intel_display.c 262 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. /* given values */
  47. int n;
  48. int m1, m2;
  49. int p1, p2;
  50. /* derived values */
  51. int dot;
  52. int vco;
  53. int m;
  54. int p;
  55. } intel_clock_t;
  56. typedef struct {
  57. int min, max;
  58. } intel_range_t;
  59. typedef struct {
  60. int dot_limit;
  61. int p2_slow, p2_fast;
  62. } intel_p2_t;
  63. #define INTEL_P2_NUM 2
  64. typedef struct intel_limit intel_limit_t;
  65. struct intel_limit {
  66. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  67. intel_p2_t p2;
  68. /**
  69. * find_pll() - Find the best values for the PLL
  70. * @limit: limits for the PLL
  71. * @crtc: current CRTC
  72. * @target: target frequency in kHz
  73. * @refclk: reference clock frequency in kHz
  74. * @match_clock: if provided, @best_clock P divider must
  75. * match the P divider from @match_clock
  76. * used for LVDS downclocking
  77. * @best_clock: best PLL values found
  78. *
  79. * Returns true on success, false on failure.
  80. */
  81. bool (*find_pll)(const intel_limit_t *limit,
  82. struct drm_crtc *crtc,
  83. int target, int refclk,
  84. intel_clock_t *match_clock,
  85. intel_clock_t *best_clock);
  86. };
  87. /* FDI */
  88. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  89. int
  90. intel_pch_rawclk(struct drm_device *dev)
  91. {
  92. struct drm_i915_private *dev_priv = dev->dev_private;
  93. WARN_ON(!HAS_PCH_SPLIT(dev));
  94. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  95. }
  96. static bool
  97. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  98. int target, int refclk, intel_clock_t *match_clock,
  99. intel_clock_t *best_clock);
  100. static bool
  101. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  102. int target, int refclk, intel_clock_t *match_clock,
  103. intel_clock_t *best_clock);
  104. static bool
  105. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  106. int target, int refclk, intel_clock_t *match_clock,
  107. intel_clock_t *best_clock);
  108. static bool
  109. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  110. int target, int refclk, intel_clock_t *match_clock,
  111. intel_clock_t *best_clock);
  112. static bool
  113. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  114. int target, int refclk, intel_clock_t *match_clock,
  115. intel_clock_t *best_clock);
  116. static inline u32 /* units of 100MHz */
  117. intel_fdi_link_freq(struct drm_device *dev)
  118. {
  119. if (IS_GEN5(dev)) {
  120. struct drm_i915_private *dev_priv = dev->dev_private;
  121. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  122. } else
  123. return 27;
  124. }
  125. static const intel_limit_t intel_limits_i8xx_dvo = {
  126. .dot = { .min = 25000, .max = 350000 },
  127. .vco = { .min = 930000, .max = 1400000 },
  128. .n = { .min = 3, .max = 16 },
  129. .m = { .min = 96, .max = 140 },
  130. .m1 = { .min = 18, .max = 26 },
  131. .m2 = { .min = 6, .max = 16 },
  132. .p = { .min = 4, .max = 128 },
  133. .p1 = { .min = 2, .max = 33 },
  134. .p2 = { .dot_limit = 165000,
  135. .p2_slow = 4, .p2_fast = 2 },
  136. .find_pll = intel_find_best_PLL,
  137. };
  138. static const intel_limit_t intel_limits_i8xx_lvds = {
  139. .dot = { .min = 25000, .max = 350000 },
  140. .vco = { .min = 930000, .max = 1400000 },
  141. .n = { .min = 3, .max = 16 },
  142. .m = { .min = 96, .max = 140 },
  143. .m1 = { .min = 18, .max = 26 },
  144. .m2 = { .min = 6, .max = 16 },
  145. .p = { .min = 4, .max = 128 },
  146. .p1 = { .min = 1, .max = 6 },
  147. .p2 = { .dot_limit = 165000,
  148. .p2_slow = 14, .p2_fast = 7 },
  149. .find_pll = intel_find_best_PLL,
  150. };
  151. static const intel_limit_t intel_limits_i9xx_sdvo = {
  152. .dot = { .min = 20000, .max = 400000 },
  153. .vco = { .min = 1400000, .max = 2800000 },
  154. .n = { .min = 1, .max = 6 },
  155. .m = { .min = 70, .max = 120 },
  156. .m1 = { .min = 8, .max = 18 },
  157. .m2 = { .min = 3, .max = 7 },
  158. .p = { .min = 5, .max = 80 },
  159. .p1 = { .min = 1, .max = 8 },
  160. .p2 = { .dot_limit = 200000,
  161. .p2_slow = 10, .p2_fast = 5 },
  162. .find_pll = intel_find_best_PLL,
  163. };
  164. static const intel_limit_t intel_limits_i9xx_lvds = {
  165. .dot = { .min = 20000, .max = 400000 },
  166. .vco = { .min = 1400000, .max = 2800000 },
  167. .n = { .min = 1, .max = 6 },
  168. .m = { .min = 70, .max = 120 },
  169. .m1 = { .min = 8, .max = 18 },
  170. .m2 = { .min = 3, .max = 7 },
  171. .p = { .min = 7, .max = 98 },
  172. .p1 = { .min = 1, .max = 8 },
  173. .p2 = { .dot_limit = 112000,
  174. .p2_slow = 14, .p2_fast = 7 },
  175. .find_pll = intel_find_best_PLL,
  176. };
  177. static const intel_limit_t intel_limits_g4x_sdvo = {
  178. .dot = { .min = 25000, .max = 270000 },
  179. .vco = { .min = 1750000, .max = 3500000},
  180. .n = { .min = 1, .max = 4 },
  181. .m = { .min = 104, .max = 138 },
  182. .m1 = { .min = 17, .max = 23 },
  183. .m2 = { .min = 5, .max = 11 },
  184. .p = { .min = 10, .max = 30 },
  185. .p1 = { .min = 1, .max = 3},
  186. .p2 = { .dot_limit = 270000,
  187. .p2_slow = 10,
  188. .p2_fast = 10
  189. },
  190. .find_pll = intel_g4x_find_best_PLL,
  191. };
  192. static const intel_limit_t intel_limits_g4x_hdmi = {
  193. .dot = { .min = 22000, .max = 400000 },
  194. .vco = { .min = 1750000, .max = 3500000},
  195. .n = { .min = 1, .max = 4 },
  196. .m = { .min = 104, .max = 138 },
  197. .m1 = { .min = 16, .max = 23 },
  198. .m2 = { .min = 5, .max = 11 },
  199. .p = { .min = 5, .max = 80 },
  200. .p1 = { .min = 1, .max = 8},
  201. .p2 = { .dot_limit = 165000,
  202. .p2_slow = 10, .p2_fast = 5 },
  203. .find_pll = intel_g4x_find_best_PLL,
  204. };
  205. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  206. .dot = { .min = 20000, .max = 115000 },
  207. .vco = { .min = 1750000, .max = 3500000 },
  208. .n = { .min = 1, .max = 3 },
  209. .m = { .min = 104, .max = 138 },
  210. .m1 = { .min = 17, .max = 23 },
  211. .m2 = { .min = 5, .max = 11 },
  212. .p = { .min = 28, .max = 112 },
  213. .p1 = { .min = 2, .max = 8 },
  214. .p2 = { .dot_limit = 0,
  215. .p2_slow = 14, .p2_fast = 14
  216. },
  217. .find_pll = intel_g4x_find_best_PLL,
  218. };
  219. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  220. .dot = { .min = 80000, .max = 224000 },
  221. .vco = { .min = 1750000, .max = 3500000 },
  222. .n = { .min = 1, .max = 3 },
  223. .m = { .min = 104, .max = 138 },
  224. .m1 = { .min = 17, .max = 23 },
  225. .m2 = { .min = 5, .max = 11 },
  226. .p = { .min = 14, .max = 42 },
  227. .p1 = { .min = 2, .max = 6 },
  228. .p2 = { .dot_limit = 0,
  229. .p2_slow = 7, .p2_fast = 7
  230. },
  231. .find_pll = intel_g4x_find_best_PLL,
  232. };
  233. static const intel_limit_t intel_limits_g4x_display_port = {
  234. .dot = { .min = 161670, .max = 227000 },
  235. .vco = { .min = 1750000, .max = 3500000},
  236. .n = { .min = 1, .max = 2 },
  237. .m = { .min = 97, .max = 108 },
  238. .m1 = { .min = 0x10, .max = 0x12 },
  239. .m2 = { .min = 0x05, .max = 0x06 },
  240. .p = { .min = 10, .max = 20 },
  241. .p1 = { .min = 1, .max = 2},
  242. .p2 = { .dot_limit = 0,
  243. .p2_slow = 10, .p2_fast = 10 },
  244. .find_pll = intel_find_pll_g4x_dp,
  245. };
  246. static const intel_limit_t intel_limits_pineview_sdvo = {
  247. .dot = { .min = 20000, .max = 400000},
  248. .vco = { .min = 1700000, .max = 3500000 },
  249. /* Pineview's Ncounter is a ring counter */
  250. .n = { .min = 3, .max = 6 },
  251. .m = { .min = 2, .max = 256 },
  252. /* Pineview only has one combined m divider, which we treat as m2. */
  253. .m1 = { .min = 0, .max = 0 },
  254. .m2 = { .min = 0, .max = 254 },
  255. .p = { .min = 5, .max = 80 },
  256. .p1 = { .min = 1, .max = 8 },
  257. .p2 = { .dot_limit = 200000,
  258. .p2_slow = 10, .p2_fast = 5 },
  259. .find_pll = intel_find_best_PLL,
  260. };
  261. static const intel_limit_t intel_limits_pineview_lvds = {
  262. .dot = { .min = 20000, .max = 400000 },
  263. .vco = { .min = 1700000, .max = 3500000 },
  264. .n = { .min = 3, .max = 6 },
  265. .m = { .min = 2, .max = 256 },
  266. .m1 = { .min = 0, .max = 0 },
  267. .m2 = { .min = 0, .max = 254 },
  268. .p = { .min = 7, .max = 112 },
  269. .p1 = { .min = 1, .max = 8 },
  270. .p2 = { .dot_limit = 112000,
  271. .p2_slow = 14, .p2_fast = 14 },
  272. .find_pll = intel_find_best_PLL,
  273. };
  274. /* Ironlake / Sandybridge
  275. *
  276. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  277. * the range value for them is (actual_value - 2).
