. ql_read32(qdev, RAM_DBG_DATA));
  891. printk(KERN_ERR PFX "ECC_ERR_CNT = 0x%x.\n",
  892. ql_read32(qdev, ECC_ERR_CNT));
  893. printk(KERN_ERR PFX "SEM = 0x%x.\n",
  894. ql_read32(qdev, SEM));
  895. printk(KERN_ERR PFX "GPIO_1 = 0x%x.\n",
  896. ql_read32(qdev, GPIO_1));
  897. printk(KERN_ERR PFX "GPIO_2 = 0x%x.\n",
  898. ql_read32(qdev, GPIO_2));
  899. printk(KERN_ERR PFX "GPIO_3 = 0x%x.\n",
  900. ql_read32(qdev, GPIO_3));
  901. printk(KERN_ERR PFX "XGMAC_ADDR = 0x%x.\n",
  902. ql_read32(qdev, XGMAC_ADDR));
  903. printk(KERN_ERR PFX "XGMAC_DATA = 0x%x.\n",
  904. ql_read32(qdev, XGMAC_DATA));
  905. printk(KERN_ERR PFX "NIC_ETS = 0x%x.\n",
  906. ql_read32(qdev, NIC_ETS));
  907. printk(KERN_ERR PFX "CNA_ETS = 0x%x.\n",
  908. ql_read32(qdev, CNA_ETS));
  909. printk(KERN_ERR PFX "FLASH_ADDR = 0x%x.\n",
  910. ql_read32(qdev, FLASH_ADDR));
  911. printk(KERN_ERR PFX "FLASH_DATA = 0x%x.\n",
  912. ql_read32(qdev, FLASH_DATA));
  913. printk(KERN_ERR PFX "CQ_STOP = 0x%x.\n",
  914. ql_read32(qdev, CQ_STOP));
  915. printk(KERN_ERR PFX "PAGE_TBL_RID = 0x%x.\n",
  916. ql_read32(qdev, PAGE_TBL_RID));
  917. printk(KERN_ERR PFX "WQ_PAGE_TBL_LO = 0x%x.\n",
  918. ql_read32(qdev, WQ_PAGE_TBL_LO));
  919. printk(KERN_ERR PFX "WQ_PAGE_TBL_HI = 0x%x.\n",
  920. ql_read32(qdev, WQ_PAGE_TBL_HI));
  921. printk(KERN_ERR PFX "CQ_PAGE_TBL_LO = 0x%x.\n",
  922. ql_read32(qdev, CQ_PAGE_TBL_LO));
  923. printk(KERN_ERR PFX "CQ_PAGE_TBL_HI = 0x%x.\n",
  924. ql_read32(qdev, CQ_PAGE_TBL_HI));
  925. printk(KERN_ERR PFX "COS_DFLT_CQ1 = 0x%x.\n",
  926. ql_read32(qdev, COS_DFLT_CQ1));
  927. printk(KERN_ERR PFX "COS_DFLT_CQ2 = 0x%x.\n",
  928. ql_read32(qdev, COS_DFLT_CQ2));
  929. printk(KERN_ERR PFX "SPLT_HDR = 0x%x.\n",
  930. ql_read32(qdev, SPLT_HDR));
  931. printk(KERN_ERR PFX "FC_PAUSE_THRES = 0x%x.\n",
  932. ql_read32(qdev, FC_PAUSE_THRES));
  933. printk(KERN_ERR PFX "NIC_PAUSE_THRES = 0x%x.\n",
  934. ql_read32(qdev, NIC_PAUSE_THRES));
  935. printk(KERN_ERR PFX "FC_ETHERTYPE = 0x%x.\n",
  936. ql_read32(qdev, FC_ETHERTYPE));
  937. printk(KERN_ERR PFX "FC_RCV_CFG = 0x%x.\n",
  938. ql_read32(qdev, FC_RCV_CFG));
  939. printk(KERN_ERR PFX "NIC_RCV_CFG = 0x%x.\n",
  940. ql_read32(qdev, NIC_RCV_CFG));
  941. printk(KERN_ERR PFX "FC_COS_TAGS = 0x%x.\n",
  942. ql_read32(qdev, FC_COS_TAGS));
  943. printk(KERN_ERR PFX "NIC_COS_TAGS = 0x%x.\n",
  944. ql_read32(qdev, NIC_COS_TAGS));
  945. printk(KERN_ERR PFX "MGMT_RCV_CFG = 0x%x.\n",
  946. ql_read32(qdev, MGMT_RCV_CFG));
  947. printk(KERN_ERR PFX "XG_SERDES_ADDR = 0x%x.\n",
  948. ql_read32(qdev, XG_SERDES_ADDR));
  949. printk(KERN_ERR PFX "XG_SERDES_DATA = 0x%x.\n",
  950. ql_read32(qdev, XG_SERDES_DATA));
  951. printk(KERN_ERR PFX "PRB_MX_ADDR = 0x%x.\n",
  952. ql_read32(qdev, PRB_MX_ADDR));
  953. printk(KERN_ERR PFX "PRB_MX_DATA = 0x%x.\n",
  954. ql_read32(qdev, PRB_MX_DATA));
  955. ql_dump_intr_states(qdev);
  956. ql_dump_xgmac_control_regs(qdev);
  957. ql_dump_ets_regs(qdev);
  958. ql_dump_cam_entries(qdev);
  959. ql_dump_routing_entries(qdev);
  960. }
  961. #endif
  962. #ifdef QL_STAT_DUMP
  963. void ql_dump_stat(struct ql_adapter *qdev)
  964. {
  965. printk(KERN_ERR "%s: Enter.\n", __func__);
  966. printk(KERN_ERR "tx_pkts = %ld\n",
  967. (unsigned long)qdev->nic_stats.tx_pkts);
  968. printk(KERN_ERR "tx_bytes = %ld\n",
  969. (unsigned long)qdev->nic_stats.tx_bytes);
  970. printk(KERN_ERR "tx_mcast_pkts = %ld.\n",
  971. (unsigned long)qdev->nic_stats.tx_mcast_pkts);
  972. printk(KERN_ERR "tx_bcast_pkts = %ld.\n",
  973. (unsigned long)qdev->nic_stats.tx_bcast_pkts);
  974. printk(KERN_ERR "tx_ucast_pkts = %ld.\n",
  975. (unsigned long)qdev->nic_stats.tx_ucast_pkts);
  976. printk(KERN_ERR "tx_ctl_pkts = %ld.\n",
  977. (unsigned long)qdev->nic_stats.tx_ctl_pkts);
