fs-writeback.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772
  1. /*
  2. * fs/fs-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * Contains all the functions related to writing back and waiting
  7. * upon dirty inodes against superblocks, and writing back dirty
  8. * pages against inodes. ie: data writeback. Writeout of the
  9. * inode itself is not handled here.
  10. *
  11. * 10Apr2002 akpm@zip.com.au
  12. * Split out of fs/inode.c
  13. * Additions for address_space-based writeback
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/sched.h>
  19. #include <linux/fs.h>
  20. #include <linux/mm.h>
  21. #include <linux/writeback.h>
  22. #include <linux/blkdev.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/buffer_head.h>
  25. #include "internal.h"
  26. /**
  27. * __mark_inode_dirty - internal function
  28. * @inode: inode to mark
  29. * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
  30. * Mark an inode as dirty. Callers should use mark_inode_dirty or
  31. * mark_inode_dirty_sync.
  32. *
  33. * Put the inode on the super block's dirty list.
  34. *
  35. * CAREFUL! We mark it dirty unconditionally, but move it onto the
  36. * dirty list only if it is hashed or if it refers to a blockdev.
  37. * If it was not hashed, it will never be added to the dirty list
  38. * even if it is later hashed, as it will have been marked dirty already.
  39. *
  40. * In short, make sure you hash any inodes _before_ you start marking
  41. * them dirty.
  42. *
  43. * This function *must* be atomic for the I_DIRTY_PAGES case -
  44. * set_page_dirty() is called under spinlock in several places.
  45. *
  46. * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
  47. * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
  48. * the kernel-internal blockdev inode represents the dirtying time of the
  49. * blockdev's pages. This is why for I_DIRTY_PAGES we always use
  50. * page->mapping->host, so the page-dirtying time is recorded in the internal
  51. * blockdev inode.
  52. */
  53. void __mark_inode_dirty(struct inode *inode, int flags)
  54. {
  55. struct super_block *sb = inode->i_sb;
  56. /*
  57. * Don't do this for I_DIRTY_PAGES - that doesn't actually
  58. * dirty the inode itself
  59. */
  60. if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
  61. if (sb->s_op->dirty_inode)
  62. sb->s_op->dirty_inode(inode);
  63. }
  64. /*
  65. * make sure that changes are seen by all cpus before we test i_state
  66. * -- mikulas
  67. */
  68. smp_mb();
  69. /* avoid the locking if we can */
  70. if ((inode->i_state & flags) == flags)
  71. return;
  72. if (unlikely(block_dump)) {
  73. struct dentry *dentry = NULL;
  74. const char *name = "?";
  75. if (!list_empty(&inode->i_dentry)) {
  76. dentry = list_entry(inode->i_dentry.next,
  77. struct dentry, d_alias);
  78. if (dentry && dentry->d_name.name)
  79. name = (const char *) dentry->d_name.name;
  80. }
  81. if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
  82. printk(KERN_DEBUG
  83. "%s(%d): dirtied inode %lu (%s) on %s\n",
  84. current->comm, current->pid, inode->i_ino,
  85. name, inode->i_sb->s_id);
  86. }
  87. spin_lock(&inode_lock);
  88. if ((inode->i_state & flags) != flags) {
  89. const int was_dirty = inode->i_state & I_DIRTY;
  90. inode->i_state |= flags;
  91. /*
  92. * If the inode is locked, just update its dirty state.
  93. * The unlocker will place the inode on the appropriate
  94. * superblock list, based upon its state.
  95. */
  96. if (inode->i_state & I_LOCK)
  97. goto out;
  98. /*
  99. * Only add valid (hashed) inodes to the superblock's
  100. * dirty list. Add blockdev inodes as well.
  101. */
  102. if (!S_ISBLK(inode->i_mode)) {
  103. if (hlist_unhashed(&inode->i_hash))
  104. goto out;
  105. }
  106. if (inode->i_state & (I_FREEING|I_CLEAR))
  107. goto out;
  108. /*
  109. * If the inode was already on s_dirty/s_io/s_more_io, don't
  110. * reposition it (that would break s_dirty time-ordering).
  111. */
  112. if (!was_dirty) {
  113. inode->dirtied_when = jiffies;
  114. list_move(&inode->i_list, &sb->s_dirty);
  115. }
  116. }
  117. out:
  118. spin_unlock(&inode_lock);
  119. }
  120. EXPORT_SYMBOL(__mark_inode_dirty);
  121. static int write_inode(struct inode *inode, int sync)
  122. {
  123. if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
  124. return inode->i_sb->s_op->write_inode(inode, sync);
  125. return 0;
  126. }
  127. /*
  128. * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
  129. * furthest end of its superblock's dirty-inode list.