  278. */
  279. static const intel_limit_t intel_limits_ironlake_dac = {
  280. .dot = { .min = 25000, .max = 350000 },
  281. .vco = { .min = 1760000, .max = 3510000 },
  282. .n = { .min = 1, .max = 5 },
  283. .m = { .min = 79, .max = 127 },
  284. .m1 = { .min = 12, .max = 22 },
  285. .m2 = { .min = 5, .max = 9 },
  286. .p = { .min = 5, .max = 80 },
  287. .p1 = { .min = 1, .max = 8 },
  288. .p2 = { .dot_limit = 225000,
  289. .p2_slow = 10, .p2_fast = 5 },
  290. .find_pll = intel_g4x_find_best_PLL,
  291. };
  292. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  293. .dot = { .min = 25000, .max = 350000 },
  294. .vco = { .min = 1760000, .max = 3510000 },
  295. .n = { .min = 1, .max = 3 },
  296. .m = { .min = 79, .max = 118 },
  297. .m1 = { .min = 12, .max = 22 },
  298. .m2 = { .min = 5, .max = 9 },
  299. .p = { .min = 28, .max = 112 },
  300. .p1 = { .min = 2, .max = 8 },
  301. .p2 = { .dot_limit = 225000,
  302. .p2_slow = 14, .p2_fast = 14 },
  303. .find_pll = intel_g4x_find_best_PLL,
  304. };
  305. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  306. .dot = { .min = 25000, .max = 350000 },
  307. .vco = { .min = 1760000, .max = 3510000 },
  308. .n = { .min = 1, .max = 3 },
  309. .m = { .min = 79, .max = 127 },
  310. .m1 = { .min = 12, .max = 22 },
  311. .m2 = { .min = 5, .max = 9 },
  312. .p = { .min = 14, .max = 56 },
  313. .p1 = { .min = 2, .max = 8 },
  314. .p2 = { .dot_limit = 225000,
  315. .p2_slow = 7, .p2_fast = 7 },
  316. .find_pll = intel_g4x_find_best_PLL,
  317. };
  318. /* LVDS 100mhz refclk limits. */
  319. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  320. .dot = { .min = 25000, .max = 350000 },
  321. .vco = { .min = 1760000, .max = 3510000 },
  322. .n = { .min = 1, .max = 2 },
  323. .m = { .min = 79, .max = 126 },
  324. .m1 = { .min = 12, .max = 22 },
  325. .m2 = { .min = 5, .max = 9 },
  326. .p = { .min = 28, .max = 112 },
  327. .p1 = { .min = 2, .max = 8 },
  328. .p2 = { .dot_limit = 225000,
  329. .p2_slow = 14, .p2_fast = 14 },
  330. .find_pll = intel_g4x_find_best_PLL,
  331. };
  332. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  333. .dot = { .min = 25000, .max = 350000 },
  334. .vco = { .min = 1760000, .max = 3510000 },
  335. .n = { .min = 1, .max = 3 },
  336. .m = { .min = 79, .max = 126 },
  337. .m1 = { .min = 12, .max = 22 },
  338. .m2 = { .min = 5, .max = 9 },
  339. .p = { .min = 14, .max = 42 },
  340. .p1 = { .min = 2, .max = 6 },
  341. .p2 = { .dot_limit = 225000,
  342. .p2_slow = 7, .p2_fast = 7 },
  343. .find_pll = intel_g4x_find_best_PLL,
  344. };
  345. static const intel_limit_t intel_limits_ironlake_display_port = {
  346. .dot = { .min = 25000, .max = 350000 },
  347. .vco = { .min = 1760000, .max = 3510000},
  348. .n = { .min = 1, .max = 2 },
  349. .m = { .min = 81, .max = 90 },
  350. .m1 = { .min = 12, .max = 22 },
  351. .m2 = { .min = 5, .max = 9 },
  352. .p = { .min = 10, .max = 20 },
  353. .p1 = { .min = 1, .max = 2},
  354. .p2 = { .dot_limit = 0,
  355. .p2_slow = 10, .p2_fast = 10 },
  356. .find_pll = intel_find_pll_ironlake_dp,
  357. };
  358. static const intel_limit_t intel_limits_vlv_dac = {
  359. .dot = { .min = 25000, .max = 270000 },
  360. .vco = { .min = 4000000, .max = 6000000 },
  361. .n = { .min = 1, .max = 7 },
  362. .m = { .min = 22, .max = 450 }, /* guess */
  363. .m1 = { .min = 2, .max = 3 },
  364. .m2 = { .min = 11, .max = 156 },
  365. .p = { .min = 10, .max = 30 },
  366. .p1 = { .min = 1, .max = 3 },
  367. .p2 = { .dot_limit = 270000,
  368. .p2_slow = 2, .p2_fast = 20 },
  369. .find_pll = intel_vlv_find_best_pll,
  370. };
  371. static const intel_limit_t intel_limits_vlv_hdmi = {
  372. .dot = { .min = 25000, .max = 270000 },
  373. .vco = { .min = 4000000, .max = 6000000 },
  374. .n = { .min = 1, .max = 7 },
  375. .m = { .min = 60, .max = 300 }, /* guess */
  376. .m1 = { .min = 2, .max = 3 },
  377. .m2 = { .min = 11, .max = 156 },
  378. .p = { .min = 10, .max = 30 },
  379. .p1 = { .min = 2, .max = 3 },
  380. .p2 = { .dot_limit = 270000,
  381. .p2_slow = 2, .p2_fast = 20 },
  382. .find_pll = intel_vlv_find_best_pll,
  383. };
  384. static const intel_limit_t intel_limits_vlv_dp = {
  385. .dot = { .min = 25000, .max = 270000 },
  386. .vco = { .min = 4000000, .max = 6000000 },
  387. .n = { .min = 1, .max = 7 },
  388. .m = { .min = 22, .max = 450 },
  389. .m1 = { .min = 2, .max = 3 },
  390. .m2 = { .min = 11, .max = 156 },
  391. .p = { .min = 10, .max = 30 },
  392. .p1 = { .min = 1, .max = 3 },
  393. .p2 = { .dot_limit = 270000,
  394. .p2_slow = 2, .p2_fast = 20 },
  395. .find_pll = intel_vlv_find_best_pll,
  396. };
  397. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  398. {
  399. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  400. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  401. DRM_ERROR("DPIO idle wait timed out\n");
  402. return 0;
  403. }
  404. I915_WRITE(DPIO_REG, reg);
  405. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  406. DPIO_BYTE);
  407. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  408. DRM_ERROR("DPIO read wait timed out\n");
  409. return 0;
  410. }
  411. return I915_READ(DPIO_DATA);
  412. }
  413. void intel_dpio_write(struct drm_i915_private *dev_priv, int reg, u32 val)
  414. {
  415. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  416. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  417. DRM_ERROR("DPIO idle wait timed out\n");
  418. return;
  419. }
  420. I915_WRITE(DPIO_DATA, val);
  421. I915_WRITE(DPIO_REG, reg);
  422. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  423. DPIO_BYTE);
  424. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  425. DRM_ERROR("DPIO write wait timed out\n");
  426. }
  427. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  428. int refclk)
  429. {
  430. struct drm_device *dev = crtc->dev;
  431. const intel_limit_t *limit;
  432. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  433. if (intel_is_dual_link_lvds(dev)) {
  434. if (refclk == 100000)
  435. limit = &intel_limits_ironlake_dual_lvds_100m;
  436. else
  437. limit = &intel_limits_ironlake_dual_lvds;
  438. } else {
  439. if (refclk == 100000)
  440. limit = &intel_limits_ironlake_single_lvds_100m;
  441. else
  442. limit = &intel_limits_ironlake_single_lvds;
  443. }
  444. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  445. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  446. limit = &intel_limits_ironlake_display_port;
  447. else
  448. limit = &intel_limits_ironlake_dac;
  449. return limit;
  450. }
  451. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  452. {
  453. struct drm_device *dev = crtc->dev;
  454. const intel_limit_t *limit;
  455. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  456. if (intel_is_dual_link_lvds(dev))
  457. limit = &intel_limits_g4x_dual_channel_lvds;
  458. else
  459. limit = &intel_limits_g4x_single_channel_lvds;
  460. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  461. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  462. limit = &intel_limits_g4x_hdmi;
  463. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  464. limit = &intel_limits_g4x_sdvo;
  465. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  466. limit = &intel_limits_g4x_display_port;
  467. } else /* The option is for other outputs */
  468. limit = &intel_limits_i9xx_sdvo;
  469. return limit;
  470. }
  471. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  472. {
  473. struct drm_device *dev = crtc->dev;
  474. const intel_limit_t *limit;
  475. if (HAS_PCH_SPLIT(dev))
  476. limit = intel_ironlake_limit(crtc, refclk);
  477. else if (IS_G4X(dev)) {
  478. limit = intel_g4x_limit(crtc);
  479. } else if (IS_PINEVIEW(dev)) {
  480. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  481. limit = &intel_limits_pineview_lvds;
  482. else
  483. limit = &intel_limits_pineview_sdvo;
  484. } else if (IS_VALLEYVIEW(dev)) {
  485. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  486. limit = &intel_limits_vlv_dac;
  487. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  488. limit = &intel_limits_vlv_hdmi;
  489. else
  490. limit = &intel_limits_vlv_dp;
  491. } else if (!IS_GEN2(dev)) {
  492. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  493. limit = &intel_limits_i9xx_lvds;
  494. else
  495. limit = &intel_limits_i9xx_sdvo;
  496. } else {
  497. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  498. limit = &intel_limits_i8xx_lvds;
  499. else
  500. limit = &intel_limits_i8xx_dvo;
  501. }
  502. return limit;
  503. }
  504. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  505. static void pineview_clock(int refclk, intel_clock_t *clock)
  506. {
  507. clock->m = clock->m2 + 2;
  508. clock->p = clock->p1 * clock->p2;
  509. clock->vco = refclk * clock->m / clock->n;
  510. clock->dot = clock->vco / clock->p;
  511. }
  512. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  513. {
  514. if (IS_PINEVIEW(dev)) {
  515. pineview_clock(refclk, clock);
  516. return;
  517. }
  518. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  519. clock->p = clock->p1 * clock->p2;
  520. clock->vco = refclk * clock->m / (clock->n + 2);
  521. clock->dot = clock->vco / clock->p;
  522. }
  523. /**
  524. * Returns whether any output on the specified pipe is of the specified type
  525. */
  526. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  527. {
  528. struct drm_device *dev = crtc->dev;
  529. struct intel_encoder *encoder;
  530. for_each_encoder_on_crtc(dev, crtc, encoder)
  531. if (encoder->type == type)
  532. return true;
  533. return false;
  534. }
  535. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  536. /**
  537. * Returns whether the given set of divisors are valid for a given refclk with
  538. * the given connectors.
  539. */
  540. static bool intel_PLL_is_valid(struct drm_device *dev,
  541. const intel_limit_t *limit,
  542. const intel_clock_t *clock)
  543. {
  544. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  545. INTELPllInvalid("p1 out of range\n");
  546. if (clock->p < limit->p.min || limit->p.max < clock->p)
  547. INTELPllInvalid("p out of range\n");
  548. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  549. INTELPllInvalid("m2 out of range\n");
  550. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  551. INTELPllInvalid("m1 out of range\n");
  552. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  553. INTELPllInvalid("m1 <= m2\n");
  554. if (clock->m < limit->m.min || limit->m.max < clock->m)
  555. INTELPllInvalid("m out of range\n");
  556. if (clock->n < limit->n.min || limit->n.max < clock->n)
  557. INTELPllInvalid("n out of range\n");
  558. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  559. INTELPllInvalid("vco out of range\n");
  560. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  561. * connector, etc., rather than just a single range.
  562. */
  563. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  564. INTELPllInvalid("dot out of range\n");
  565. return true;
  566. }
  567. static bool
  568. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  569. int target, int refclk, intel_clock_t *match_clock,
  570. intel_clock_t *best_clock)
  571. {
  572. struct drm_device *dev = crtc->dev;
  573. intel_clock_t clock;
  574. int err = target;
  575. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  576. /*
  577. * For LVDS just rely on its current settings for dual-channel.
  578. * We haven't figured out how to reliably set up different
  579. * single/dual channel state, if we even can.