  978. printk(KERN_ERR "tx_pause_pkts = %ld.\n",
  979. (unsigned long)qdev->nic_stats.tx_pause_pkts);
  980. printk(KERN_ERR "tx_64_pkt = %ld.\n",
  981. (unsigned long)qdev->nic_stats.tx_64_pkt);
  982. printk(KERN_ERR "tx_65_to_127_pkt = %ld.\n",
  983. (unsigned long)qdev->nic_stats.tx_65_to_127_pkt);
  984. printk(KERN_ERR "tx_128_to_255_pkt = %ld.\n",
  985. (unsigned long)qdev->nic_stats.tx_128_to_255_pkt);
  986. printk(KERN_ERR "tx_256_511_pkt = %ld.\n",
  987. (unsigned long)qdev->nic_stats.tx_256_511_pkt);
  988. printk(KERN_ERR "tx_512_to_1023_pkt = %ld.\n",
  989. (unsigned long)qdev->nic_stats.tx_512_to_1023_pkt);
  990. printk(KERN_ERR "tx_1024_to_1518_pkt = %ld.\n",
  991. (unsigned long)qdev->nic_stats.tx_1024_to_1518_pkt);
  992. printk(KERN_ERR "tx_1519_to_max_pkt = %ld.\n",
  993. (unsigned long)qdev->nic_stats.tx_1519_to_max_pkt);
  994. printk(KERN_ERR "tx_undersize_pkt = %ld.\n",
  995. (unsigned long)qdev->nic_stats.tx_undersize_pkt);
  996. printk(KERN_ERR "tx_oversize_pkt = %ld.\n",
  997. (unsigned long)qdev->nic_stats.tx_oversize_pkt);
  998. printk(KERN_ERR "rx_bytes = %ld.\n",
  999. (unsigned long)qdev->nic_stats.rx_bytes);
  1000. printk(KERN_ERR "rx_bytes_ok = %ld.\n",
  1001. (unsigned long)qdev->nic_stats.rx_bytes_ok);
  1002. printk(KERN_ERR "rx_pkts = %ld.\n",
  1003. (unsigned long)qdev->nic_stats.rx_pkts);
  1004. printk(KERN_ERR "rx_pkts_ok = %ld.\n",
  1005. (unsigned long)qdev->nic_stats.rx_pkts_ok);
  1006. printk(KERN_ERR "rx_bcast_pkts = %ld.\n",
  1007. (unsigned long)qdev->nic_stats.rx_bcast_pkts);
  1008. printk(KERN_ERR "rx_mcast_pkts = %ld.\n",
  1009. (unsigned long)qdev->nic_stats.rx_mcast_pkts);
  1010. printk(KERN_ERR "rx_ucast_pkts = %ld.\n",
  1011. (unsigned long)qdev->nic_stats.rx_ucast_pkts);
  1012. printk(KERN_ERR "rx_undersize_pkts = %ld.\n",
  1013. (unsigned long)qdev->nic_stats.rx_undersize_pkts);
  1014. printk(KERN_ERR "rx_oversize_pkts = %ld.\n",
  1015. (unsigned long)qdev->nic_stats.rx_oversize_pkts);
  1016. printk(KERN_ERR "rx_jabber_pkts = %ld.\n",
  1017. (unsigned long)qdev->nic_stats.rx_jabber_pkts);
  1018. printk(KERN_ERR "rx_undersize_fcerr_pkts = %ld.\n",
  1019. (unsigned long)qdev->nic_stats.rx_undersize_fcerr_pkts);
  1020. printk(KERN_ERR "rx_drop_events = %ld.\n",
  1021. (unsigned long)qdev->nic_stats.rx_drop_events);
  1022. printk(KERN_ERR "rx_fcerr_pkts = %ld.\n",
  1023. (unsigned long)qdev->nic_stats.rx_fcerr_pkts);
  1024. printk(KERN_ERR "rx_align_err = %ld.\n",
  1025. (unsigned long)qdev->nic_stats.rx_align_err);
  1026. printk(KERN_ERR "rx_symbol_err = %ld.\n",
  1027. (unsigned long)qdev->nic_stats.rx_symbol_err);
  1028. printk(KERN_ERR "rx_mac_err = %ld.\n",
  1029. (unsigned long)qdev->nic_stats.rx_mac_err);
  1030. printk(KERN_ERR "rx_ctl_pkts = %ld.\n",
  1031. (unsigned long)qdev->nic_stats.rx_ctl_pkts);
  1032. printk(KERN_ERR "rx_pause_pkts = %ld.\n",
  1033. (unsigned long)qdev->nic_stats.rx_pause_pkts);
  1034. printk(KERN_ERR "rx_64_pkts = %ld.\n",
  1035. (unsigned long)qdev->nic_stats.rx_64_pkts);
  1036. printk(KERN_ERR "rx_65_to_127_pkts = %ld.\n",
  1037. (unsigned long)qdev->nic_stats.rx_65_to_127_pkts);
  1038. printk(KERN_ERR "rx_128_255_pkts = %ld.\n",
  1039. (unsigned long)qdev->nic_stats.rx_128_255_pkts);
  1040. printk(KERN_ERR "rx_256_511_pkts = %ld.\n",
  1041. (unsigned long)qdev->nic_stats.rx_256_511_pkts);
  1042. printk(KERN_ERR "rx_512_to_1023_pkts = %ld.\n",
  1043. (unsigned long)qdev->nic_stats.rx_512_to_1023_pkts);
  1044. printk(KERN_ERR "rx_1024_to_1518_pkts = %ld.\n",
  1045. (unsigned long)qdev->nic_stats.rx_1024_to_1518_pkts);
  1046. printk(KERN_ERR "rx_1519_to_max_pkts = %ld.\n",
  1047. (unsigned long)qdev->nic_stats.rx_1519_to_max_pkts);
  1048. printk(KERN_ERR "rx_len_err_pkts = %ld.\n",
