smp.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/smp.h>
  23. #include <linux/seq_file.h>
  24. #include <linux/irq.h>
  25. #include <linux/percpu.h>
  26. #include <linux/clockchips.h>
  27. #include <asm/atomic.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/cpu.h>
  30. #include <asm/cputype.h>
  31. #include <asm/mmu_context.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/pgalloc.h>
  34. #include <asm/processor.h>
  35. #include <asm/sections.h>
  36. #include <asm/tlbflush.h>
  37. #include <asm/ptrace.h>
  38. #include <asm/localtimer.h>
  39. #include <asm/smp_plat.h>
  40. /*
  41. * as from 2.5, kernels no longer have an init_tasks structure
  42. * so we need some other way of telling a new secondary core
  43. * where to place its SVC stack
  44. */
  45. struct secondary_data secondary_data;
  46. enum ipi_msg_type {
  47. IPI_TIMER = 2,
  48. IPI_RESCHEDULE,
  49. IPI_CALL_FUNC,
  50. IPI_CALL_FUNC_SINGLE,
  51. IPI_CPU_STOP,
  52. };
  53. static inline void identity_mapping_add(pgd_t *pgd, unsigned long start,
  54. unsigned long end)
  55. {
  56. unsigned long addr, prot;
  57. pmd_t *pmd;
  58. prot = PMD_TYPE_SECT | PMD_SECT_AP_WRITE;
  59. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  60. prot |= PMD_BIT4;
  61. for (addr = start & PGDIR_MASK; addr < end;) {
  62. pmd = pmd_offset(pgd + pgd_index(addr), addr);
  63. pmd[0] = __pmd(addr | prot);
  64. addr += SECTION_SIZE;
  65. pmd[1] = __pmd(addr | prot);
  66. addr += SECTION_SIZE;
  67. flush_pmd_entry(pmd);
  68. outer_clean_range(__pa(pmd), __pa(pmd + 1));
  69. }
  70. }
  71. static inline void identity_mapping_del(pgd_t *pgd, unsigned long start,
  72. unsigned long end)
  73. {
  74. unsigned long addr;
  75. pmd_t *pmd;
  76. for (addr = start & PGDIR_MASK; addr < end; addr += PGDIR_SIZE) {
  77. pmd = pmd_offset(pgd + pgd_index(addr), addr);
  78. pmd[0] = __pmd(0);
  79. pmd[1] = __pmd(0);
  80. clean_pmd_entry(pmd);
  81. outer_clean_range(__pa(pmd), __pa(pmd + 1));
  82. }
  83. }
  84. int __cpuinit __cpu_up(unsigned int cpu)
  85. {
  86. struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
  87. struct task_struct *idle = ci->idle;
  88. pgd_t *pgd;
  89. int ret;
  90. /*
  91. * Spawn a new process manually, if not already done.
  92. * Grab a pointer to its task struct so we can mess with it
  93. */
  94. if (!idle) {
  95. idle = fork_idle(cpu);
  96. if (IS_ERR(idle)) {
  97. printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
  98. return PTR_ERR(idle);
  99. }
  100. ci->idle = idle;
  101. } else {
  102. /*
  103. * Since this idle thread is being re-used, call
  104. * init_idle() to reinitialize the thread structure.
  105. */
  106. init_idle(idle, cpu);
  107. }
  108. /*
  109. * Allocate initial page tables to allow the new CPU to
  110. * enable the MMU safely. This essentially means a set
  111. * of our "standard" page tables, with the addition of
  112. * a 1:1 mapping for the physical address of the kernel.
  113. */
  114. pgd = pgd_alloc(&init_mm);
  115. if (!pgd)
  116. return -ENOMEM;
  117. if (PHYS_OFFSET != PAGE_OFFSET) {
  118. #ifndef CONFIG_HOTPLUG_CPU
  119. identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
  120. #endif
  121. identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
  122. identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
  123. }
  124. /*
  125. * We need to tell the secondary core where to find
  126. * its stack and the page tables.
  127. */
  128. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  129. secondary_data.pgdir = virt_to_phys(pgd);
  130. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  131. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  132. /*
  133. * Now bring the CPU into our world.