  580. */
  581. if (intel_is_dual_link_lvds(dev))
  582. clock.p2 = limit->p2.p2_fast;
  583. else
  584. clock.p2 = limit->p2.p2_slow;
  585. } else {
  586. if (target < limit->p2.dot_limit)
  587. clock.p2 = limit->p2.p2_slow;
  588. else
  589. clock.p2 = limit->p2.p2_fast;
  590. }
  591. memset(best_clock, 0, sizeof(*best_clock));
  592. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  593. clock.m1++) {
  594. for (clock.m2 = limit->m2.min;
  595. clock.m2 <= limit->m2.max; clock.m2++) {
  596. /* m1 is always 0 in Pineview */
  597. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  598. break;
  599. for (clock.n = limit->n.min;
  600. clock.n <= limit->n.max; clock.n++) {
  601. for (clock.p1 = limit->p1.min;
  602. clock.p1 <= limit->p1.max; clock.p1++) {
  603. int this_err;
  604. intel_clock(dev, refclk, &clock);
  605. if (!intel_PLL_is_valid(dev, limit,
  606. &clock))
  607. continue;
  608. if (match_clock &&
  609. clock.p != match_clock->p)
  610. continue;
  611. this_err = abs(clock.dot - target);
  612. if (this_err < err) {
  613. *best_clock = clock;
  614. err = this_err;
  615. }
  616. }
  617. }
  618. }
  619. }
  620. return (err != target);
  621. }
  622. static bool
  623. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  624. int target, int refclk, intel_clock_t *match_clock,
  625. intel_clock_t *best_clock)
  626. {
  627. struct drm_device *dev = crtc->dev;
  628. intel_clock_t clock;
  629. int max_n;
  630. bool found;
  631. /* approximately equals target * 0.00585 */
  632. int err_most = (target >> 8) + (target >> 9);
  633. found = false;
  634. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  635. int lvds_reg;
  636. if (HAS_PCH_SPLIT(dev))
  637. lvds_reg = PCH_LVDS;
  638. else
  639. lvds_reg = LVDS;
  640. if (intel_is_dual_link_lvds(dev))
  641. clock.p2 = limit->p2.p2_fast;
  642. else
  643. clock.p2 = limit->p2.p2_slow;
  644. } else {
  645. if (target < limit->p2.dot_limit)
  646. clock.p2 = limit->p2.p2_slow;
  647. else
  648. clock.p2 = limit->p2.p2_fast;
  649. }
  650. memset(best_clock, 0, sizeof(*best_clock));
  651. max_n = limit->n.max;
  652. /* based on hardware requirement, prefer smaller n to precision */
  653. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  654. /* based on hardware requirement, prefere larger m1,m2 */
  655. for (clock.m1 = limit->m1.max;
  656. clock.m1 >= limit->m1.min; clock.m1--) {
  657. for (clock.m2 = limit->m2.max;
  658. clock.m2 >= limit->m2.min; clock.m2--) {
  659. for (clock.p1 = limit->p1.max;
  660. clock.p1 >= limit->p1.min; clock.p1--) {
  661. int this_err;
  662. intel_clock(dev, refclk, &clock);
  663. if (!intel_PLL_is_valid(dev, limit,
  664. &clock))
  665. continue;
  666. if (match_clock &&
  667. clock.p != match_clock->p)
  668. continue;
  669. this_err = abs(clock.dot - target);
  670. if (this_err < err_most) {
  671. *best_clock = clock;
  672. err_most = this_err;
  673. max_n = clock.n;
  674. found = true;
  675. }
  676. }
  677. }
  678. }
  679. }
  680. return found;
  681. }
  682. static bool
  683. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  684. int target, int refclk, intel_clock_t *match_clock,
  685. intel_clock_t *best_clock)
  686. {
  687. struct drm_device *dev = crtc->dev;
  688. intel_clock_t clock;
  689. if (target < 200000) {
  690. clock.n = 1;
  691. clock.p1 = 2;
  692. clock.p2 = 10;
  693. clock.m1 = 12;
  694. clock.m2 = 9;
  695. } else {
  696. clock.n = 2;
  697. clock.p1 = 1;
  698. clock.p2 = 10;
  699. clock.m1 = 14;
  700. clock.m2 = 8;
  701. }
  702. intel_clock(dev, refclk, &clock);
  703. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  704. return true;
  705. }
  706. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  707. static bool
  708. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  709. int target, int refclk, intel_clock_t *match_clock,
  710. intel_clock_t *best_clock)
  711. {
  712. intel_clock_t clock;
  713. if (target < 200000) {
  714. clock.p1 = 2;
  715. clock.p2 = 10;
  716. clock.n = 2;
  717. clock.m1 = 23;
  718. clock.m2 = 8;
  719. } else {
  720. clock.p1 = 1;
  721. clock.p2 = 10;
  722. clock.n = 1;
  723. clock.m1 = 14;
  724. clock.m2 = 2;
  725. }
  726. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  727. clock.p = (clock.p1 * clock.p2);
  728. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  729. clock.vco = 0;
  730. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  731. return true;
  732. }
  733. static bool
  734. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  735. int target, int refclk, intel_clock_t *match_clock,
  736. intel_clock_t *best_clock)
  737. {
  738. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  739. u32 m, n, fastclk;
  740. u32 updrate, minupdate, fracbits, p;
  741. unsigned long bestppm, ppm, absppm;
  742. int dotclk, flag;
  743. flag = 0;
  744. dotclk = target * 1000;
  745. bestppm = 1000000;
  746. ppm = absppm = 0;
  747. fastclk = dotclk / (2*100);
  748. updrate = 0;
  749. minupdate = 19200;
  750. fracbits = 1;
  751. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  752. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  753. /* based on hardware requirement, prefer smaller n to precision */
  754. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  755. updrate = refclk / n;
  756. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  757. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  758. if (p2 > 10)
  759. p2 = p2 - 1;
  760. p = p1 * p2;
  761. /* based on hardware requirement, prefer bigger m1,m2 values */
  762. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  763. m2 = (((2*(fastclk * p * n / m1 )) +
  764. refclk) / (2*refclk));
  765. m = m1 * m2;
  766. vco = updrate * m;
  767. if (vco >= limit->vco.min && vco < limit->vco.max) {
  768. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  769. absppm = (ppm > 0) ? ppm : (-ppm);
  770. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  771. bestppm = 0;
  772. flag = 1;
  773. }
  774. if (absppm < bestppm - 10) {
  775. bestppm = absppm;
  776. flag = 1;
  777. }
  778. if (flag) {
  779. bestn = n;
  780. bestm1 = m1;
  781. bestm2 = m2;
  782. bestp1 = p1;
  783. bestp2 = p2;
  784. flag = 0;
  785. }
  786. }
  787. }
  788. }
  789. }
  790. }
  791. best_clock->n = bestn;
  792. best_clock->m1 = bestm1;
  793. best_clock->m2 = bestm2;
  794. best_clock->p1 = bestp1;
  795. best_clock->p2 = bestp2;
  796. return true;
  797. }
  798. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  799. enum pipe pipe)
  800. {
  801. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  802. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  803. return intel_crtc->config.cpu_transcoder;
  804. }
  805. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  806. {
  807. struct drm_i915_private *dev_priv = dev->dev_private;
  808. u32 frame, frame_reg = PIPEFRAME(pipe);
  809. frame = I915_READ(frame_reg);
  810. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  811. DRM_DEBUG_KMS("vblank wait timed out\n");
  812. }
  813. /**
  814. * intel_wait_for_vblank - wait for vblank on a given pipe
  815. * @dev: drm device
  816. * @pipe: pipe to wait for
  817. *
  818. * Wait for vblank to occur on a given pipe. Needed for various bits of
  819. * mode setting code.
  820. */
  821. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  822. {
  823. struct drm_i915_private *dev_priv = dev->dev_private;
  824. int pipestat_reg = PIPESTAT(pipe);
  825. if (INTEL_INFO(dev)->gen >= 5) {
  826. ironlake_wait_for_vblank(dev, pipe);
  827. return;
  828. }
  829. /* Clear existing vblank status. Note this will clear any other
  830. * sticky status fields as well.
  831. *
  832. * This races with i915_driver_irq_handler() with the result
  833. * that either function could miss a vblank event. Here it is not
  834. * fatal, as we will either wait upon the next vblank interrupt or
  835. * timeout. Generally speaking intel_wait_for_vblank() is only
  836. * called during modeset at which time the GPU should be idle and
  837. * should *not* be performing page flips and thus not waiting on
  838. * vblanks...
  839. * Currently, the result of us stealing a vblank from the irq
  840. * handler is that a single frame will be skipped during swapbuffers.
  841. */
  842. I915_WRITE(pipestat_reg,
  843. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  844. /* Wait for vblank interrupt bit to set */
  845. if (wait_for(I915_READ(pipestat_reg) &
  846. PIPE_VBLANK_INTERRUPT_STATUS,
  847. 50))
  848. DRM_DEBUG_KMS("vblank wait timed out\n");
  849. }
  850. /*
  851. * intel_wait_for_pipe_off - wait for pipe to turn off
  852. * @dev: drm device
  853. * @pipe: pipe to wait for
  854. *
  855. * After disabling a pipe, we can't wait for vblank in the usual way,
  856. * spinning on the vblank interrupt status bit, since we won't actually
  857. * see an interrupt when the pipe is disabled.
  858. *
  859. * On Gen4 and above:
  860. * wait for the pipe register state bit to turn off
  861. *
  862. * Otherwise:
  863. * wait for the display line value to settle (it usually
  864. * ends up stopping at the start of the next frame).
  865. *
  866. */
  867. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  868. {
  869. struct drm_i915_private *dev_priv = dev->dev_private;
  870. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  871. pipe);
  872. if (INTEL_INFO(dev)->gen >= 4) {
  873. int reg = PIPECONF(cpu_transcoder);
  874. /* Wait for the Pipe State to go off */
  875. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  876. 100))
  877. WARN(1, "pipe_off wait timed out\n");
  878. } else {
  879. u32 last_line, line_mask;
  880. int reg = PIPEDSL(pipe);
  881. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  882. if (IS_GEN2(dev))
  883. line_mask = DSL_LINEMASK_GEN2;
  884. else
  885. line_mask = DSL_LINEMASK_GEN3;
  886. /* Wait for the display line to settle */
  887. do {
  888. last_line = I915_READ(reg) & line_mask;
  889. mdelay(5);
  890. } while (((I915_READ(reg) & line_mask) != last_line) &&
  891. time_after(timeout, jiffies));
  892. if (time_after(jiffies, timeout))
  893. WARN(1, "pipe_off wait timed out\n");
  894. }
  895. }
  896. /*
  897. * ibx_digital_port_connected - is the specified port connected?
  898. * @dev_priv: i915 private structure
  899. * @port: the port to test
  900. *
  901. * Returns true if @port is connected, false otherwise.
  902. */
  903. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  904. struct intel_digital_port *port)
  905. {
  906. u32 bit;
  907. if (HAS_PCH_IBX(dev_priv->dev)) {
  908. switch(port->port) {
  909. case PORT_B:
  910. bit = SDE_PORTB_HOTPLUG;
  911. break;
  912. case PORT_C:
  913. bit = SDE_PORTC_HOTPLUG;
  914. break;
  915. case PORT_D:
  916. bit = SDE_PORTD_HOTPLUG;
  917. break;
  918. default:
  919. return true;
  920. }
  921. } else {
  922. switch(port->port) {
  923. case PORT_B:
  924. bit = SDE_PORTB_HOTPLUG_CPT;
  925. break;
  926. case PORT_C:
  927. bit = SDE_PORTC_HOTPLUG_CPT;
  928. break;
  929. case PORT_D:
  930. bit = SDE_PORTD_HOTPLUG_CPT;
  931. break;
  932. default:
  933. return true;
  934. }
  935. }
  936. return I915_READ(SDEISR) & bit;
  937. }
  938. static const char *state_string(bool enabled)
  939. {
  940. return enabled ? "on" : "off";
  941. }
  942. /* Only for pre-ILK configs */
  943. static void assert_pll(struct drm_i915_private *dev_priv,
  944. enum pipe pipe, bool state)
  945. {
  946. int reg;
  947. u32 val;
  948. bool cur_state;
  949. reg = DPLL(pipe);
  950. val = I915_READ(reg);
  951. cur_state = !!(val & DPLL_VCO_ENABLE);
  952. WARN(cur_state != state,
  953. "PLL state assertion failure (expected %s, current %s)\n",
  954. state_string(state), state_string(cur_state));
  955. }
  956. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  957. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  958. /* For ILK+ */
  959. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  960. struct intel_pch_pll *pll,
  961. struct intel_crtc *crtc,
  962. bool state)
  963. {
  964. u32 val;
  965. bool cur_state;
  966. if (HAS_PCH_LPT(dev_priv->dev)) {
  967. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  968. return;
  969. }
  970. if (WARN (!pll,
  971. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  972. return;
  973. val = I915_READ(pll->pll_reg);
  974. cur_state = !!(val & DPLL_VCO_ENABLE);
  975. WARN(cur_state != state,
  976. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  977. pll->pll_reg, state_string(state), state_string(cur_state), val);
  978. /* Make sure the selected PLL is correctly attached to the transcoder */
  979. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  980. u32 pch_dpll;
  981. pch_dpll = I915_READ(PCH_DPLL_SEL);
  982. cur_state = pll->pll_reg == _PCH_DPLL_B;
  983. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  984. "PLL[%d] not attached to this transcoder %c: %08x\n",
  985. cur_state, pipe_name(crtc->pipe), pch_dpll)) {
  986. cur_state = !!(val >> (4*crtc->pipe + 3));
  987. WARN(cur_state != state,
  988. "PLL[%d] not %s on this transcoder %c: %08x\n",
  989. pll->pll_reg == _PCH_DPLL_B,
  990. state_string(state),
  991. pipe_name(crtc->pipe),
  992. val);
  993. }
  994. }
  995. }
  996. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  997. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  998. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  999. enum pipe pipe, bool state)
  1000. {
  1001. int reg;
  1002. u32 val;
  1003. bool cur_state;
  1004. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1005. pipe);
  1006. if (HAS_DDI(dev_priv->dev)) {
  1007. /* DDI does not have a specific FDI_TX register */
  1008. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1009. val = I915_READ(reg);
  1010. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  1011. } else {
  1012. reg = FDI_TX_CTL(pipe);
  1013. val = I915_READ(reg);