  1049. (unsigned long)qdev->nic_stats.rx_len_err_pkts);
  1050. };
  1051. #endif
  1052. #ifdef QL_DEV_DUMP
  1053. void ql_dump_qdev(struct ql_adapter *qdev)
  1054. {
  1055. int i;
  1056. printk(KERN_ERR PFX "qdev->flags = %lx.\n",
  1057. qdev->flags);
  1058. printk(KERN_ERR PFX "qdev->vlgrp = %p.\n",
  1059. qdev->vlgrp);
  1060. printk(KERN_ERR PFX "qdev->pdev = %p.\n",
  1061. qdev->pdev);
  1062. printk(KERN_ERR PFX "qdev->ndev = %p.\n",
  1063. qdev->ndev);
  1064. printk(KERN_ERR PFX "qdev->chip_rev_id = %d.\n",
  1065. qdev->chip_rev_id);
  1066. printk(KERN_ERR PFX "qdev->reg_base = %p.\n",
  1067. qdev->reg_base);
  1068. printk(KERN_ERR PFX "qdev->doorbell_area = %p.\n",
  1069. qdev->doorbell_area);
  1070. printk(KERN_ERR PFX "qdev->doorbell_area_size = %d.\n",
  1071. qdev->doorbell_area_size);
  1072. printk(KERN_ERR PFX "msg_enable = %x.\n",
  1073. qdev->msg_enable);
  1074. printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_area = %p.\n",
  1075. qdev->rx_ring_shadow_reg_area);
  1076. printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_dma = %llx.\n",
  1077. (unsigned long long) qdev->rx_ring_shadow_reg_dma);
  1078. printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_area = %p.\n",
  1079. qdev->tx_ring_shadow_reg_area);
  1080. printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_dma = %llx.\n",
  1081. (unsigned long long) qdev->tx_ring_shadow_reg_dma);
  1082. printk(KERN_ERR PFX "qdev->intr_count = %d.\n",
  1083. qdev->intr_count);
  1084. if (qdev->msi_x_entry)
  1085. for (i = 0; i < qdev->intr_count; i++) {
  1086. printk(KERN_ERR PFX
  1087. "msi_x_entry.[%d]vector = %d.\n", i,
  1088. qdev->msi_x_entry[i].vector);
  1089. printk(KERN_ERR PFX
  1090. "msi_x_entry.[%d]entry = %d.\n", i,
  1091. qdev->msi_x_entry[i].entry);
  1092. }
  1093. for (i = 0; i < qdev->intr_count; i++) {
  1094. printk(KERN_ERR PFX
  1095. "intr_context[%d].qdev = %p.\n", i,
  1096. qdev->intr_context[i].qdev);
  1097. printk(KERN_ERR PFX
  1098. "intr_context[%d].intr = %d.\n", i,
  1099. qdev->intr_context[i].intr);
  1100. printk(KERN_ERR PFX
  1101. "intr_context[%d].hooked = %d.\n", i,
  1102. qdev->intr_context[i].hooked);
  1103. printk(KERN_ERR PFX
  1104. "intr_context[%d].intr_en_mask = 0x%08x.\n", i,
  1105. qdev->intr_context[i].intr_en_mask);
  1106. printk(KERN_ERR PFX
  1107. "intr_context[%d].intr_dis_mask = 0x%08x.\n", i,
  1108. qdev->intr_context[i].intr_dis_mask);
  1109. printk(KERN_ERR PFX
  1110. "intr_context[%d].intr_read_mask = 0x%08x.\n", i,
  1111. qdev->intr_context[i].intr_read_mask);
  1112. }
  1113. printk(KERN_ERR PFX "qdev->tx_ring_count = %d.\n", qdev->tx_ring_count);
  1114. printk(KERN_ERR PFX "qdev->rx_ring_count = %d.\n", qdev->rx_ring_count);
  1115. printk(KERN_ERR PFX "qdev->ring_mem_size = %d.\n", qdev->ring_mem_size);
  1116. printk(KERN_ERR PFX "qdev->ring_mem = %p.\n", qdev->ring_mem);
  1117. printk(KERN_ERR PFX "qdev->intr_count = %d.\n", qdev->intr_count);
  1118. printk(KERN_ERR PFX "qdev->tx_ring = %p.\n",
  1119. qdev->tx_ring);
  1120. printk(KERN_ERR PFX "qdev->rss_ring_count = %d.\n",
  1121. qdev->rss_ring_count);
  1122. printk(KERN_ERR PFX "qdev->rx_ring = %p.\n", qdev->rx_ring);
  1123. printk(KERN_ERR PFX "qdev->default_rx_queue = %d.\n",
  1124. qdev->default_rx_queue);
  1125. printk(KERN_ERR PFX "qdev->xg_sem_mask = 0x%08x.\n",
  1126. qdev->xg_sem_mask);
  1127. printk(KERN_ERR PFX "qdev->port_link_up = 0x%08x.\n",
  1128. qdev->port_link_up);
  1129. printk(KERN_ERR PFX "qdev->port_init = 0x%08x.\n",
  1130. qdev->port_init);
  1131. }
  1132. #endif
  1133. #ifdef QL_CB_DUMP
  1134. void ql_dump_wqicb(struct wqicb *wqicb)
  1135. {
  1136. printk(KERN_ERR PFX "Dumping wqicb stuff...\n");
  1137. printk(KERN_ERR PFX "wqicb->len = 0x%x.\n", le16_to_cpu(wqicb->len));