  130. *
  131. * Before stamping the inode's ->dirtied_when, we check to see whether it is
  132. * already the most-recently-dirtied inode on the s_dirty list. If that is
  133. * the case then the inode must have been redirtied while it was being written
  134. * out and we don't reset its dirtied_when.
  135. */
  136. static void redirty_tail(struct inode *inode)
  137. {
  138. struct super_block *sb = inode->i_sb;
  139. if (!list_empty(&sb->s_dirty)) {
  140. struct inode *tail_inode;
  141. tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
  142. if (!time_after_eq(inode->dirtied_when,
  143. tail_inode->dirtied_when))
  144. inode->dirtied_when = jiffies;
  145. }
  146. list_move(&inode->i_list, &sb->s_dirty);
  147. }
  148. /*
  149. * requeue inode for re-scanning after sb->s_io list is exhausted.
  150. */
  151. static void requeue_io(struct inode *inode)
  152. {
  153. list_move(&inode->i_list, &inode->i_sb->s_more_io);
  154. }
  155. /*
  156. * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
  157. */
  158. static void move_expired_inodes(struct list_head *delaying_queue,
  159. struct list_head *dispatch_queue,
  160. unsigned long *older_than_this)
  161. {
  162. while (!list_empty(delaying_queue)) {
  163. struct inode *inode = list_entry(delaying_queue->prev,
  164. struct inode, i_list);
  165. if (older_than_this &&
  166. time_after(inode->dirtied_when, *older_than_this))
  167. break;
  168. list_move(&inode->i_list, dispatch_queue);
  169. }
  170. }
  171. /*
  172. * Queue all expired dirty inodes for io, eldest first.
  173. */
  174. static void queue_io(struct super_block *sb,
  175. unsigned long *older_than_this)
  176. {
  177. list_splice_init(&sb->s_more_io, sb->s_io.prev);
  178. move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this);
  179. }
  180. /*
  181. * Write a single inode's dirty pages and inode data out to disk.
  182. * If `wait' is set, wait on the writeout.
  183. *
  184. * The whole writeout design is quite complex and fragile. We want to avoid
  185. * starvation of particular inodes when others are being redirtied, prevent
  186. * livelocks, etc.
  187. *
  188. * Called under inode_lock.
  189. */
  190. static int
  191. __sync_single_inode(struct inode *inode, struct writeback_control *wbc)
  192. {
  193. unsigned dirty;
  194. struct address_space *mapping = inode->i_mapping;
  195. int wait = wbc->sync_mode == WB_SYNC_ALL;
  196. int ret;
  197. BUG_ON(inode->i_state & I_LOCK);
  198. /* Set I_LOCK, reset I_DIRTY */
  199. dirty = inode->i_state & I_DIRTY;
  200. inode->i_state |= I_LOCK;
  201. inode->i_state &= ~I_DIRTY;
  202. spin_unlock(&inode_lock);
  203. ret = do_writepages(mapping, wbc);
  204. /* Don't write the inode if only I_DIRTY_PAGES was set */
  205. if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
  206. int err = write_inode(inode, wait);
  207. if (ret == 0)
  208. ret = err;
  209. }
  210. if (wait) {
  211. int err = filemap_fdatawait(mapping);
  212. if (ret == 0)
  213. ret = err;
  214. }
  215. spin_lock(&inode_lock);
  216. inode->i_state &= ~I_LOCK;
  217. if (!(inode->i_state & I_FREEING)) {
  218. if (!(inode->i_state & I_DIRTY) &&
  219. mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
  220. /*
  221. * We didn't write back all the pages. nfs_writepages()
  222. * sometimes bales out without doing anything. Redirty
  223. * the inode; Move it from s_io onto s_more_io/s_dirty.
  224. */
  225. /*
  226. * akpm: if the caller was the kupdate function we put
  227. * this inode at the head of s_dirty so it gets first
  228. * consideration. Otherwise, move it to the tail, for
  229. * the reasons described there. I'm not really sure
  230. * how much sense this makes. Presumably I had a good
  231. * reasons for doing it this way, and I'd rather not
  232. * muck with it at present.
  233. */
  234. if (wbc->for_kupdate) {
  235. /*
  236. * For the kupdate function we move the inode
  237. * to s_more_io so it will get more writeout as
  238. * soon as the queue becomes uncongested.