  1014. cur_state = !!(val & FDI_TX_ENABLE);
  1015. }
  1016. WARN(cur_state != state,
  1017. "FDI TX state assertion failure (expected %s, current %s)\n",
  1018. state_string(state), state_string(cur_state));
  1019. }
  1020. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1021. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1022. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1023. enum pipe pipe, bool state)
  1024. {
  1025. int reg;
  1026. u32 val;
  1027. bool cur_state;
  1028. reg = FDI_RX_CTL(pipe);
  1029. val = I915_READ(reg);
  1030. cur_state = !!(val & FDI_RX_ENABLE);
  1031. WARN(cur_state != state,
  1032. "FDI RX state assertion failure (expected %s, current %s)\n",
  1033. state_string(state), state_string(cur_state));
  1034. }
  1035. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1036. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1037. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1038. enum pipe pipe)
  1039. {
  1040. int reg;
  1041. u32 val;
  1042. /* ILK FDI PLL is always enabled */
  1043. if (dev_priv->info->gen == 5)
  1044. return;
  1045. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1046. if (HAS_DDI(dev_priv->dev))
  1047. return;
  1048. reg = FDI_TX_CTL(pipe);
  1049. val = I915_READ(reg);
  1050. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1051. }
  1052. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1053. enum pipe pipe)
  1054. {
  1055. int reg;
  1056. u32 val;
  1057. reg = FDI_RX_CTL(pipe);
  1058. val = I915_READ(reg);
  1059. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1060. }
  1061. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1062. enum pipe pipe)
  1063. {
  1064. int pp_reg, lvds_reg;
  1065. u32 val;
  1066. enum pipe panel_pipe = PIPE_A;
  1067. bool locked = true;
  1068. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1069. pp_reg = PCH_PP_CONTROL;
  1070. lvds_reg = PCH_LVDS;
  1071. } else {
  1072. pp_reg = PP_CONTROL;
  1073. lvds_reg = LVDS;
  1074. }
  1075. val = I915_READ(pp_reg);
  1076. if (!(val & PANEL_POWER_ON) ||
  1077. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1078. locked = false;
  1079. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1080. panel_pipe = PIPE_B;
  1081. WARN(panel_pipe == pipe && locked,
  1082. "panel assertion failure, pipe %c regs locked\n",
  1083. pipe_name(pipe));
  1084. }
  1085. void assert_pipe(struct drm_i915_private *dev_priv,
  1086. enum pipe pipe, bool state)
  1087. {
  1088. int reg;
  1089. u32 val;
  1090. bool cur_state;
  1091. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1092. pipe);
  1093. /* if we need the pipe A quirk it must be always on */
  1094. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1095. state = true;
  1096. if (!intel_using_power_well(dev_priv->dev) &&
  1097. cpu_transcoder != TRANSCODER_EDP) {
  1098. cur_state = false;
  1099. } else {
  1100. reg = PIPECONF(cpu_transcoder);
  1101. val = I915_READ(reg);
  1102. cur_state = !!(val & PIPECONF_ENABLE);
  1103. }
  1104. WARN(cur_state != state,
  1105. "pipe %c assertion failure (expected %s, current %s)\n",
  1106. pipe_name(pipe), state_string(state), state_string(cur_state));
  1107. }
  1108. static void assert_plane(struct drm_i915_private *dev_priv,
  1109. enum plane plane, bool state)
  1110. {
  1111. int reg;
  1112. u32 val;
  1113. bool cur_state;
  1114. reg = DSPCNTR(plane);
  1115. val = I915_READ(reg);
  1116. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1117. WARN(cur_state != state,
  1118. "plane %c assertion failure (expected %s, current %s)\n",
  1119. plane_name(plane), state_string(state), state_string(cur_state));
  1120. }
  1121. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1122. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1123. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1124. enum pipe pipe)
  1125. {
  1126. int reg, i;
  1127. u32 val;
  1128. int cur_pipe;
  1129. /* Planes are fixed to pipes on ILK+ */
  1130. if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
  1131. reg = DSPCNTR(pipe);
  1132. val = I915_READ(reg);
  1133. WARN((val & DISPLAY_PLANE_ENABLE),
  1134. "plane %c assertion failure, should be disabled but not\n",
  1135. plane_name(pipe));
  1136. return;
  1137. }
  1138. /* Need to check both planes against the pipe */
  1139. for (i = 0; i < 2; i++) {
  1140. reg = DSPCNTR(i);
  1141. val = I915_READ(reg);
  1142. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1143. DISPPLANE_SEL_PIPE_SHIFT;
  1144. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1145. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1146. plane_name(i), pipe_name(pipe));
  1147. }
  1148. }
  1149. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe)
  1151. {
  1152. int reg, i;
  1153. u32 val;
  1154. if (!IS_VALLEYVIEW(dev_priv->dev))
  1155. return;
  1156. /* Need to check both planes against the pipe */
  1157. for (i = 0; i < dev_priv->num_plane; i++) {
  1158. reg = SPCNTR(pipe, i);
  1159. val = I915_READ(reg);
  1160. WARN((val & SP_ENABLE),
  1161. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1162. sprite_name(pipe, i), pipe_name(pipe));
  1163. }
  1164. }
  1165. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1166. {
  1167. u32 val;
  1168. bool enabled;
  1169. if (HAS_PCH_LPT(dev_priv->dev)) {
  1170. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1171. return;
  1172. }
  1173. val = I915_READ(PCH_DREF_CONTROL);
  1174. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1175. DREF_SUPERSPREAD_SOURCE_MASK));
  1176. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1177. }
  1178. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1179. enum pipe pipe)
  1180. {
  1181. int reg;
  1182. u32 val;
  1183. bool enabled;
  1184. reg = TRANSCONF(pipe);
  1185. val = I915_READ(reg);
  1186. enabled = !!(val & TRANS_ENABLE);
  1187. WARN(enabled,
  1188. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1189. pipe_name(pipe));
  1190. }
  1191. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1192. enum pipe pipe, u32 port_sel, u32 val)
  1193. {
  1194. if ((val & DP_PORT_EN) == 0)
  1195. return false;
  1196. if (HAS_PCH_CPT(dev_priv->dev)) {
  1197. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1198. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1199. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1200. return false;
  1201. } else {
  1202. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1203. return false;
  1204. }
  1205. return true;
  1206. }
  1207. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1208. enum pipe pipe, u32 val)
  1209. {
  1210. if ((val & SDVO_ENABLE) == 0)
  1211. return false;
  1212. if (HAS_PCH_CPT(dev_priv->dev)) {
  1213. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1214. return false;
  1215. } else {
  1216. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1217. return false;
  1218. }
  1219. return true;
  1220. }
  1221. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1222. enum pipe pipe, u32 val)
  1223. {
  1224. if ((val & LVDS_PORT_EN) == 0)
  1225. return false;
  1226. if (HAS_PCH_CPT(dev_priv->dev)) {
  1227. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1228. return false;
  1229. } else {
  1230. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1231. return false;
  1232. }
  1233. return true;
  1234. }
  1235. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1236. enum pipe pipe, u32 val)
  1237. {
  1238. if ((val & ADPA_DAC_ENABLE) == 0)
  1239. return false;
  1240. if (HAS_PCH_CPT(dev_priv->dev)) {
  1241. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1242. return false;
  1243. } else {
  1244. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1245. return false;
  1246. }
  1247. return true;
  1248. }
  1249. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1250. enum pipe pipe, int reg, u32 port_sel)
  1251. {
  1252. u32 val = I915_READ(reg);
  1253. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1254. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1255. reg, pipe_name(pipe));
  1256. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1257. && (val & DP_PIPEB_SELECT),
  1258. "IBX PCH dp port still using transcoder B\n");
  1259. }
  1260. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1261. enum pipe pipe, int reg)
  1262. {
  1263. u32 val = I915_READ(reg);
  1264. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1265. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1266. reg, pipe_name(pipe));
  1267. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1268. && (val & SDVO_PIPE_B_SELECT),
  1269. "IBX PCH hdmi port still using transcoder B\n");
  1270. }
  1271. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1272. enum pipe pipe)
  1273. {
  1274. int reg;
  1275. u32 val;
  1276. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1277. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1278. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1279. reg = PCH_ADPA;
  1280. val = I915_READ(reg);
  1281. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1282. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1283. pipe_name(pipe));
  1284. reg = PCH_LVDS;
  1285. val = I915_READ(reg);
  1286. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1287. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1288. pipe_name(pipe));
  1289. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1290. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1291. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1292. }
  1293. /**
  1294. * intel_enable_pll - enable a PLL
  1295. * @dev_priv: i915 private structure
  1296. * @pipe: pipe PLL to enable
  1297. *
  1298. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1299. * make sure the PLL reg is writable first though, since the panel write
  1300. * protect mechanism may be enabled.
  1301. *
  1302. * Note! This is for pre-ILK only.
  1303. *
  1304. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1305. */
  1306. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1307. {
  1308. int reg;
  1309. u32 val;
  1310. assert_pipe_disabled(dev_priv, pipe);
  1311. /* No really, not for ILK+ */
  1312. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1313. /* PLL is protected by panel, make sure we can write it */
  1314. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1315. assert_panel_unlocked(dev_priv, pipe);
  1316. reg = DPLL(pipe);
  1317. val = I915_READ(reg);
  1318. val |= DPLL_VCO_ENABLE;
  1319. /* We do this three times for luck */
  1320. I915_WRITE(reg, val);
  1321. POSTING_READ(reg);
  1322. udelay(150); /* wait for warmup */
  1323. I915_WRITE(reg, val);
  1324. POSTING_READ(reg);
  1325. udelay(150); /* wait for warmup */
  1326. I915_WRITE(reg, val);
  1327. POSTING_READ(reg);
  1328. udelay(150); /* wait for warmup */
  1329. }
  1330. /**
  1331. * intel_disable_pll - disable a PLL
  1332. * @dev_priv: i915 private structure
  1333. * @pipe: pipe PLL to disable
  1334. *
  1335. * Disable the PLL for @pipe, making sure the pipe is off first.
  1336. *
  1337. * Note! This is for pre-ILK only.
  1338. */
  1339. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1340. {
  1341. int reg;
  1342. u32 val;
  1343. /* Don't disable pipe A or pipe A PLLs if needed */
  1344. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1345. return;
  1346. /* Make sure the pipe isn't still relying on us */
  1347. assert_pipe_disabled(dev_priv, pipe);
  1348. reg = DPLL(pipe);
  1349. val = I915_READ(reg);
  1350. val &= ~DPLL_VCO_ENABLE;
  1351. I915_WRITE(reg, val);
  1352. POSTING_READ(reg);
  1353. }
  1354. /* SBI access */
  1355. static void
  1356. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
  1357. enum intel_sbi_destination destination)
  1358. {
  1359. u32 tmp;
  1360. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1361. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1362. 100)) {
  1363. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1364. return;
  1365. }
  1366. I915_WRITE(SBI_ADDR, (reg << 16));
  1367. I915_WRITE(SBI_DATA, value);
  1368. if (destination == SBI_ICLK)
  1369. tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
  1370. else
  1371. tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
  1372. I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
  1373. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1374. 100)) {
  1375. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1376. return;
  1377. }
  1378. }
  1379. static u32
  1380. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
  1381. enum intel_sbi_destination destination)
  1382. {
  1383. u32 value = 0;
  1384. WARN_ON(!mutex_is_locked(&dev_priv->dpio_lock));
  1385. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1386. 100)) {
  1387. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1388. return 0;
  1389. }
  1390. I915_WRITE(SBI_ADDR, (reg << 16));
  1391. if (destination == SBI_ICLK)
  1392. value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
  1393. else
  1394. value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
  1395. I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
  1396. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1397. 100)) {
  1398. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1399. return 0;
  1400. }
  1401. return I915_READ(SBI_DATA);
  1402. }
  1403. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1404. {
  1405. u32 port_mask;
  1406. if (!port)
  1407. port_mask = DPLL_PORTB_READY_MASK;
  1408. else
  1409. port_mask = DPLL_PORTC_READY_MASK;
  1410. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1411. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1412. 'B' + port, I915_READ(DPLL(0)));
  1413. }
  1414. /**
  1415. * ironlake_enable_pch_pll - enable PCH PLL
  1416. * @dev_priv: i915 private structure
  1417. * @pipe: pipe PLL to enable
  1418. *
  1419. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1420. * drives the transcoder clock.