  1138. printk(KERN_ERR PFX "wqicb->flags = %x.\n", le16_to_cpu(wqicb->flags));
  1139. printk(KERN_ERR PFX "wqicb->cq_id_rss = %d.\n",
  1140. le16_to_cpu(wqicb->cq_id_rss));
  1141. printk(KERN_ERR PFX "wqicb->rid = 0x%x.\n", le16_to_cpu(wqicb->rid));
  1142. printk(KERN_ERR PFX "wqicb->wq_addr = 0x%llx.\n",
  1143. (unsigned long long) le64_to_cpu(wqicb->addr));
  1144. printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr = 0x%llx.\n",
  1145. (unsigned long long) le64_to_cpu(wqicb->cnsmr_idx_addr));
  1146. }
  1147. void ql_dump_tx_ring(struct tx_ring *tx_ring)
  1148. {
  1149. if (tx_ring == NULL)
  1150. return;
  1151. printk(KERN_ERR PFX
  1152. "===================== Dumping tx_ring %d ===============.\n",
  1153. tx_ring->wq_id);
  1154. printk(KERN_ERR PFX "tx_ring->base = %p.\n", tx_ring->wq_base);
  1155. printk(KERN_ERR PFX "tx_ring->base_dma = 0x%llx.\n",
  1156. (unsigned long long) tx_ring->wq_base_dma);
  1157. printk(KERN_ERR PFX
  1158. "tx_ring->cnsmr_idx_sh_reg, addr = 0x%p, value = %d.\n",
  1159. tx_ring->cnsmr_idx_sh_reg,
  1160. tx_ring->cnsmr_idx_sh_reg
  1161. ? ql_read_sh_reg(tx_ring->cnsmr_idx_sh_reg) : 0);
  1162. printk(KERN_ERR PFX "tx_ring->size = %d.\n", tx_ring->wq_size);
  1163. printk(KERN_ERR PFX "tx_ring->len = %d.\n", tx_ring->wq_len);
  1164. printk(KERN_ERR PFX "tx_ring->prod_idx_db_reg = %p.\n",
  1165. tx_ring->prod_idx_db_reg);
  1166. printk(KERN_ERR PFX "tx_ring->valid_db_reg = %p.\n",
  1167. tx_ring->valid_db_reg);
  1168. printk(KERN_ERR PFX "tx_ring->prod_idx = %d.\n", tx_ring->prod_idx);
  1169. printk(KERN_ERR PFX "tx_ring->cq_id = %d.\n", tx_ring->cq_id);
  1170. printk(KERN_ERR PFX "tx_ring->wq_id = %d.\n", tx_ring->wq_id);
  1171. printk(KERN_ERR PFX "tx_ring->q = %p.\n", tx_ring->q);
  1172. printk(KERN_ERR PFX "tx_ring->tx_count = %d.\n",
  1173. atomic_read(&tx_ring->tx_count));
  1174. }
  1175. void ql_dump_ricb(struct ricb *ricb)
  1176. {
  1177. int i;
  1178. printk(KERN_ERR PFX
  1179. "===================== Dumping ricb ===============.\n");
  1180. printk(KERN_ERR PFX "Dumping ricb stuff...\n");
  1181. printk(KERN_ERR PFX "ricb->base_cq = %d.\n", ricb->base_cq & 0x1f);
  1182. printk(KERN_ERR PFX "ricb->flags = %s%s%s%s%s%s%s%s%s.\n",
  1183. ricb->base_cq & RSS_L4K ? "RSS_L4K " : "",
  1184. ricb->flags & RSS_L6K ? "RSS_L6K " : "",
  1185. ricb->flags & RSS_LI ? "RSS_LI " : "",
  1186. ricb->flags & RSS_LB ? "RSS_LB " : "",
  1187. ricb->flags & RSS_LM ? "RSS_LM " : "",
  1188. ricb->flags & RSS_RI4 ? "RSS_RI4 " : "",
  1189. ricb->flags & RSS_RT4 ? "RSS_RT4 " : "",
  1190. ricb->flags & RSS_RI6 ? "RSS_RI6 " : "",
  1191. ricb->flags & RSS_RT6 ? "RSS_RT6 " : "");
  1192. printk(KERN_ERR PFX "ricb->mask = 0x%.04x.\n", le16_to_cpu(ricb->mask));
  1193. for (i = 0; i < 16; i++)
  1194. printk(KERN_ERR PFX "ricb->hash_cq_id[%d] = 0x%.08x.\n", i,
  1195. le32_to_cpu(ricb->hash_cq_id[i]));
  1196. for (i = 0; i < 10; i++)
  1197. printk(KERN_ERR PFX "ricb->ipv6_hash_key[%d] = 0x%.08x.\n", i,
  1198. le32_to_cpu(ricb->ipv6_hash_key[i]));
  1199. for (i = 0; i < 4; i++)
  1200. printk(KERN_ERR PFX "ricb->ipv4_hash_key[%d] = 0x%.08x.\n", i,
  1201. le32_to_cpu(ricb->ipv4_hash_key[i]));
  1202. }
  1203. void ql_dump_cqicb(struct cqicb *cqicb)
  1204. {
  1205. printk(KERN_ERR PFX "Dumping cqicb stuff...\n");
  1206. printk(KERN_ERR PFX "cqicb->msix_vect = %d.\n", cqicb->msix_vect);
  1207. printk(KERN_ERR PFX "cqicb->flags = %x.\n", cqicb->flags);
  1208. printk(KERN_ERR PFX "cqicb->len = %d.\n", le16_to_cpu(cqicb->len));
  1209. printk(KERN_ERR PFX "cqicb->addr = 0x%llx.\n",
  1210. (unsigned long long) le64_to_cpu(cqicb->addr));
  1211. printk(KERN_ERR PFX "cqicb->prod_idx_addr = 0x%llx.\n",
  1212. (unsigned long long) le64_to_cpu(cqicb->prod_idx_addr));