  134. */
  135. ret = boot_secondary(cpu, idle);
  136. if (ret == 0) {
  137. unsigned long timeout;
  138. /*
  139. * CPU was successfully started, wait for it
  140. * to come online or time out.
  141. */
  142. timeout = jiffies + HZ;
  143. while (time_before(jiffies, timeout)) {
  144. if (cpu_online(cpu))
  145. break;
  146. udelay(10);
  147. barrier();
  148. }
  149. if (!cpu_online(cpu))
  150. ret = -EIO;
  151. }
  152. secondary_data.stack = NULL;
  153. secondary_data.pgdir = 0;
  154. if (PHYS_OFFSET != PAGE_OFFSET) {
  155. #ifndef CONFIG_HOTPLUG_CPU
  156. identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
  157. #endif
  158. identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
  159. identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
  160. }
  161. pgd_free(&init_mm, pgd);
  162. if (ret) {
  163. printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
  164. /*
  165. * FIXME: We need to clean up the new idle thread. --rmk
  166. */
  167. }
  168. return ret;
  169. }
  170. #ifdef CONFIG_HOTPLUG_CPU
  171. /*
  172. * __cpu_disable runs on the processor to be shutdown.
  173. */
  174. int __cpu_disable(void)
  175. {
  176. unsigned int cpu = smp_processor_id();
  177. struct task_struct *p;
  178. int ret;
  179. ret = platform_cpu_disable(cpu);
  180. if (ret)
  181. return ret;
  182. /*
  183. * Take this CPU offline. Once we clear this, we can't return,
  184. * and we must not schedule until we're ready to give up the cpu.
  185. */
  186. set_cpu_online(cpu, false);
  187. /*
  188. * OK - migrate IRQs away from this CPU
  189. */
  190. migrate_irqs();
  191. /*
  192. * Stop the local timer for this CPU.
  193. */
  194. local_timer_stop();
  195. /*
  196. * Flush user cache and TLB mappings, and then remove this CPU
  197. * from the vm mask set of all processes.
  198. */
  199. flush_cache_all();
  200. local_flush_tlb_all();
  201. read_lock(&tasklist_lock);
  202. for_each_process(p) {
  203. if (p->mm)
  204. cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
  205. }
  206. read_unlock(&tasklist_lock);
  207. return 0;
  208. }
  209. /*
  210. * called on the thread which is asking for a CPU to be shutdown -
  211. * waits until shutdown has completed, or it is timed out.
  212. */
  213. void __cpu_die(unsigned int cpu)
  214. {
  215. if (!platform_cpu_kill(cpu))
  216. printk("CPU%u: unable to kill\n", cpu);
  217. }
  218. /*
  219. * Called from the idle thread for the CPU which has been shutdown.
  220. *
  221. * Note that we disable IRQs here, but do not re-enable them
  222. * before returning to the caller. This is also the behaviour
  223. * of the other hotplug-cpu capable cores, so presumably coming
  224. * out of idle fixes this.
  225. */
  226. void __ref cpu_die(void)
  227. {
  228. unsigned int cpu = smp_processor_id();
  229. local_irq_disable();
  230. idle_task_exit();
  231. /*
  232. * actual CPU shutdown procedure is at least platform (if not
  233. * CPU) specific
  234. */
  235. platform_cpu_die(cpu);
  236. /*
  237. * Do not return to the idle loop - jump back to the secondary
  238. * cpu initialisation. There's some initialisation which needs
  239. * to be repeated to undo the effects of taking the CPU offline.
  240. */
  241. __asm__("mov sp, %0\n"
  242. " b secondary_start_kernel"
  243. :
  244. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  245. }
  246. #endif /* CONFIG_HOTPLUG_CPU */
  247. /*
  248. * Called by both boot and secondaries to move global data into
  249. * per-processor storage.
  250. */
  251. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  252. {
  253. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  254. cpu_info->loops_per_jiffy = loops_per_jiffy;
  255. }
  256. /*
  257. * This is the secondary CPU boot entry. We're using this CPUs
  258. * idle thread stack, but a set of temporary page tables.
  259. */
  260. asmlinkage void __cpuinit secondary_start_kernel(void)
  261. {
  262. struct mm_struct *mm = &init_mm;
  263. unsigned int cpu = smp_processor_id();
  264. printk("CPU%u: Booted secondary processor\n", cpu);
  265. /*
  266. * All kernel threads share the same mm context; grab a
  267. * reference and switch to it.