  1421. */
  1422. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1423. {
  1424. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1425. struct intel_pch_pll *pll;
  1426. int reg;
  1427. u32 val;
  1428. /* PCH PLLs only available on ILK, SNB and IVB */
  1429. BUG_ON(dev_priv->info->gen < 5);
  1430. pll = intel_crtc->pch_pll;
  1431. if (pll == NULL)
  1432. return;
  1433. if (WARN_ON(pll->refcount == 0))
  1434. return;
  1435. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1436. pll->pll_reg, pll->active, pll->on,
  1437. intel_crtc->base.base.id);
  1438. /* PCH refclock must be enabled first */
  1439. assert_pch_refclk_enabled(dev_priv);
  1440. if (pll->active++ && pll->on) {
  1441. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1442. return;
  1443. }
  1444. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1445. reg = pll->pll_reg;
  1446. val = I915_READ(reg);
  1447. val |= DPLL_VCO_ENABLE;
  1448. I915_WRITE(reg, val);
  1449. POSTING_READ(reg);
  1450. udelay(200);
  1451. pll->on = true;
  1452. }
  1453. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1454. {
  1455. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1456. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1457. int reg;
  1458. u32 val;
  1459. /* PCH only available on ILK+ */
  1460. BUG_ON(dev_priv->info->gen < 5);
  1461. if (pll == NULL)
  1462. return;
  1463. if (WARN_ON(pll->refcount == 0))
  1464. return;
  1465. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1466. pll->pll_reg, pll->active, pll->on,
  1467. intel_crtc->base.base.id);
  1468. if (WARN_ON(pll->active == 0)) {
  1469. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1470. return;
  1471. }
  1472. if (--pll->active) {
  1473. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1474. return;
  1475. }
  1476. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1477. /* Make sure transcoder isn't still depending on us */
  1478. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1479. reg = pll->pll_reg;
  1480. val = I915_READ(reg);
  1481. val &= ~DPLL_VCO_ENABLE;
  1482. I915_WRITE(reg, val);
  1483. POSTING_READ(reg);
  1484. udelay(200);
  1485. pll->on = false;
  1486. }
  1487. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1488. enum pipe pipe)
  1489. {
  1490. struct drm_device *dev = dev_priv->dev;
  1491. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1492. uint32_t reg, val, pipeconf_val;
  1493. /* PCH only available on ILK+ */
  1494. BUG_ON(dev_priv->info->gen < 5);
  1495. /* Make sure PCH DPLL is enabled */
  1496. assert_pch_pll_enabled(dev_priv,
  1497. to_intel_crtc(crtc)->pch_pll,
  1498. to_intel_crtc(crtc));
  1499. /* FDI must be feeding us bits for PCH ports */
  1500. assert_fdi_tx_enabled(dev_priv, pipe);
  1501. assert_fdi_rx_enabled(dev_priv, pipe);
  1502. if (HAS_PCH_CPT(dev)) {
  1503. /* Workaround: Set the timing override bit before enabling the
  1504. * pch transcoder. */
  1505. reg = TRANS_CHICKEN2(pipe);
  1506. val = I915_READ(reg);
  1507. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1508. I915_WRITE(reg, val);
  1509. }
  1510. reg = TRANSCONF(pipe);
  1511. val = I915_READ(reg);
  1512. pipeconf_val = I915_READ(PIPECONF(pipe));
  1513. if (HAS_PCH_IBX(dev_priv->dev)) {
  1514. /*
  1515. * make the BPC in transcoder be consistent with
  1516. * that in pipeconf reg.
  1517. */
  1518. val &= ~PIPECONF_BPC_MASK;
  1519. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1520. }
  1521. val &= ~TRANS_INTERLACE_MASK;
  1522. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1523. if (HAS_PCH_IBX(dev_priv->dev) &&
  1524. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1525. val |= TRANS_LEGACY_INTERLACED_ILK;
  1526. else
  1527. val |= TRANS_INTERLACED;
  1528. else
  1529. val |= TRANS_PROGRESSIVE;
  1530. I915_WRITE(reg, val | TRANS_ENABLE);
  1531. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1532. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1533. }
  1534. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1535. enum transcoder cpu_transcoder)
  1536. {
  1537. u32 val, pipeconf_val;
  1538. /* PCH only available on ILK+ */
  1539. BUG_ON(dev_priv->info->gen < 5);
  1540. /* FDI must be feeding us bits for PCH ports */
  1541. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1542. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1543. /* Workaround: set timing override bit. */
  1544. val = I915_READ(_TRANSA_CHICKEN2);
  1545. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1546. I915_WRITE(_TRANSA_CHICKEN2, val);
  1547. val = TRANS_ENABLE;
  1548. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1549. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1550. PIPECONF_INTERLACED_ILK)
  1551. val |= TRANS_INTERLACED;
  1552. else
  1553. val |= TRANS_PROGRESSIVE;
  1554. I915_WRITE(TRANSCONF(TRANSCODER_A), val);
  1555. if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
  1556. DRM_ERROR("Failed to enable PCH transcoder\n");
  1557. }
  1558. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1559. enum pipe pipe)
  1560. {
  1561. struct drm_device *dev = dev_priv->dev;
  1562. uint32_t reg, val;
  1563. /* FDI relies on the transcoder */
  1564. assert_fdi_tx_disabled(dev_priv, pipe);
  1565. assert_fdi_rx_disabled(dev_priv, pipe);
  1566. /* Ports must be off as well */
  1567. assert_pch_ports_disabled(dev_priv, pipe);
  1568. reg = TRANSCONF(pipe);
  1569. val = I915_READ(reg);
  1570. val &= ~TRANS_ENABLE;
  1571. I915_WRITE(reg, val);
  1572. /* wait for PCH transcoder off, transcoder state */
  1573. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1574. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1575. if (!HAS_PCH_IBX(dev)) {
  1576. /* Workaround: Clear the timing override chicken bit again. */
  1577. reg = TRANS_CHICKEN2(pipe);
  1578. val = I915_READ(reg);
  1579. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1580. I915_WRITE(reg, val);
  1581. }
  1582. }
  1583. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1584. {
  1585. u32 val;
  1586. val = I915_READ(_TRANSACONF);
  1587. val &= ~TRANS_ENABLE;
  1588. I915_WRITE(_TRANSACONF, val);
  1589. /* wait for PCH transcoder off, transcoder state */
  1590. if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
  1591. DRM_ERROR("Failed to disable PCH transcoder\n");
  1592. /* Workaround: clear timing override bit. */
  1593. val = I915_READ(_TRANSA_CHICKEN2);
  1594. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1595. I915_WRITE(_TRANSA_CHICKEN2, val);
  1596. }
  1597. /**
  1598. * intel_enable_pipe - enable a pipe, asserting requirements
  1599. * @dev_priv: i915 private structure
  1600. * @pipe: pipe to enable
  1601. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1602. *
  1603. * Enable @pipe, making sure that various hardware specific requirements
  1604. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1605. *
  1606. * @pipe should be %PIPE_A or %PIPE_B.
  1607. *
  1608. * Will wait until the pipe is actually running (i.e. first vblank) before
  1609. * returning.
  1610. */
  1611. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1612. bool pch_port)
  1613. {
  1614. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1615. pipe);
  1616. enum pipe pch_transcoder;
  1617. int reg;
  1618. u32 val;
  1619. assert_planes_disabled(dev_priv, pipe);
  1620. assert_sprites_disabled(dev_priv, pipe);
  1621. if (HAS_PCH_LPT(dev_priv->dev))
  1622. pch_transcoder = TRANSCODER_A;
  1623. else
  1624. pch_transcoder = pipe;
  1625. /*
  1626. * A pipe without a PLL won't actually be able to drive bits from
  1627. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1628. * need the check.
  1629. */
  1630. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1631. assert_pll_enabled(dev_priv, pipe);
  1632. else {
  1633. if (pch_port) {
  1634. /* if driving the PCH, we need FDI enabled */
  1635. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1636. assert_fdi_tx_pll_enabled(dev_priv,
  1637. (enum pipe) cpu_transcoder);
  1638. }
  1639. /* FIXME: assert CPU port conditions for SNB+ */
  1640. }
  1641. reg = PIPECONF(cpu_transcoder);
  1642. val = I915_READ(reg);
  1643. if (val & PIPECONF_ENABLE)
  1644. return;
  1645. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1646. intel_wait_for_vblank(dev_priv->dev, pipe);
  1647. }
  1648. /**
  1649. * intel_disable_pipe - disable a pipe, asserting requirements
  1650. * @dev_priv: i915 private structure
  1651. * @pipe: pipe to disable
  1652. *
  1653. * Disable @pipe, making sure that various hardware specific requirements
  1654. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1655. *
  1656. * @pipe should be %PIPE_A or %PIPE_B.
  1657. *
  1658. * Will wait until the pipe has shut down before returning.
  1659. */
  1660. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1661. enum pipe pipe)
  1662. {
  1663. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1664. pipe);
  1665. int reg;
  1666. u32 val;
  1667. /*
  1668. * Make sure planes won't keep trying to pump pixels to us,
  1669. * or we might hang the display.
  1670. */
  1671. assert_planes_disabled(dev_priv, pipe);
  1672. assert_sprites_disabled(dev_priv, pipe);
  1673. /* Don't disable pipe A or pipe A PLLs if needed */
  1674. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1675. return;
  1676. reg = PIPECONF(cpu_transcoder);
  1677. val = I915_READ(reg);
  1678. if ((val & PIPECONF_ENABLE) == 0)
  1679. return;
  1680. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1681. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1682. }
  1683. /*
  1684. * Plane regs are double buffered, going from enabled->disabled needs a
  1685. * trigger in order to latch. The display address reg provides this.
  1686. */
  1687. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1688. enum plane plane)
  1689. {
  1690. if (dev_priv->info->gen >= 4)
  1691. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1692. else
  1693. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1694. }
  1695. /**
  1696. * intel_enable_plane - enable a display plane on a given pipe
  1697. * @dev_priv: i915 private structure
  1698. * @plane: plane to enable
  1699. * @pipe: pipe being fed
  1700. *
  1701. * Enable @plane on @pipe, making sure that @pipe is running first.
  1702. */
  1703. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1704. enum plane plane, enum pipe pipe)
  1705. {
  1706. int reg;
  1707. u32 val;
  1708. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1709. assert_pipe_enabled(dev_priv, pipe);
  1710. reg = DSPCNTR(plane);
  1711. val = I915_READ(reg);
  1712. if (val & DISPLAY_PLANE_ENABLE)
  1713. return;
  1714. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1715. intel_flush_display_plane(dev_priv, plane);
  1716. intel_wait_for_vblank(dev_priv->dev, pipe);
  1717. }
  1718. /**
  1719. * intel_disable_plane - disable a display plane
  1720. * @dev_priv: i915 private structure
  1721. * @plane: plane to disable
  1722. * @pipe: pipe consuming the data
  1723. *
  1724. * Disable @plane; should be an independent operation.
  1725. */
  1726. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1727. enum plane plane, enum pipe pipe)
  1728. {
  1729. int reg;
  1730. u32 val;
  1731. reg = DSPCNTR(plane);
  1732. val = I915_READ(reg);
  1733. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1734. return;
  1735. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1736. intel_flush_display_plane(dev_priv, plane);
  1737. intel_wait_for_vblank(dev_priv->dev, pipe);
  1738. }
  1739. static bool need_vtd_wa(struct drm_device *dev)
  1740. {
  1741. #ifdef CONFIG_INTEL_IOMMU
  1742. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1743. return true;
  1744. #endif
  1745. return false;
  1746. }
  1747. int
  1748. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1749. struct drm_i915_gem_object *obj,
  1750. struct intel_ring_buffer *pipelined)
  1751. {
  1752. struct drm_i915_private *dev_priv = dev->dev_private;
  1753. u32 alignment;
  1754. int ret;
  1755. switch (obj->tiling_mode) {
  1756. case I915_TILING_NONE:
  1757. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1758. alignment = 128 * 1024;
  1759. else if (INTEL_INFO(dev)->gen >= 4)
  1760. alignment = 4 * 1024;
  1761. else
  1762. alignment = 64 * 1024;
  1763. break;
  1764. case I915_TILING_X:
  1765. /* pin() will align the object as required by fence */
  1766. alignment = 0;
  1767. break;
  1768. case I915_TILING_Y:
  1769. /* Despite that we check this in framebuffer_init userspace can
  1770. * screw us over and change the tiling after the fact. Only
  1771. * pinned buffers can't change their tiling. */
  1772. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1773. return -EINVAL;
  1774. default:
  1775. BUG();
  1776. }
  1777. /* Note that the w/a also requires 64 PTE of padding following the
  1778. * bo. We currently fill all unused PTE with the shadow page and so
  1779. * we should always have valid PTE following the scanout preventing
  1780. * the VT-d warning.
  1781. */
  1782. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1783. alignment = 256 * 1024;
  1784. dev_priv->mm.interruptible = false;
  1785. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1786. if (ret)
  1787. goto err_interruptible;
  1788. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1789. * fence, whereas 965+ only requires a fence if using
  1790. * framebuffer compression. For simplicity, we always install
  1791. * a fence as the cost is not that onerous.