  239. */
  240. inode->i_state |= I_DIRTY_PAGES;
  241. requeue_io(inode);
  242. } else {
  243. /*
  244. * Otherwise fully redirty the inode so that
  245. * other inodes on this superblock will get some
  246. * writeout. Otherwise heavy writing to one
  247. * file would indefinitely suspend writeout of
  248. * all the other files.
  249. */
  250. inode->i_state |= I_DIRTY_PAGES;
  251. redirty_tail(inode);
  252. }
  253. } else if (inode->i_state & I_DIRTY) {
  254. /*
  255. * Someone redirtied the inode while were writing back
  256. * the pages.
  257. */
  258. redirty_tail(inode);
  259. } else if (atomic_read(&inode->i_count)) {
  260. /*
  261. * The inode is clean, inuse
  262. */
  263. list_move(&inode->i_list, &inode_in_use);
  264. } else {
  265. /*
  266. * The inode is clean, unused
  267. */
  268. list_move(&inode->i_list, &inode_unused);
  269. }
  270. }
  271. wake_up_inode(inode);
  272. return ret;
  273. }
  274. /*
  275. * Write out an inode's dirty pages. Called under inode_lock. Either the
  276. * caller has ref on the inode (either via __iget or via syscall against an fd)
  277. * or the inode has I_WILL_FREE set (via generic_forget_inode)
  278. */
  279. static int
  280. __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
  281. {
  282. wait_queue_head_t *wqh;
  283. if (!atomic_read(&inode->i_count))
  284. WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
  285. else
  286. WARN_ON(inode->i_state & I_WILL_FREE);
  287. if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_LOCK)) {
  288. struct address_space *mapping = inode->i_mapping;
  289. int ret;
  290. /*
  291. * We're skipping this inode because it's locked, and we're not
  292. * doing writeback-for-data-integrity. Move it to s_more_io so
  293. * that writeback can proceed with the other inodes on s_io.
  294. * We'll have another go at writing back this inode when we
  295. * completed a full scan of s_io.
  296. */
  297. requeue_io(inode);
  298. /*
  299. * Even if we don't actually write the inode itself here,
  300. * we can at least start some of the data writeout..
  301. */
  302. spin_unlock(&inode_lock);
  303. ret = do_writepages(mapping, wbc);
  304. spin_lock(&inode_lock);
  305. return ret;
  306. }
  307. /*
  308. * It's a data-integrity sync. We must wait.
  309. */
  310. if (inode->i_state & I_LOCK) {
  311. DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LOCK);
  312. wqh = bit_waitqueue(&inode->i_state, __I_LOCK);
  313. do {
  314. spin_unlock(&inode_lock);
  315. __wait_on_bit(wqh, &wq, inode_wait,
  316. TASK_UNINTERRUPTIBLE);
  317. spin_lock(&inode_lock);
  318. } while (inode->i_state & I_LOCK);
  319. }
  320. return __sync_single_inode(inode, wbc);
  321. }
  322. /*
  323. * Write out a superblock's list of dirty inodes. A wait will be performed
  324. * upon no inodes, all inodes or the final one, depending upon sync_mode.
  325. *
  326. * If older_than_this is non-NULL, then only write out inodes which
  327. * had their first dirtying at a time earlier than *older_than_this.
  328. *
  329. * If we're a pdlfush thread, then implement pdflush collision avoidance
  330. * against the entire list.
  331. *
  332. * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
  333. * that it can be located for waiting on in __writeback_single_inode().
  334. *
  335. * Called under inode_lock.
  336. *
  337. * If `bdi' is non-zero then we're being asked to writeback a specific queue.
  338. * This function assumes that the blockdev superblock's inodes are backed by
  339. * a variety of queues, so all inodes are searched. For other superblocks,
  340. * assume that all inodes are backed by the same queue.
  341. *
  342. * FIXME: this linear search could get expensive with many fileystems. But
  343. * how to fix? We need to go from an address_space to all inodes which share
  344. * a queue with that address_space. (Easy: have a global "dirty superblocks"
  345. * list).
  346. *
  347. * The inodes to be written are parked on sb->s_io. They are moved back onto
  348. * sb->s_dirty as they are selected for writing. This way, none can be missed
  349. * on the writer throttling path, and we get decent balancing between many
  350. * throttled threads: we don't want them all piling up on __wait_on_inode.