  1213. printk(KERN_ERR PFX "cqicb->pkt_delay = 0x%.04x.\n",
  1214. le16_to_cpu(cqicb->pkt_delay));
  1215. printk(KERN_ERR PFX "cqicb->irq_delay = 0x%.04x.\n",
  1216. le16_to_cpu(cqicb->irq_delay));
  1217. printk(KERN_ERR PFX "cqicb->lbq_addr = 0x%llx.\n",
  1218. (unsigned long long) le64_to_cpu(cqicb->lbq_addr));
  1219. printk(KERN_ERR PFX "cqicb->lbq_buf_size = 0x%.04x.\n",
  1220. le16_to_cpu(cqicb->lbq_buf_size));
  1221. printk(KERN_ERR PFX "cqicb->lbq_len = 0x%.04x.\n",
  1222. le16_to_cpu(cqicb->lbq_len));
  1223. printk(KERN_ERR PFX "cqicb->sbq_addr = 0x%llx.\n",
  1224. (unsigned long long) le64_to_cpu(cqicb->sbq_addr));
  1225. printk(KERN_ERR PFX "cqicb->sbq_buf_size = 0x%.04x.\n",
  1226. le16_to_cpu(cqicb->sbq_buf_size));
  1227. printk(KERN_ERR PFX "cqicb->sbq_len = 0x%.04x.\n",
  1228. le16_to_cpu(cqicb->sbq_len));
  1229. }
  1230. void ql_dump_rx_ring(struct rx_ring *rx_ring)
  1231. {
  1232. if (rx_ring == NULL)
  1233. return;
  1234. printk(KERN_ERR PFX
  1235. "===================== Dumping rx_ring %d ===============.\n",
  1236. rx_ring->cq_id);
  1237. printk(KERN_ERR PFX "Dumping rx_ring %d, type = %s%s%s.\n",
  1238. rx_ring->cq_id, rx_ring->type == DEFAULT_Q ? "DEFAULT" : "",
  1239. rx_ring->type == TX_Q ? "OUTBOUND COMPLETIONS" : "",
  1240. rx_ring->type == RX_Q ? "INBOUND_COMPLETIONS" : "");
  1241. printk(KERN_ERR PFX "rx_ring->cqicb = %p.\n", &rx_ring->cqicb);
  1242. printk(KERN_ERR PFX "rx_ring->cq_base = %p.\n", rx_ring->cq_base);
  1243. printk(KERN_ERR PFX "rx_ring->cq_base_dma = %llx.\n",
  1244. (unsigned long long) rx_ring->cq_base_dma);
  1245. printk(KERN_ERR PFX "rx_ring->cq_size = %d.\n", rx_ring->cq_size);
  1246. printk(KERN_ERR PFX "rx_ring->cq_len = %d.\n", rx_ring->cq_len);
  1247. printk(KERN_ERR PFX
  1248. "rx_ring->prod_idx_sh_reg, addr = 0x%p, value = %d.\n",
  1249. rx_ring->prod_idx_sh_reg,
  1250. rx_ring->prod_idx_sh_reg
  1251. ? ql_read_sh_reg(rx_ring->prod_idx_sh_reg) : 0);
  1252. printk(KERN_ERR PFX "rx_ring->prod_idx_sh_reg_dma = %llx.\n",
  1253. (unsigned long long) rx_ring->prod_idx_sh_reg_dma);
  1254. printk(KERN_ERR PFX "rx_ring->cnsmr_idx_db_reg = %p.\n",
  1255. rx_ring->cnsmr_idx_db_reg);
  1256. printk(KERN_ERR PFX "rx_ring->cnsmr_idx = %d.\n", rx_ring->cnsmr_idx);
  1257. printk(KERN_ERR PFX "rx_ring->curr_entry = %p.\n", rx_ring->curr_entry);
  1258. printk(KERN_ERR PFX "rx_ring->valid_db_reg = %p.\n",
  1259. rx_ring->valid_db_reg);
  1260. printk(KERN_ERR PFX "rx_ring->lbq_base = %p.\n", rx_ring->lbq_base);
  1261. printk(KERN_ERR PFX "rx_ring->lbq_base_dma = %llx.\n",
  1262. (unsigned long long) rx_ring->lbq_base_dma);
  1263. printk(KERN_ERR PFX "rx_ring->lbq_base_indirect = %p.\n",
  1264. rx_ring->lbq_base_indirect);
  1265. printk(KERN_ERR PFX "rx_ring->lbq_base_indirect_dma = %llx.\n",
  1266. (unsigned long long) rx_ring->lbq_base_indirect_dma);
  1267. printk(KERN_ERR PFX "rx_ring->lbq = %p.\n", rx_ring->lbq);
  1268. printk(KERN_ERR PFX "rx_ring->lbq_len = %d.\n", rx_ring->lbq_len);
  1269. printk(KERN_ERR PFX "rx_ring->lbq_size = %d.\n", rx_ring->lbq_size);
  1270. printk(KERN_ERR PFX "rx_ring->lbq_prod_idx_db_reg = %p.\n",
  1271. rx_ring->lbq_prod_idx_db_reg);
  1272. printk(KERN_ERR PFX "rx_ring->lbq_prod_idx = %d.\n",
  1273. rx_ring->lbq_prod_idx);
  1274. printk(KERN_ERR PFX "rx_ring->lbq_curr_idx = %d.\n",
  1275. rx_ring->lbq_curr_idx);
  1276. printk(KERN_ERR PFX "rx_ring->lbq_clean_idx = %d.\n",
  1277. rx_ring->lbq_clean_idx);
  1278. printk(KERN_ERR PFX "rx_ring->lbq_free_cnt = %d.\n",
  1279. rx_ring->lbq_free_cnt);
  1280. printk(KERN_ERR PFX "rx_ring->lbq_buf_size = %d.\n",
  1281. rx_ring->lbq_buf_size);
  1282. printk(KERN_ERR PFX "rx_ring->sbq_base = %p.\n", rx_ring->sbq_base);
  1283. printk(KERN_ERR PFX "rx_ring->sbq_base_dma = %llx.\n",