  1792. */
  1793. ret = i915_gem_object_get_fence(obj);
  1794. if (ret)
  1795. goto err_unpin;
  1796. i915_gem_object_pin_fence(obj);
  1797. dev_priv->mm.interruptible = true;
  1798. return 0;
  1799. err_unpin:
  1800. i915_gem_object_unpin(obj);
  1801. err_interruptible:
  1802. dev_priv->mm.interruptible = true;
  1803. return ret;
  1804. }
  1805. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1806. {
  1807. i915_gem_object_unpin_fence(obj);
  1808. i915_gem_object_unpin(obj);
  1809. }
  1810. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1811. * is assumed to be a power-of-two. */
  1812. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1813. unsigned int tiling_mode,
  1814. unsigned int cpp,
  1815. unsigned int pitch)
  1816. {
  1817. if (tiling_mode != I915_TILING_NONE) {
  1818. unsigned int tile_rows, tiles;
  1819. tile_rows = *y / 8;
  1820. *y %= 8;
  1821. tiles = *x / (512/cpp);
  1822. *x %= 512/cpp;
  1823. return tile_rows * pitch * 8 + tiles * 4096;
  1824. } else {
  1825. unsigned int offset;
  1826. offset = *y * pitch + *x * cpp;
  1827. *y = 0;
  1828. *x = (offset & 4095) / cpp;
  1829. return offset & -4096;
  1830. }
  1831. }
  1832. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1833. int x, int y)
  1834. {
  1835. struct drm_device *dev = crtc->dev;
  1836. struct drm_i915_private *dev_priv = dev->dev_private;
  1837. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1838. struct intel_framebuffer *intel_fb;
  1839. struct drm_i915_gem_object *obj;
  1840. int plane = intel_crtc->plane;
  1841. unsigned long linear_offset;
  1842. u32 dspcntr;
  1843. u32 reg;
  1844. switch (plane) {
  1845. case 0:
  1846. case 1:
  1847. break;
  1848. default:
  1849. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1850. return -EINVAL;
  1851. }
  1852. intel_fb = to_intel_framebuffer(fb);
  1853. obj = intel_fb->obj;
  1854. reg = DSPCNTR(plane);
  1855. dspcntr = I915_READ(reg);
  1856. /* Mask out pixel format bits in case we change it */
  1857. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1858. switch (fb->pixel_format) {
  1859. case DRM_FORMAT_C8:
  1860. dspcntr |= DISPPLANE_8BPP;
  1861. break;
  1862. case DRM_FORMAT_XRGB1555:
  1863. case DRM_FORMAT_ARGB1555:
  1864. dspcntr |= DISPPLANE_BGRX555;
  1865. break;
  1866. case DRM_FORMAT_RGB565:
  1867. dspcntr |= DISPPLANE_BGRX565;
  1868. break;
  1869. case DRM_FORMAT_XRGB8888:
  1870. case DRM_FORMAT_ARGB8888:
  1871. dspcntr |= DISPPLANE_BGRX888;
  1872. break;
  1873. case DRM_FORMAT_XBGR8888:
  1874. case DRM_FORMAT_ABGR8888:
  1875. dspcntr |= DISPPLANE_RGBX888;
  1876. break;
  1877. case DRM_FORMAT_XRGB2101010:
  1878. case DRM_FORMAT_ARGB2101010:
  1879. dspcntr |= DISPPLANE_BGRX101010;
  1880. break;
  1881. case DRM_FORMAT_XBGR2101010:
  1882. case DRM_FORMAT_ABGR2101010:
  1883. dspcntr |= DISPPLANE_RGBX101010;
  1884. break;
  1885. default:
  1886. BUG();
  1887. }
  1888. if (INTEL_INFO(dev)->gen >= 4) {
  1889. if (obj->tiling_mode != I915_TILING_NONE)
  1890. dspcntr |= DISPPLANE_TILED;
  1891. else
  1892. dspcntr &= ~DISPPLANE_TILED;
  1893. }
  1894. I915_WRITE(reg, dspcntr);
  1895. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1896. if (INTEL_INFO(dev)->gen >= 4) {
  1897. intel_crtc->dspaddr_offset =
  1898. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1899. fb->bits_per_pixel / 8,
  1900. fb->pitches[0]);
  1901. linear_offset -= intel_crtc->dspaddr_offset;
  1902. } else {
  1903. intel_crtc->dspaddr_offset = linear_offset;
  1904. }
  1905. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1906. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1907. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1908. if (INTEL_INFO(dev)->gen >= 4) {
  1909. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1910. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1911. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1912. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1913. } else
  1914. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1915. POSTING_READ(reg);
  1916. return 0;
  1917. }
  1918. static int ironlake_update_plane(struct drm_crtc *crtc,
  1919. struct drm_framebuffer *fb, int x, int y)
  1920. {
  1921. struct drm_device *dev = crtc->dev;
  1922. struct drm_i915_private *dev_priv = dev->dev_private;
  1923. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1924. struct intel_framebuffer *intel_fb;
  1925. struct drm_i915_gem_object *obj;
  1926. int plane = intel_crtc->plane;
  1927. unsigned long linear_offset;
  1928. u32 dspcntr;
  1929. u32 reg;
  1930. switch (plane) {
  1931. case 0:
  1932. case 1:
  1933. case 2:
  1934. break;
  1935. default:
  1936. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1937. return -EINVAL;
  1938. }
  1939. intel_fb = to_intel_framebuffer(fb);
  1940. obj = intel_fb->obj;
  1941. reg = DSPCNTR(plane);
  1942. dspcntr = I915_READ(reg);
  1943. /* Mask out pixel format bits in case we change it */
  1944. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1945. switch (fb->pixel_format) {
  1946. case DRM_FORMAT_C8:
  1947. dspcntr |= DISPPLANE_8BPP;
  1948. break;
  1949. case DRM_FORMAT_RGB565:
  1950. dspcntr |= DISPPLANE_BGRX565;
  1951. break;
  1952. case DRM_FORMAT_XRGB8888:
  1953. case DRM_FORMAT_ARGB8888:
  1954. dspcntr |= DISPPLANE_BGRX888;
  1955. break;
  1956. case DRM_FORMAT_XBGR8888:
  1957. case DRM_FORMAT_ABGR8888:
  1958. dspcntr |= DISPPLANE_RGBX888;
  1959. break;
  1960. case DRM_FORMAT_XRGB2101010:
  1961. case DRM_FORMAT_ARGB2101010:
  1962. dspcntr |= DISPPLANE_BGRX101010;
  1963. break;
  1964. case DRM_FORMAT_XBGR2101010:
  1965. case DRM_FORMAT_ABGR2101010:
  1966. dspcntr |= DISPPLANE_RGBX101010;
  1967. break;
  1968. default:
  1969. BUG();
  1970. }
  1971. if (obj->tiling_mode != I915_TILING_NONE)
  1972. dspcntr |= DISPPLANE_TILED;
  1973. else
  1974. dspcntr &= ~DISPPLANE_TILED;
  1975. /* must disable */
  1976. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1977. I915_WRITE(reg, dspcntr);
  1978. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1979. intel_crtc->dspaddr_offset =
  1980. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1981. fb->bits_per_pixel / 8,
  1982. fb->pitches[0]);
  1983. linear_offset -= intel_crtc->dspaddr_offset;
  1984. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1985. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1986. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1987. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1988. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1989. if (IS_HASWELL(dev)) {
  1990. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1991. } else {
  1992. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1993. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1994. }
  1995. POSTING_READ(reg);
  1996. return 0;
  1997. }
  1998. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1999. static int
  2000. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  2001. int x, int y, enum mode_set_atomic state)
  2002. {
  2003. struct drm_device *dev = crtc->dev;
  2004. struct drm_i915_private *dev_priv = dev->dev_private;
  2005. if (dev_priv->display.disable_fbc)
  2006. dev_priv->display.disable_fbc(dev);
  2007. intel_increase_pllclock(crtc);
  2008. return dev_priv->display.update_plane(crtc, fb, x, y);
  2009. }
  2010. void intel_display_handle_reset(struct drm_device *dev)
  2011. {
  2012. struct drm_i915_private *dev_priv = dev->dev_private;
  2013. struct drm_crtc *crtc;
  2014. /*
  2015. * Flips in the rings have been nuked by the reset,
  2016. * so complete all pending flips so that user space
  2017. * will get its events and not get stuck.
  2018. *
  2019. * Also update the base address of all primary
  2020. * planes to the the last fb to make sure we're
  2021. * showing the correct fb after a reset.
  2022. *
  2023. * Need to make two loops over the crtcs so that we
  2024. * don't try to grab a crtc mutex before the
  2025. * pending_flip_queue really got woken up.
  2026. */
  2027. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2028. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2029. enum plane plane = intel_crtc->plane;
  2030. intel_prepare_page_flip(dev, plane);
  2031. intel_finish_page_flip_plane(dev, plane);
  2032. }
  2033. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2034. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2035. mutex_lock(&crtc->mutex);
  2036. if (intel_crtc->active)
  2037. dev_priv->display.update_plane(crtc, crtc->fb,
  2038. crtc->x, crtc->y);
  2039. mutex_unlock(&crtc->mutex);
  2040. }
  2041. }
  2042. static int
  2043. intel_finish_fb(struct drm_framebuffer *old_fb)
  2044. {
  2045. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  2046. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2047. bool was_interruptible = dev_priv->mm.interruptible;
  2048. int ret;
  2049. /* Big Hammer, we also need to ensure that any pending
  2050. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  2051. * current scanout is retired before unpinning the old
  2052. * framebuffer.
  2053. *
  2054. * This should only fail upon a hung GPU, in which case we
  2055. * can safely continue.