  351. */
  352. static void
  353. sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc)
  354. {
  355. const unsigned long start = jiffies; /* livelock avoidance */
  356. if (!wbc->for_kupdate || list_empty(&sb->s_io))
  357. queue_io(sb, wbc->older_than_this);
  358. while (!list_empty(&sb->s_io)) {
  359. struct inode *inode = list_entry(sb->s_io.prev,
  360. struct inode, i_list);
  361. struct address_space *mapping = inode->i_mapping;
  362. struct backing_dev_info *bdi = mapping->backing_dev_info;
  363. long pages_skipped;
  364. if (!bdi_cap_writeback_dirty(bdi)) {
  365. redirty_tail(inode);
  366. if (sb_is_blkdev_sb(sb)) {
  367. /*
  368. * Dirty memory-backed blockdev: the ramdisk
  369. * driver does this. Skip just this inode
  370. */
  371. continue;
  372. }
  373. /*
  374. * Dirty memory-backed inode against a filesystem other
  375. * than the kernel-internal bdev filesystem. Skip the
  376. * entire superblock.
  377. */
  378. break;
  379. }
  380. if (wbc->nonblocking && bdi_write_congested(bdi)) {
  381. wbc->encountered_congestion = 1;
  382. if (!sb_is_blkdev_sb(sb))
  383. break; /* Skip a congested fs */
  384. requeue_io(inode);
  385. continue; /* Skip a congested blockdev */
  386. }
  387. if (wbc->bdi && bdi != wbc->bdi) {
  388. if (!sb_is_blkdev_sb(sb))
  389. break; /* fs has the wrong queue */
  390. requeue_io(inode);
  391. continue; /* blockdev has wrong queue */
  392. }
  393. /* Was this inode dirtied after sync_sb_inodes was called? */
  394. if (time_after(inode->dirtied_when, start))
  395. break;
  396. /* Is another pdflush already flushing this queue? */
  397. if (current_is_pdflush() && !writeback_acquire(bdi))
  398. break;
  399. BUG_ON(inode->i_state & I_FREEING);
  400. __iget(inode);
  401. pages_skipped = wbc->pages_skipped;
  402. __writeback_single_inode(inode, wbc);
  403. if (wbc->sync_mode == WB_SYNC_HOLD) {
  404. inode->dirtied_when = jiffies;
  405. list_move(&inode->i_list, &sb->s_dirty);
  406. }
  407. if (current_is_pdflush())
  408. writeback_release(bdi);
  409. if (wbc->pages_skipped != pages_skipped) {
  410. /*
  411. * writeback is not making progress due to locked
  412. * buffers. Skip this inode for now.
  413. */
  414. redirty_tail(inode);
  415. }
  416. spin_unlock(&inode_lock);
  417. iput(inode);
  418. cond_resched();
  419. spin_lock(&inode_lock);
  420. if (wbc->nr_to_write <= 0)
  421. break;
  422. }
  423. return; /* Leave any unwritten inodes on s_io */
  424. }
  425. /*
  426. * Start writeback of dirty pagecache data against all unlocked inodes.
  427. *
  428. * Note:
  429. * We don't need to grab a reference to superblock here. If it has non-empty
  430. * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
  431. * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all
  432. * empty. Since __sync_single_inode() regains inode_lock before it finally moves
  433. * inode from superblock lists we are OK.
  434. *
  435. * If `older_than_this' is non-zero then only flush inodes which have a
  436. * flushtime older than *older_than_this.
  437. *
  438. * If `bdi' is non-zero then we will scan the first inode against each
  439. * superblock until we find the matching ones. One group will be the dirty
  440. * inodes against a filesystem. Then when we hit the dummy blockdev superblock,
  441. * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
  442. * super-efficient but we're about to do a ton of I/O...
  443. */
  444. void
  445. writeback_inodes(struct writeback_control *wbc)
  446. {
  447. struct super_block *sb;
  448. might_sleep();
  449. spin_lock(&sb_lock);
  450. restart:
  451. sb = sb_entry(super_blocks.prev);
  452. for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
  453. if (!list_empty(&sb->s_dirty) || !list_empty(&sb->s_io)) {
  454. /* we're making our own get_super here */
  455. sb->s_count++;
  456. spin_unlock(&sb_lock);
  457. /*
  458. * If we can't get the readlock, there's no sense in
  459. * waiting around, most of the time the FS is going to
  460. * be unmounted by the time it is released.