  1284. (unsigned long long) rx_ring->sbq_base_dma);
  1285. printk(KERN_ERR PFX "rx_ring->sbq_base_indirect = %p.\n",
  1286. rx_ring->sbq_base_indirect);
  1287. printk(KERN_ERR PFX "rx_ring->sbq_base_indirect_dma = %llx.\n",
  1288. (unsigned long long) rx_ring->sbq_base_indirect_dma);
  1289. printk(KERN_ERR PFX "rx_ring->sbq = %p.\n", rx_ring->sbq);
  1290. printk(KERN_ERR PFX "rx_ring->sbq_len = %d.\n", rx_ring->sbq_len);
  1291. printk(KERN_ERR PFX "rx_ring->sbq_size = %d.\n", rx_ring->sbq_size);
  1292. printk(KERN_ERR PFX "rx_ring->sbq_prod_idx_db_reg addr = %p.\n",
  1293. rx_ring->sbq_prod_idx_db_reg);
  1294. printk(KERN_ERR PFX "rx_ring->sbq_prod_idx = %d.\n",
  1295. rx_ring->sbq_prod_idx);
  1296. printk(KERN_ERR PFX "rx_ring->sbq_curr_idx = %d.\n",
  1297. rx_ring->sbq_curr_idx);
  1298. printk(KERN_ERR PFX "rx_ring->sbq_clean_idx = %d.\n",
  1299. rx_ring->sbq_clean_idx);
  1300. printk(KERN_ERR PFX "rx_ring->sbq_free_cnt = %d.\n",
  1301. rx_ring->sbq_free_cnt);
  1302. printk(KERN_ERR PFX "rx_ring->sbq_buf_size = %d.\n",
  1303. rx_ring->sbq_buf_size);
  1304. printk(KERN_ERR PFX "rx_ring->cq_id = %d.\n", rx_ring->cq_id);
  1305. printk(KERN_ERR PFX "rx_ring->irq = %d.\n", rx_ring->irq);
  1306. printk(KERN_ERR PFX "rx_ring->cpu = %d.\n", rx_ring->cpu);
  1307. printk(KERN_ERR PFX "rx_ring->qdev = %p.\n", rx_ring->qdev);
  1308. }
  1309. void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id)
  1310. {
  1311. void *ptr;
  1312. printk(KERN_ERR PFX "%s: Enter.\n", __func__);
  1313. ptr = kmalloc(size, GFP_ATOMIC);
  1314. if (ptr == NULL) {
  1315. printk(KERN_ERR PFX "%s: Couldn't allocate a buffer.\n",
  1316. __func__);
  1317. return;
  1318. }
  1319. if (ql_write_cfg(qdev, ptr, size, bit, q_id)) {
  1320. printk(KERN_ERR "%s: Failed to upload control block!\n",
  1321. __func__);
  1322. goto fail_it;
  1323. }
  1324. switch (bit) {
  1325. case CFG_DRQ:
  1326. ql_dump_wqicb((struct wqicb *)ptr);
  1327. break;
  1328. case CFG_DCQ:
  1329. ql_dump_cqicb((struct cqicb *)ptr);
  1330. break;
  1331. case CFG_DR:
  1332. ql_dump_ricb((struct ricb *)ptr);
  1333. break;
  1334. default:
  1335. printk(KERN_ERR PFX "%s: Invalid bit value = %x.\n",
  1336. __func__, bit);
  1337. break;
  1338. }
  1339. fail_it:
  1340. kfree(ptr);
  1341. }
  1342. #endif
  1343. #ifdef QL_OB_DUMP
  1344. void ql_dump_tx_desc(struct tx_buf_desc *tbd)
  1345. {
  1346. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1347. le64_to_cpu((u64) tbd->addr));
  1348. printk(KERN_ERR PFX "tbd->len = %d\n",
  1349. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1350. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1351. tbd->len & TX_DESC_C ? "C" : ".",
  1352. tbd->len & TX_DESC_E ? "E" : ".");
  1353. tbd++;
  1354. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1355. le64_to_cpu((u64) tbd->addr));
  1356. printk(KERN_ERR PFX "tbd->len = %d\n",
  1357. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1358. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1359. tbd->len & TX_DESC_C ? "C" : ".",
  1360. tbd->len & TX_DESC_E ? "E" : ".");
  1361. tbd++;
  1362. printk(KERN_ERR PFX "tbd->addr = 0x%llx\n",
  1363. le64_to_cpu((u64) tbd->addr));
  1364. printk(KERN_ERR PFX "tbd->len = %d\n",
  1365. le32_to_cpu(tbd->len & TX_DESC_LEN_MASK));
  1366. printk(KERN_ERR PFX "tbd->flags = %s %s\n",
  1367. tbd->len & TX_DESC_C ? "C" : ".",
  1368. tbd->len & TX_DESC_E ? "E" : ".");
  1369. }
  1370. void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb)
  1371. {
  1372. struct ob_mac_tso_iocb_req *ob_mac_tso_iocb =
  1373. (struct ob_mac_tso_iocb_req *)ob_mac_iocb;
  1374. struct tx_buf_desc *tbd;
  1375. u16 frame_len;
  1376. printk(KERN_ERR PFX "%s\n", __func__);
  1377. printk(KERN_ERR PFX "opcode = %s\n",