  2056. */
  2057. dev_priv->mm.interruptible = false;
  2058. ret = i915_gem_object_finish_gpu(obj);
  2059. dev_priv->mm.interruptible = was_interruptible;
  2060. return ret;
  2061. }
  2062. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  2063. {
  2064. struct drm_device *dev = crtc->dev;
  2065. struct drm_i915_master_private *master_priv;
  2066. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2067. if (!dev->primary->master)
  2068. return;
  2069. master_priv = dev->primary->master->driver_priv;
  2070. if (!master_priv->sarea_priv)
  2071. return;
  2072. switch (intel_crtc->pipe) {
  2073. case 0:
  2074. master_priv->sarea_priv->pipeA_x = x;
  2075. master_priv->sarea_priv->pipeA_y = y;
  2076. break;
  2077. case 1:
  2078. master_priv->sarea_priv->pipeB_x = x;
  2079. master_priv->sarea_priv->pipeB_y = y;
  2080. break;
  2081. default:
  2082. break;
  2083. }
  2084. }
  2085. static int
  2086. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  2087. struct drm_framebuffer *fb)
  2088. {
  2089. struct drm_device *dev = crtc->dev;
  2090. struct drm_i915_private *dev_priv = dev->dev_private;
  2091. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2092. struct drm_framebuffer *old_fb;
  2093. int ret;
  2094. /* no fb bound */
  2095. if (!fb) {
  2096. DRM_ERROR("No FB bound\n");
  2097. return 0;
  2098. }
  2099. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  2100. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  2101. plane_name(intel_crtc->plane),
  2102. INTEL_INFO(dev)->num_pipes);
  2103. return -EINVAL;
  2104. }
  2105. mutex_lock(&dev->struct_mutex);
  2106. ret = intel_pin_and_fence_fb_obj(dev,
  2107. to_intel_framebuffer(fb)->obj,
  2108. NULL);
  2109. if (ret != 0) {
  2110. mutex_unlock(&dev->struct_mutex);
  2111. DRM_ERROR("pin & fence failed\n");
  2112. return ret;
  2113. }
  2114. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2115. if (ret) {
  2116. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2117. mutex_unlock(&dev->struct_mutex);
  2118. DRM_ERROR("failed to update base address\n");
  2119. return ret;
  2120. }
  2121. old_fb = crtc->fb;
  2122. crtc->fb = fb;
  2123. crtc->x = x;
  2124. crtc->y = y;
  2125. if (old_fb) {
  2126. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2127. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2128. }
  2129. intel_update_fbc(dev);
  2130. mutex_unlock(&dev->struct_mutex);
  2131. intel_crtc_update_sarea_pos(crtc, x, y);
  2132. return 0;
  2133. }
  2134. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2135. {
  2136. struct drm_device *dev = crtc->dev;
  2137. struct drm_i915_private *dev_priv = dev->dev_private;
  2138. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2139. int pipe = intel_crtc->pipe;
  2140. u32 reg, temp;
  2141. /* enable normal train */
  2142. reg = FDI_TX_CTL(pipe);
  2143. temp = I915_READ(reg);
  2144. if (IS_IVYBRIDGE(dev)) {
  2145. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2146. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2147. } else {
  2148. temp &= ~FDI_LINK_TRAIN_NONE;
  2149. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2150. }
  2151. I915_WRITE(reg, temp);
  2152. reg = FDI_RX_CTL(pipe);
  2153. temp = I915_READ(reg);
  2154. if (HAS_PCH_CPT(dev)) {
  2155. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2156. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2157. } else {
  2158. temp &= ~FDI_LINK_TRAIN_NONE;
  2159. temp |= FDI_LINK_TRAIN_NONE;
  2160. }
  2161. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2162. /* wait one idle pattern time */
  2163. POSTING_READ(reg);
  2164. udelay(1000);
  2165. /* IVB wants error correction enabled */
  2166. if (IS_IVYBRIDGE(dev))
  2167. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2168. FDI_FE_ERRC_ENABLE);
  2169. }
  2170. static void ivb_modeset_global_resources(struct drm_device *dev)
  2171. {
  2172. struct drm_i915_private *dev_priv = dev->dev_private;
  2173. struct intel_crtc *pipe_B_crtc =
  2174. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2175. struct intel_crtc *pipe_C_crtc =
  2176. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2177. uint32_t temp;
  2178. /* When everything is off disable fdi C so that we could enable fdi B
  2179. * with all lanes. XXX: This misses the case where a pipe is not using
  2180. * any pch resources and so doesn't need any fdi lanes. */
  2181. if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
  2182. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2183. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2184. temp = I915_READ(SOUTH_CHICKEN1);
  2185. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2186. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2187. I915_WRITE(SOUTH_CHICKEN1, temp);
  2188. }
  2189. }
  2190. /* The FDI link training functions for ILK/Ibexpeak. */
  2191. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2192. {
  2193. struct drm_device *dev = crtc->dev;
  2194. struct drm_i915_private *dev_priv = dev->dev_private;
  2195. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2196. int pipe = intel_crtc->pipe;
  2197. int plane = intel_crtc->plane;
  2198. u32 reg, temp, tries;
  2199. /* FDI needs bits from pipe & plane first */
  2200. assert_pipe_enabled(dev_priv, pipe);
  2201. assert_plane_enabled(dev_priv, plane);
  2202. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2203. for train result */
  2204. reg = FDI_RX_IMR(pipe);
  2205. temp = I915_READ(reg);
  2206. temp &= ~FDI_RX_SYMBOL_LOCK;
  2207. temp &= ~FDI_RX_BIT_LOCK;
  2208. I915_WRITE(reg, temp);
  2209. I915_READ(reg);
  2210. udelay(150);
  2211. /* enable CPU FDI TX and PCH FDI RX */
  2212. reg = FDI_TX_CTL(pipe);
  2213. temp = I915_READ(reg);
  2214. temp &= ~(7 << 19);
  2215. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2216. temp &= ~FDI_LINK_TRAIN_NONE;
  2217. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2218. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2219. reg = FDI_RX_CTL(pipe);
  2220. temp = I915_READ(reg);
  2221. temp &= ~FDI_LINK_TRAIN_NONE;
  2222. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2223. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2224. POSTING_READ(reg);
  2225. udelay(150);
  2226. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2227. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2228. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2229. FDI_RX_PHASE_SYNC_POINTER_EN);
  2230. reg = FDI_RX_IIR(pipe);
  2231. for (tries = 0; tries < 5; tries++) {
  2232. temp = I915_READ(reg);
  2233. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2234. if ((temp & FDI_RX_BIT_LOCK)) {
  2235. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2236. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2237. break;
  2238. }
  2239. }
  2240. if (tries == 5)
  2241. DRM_ERROR("FDI train 1 fail!\n");
  2242. /* Train 2 */
  2243. reg = FDI_TX_CTL(pipe);
  2244. temp = I915_READ(reg);
  2245. temp &= ~FDI_LINK_TRAIN_NONE;
  2246. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2247. I915_WRITE(reg, temp);
  2248. reg = FDI_RX_CTL(pipe);
  2249. temp = I915_READ(reg);
  2250. temp &= ~FDI_LINK_TRAIN_NONE;
  2251. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2252. I915_WRITE(reg, temp);
  2253. POSTING_READ(reg);
  2254. udelay(150);
  2255. reg = FDI_RX_IIR(pipe);
  2256. for (tries = 0; tries < 5; tries++) {
  2257. temp = I915_READ(reg);
  2258. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2259. if (temp & FDI_RX_SYMBOL_LOCK) {
  2260. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2261. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2262. break;
  2263. }
  2264. }
  2265. if (tries == 5)
  2266. DRM_ERROR("FDI train 2 fail!\n");
  2267. DRM_DEBUG_KMS("FDI train done\n");
  2268. }
  2269. static const int snb_b_fdi_train_param[] = {
  2270. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2271. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2272. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2273. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2274. };
  2275. /* The FDI link training functions for SNB/Cougarpoint. */
  2276. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2277. {
  2278. struct drm_device *dev = crtc->dev;
  2279. struct drm_i915_private *dev_priv = dev->dev_private;
  2280. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2281. int pipe = intel_crtc->pipe;
  2282. u32 reg, temp, i, retry;
  2283. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2284. for train result */
  2285. reg = FDI_RX_IMR(pipe);
  2286. temp = I915_READ(reg);
  2287. temp &= ~FDI_RX_SYMBOL_LOCK;
  2288. temp &= ~FDI_RX_BIT_LOCK;
  2289. I915_WRITE(reg, temp);
  2290. POSTING_READ(reg);
  2291. udelay(150);
  2292. /* enable CPU FDI TX and PCH FDI RX */
  2293. reg = FDI_TX_CTL(pipe);
  2294. temp = I915_READ(reg);
  2295. temp &= ~(7 << 19);
  2296. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2297. temp &= ~FDI_LINK_TRAIN_NONE;
  2298. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2299. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2300. /* SNB-B */
  2301. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2302. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2303. I915_WRITE(FDI_RX_MISC(pipe),
  2304. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2305. reg = FDI_RX_CTL(pipe);
  2306. temp = I915_READ(reg);
  2307. if (HAS_PCH_CPT(dev)) {
  2308. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2309. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2310. } else {
  2311. temp &= ~FDI_LINK_TRAIN_NONE;
  2312. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2313. }
  2314. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2315. POSTING_READ(reg);
  2316. udelay(150);
  2317. for (i = 0; i < 4; i++) {
  2318. reg = FDI_TX_CTL(pipe);
  2319. temp = I915_READ(reg);
  2320. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2321. temp |= snb_b_fdi_train_param[i];
  2322. I915_WRITE(reg, temp);
  2323. POSTING_READ(reg);
  2324. udelay(500);
  2325. for (retry = 0; retry < 5; retry++) {
  2326. reg = FDI_RX_IIR(pipe);
  2327. temp = I915_READ(reg);
  2328. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2329. if (temp & FDI_RX_BIT_LOCK) {
  2330. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2331. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2332. break;
  2333. }
  2334. udelay(50);
  2335. }
  2336. if (retry < 5)
  2337. break;
  2338. }
  2339. if (i == 4)
  2340. DRM_ERROR("FDI train 1 fail!\n");
  2341. /* Train 2 */
  2342. reg = FDI_TX_CTL(pipe);
  2343. temp = I915_READ(reg);
  2344. temp &= ~FDI_LINK_TRAIN_NONE;
  2345. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2346. if (IS_GEN6(dev)) {
  2347. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2348. /* SNB-B */
  2349. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2350. }
  2351. I915_WRITE(reg, temp);
  2352. reg = FDI_RX_CTL(pipe);
  2353. temp = I915_READ(reg);
  2354. if (HAS_PCH_CPT(dev)) {
  2355. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2356. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2357. } else {
  2358. temp &= ~FDI_LINK_TRAIN_NONE;
  2359. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2360. }
  2361. I915_WRITE(reg, temp);
  2362. POSTING_READ(reg);
  2363. udelay(150);
  2364. for (i = 0; i < 4; i++) {
  2365. reg = FDI_TX_CTL(pipe);
  2366. temp = I915_READ(reg);
  2367. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2368. temp |= snb_b_fdi_train_param[i];
  2369. I915_WRITE(reg, temp);
  2370. POSTING_READ(reg);
  2371. udelay(500);
  2372. for (retry = 0; retry < 5; retry++) {
  2373. reg = FDI_RX_IIR(pipe);
  2374. temp = I915_READ(reg);
  2375. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2376. if (temp & FDI_RX_SYMBOL_LOCK) {
  2377. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2378. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2379. break;
  2380. }
  2381. udelay(50);
  2382. }
  2383. if (retry < 5)
  2384. break;
  2385. }
  2386. if (i == 4)
  2387. DRM_ERROR("FDI train 2 fail!\n");
  2388. DRM_DEBUG_KMS("FDI train done.\n");
  2389. }
  2390. /* Manual link training for Ivy Bridge A0 parts */
  2391. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2392. {
  2393. struct drm_device *dev = crtc->dev;
  2394. struct drm_i915_private *dev_priv = dev->dev_private;
  2395. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2396. int pipe = intel_crtc->pipe;
  2397. u32 reg, temp, i;
  2398. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2399. for train result */
  2400. reg = FDI_RX_IMR(pipe);
  2401. temp = I915_READ(reg);
  2402. temp &= ~FDI_RX_SYMBOL_LOCK;
  2403. temp &= ~FDI_RX_BIT_LOCK;
  2404. I915_WRITE(reg, temp);
  2405. POSTING_READ(reg);
  2406. udelay(150);
  2407. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2408. I915_READ(FDI_RX_IIR(pipe)));
  2409. /* enable CPU FDI TX and PCH FDI RX */
  2410. reg = FDI_TX_CTL(pipe);
  2411. temp = I915_READ(reg);
  2412. temp &= ~(7 << 19);
  2413. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2414. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2415. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2416. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2417. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2418. temp |= FDI_COMPOSITE_SYNC;
  2419. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2420. I915_WRITE(FDI_RX_MISC(pipe),
  2421. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2422. reg = FDI_RX_CTL(pipe);
  2423. temp = I915_READ(reg);
  2424. temp &= ~FDI_LINK_TRAIN_AUTO;
  2425. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2426. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2427. temp |= FDI_COMPOSITE_SYNC;
  2428. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2429. POSTING_READ(reg);
  2430. udelay(150);
  2431. for (i = 0; i < 4; i++) {
  2432. reg = FDI_TX_CTL(pipe);
  2433. temp = I915_READ(reg);
  2434. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2435. temp |= snb_b_fdi_train_param[i];
  2436. I915_WRITE(reg, temp);
  2437. POSTING_READ(reg);
  2438. udelay(500);
  2439. reg = FDI_RX_IIR(pipe);
  2440. temp = I915_READ(reg);
  2441. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2442. if (temp & FDI_RX_BIT_LOCK ||
  2443. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2444. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2445. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2446. break;
  2447. }
  2448. }
  2449. if (i == 4)
  2450. DRM_ERROR("FDI train 1 fail!\n");
  2451. /* Train 2 */
  2452. reg = FDI_TX_CTL(pipe);
  2453. temp = I915_READ(reg);
  2454. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2455. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2456. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2457. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2458. I915_WRITE(reg, temp);
  2459. reg = FDI_RX_CTL(pipe);
  2460. temp = I915_READ(reg);
  2461. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2462. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2463. I915_WRITE(reg, temp);
  2464. POSTING_READ(reg);
  2465. udelay(150);
  2466. for (i = 0; i < 4; i++) {
  2467. reg = FDI_TX_CTL(pipe);
  2468. temp = I915_READ(reg);
  2469. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2470. temp |= snb_b_fdi_train_param[i];
  2471. I915_WRITE(reg, temp);
  2472. POSTING_READ(reg);
  2473. udelay(500);
  2474. reg = FDI_RX_IIR(pipe);
  2475. temp = I915_READ(reg);