  461. */
  462. if (down_read_trylock(&sb->s_umount)) {
  463. if (sb->s_root) {
  464. spin_lock(&inode_lock);
  465. sync_sb_inodes(sb, wbc);
  466. spin_unlock(&inode_lock);
  467. }
  468. up_read(&sb->s_umount);
  469. }
  470. spin_lock(&sb_lock);
  471. if (__put_super_and_need_restart(sb))
  472. goto restart;
  473. }
  474. if (wbc->nr_to_write <= 0)
  475. break;
  476. }
  477. spin_unlock(&sb_lock);
  478. }
  479. /*
  480. * writeback and wait upon the filesystem's dirty inodes. The caller will
  481. * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is
  482. * used to park the written inodes on sb->s_dirty for the wait pass.
  483. *
  484. * A finite limit is set on the number of pages which will be written.
  485. * To prevent infinite livelock of sys_sync().
  486. *
  487. * We add in the number of potentially dirty inodes, because each inode write
  488. * can dirty pagecache in the underlying blockdev.
  489. */
  490. void sync_inodes_sb(struct super_block *sb, int wait)
  491. {
  492. struct writeback_control wbc = {
  493. .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
  494. .range_start = 0,
  495. .range_end = LLONG_MAX,
  496. };
  497. unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
  498. unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
  499. wbc.nr_to_write = nr_dirty + nr_unstable +
  500. (inodes_stat.nr_inodes - inodes_stat.nr_unused) +
  501. nr_dirty + nr_unstable;
  502. wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */
  503. spin_lock(&inode_lock);
  504. sync_sb_inodes(sb, &wbc);
  505. spin_unlock(&inode_lock);
  506. }
  507. /*
  508. * Rather lame livelock avoidance.
  509. */
  510. static void set_sb_syncing(int val)
  511. {
  512. struct super_block *sb;
  513. spin_lock(&sb_lock);
  514. sb = sb_entry(super_blocks.prev);
  515. for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
  516. sb->s_syncing = val;
  517. }
  518. spin_unlock(&sb_lock);
  519. }
  520. /**
  521. * sync_inodes - writes all inodes to disk
  522. * @wait: wait for completion
  523. *
  524. * sync_inodes() goes through each super block's dirty inode list, writes the
  525. * inodes out, waits on the writeout and puts the inodes back on the normal
  526. * list.
  527. *
  528. * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle
  529. * part of the sync functions is that the blockdev "superblock" is processed
  530. * last. This is because the write_inode() function of a typical fs will
  531. * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
  532. * What we want to do is to perform all that dirtying first, and then write
  533. * back all those inode blocks via the blockdev mapping in one sweep. So the
  534. * additional (somewhat redundant) sync_blockdev() calls here are to make
  535. * sure that really happens. Because if we call sync_inodes_sb(wait=1) with
  536. * outstanding dirty inodes, the writeback goes block-at-a-time within the
  537. * filesystem's write_inode(). This is extremely slow.
  538. */
  539. static void __sync_inodes(int wait)
  540. {
  541. struct super_block *sb;
  542. spin_lock(&sb_lock);
  543. restart:
  544. list_for_each_entry(sb, &super_blocks, s_list) {
  545. if (sb->s_syncing)
  546. continue;
  547. sb->s_syncing = 1;
  548. sb->s_count++;
  549. spin_unlock(&sb_lock);
  550. down_read(&sb->s_umount);
  551. if (sb->s_root) {
  552. sync_inodes_sb(sb, wait);
  553. sync_blockdev(sb->s_bdev);
  554. }
  555. up_read(&sb->s_umount);
  556. spin_lock(&sb_lock);
  557. if (__put_super_and_need_restart(sb))
  558. goto restart;
  559. }
  560. spin_unlock(&sb_lock);
  561. }
  562. void sync_inodes(int wait)
  563. {
  564. set_sb_syncing(0);
  565. __sync_inodes(0);
  566. if (wait) {
  567. set_sb_syncing(0);
  568. __sync_inodes(1);
  569. }
  570. }
  571. /**
  572. * write_inode_now - write an inode to disk
  573. * @inode: inode to write to disk
  574. * @sync: whether the write should be synchronous or not
  575. *
  576. * This function commits an inode to disk immediately if it is dirty. This is
  577. * primarily needed by knfsd.
  578. *
  579. * The caller must either have a ref on the inode or must have set I_WILL_FREE.