  1378. (ob_mac_iocb->opcode == OPCODE_OB_MAC_IOCB) ? "MAC" : "TSO");
  1379. printk(KERN_ERR PFX "flags1 = %s %s %s %s %s\n",
  1380. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_OI ? "OI" : "",
  1381. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_I ? "I" : "",
  1382. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_D ? "D" : "",
  1383. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP4 ? "IP4" : "",
  1384. ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP6 ? "IP6" : "");
  1385. printk(KERN_ERR PFX "flags2 = %s %s %s\n",
  1386. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_LSO ? "LSO" : "",
  1387. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_UC ? "UC" : "",
  1388. ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_TC ? "TC" : "");
  1389. printk(KERN_ERR PFX "flags3 = %s %s %s \n",
  1390. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_IC ? "IC" : "",
  1391. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_DFP ? "DFP" : "",
  1392. ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_V ? "V" : "");
  1393. printk(KERN_ERR PFX "tid = %x\n", ob_mac_iocb->tid);
  1394. printk(KERN_ERR PFX "txq_idx = %d\n", ob_mac_iocb->txq_idx);
  1395. printk(KERN_ERR PFX "vlan_tci = %x\n", ob_mac_tso_iocb->vlan_tci);
  1396. if (ob_mac_iocb->opcode == OPCODE_OB_MAC_TSO_IOCB) {
  1397. printk(KERN_ERR PFX "frame_len = %d\n",
  1398. le32_to_cpu(ob_mac_tso_iocb->frame_len));
  1399. printk(KERN_ERR PFX "mss = %d\n",
  1400. le16_to_cpu(ob_mac_tso_iocb->mss));
  1401. printk(KERN_ERR PFX "prot_hdr_len = %d\n",
  1402. le16_to_cpu(ob_mac_tso_iocb->total_hdrs_len));
  1403. printk(KERN_ERR PFX "hdr_offset = 0x%.04x\n",
  1404. le16_to_cpu(ob_mac_tso_iocb->net_trans_offset));
  1405. frame_len = le32_to_cpu(ob_mac_tso_iocb->frame_len);
  1406. } else {
  1407. printk(KERN_ERR PFX "frame_len = %d\n",
  1408. le16_to_cpu(ob_mac_iocb->frame_len));
  1409. frame_len = le16_to_cpu(ob_mac_iocb->frame_len);
  1410. }
  1411. tbd = &ob_mac_iocb->tbd[0];
  1412. ql_dump_tx_desc(tbd);
  1413. }
  1414. void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp)
  1415. {
  1416. printk(KERN_ERR PFX "%s\n", __func__);
  1417. printk(KERN_ERR PFX "opcode = %d\n", ob_mac_rsp->opcode);
  1418. printk(KERN_ERR PFX "flags = %s %s %s %s %s %s %s\n",
  1419. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_OI ? "OI" : ".",
  1420. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_I ? "I" : ".",
  1421. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_E ? "E" : ".",
  1422. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_S ? "S" : ".",
  1423. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_L ? "L" : ".",
  1424. ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_P ? "P" : ".",
  1425. ob_mac_rsp->flags2 & OB_MAC_IOCB_RSP_B ? "B" : ".");
  1426. printk(KERN_ERR PFX "tid = %x\n", ob_mac_rsp->tid);
  1427. }
  1428. #endif
  1429. #ifdef QL_IB_DUMP
  1430. void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp)
  1431. {
  1432. printk(KERN_ERR PFX "%s\n", __func__);
  1433. printk(KERN_ERR PFX "opcode = 0x%x\n", ib_mac_rsp->opcode);
  1434. printk(KERN_ERR PFX "flags1 = %s%s%s%s%s%s\n",
  1435. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_OI ? "OI " : "",
  1436. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_I ? "I " : "",
  1437. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_TE ? "TE " : "",
  1438. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU ? "NU " : "",
  1439. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_IE ? "IE " : "",
  1440. ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_B ? "B " : "");
  1441. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK)
  1442. printk(KERN_ERR PFX "%s%s%s Multicast.\n",