  268. */
  269. atomic_inc(&mm->mm_users);
  270. atomic_inc(&mm->mm_count);
  271. current->active_mm = mm;
  272. cpumask_set_cpu(cpu, mm_cpumask(mm));
  273. cpu_switch_mm(mm->pgd, mm);
  274. enter_lazy_tlb(mm, current);
  275. local_flush_tlb_all();
  276. cpu_init();
  277. preempt_disable();
  278. trace_hardirqs_off();
  279. /*
  280. * Give the platform a chance to do its own initialisation.
  281. */
  282. platform_secondary_init(cpu);
  283. /*
  284. * Enable local interrupts.
  285. */
  286. notify_cpu_starting(cpu);
  287. local_irq_enable();
  288. local_fiq_enable();
  289. /*
  290. * Setup the percpu timer for this CPU.
  291. */
  292. percpu_timer_setup();
  293. calibrate_delay();
  294. smp_store_cpu_info(cpu);
  295. /*
  296. * OK, now it's safe to let the boot CPU continue
  297. */
  298. set_cpu_online(cpu, true);
  299. /*
  300. * OK, it's off to the idle thread for us
  301. */
  302. cpu_idle();
  303. }
  304. void __init smp_cpus_done(unsigned int max_cpus)
  305. {
  306. int cpu;
  307. unsigned long bogosum = 0;
  308. for_each_online_cpu(cpu)
  309. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  310. printk(KERN_INFO "SMP: Total of %d processors activated "
  311. "(%lu.%02lu BogoMIPS).\n",
  312. num_online_cpus(),
  313. bogosum / (500000/HZ),
  314. (bogosum / (5000/HZ)) % 100);
  315. }
  316. void __init smp_prepare_boot_cpu(void)
  317. {
  318. unsigned int cpu = smp_processor_id();
  319. per_cpu(cpu_data, cpu).idle = current;
  320. }
  321. void __init smp_prepare_cpus(unsigned int max_cpus)
  322. {
  323. unsigned int ncores = num_possible_cpus();
  324. smp_store_cpu_info(smp_processor_id());
  325. /*
  326. * are we trying to boot more cores than exist?
  327. */
  328. if (max_cpus > ncores)
  329. max_cpus = ncores;
  330. if (max_cpus > 1) {
  331. /*
  332. * Enable the local timer or broadcast device for the
  333. * boot CPU, but only if we have more than one CPU.
  334. */
  335. percpu_timer_setup();
  336. /*
  337. * Initialise the SCU if there are more than one CPU
  338. * and let them know where to start.
  339. */
  340. platform_smp_prepare_cpus(max_cpus);
  341. }
  342. }
  343. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  344. {
  345. smp_cross_call(mask, IPI_CALL_FUNC);
  346. }
  347. void arch_send_call_function_single_ipi(int cpu)
  348. {
  349. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  350. }
  351. static const char *ipi_types[NR_IPI] = {
  352. #define S(x,s) [x - IPI_TIMER] = s
  353. S(IPI_TIMER, "Timer broadcast interrupts"),
  354. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  355. S(IPI_CALL_FUNC, "Function call interrupts"),
  356. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  357. S(IPI_CPU_STOP, "CPU stop interrupts"),
  358. };
  359. void show_ipi_list(struct seq_file *p, int prec)
  360. {
  361. unsigned int cpu, i;
  362. for (i = 0; i < NR_IPI; i++) {
  363. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  364. for_each_present_cpu(cpu)
  365. seq_printf(p, "%10u ",
  366. __get_irq_stat(cpu, ipi_irqs[i]));
  367. seq_printf(p, " %s\n", ipi_types[i]);
  368. }
  369. }
  370. u64 smp_irq_stat_cpu(unsigned int cpu)
  371. {
  372. u64 sum = 0;
  373. int i;
  374. for (i = 0; i < NR_IPI; i++)
  375. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  376. #ifdef CONFIG_LOCAL_TIMERS
  377. sum += __get_irq_stat(cpu, local_timer_irqs);
  378. #endif
  379. return sum;
  380. }
  381. /*
  382. * Timer (local or broadcast) support
  383. */
  384. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  385. static void ipi_timer(void)
  386. {
  387. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  388. irq_enter();
  389. evt->event_handler(evt);