  580. */
  581. int write_inode_now(struct inode *inode, int sync)
  582. {
  583. int ret;
  584. struct writeback_control wbc = {
  585. .nr_to_write = LONG_MAX,
  586. .sync_mode = WB_SYNC_ALL,
  587. .range_start = 0,
  588. .range_end = LLONG_MAX,
  589. };
  590. if (!mapping_cap_writeback_dirty(inode->i_mapping))
  591. wbc.nr_to_write = 0;
  592. might_sleep();
  593. spin_lock(&inode_lock);
  594. ret = __writeback_single_inode(inode, &wbc);
  595. spin_unlock(&inode_lock);
  596. if (sync)
  597. wait_on_inode(inode);
  598. return ret;
  599. }
  600. EXPORT_SYMBOL(write_inode_now);
  601. /**
  602. * sync_inode - write an inode and its pages to disk.
  603. * @inode: the inode to sync
  604. * @wbc: controls the writeback mode
  605. *
  606. * sync_inode() will write an inode and its pages to disk. It will also
  607. * correctly update the inode on its superblock's dirty inode lists and will
  608. * update inode->i_state.
  609. *
  610. * The caller must have a ref on the inode.
  611. */
  612. int sync_inode(struct inode *inode, struct writeback_control *wbc)
  613. {
  614. int ret;
  615. spin_lock(&inode_lock);
  616. ret = __writeback_single_inode(inode, wbc);
  617. spin_unlock(&inode_lock);
  618. return ret;
  619. }
  620. EXPORT_SYMBOL(sync_inode);
  621. /**
  622. * generic_osync_inode - flush all dirty data for a given inode to disk
  623. * @inode: inode to write
  624. * @mapping: the address_space that should be flushed
  625. * @what: what to write and wait upon
  626. *
  627. * This can be called by file_write functions for files which have the
  628. * O_SYNC flag set, to flush dirty writes to disk.
  629. *
  630. * @what is a bitmask, specifying which part of the inode's data should be
  631. * written and waited upon.
  632. *
  633. * OSYNC_DATA: i_mapping's dirty data
  634. * OSYNC_METADATA: the buffers at i_mapping->private_list
  635. * OSYNC_INODE: the inode itself
  636. */
  637. int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
  638. {
  639. int err = 0;
  640. int need_write_inode_now = 0;
  641. int err2;
  642. if (what & OSYNC_DATA)
  643. err = filemap_fdatawrite(mapping);
  644. if (what & (OSYNC_METADATA|OSYNC_DATA)) {
  645. err2 = sync_mapping_buffers(mapping);
  646. if (!err)
  647. err = err2;
  648. }
  649. if (what & OSYNC_DATA) {
  650. err2 = filemap_fdatawait(mapping);
  651. if (!err)
  652. err = err2;
  653. }
  654. spin_lock(&inode_lock);
  655. if ((inode->i_state & I_DIRTY) &&
  656. ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
  657. need_write_inode_now = 1;
  658. spin_unlock(&inode_lock);
  659. if (need_write_inode_now) {
  660. err2 = write_inode_now(inode, 1);
  661. if (!err)
  662. err = err2;
  663. }
  664. else
  665. wait_on_inode(inode);
  666. return err;
  667. }
  668. EXPORT_SYMBOL(generic_osync_inode);
  669. /**
  670. * writeback_acquire: attempt to get exclusive writeback access to a device
  671. * @bdi: the device's backing_dev_info structure
  672. *
  673. * It is a waste of resources to have more than one pdflush thread blocked on
  674. * a single request queue. Exclusion at the request_queue level is obtained
  675. * via a flag in the request_queue's backing_dev_info.state.
  676. *
  677. * Non-request_queue-backed address_spaces will share default_backing_dev_info,
  678. * unless they implement their own. Which is somewhat inefficient, as this
  679. * may prevent concurrent writeback against multiple devices.
  680. */
  681. int writeback_acquire(struct backing_dev_info *bdi)
  682. {
  683. return !test_and_set_bit(BDI_pdflush, &bdi->state);
  684. }
  685. /**
  686. * writeback_in_progress: determine whether there is writeback in progress
  687. * @bdi: the device's backing_dev_info structure.
  688. *
  689. * Determine whether there is writeback in progress against a backing device.
  690. */
  691. int writeback_in_progress(struct backing_dev_info *bdi)
  692. {
  693. return test_bit(BDI_pdflush, &bdi->state);
  694. }
  695. /**
  696. * writeback_release: relinquish exclusive writeback access against a device.
  697. * @bdi: the device's backing_dev_info structure
  698. */
  699. void writeback_release(struct backing_dev_info *bdi)
  700. {
  701. BUG_ON(!writeback_in_progress(bdi));
  702. clear_bit(BDI_pdflush, &bdi->state);
  703. }