  1443. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1444. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1445. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1446. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1447. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1448. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1449. printk(KERN_ERR PFX "flags2 = %s%s%s%s%s\n",
  1450. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) ? "P " : "",
  1451. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? "V " : "",
  1452. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) ? "U " : "",
  1453. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ? "T " : "",
  1454. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_FO) ? "FO " : "");
  1455. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK)
  1456. printk(KERN_ERR PFX "%s%s%s%s%s error.\n",
  1457. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1458. IB_MAC_IOCB_RSP_ERR_OVERSIZE ? "oversize" : "",
  1459. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1460. IB_MAC_IOCB_RSP_ERR_UNDERSIZE ? "undersize" : "",
  1461. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1462. IB_MAC_IOCB_RSP_ERR_PREAMBLE ? "preamble" : "",
  1463. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1464. IB_MAC_IOCB_RSP_ERR_FRAME_LEN ? "frame length" : "",
  1465. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) ==
  1466. IB_MAC_IOCB_RSP_ERR_CRC ? "CRC" : "");
  1467. printk(KERN_ERR PFX "flags3 = %s%s.\n",
  1468. ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS ? "DS " : "",
  1469. ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL ? "DL " : "");
  1470. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
  1471. printk(KERN_ERR PFX "RSS flags = %s%s%s%s.\n",
  1472. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1473. IB_MAC_IOCB_RSP_M_IPV4) ? "IPv4 RSS" : "",
  1474. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1475. IB_MAC_IOCB_RSP_M_IPV6) ? "IPv6 RSS " : "",
  1476. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1477. IB_MAC_IOCB_RSP_M_TCP_V4) ? "TCP/IPv4 RSS" : "",
  1478. ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) ==
  1479. IB_MAC_IOCB_RSP_M_TCP_V6) ? "TCP/IPv6 RSS" : "");
  1480. printk(KERN_ERR PFX "data_len = %d\n",
  1481. le32_to_cpu(ib_mac_rsp->data_len));
  1482. printk(KERN_ERR PFX "data_addr = 0x%llx\n",
  1483. (unsigned long long) le64_to_cpu(ib_mac_rsp->data_addr));
  1484. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK)
  1485. printk(KERN_ERR PFX "rss = %x\n",
  1486. le32_to_cpu(ib_mac_rsp->rss));
  1487. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)
  1488. printk(KERN_ERR PFX "vlan_id = %x\n",
  1489. le16_to_cpu(ib_mac_rsp->vlan_id));
  1490. printk(KERN_ERR PFX "flags4 = %s%s%s.\n",
  1491. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV ? "HV " : "",
  1492. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS ? "HS " : "",
  1493. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HL ? "HL " : "");
  1494. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1495. printk(KERN_ERR PFX "hdr length = %d.\n",
  1496. le32_to_cpu(ib_mac_rsp->hdr_len));
  1497. printk(KERN_ERR PFX "hdr addr = 0x%llx.\n",
  1498. (unsigned long long) le64_to_cpu(ib_mac_rsp->hdr_addr));
  1499. }
  1500. }
  1501. #endif
  1502. #ifdef QL_ALL_DUMP
  1503. void ql_dump_all(struct ql_adapter *qdev)
  1504. {
  1505. int i;
  1506. QL_DUMP_REGS(qdev);
  1507. QL_DUMP_QDEV(qdev);
  1508. for (i = 0; i < qdev->tx_ring_count; i++) {
  1509. QL_DUMP_TX_RING(&qdev->tx_ring[i]);
  1510. QL_DUMP_WQICB((struct wqicb *)&qdev->tx_ring[i]);
  1511. }
  1512. for (i = 0; i < qdev->rx_ring_count; i++) {
  1513. QL_DUMP_RX_RING(&qdev->rx_ring[i]);
  1514. QL_DUMP_CQICB((struct cqicb *)&qdev->rx_ring[i]);
  1515. }
  1516. }
  1517. #endif