  390. irq_exit();
  391. }
  392. #ifdef CONFIG_LOCAL_TIMERS
  393. asmlinkage void __exception do_local_timer(struct pt_regs *regs)
  394. {
  395. struct pt_regs *old_regs = set_irq_regs(regs);
  396. int cpu = smp_processor_id();
  397. if (local_timer_ack()) {
  398. __inc_irq_stat(cpu, local_timer_irqs);
  399. ipi_timer();
  400. }
  401. set_irq_regs(old_regs);
  402. }
  403. void show_local_irqs(struct seq_file *p, int prec)
  404. {
  405. unsigned int cpu;
  406. seq_printf(p, "%*s: ", prec, "LOC");
  407. for_each_present_cpu(cpu)
  408. seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
  409. seq_printf(p, " Local timer interrupts\n");
  410. }
  411. #endif
  412. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  413. static void smp_timer_broadcast(const struct cpumask *mask)
  414. {
  415. smp_cross_call(mask, IPI_TIMER);
  416. }
  417. #else
  418. #define smp_timer_broadcast NULL
  419. #endif
  420. #ifndef CONFIG_LOCAL_TIMERS
  421. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  422. struct clock_event_device *evt)
  423. {
  424. }
  425. static void local_timer_setup(struct clock_event_device *evt)
  426. {
  427. evt->name = "dummy_timer";
  428. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  429. CLOCK_EVT_FEAT_PERIODIC |
  430. CLOCK_EVT_FEAT_DUMMY;
  431. evt->rating = 400;
  432. evt->mult = 1;
  433. evt->set_mode = broadcast_timer_set_mode;
  434. clockevents_register_device(evt);
  435. }
  436. #endif
  437. void __cpuinit percpu_timer_setup(void)
  438. {
  439. unsigned int cpu = smp_processor_id();
  440. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  441. evt->cpumask = cpumask_of(cpu);
  442. evt->broadcast = smp_timer_broadcast;
  443. local_timer_setup(evt);
  444. }
  445. static DEFINE_SPINLOCK(stop_lock);
  446. /*
  447. * ipi_cpu_stop - handle IPI from smp_send_stop()
  448. */
  449. static void ipi_cpu_stop(unsigned int cpu)
  450. {
  451. if (system_state == SYSTEM_BOOTING ||
  452. system_state == SYSTEM_RUNNING) {
  453. spin_lock(&stop_lock);
  454. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  455. dump_stack();
  456. spin_unlock(&stop_lock);
  457. }
  458. set_cpu_online(cpu, false);
  459. local_fiq_disable();
  460. local_irq_disable();
  461. while (1)
  462. cpu_relax();
  463. }
  464. /*
  465. * Main handler for inter-processor interrupts
  466. */
  467. asmlinkage void __exception do_IPI(int ipinr, struct pt_regs *regs)
  468. {
  469. unsigned int cpu = smp_processor_id();
  470. struct pt_regs *old_regs = set_irq_regs(regs);
  471. if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
  472. __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
  473. switch (ipinr) {
  474. case IPI_TIMER:
  475. ipi_timer();
  476. break;
  477. case IPI_RESCHEDULE:
  478. /*
  479. * nothing more to do - eveything is
  480. * done on the interrupt return path
  481. */
  482. break;
  483. case IPI_CALL_FUNC:
  484. generic_smp_call_function_interrupt();
  485. break;
  486. case IPI_CALL_FUNC_SINGLE:
  487. generic_smp_call_function_single_interrupt();
  488. break;
  489. case IPI_CPU_STOP:
  490. ipi_cpu_stop(cpu);
  491. break;
  492. default:
  493. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  494. cpu, ipinr);
  495. break;
  496. }
  497. set_irq_regs(old_regs);
  498. }
  499. void smp_send_reschedule(int cpu)
  500. {
  501. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  502. }
  503. void smp_send_stop(void)
  504. {
  505. unsigned long timeout;
  506. if (num_online_cpus() > 1) {
  507. cpumask_t mask = cpu_online_map;
  508. cpu_clear(smp_processor_id(), mask);
  509. smp_cross_call(&mask, IPI_CPU_STOP);
  510. }
  511. /* Wait up to one second for other CPUs to stop */
  512. timeout = USEC_PER_SEC;
  513. while (num_online_cpus() > 1 && timeout--)
  514. udelay(1);
  515. if (num_online_cpus() > 1)
  516. pr_warning("SMP: failed to stop secondary CPUs\n");
  517. }
  518. /*
  519. * not supported here
  520. */
  521. int setup_profiling_timer(unsigned int multiplier)
  522. {
  523. return -EINVAL;
  524. }
  525. static void
  526. on_each_cpu_mask(void (*func)(void *), void *info, int wait,
  527. const struct cpumask *mask)
  528. {
  529. preempt_disable();
  530. smp_call_function_many(mask, func, info, wait);
  531. if (cpumask_test_cpu(smp_processor_id(), mask))
  532. func(info);
  533. preempt_enable();
  534. }
  535. /**********************************************************************/
  536. /*
  537. * TLB operations
  538. */
  539. struct tlb_args {
  540. struct vm_area_struct *ta_vma;
  541. unsigned long ta_start;
  542. unsigned long ta_end;
  543. };
  544. static inline void ipi_flush_tlb_all(void *ignored)
  545. {
  546. local_flush_tlb_all();
  547. }
  548. static inline void ipi_flush_tlb_mm(void *arg)
  549. {
  550. struct mm_struct *mm = (struct mm_struct *)arg;
  551. local_flush_tlb_mm(mm);
  552. }
  553. static inline void ipi_flush_tlb_page(void *arg)
  554. {
  555. struct tlb_args *ta = (struct tlb_args *)arg;
  556. local_flush_tlb_page(ta->ta_vma, ta->ta_start);
  557. }
  558. static inline void ipi_flush_tlb_kernel_page(void *arg)
  559. {
  560. struct tlb_args *ta = (struct tlb_args *)arg;
  561. local_flush_tlb_kernel_page(ta->ta_start);
  562. }
  563. static inline void ipi_flush_tlb_range(void *arg)
  564. {
  565. struct tlb_args *ta = (struct tlb_args *)arg;
  566. local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
  567. }
  568. static inline void ipi_flush_tlb_kernel_range(void *arg)
  569. {
  570. struct tlb_args *ta = (struct tlb_args *)arg;
  571. local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
  572. }
  573. void flush_tlb_all(void)
  574. {
  575. if (tlb_ops_need_broadcast())
  576. on_each_cpu(ipi_flush_tlb_all, NULL, 1);
  577. else
  578. local_flush_tlb_all();
  579. }
  580. void flush_tlb_mm(struct mm_struct *mm)
  581. {
  582. if (tlb_ops_need_broadcast())
  583. on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mm_cpumask(mm));
  584. else
  585. local_flush_tlb_mm(mm);
  586. }
  587. void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
  588. {
  589. if (tlb_ops_need_broadcast()) {
  590. struct tlb_args ta;
  591. ta.ta_vma = vma;
  592. ta.ta_start = uaddr;
  593. on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mm_cpumask(vma->vm_mm));
  594. } else
  595. local_flush_tlb_page(vma, uaddr);
  596. }
  597. void flush_tlb_kernel_page(unsigned long kaddr)
  598. {
  599. if (tlb_ops_need_broadcast()) {
  600. struct tlb_args ta;
  601. ta.ta_start = kaddr;
  602. on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
  603. } else
  604. local_flush_tlb_kernel_page(kaddr);
  605. }
  606. void flush_tlb_range(struct vm_area_struct *vma,
  607. unsigned long start, unsigned long end)
  608. {
  609. if (tlb_ops_need_broadcast()) {
  610. struct tlb_args ta;
  611. ta.ta_vma = vma;
  612. ta.ta_start = start;
  613. ta.ta_end = end;
  614. on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mm_cpumask(vma->vm_mm));
  615. } else
  616. local_flush_tlb_range(vma, start, end);
  617. }
  618. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  619. {
  620. if (tlb_ops_need_broadcast()) {
  621. struct tlb_args ta;
  622. ta.ta_start = start;
  623. ta.ta_end = end;
  624. on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
  625. } else
  626. local_flush_tlb_kernel_range(start, end);
  627. }