  2476. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2477. if (temp & FDI_RX_SYMBOL_LOCK) {
  2478. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2479. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2480. break;
  2481. }
  2482. }
  2483. if (i == 4)
  2484. DRM_ERROR("FDI train 2 fail!\n");
  2485. DRM_DEBUG_KMS("FDI train done.\n");
  2486. }
  2487. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2488. {
  2489. struct drm_device *dev = intel_crtc->base.dev;
  2490. struct drm_i915_private *dev_priv = dev->dev_private;
  2491. int pipe = intel_crtc->pipe;
  2492. u32 reg, temp;
  2493. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2494. reg = FDI_RX_CTL(pipe);
  2495. temp = I915_READ(reg);
  2496. temp &= ~((0x7 << 19) | (0x7 << 16));
  2497. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2498. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2499. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2500. POSTING_READ(reg);
  2501. udelay(200);
  2502. /* Switch from Rawclk to PCDclk */
  2503. temp = I915_READ(reg);
  2504. I915_WRITE(reg, temp | FDI_PCDCLK);
  2505. POSTING_READ(reg);
  2506. udelay(200);
  2507. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2508. reg = FDI_TX_CTL(pipe);
  2509. temp = I915_READ(reg);
  2510. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2511. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2512. POSTING_READ(reg);
  2513. udelay(100);
  2514. }
  2515. }
  2516. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2517. {
  2518. struct drm_device *dev = intel_crtc->base.dev;
  2519. struct drm_i915_private *dev_priv = dev->dev_private;
  2520. int pipe = intel_crtc->pipe;
  2521. u32 reg, temp;
  2522. /* Switch from PCDclk to Rawclk */
  2523. reg = FDI_RX_CTL(pipe);
  2524. temp = I915_READ(reg);
  2525. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2526. /* Disable CPU FDI TX PLL */
  2527. reg = FDI_TX_CTL(pipe);
  2528. temp = I915_READ(reg);
  2529. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2530. POSTING_READ(reg);
  2531. udelay(100);
  2532. reg = FDI_RX_CTL(pipe);
  2533. temp = I915_READ(reg);
  2534. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2535. /* Wait for the clocks to turn off. */
  2536. POSTING_READ(reg);
  2537. udelay(100);
  2538. }
  2539. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2540. {
  2541. struct drm_device *dev = crtc->dev;
  2542. struct drm_i915_private *dev_priv = dev->dev_private;
  2543. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2544. int pipe = intel_crtc->pipe;
  2545. u32 reg, temp;
  2546. /* disable CPU FDI tx and PCH FDI rx */
  2547. reg = FDI_TX_CTL(pipe);
  2548. temp = I915_READ(reg);
  2549. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2550. POSTING_READ(reg);
  2551. reg = FDI_RX_CTL(pipe);
  2552. temp = I915_READ(reg);
  2553. temp &= ~(0x7 << 16);
  2554. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2555. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2556. POSTING_READ(reg);
  2557. udelay(100);
  2558. /* Ironlake workaround, disable clock pointer after downing FDI */
  2559. if (HAS_PCH_IBX(dev)) {
  2560. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2561. }
  2562. /* still set train pattern 1 */
  2563. reg = FDI_TX_CTL(pipe);
  2564. temp = I915_READ(reg);
  2565. temp &= ~FDI_LINK_TRAIN_NONE;
  2566. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2567. I915_WRITE(reg, temp);
  2568. reg = FDI_RX_CTL(pipe);
  2569. temp = I915_READ(reg);
  2570. if (HAS_PCH_CPT(dev)) {
  2571. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2572. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2573. } else {
  2574. temp &= ~FDI_LINK_TRAIN_NONE;
  2575. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2576. }
  2577. /* BPC in FDI rx is consistent with that in PIPECONF */
  2578. temp &= ~(0x07 << 16);
  2579. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2580. I915_WRITE(reg, temp);
  2581. POSTING_READ(reg);
  2582. udelay(100);
  2583. }
  2584. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2585. {
  2586. struct drm_device *dev = crtc->dev;
  2587. struct drm_i915_private *dev_priv = dev->dev_private;
  2588. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2589. unsigned long flags;
  2590. bool pending;
  2591. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2592. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2593. return false;
  2594. spin_lock_irqsave(&dev->event_lock, flags);
  2595. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2596. spin_unlock_irqrestore(&dev->event_lock, flags);
  2597. return pending;
  2598. }
  2599. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2600. {
  2601. struct drm_device *dev = crtc->dev;
  2602. struct drm_i915_private *dev_priv = dev->dev_private;
  2603. if (crtc->fb == NULL)
  2604. return;
  2605. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2606. wait_event(dev_priv->pending_flip_queue,
  2607. !intel_crtc_has_pending_flip(crtc));
  2608. mutex_lock(&dev->struct_mutex);
  2609. intel_finish_fb(crtc->fb);
  2610. mutex_unlock(&dev->struct_mutex);
  2611. }
  2612. /* Program iCLKIP clock to the desired frequency */
  2613. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2614. {
  2615. struct drm_device *dev = crtc->dev;
  2616. struct drm_i915_private *dev_priv = dev->dev_private;
  2617. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2618. u32 temp;
  2619. mutex_lock(&dev_priv->dpio_lock);
  2620. /* It is necessary to ungate the pixclk gate prior to programming
  2621. * the divisors, and gate it back when it is done.
  2622. */
  2623. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2624. /* Disable SSCCTL */
  2625. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2626. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2627. SBI_SSCCTL_DISABLE,
  2628. SBI_ICLK);
  2629. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2630. if (crtc->mode.clock == 20000) {
  2631. auxdiv = 1;
  2632. divsel = 0x41;
  2633. phaseinc = 0x20;
  2634. } else {
  2635. /* The iCLK virtual clock root frequency is in MHz,
  2636. * but the crtc->mode.clock in in KHz. To get the divisors,
  2637. * it is necessary to divide one by another, so we
  2638. * convert the virtual clock precision to KHz here for higher
  2639. * precision.
  2640. */
  2641. u32 iclk_virtual_root_freq = 172800 * 1000;
  2642. u32 iclk_pi_range = 64;
  2643. u32 desired_divisor, msb_divisor_value, pi_value;
  2644. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2645. msb_divisor_value = desired_divisor / iclk_pi_range;
  2646. pi_value = desired_divisor % iclk_pi_range;
  2647. auxdiv = 0;
  2648. divsel = msb_divisor_value - 2;
  2649. phaseinc = pi_value;
  2650. }
  2651. /* This should not happen with any sane values */
  2652. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2653. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2654. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2655. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2656. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2657. crtc->mode.clock,
  2658. auxdiv,
  2659. divsel,
  2660. phasedir,
  2661. phaseinc);
  2662. /* Program SSCDIVINTPHASE6 */
  2663. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2664. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2665. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2666. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2667. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2668. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2669. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2670. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2671. /* Program SSCAUXDIV */
  2672. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2673. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2674. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2675. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2676. /* Enable modulator and associated divider */
  2677. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2678. temp &= ~SBI_SSCCTL_DISABLE;
  2679. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2680. /* Wait for initialization time */
  2681. udelay(24);
  2682. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2683. mutex_unlock(&dev_priv->dpio_lock);
  2684. }
  2685. /*
  2686. * Enable PCH resources required for PCH ports:
  2687. * - PCH PLLs
  2688. * - FDI training & RX/TX
  2689. * - update transcoder timings
  2690. * - DP transcoding bits
  2691. * - transcoder
  2692. */
  2693. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2694. {
  2695. struct drm_device *dev = crtc->dev;
  2696. struct drm_i915_private *dev_priv = dev->dev_private;
  2697. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2698. int pipe = intel_crtc->pipe;
  2699. u32 reg, temp;
  2700. assert_transcoder_disabled(dev_priv, pipe);
  2701. /* Write the TU size bits before fdi link training, so that error
  2702. * detection works. */
  2703. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2704. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2705. /* For PCH output, training FDI link */
  2706. dev_priv->display.fdi_link_train(crtc);
  2707. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2708. * transcoder, and we actually should do this to not upset any PCH
  2709. * transcoder that already use the clock when we share it.
  2710. *
  2711. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2712. * unconditionally resets the pll - we need that to have the right LVDS
  2713. * enable sequence. */
  2714. ironlake_enable_pch_pll(intel_crtc);
  2715. if (HAS_PCH_CPT(dev)) {
  2716. u32 sel;
  2717. temp = I915_READ(PCH_DPLL_SEL);
  2718. switch (pipe) {
  2719. default:
  2720. case 0:
  2721. temp |= TRANSA_DPLL_ENABLE;
  2722. sel = TRANSA_DPLLB_SEL;
  2723. break;
  2724. case 1:
  2725. temp |= TRANSB_DPLL_ENABLE;
  2726. sel = TRANSB_DPLLB_SEL;
  2727. break;
  2728. case 2:
  2729. temp |= TRANSC_DPLL_ENABLE;
  2730. sel = TRANSC_DPLLB_SEL;
  2731. break;
  2732. }
  2733. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2734. temp |= sel;
  2735. else
  2736. temp &= ~sel;
  2737. I915_WRITE(PCH_DPLL_SEL, temp);
  2738. }
  2739. /* set transcoder timing, panel must allow it */
  2740. assert_panel_unlocked(dev_priv, pipe);
  2741. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2742. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2743. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2744. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2745. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2746. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2747. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2748. intel_fdi_normal_train(crtc);
  2749. /* For PCH DP, enable TRANS_DP_CTL */
  2750. if (HAS_PCH_CPT(dev) &&
  2751. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2752. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2753. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2754. reg = TRANS_DP_CTL(pipe);
  2755. temp = I915_READ(reg);
  2756. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2757. TRANS_DP_SYNC_MASK |
  2758. TRANS_DP_BPC_MASK);
  2759. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2760. TRANS_DP_ENH_FRAMING);
  2761. temp |= bpc << 9; /* same format but at 11:9 */
  2762. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2763. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2764. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2765. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2766. switch (intel_trans_dp_port_sel(crtc)) {
  2767. case PCH_DP_B:
  2768. temp |= TRANS_DP_PORT_SEL_B;
  2769. break;
  2770. case PCH_DP_C:
  2771. temp |= TRANS_DP_PORT_SEL_C;
  2772. break;
  2773. case PCH_DP_D:
  2774. temp |= TRANS_DP_PORT_SEL_D;
  2775. break;
  2776. default:
  2777. BUG();
  2778. }
  2779. I915_WRITE(reg, temp);
  2780. }
  2781. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2782. }
  2783. static void lpt_pch_enable(struct drm_crtc *crtc)
  2784. {
  2785. struct drm_device *dev = crtc->dev;
  2786. struct drm_i915_private *dev_priv = dev->dev_private;
  2787. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2788. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2789. assert_transcoder_disabled(dev_priv, TRANSCODER_A);
  2790. lpt_program_iclkip(crtc);
  2791. /* Set transcoder timing. */
  2792. I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
  2793. I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
  2794. I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
  2795. I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
  2796. I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
  2797. I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
  2798. I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2799. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2800. }
  2801. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2802. {
  2803. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2804. if (pll == NULL)
  2805. return;
  2806. if (pll->refcount == 0) {
  2807. WARN(1, "bad PCH PLL refcount\n");
  2808. return;
  2809. }
  2810. --pll->refcount;
  2811. intel_crtc->pch_pll = NULL;
  2812. }
  2813. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2814. {
  2815. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2816. struct intel_pch_pll *pll;
  2817. int i;
  2818. pll = intel_crtc->pch_pll;
  2819. if (pll) {
  2820. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2821. intel_crtc->base.base.id, pll->pll_reg);
  2822. goto prepare;
  2823. }
  2824. if (HAS_PCH_IBX(dev_priv->dev)) {
  2825. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2826. i = intel_crtc->pipe;
  2827. pll = &dev_priv->pch_plls[i];
  2828. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2829. intel_crtc->base.base.id, pll->pll_reg);
  2830. goto found;
  2831. }
  2832. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2833. pll = &dev_priv->pch_plls[i];
  2834. /* Only want to check enabled timings first */
  2835. if (pll->refcount == 0)
  2836. continue;
  2837. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2838. fp == I915_READ(pll->fp0_reg)) {
  2839. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2840. intel_crtc->base.base.id,
  2841. pll->pll_reg, pll->refcount, pll->active);
  2842. goto found;
  2843. }
  2844. }
  2845. /* Ok no matching timings, maybe there's a free one? */
  2846. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2847. pll = &dev_priv->pch_plls[i];
  2848. if (pll->refcount == 0) {
  2849. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2850. intel_crtc->base.base.id, pll->pll_reg);
  2851. goto found;
  2852. }
  2853. }
  2854. return NULL;
  2855. found:
  2856. intel_crtc->pch_pll = pll;
  2857. pll->refcount++;
  2858. DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
  2859. prepare: /* separate function? */
  2860. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2861. /* Wait for the clocks to stabilize before rewriting the regs */
  2862. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2863. POSTING_READ(pll->pll_reg);
  2864. udelay(150);
  2865. I915_WRITE(pll->fp0_reg, fp);
  2866. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2867. pll->on = false;
  2868. return pll;
  2869. }
  2870. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2871. {
  2872. struct drm_i915_private *dev_priv = dev->dev_private;
  2873. int dslreg = PIPEDSL(pipe);
  2874. u32 temp;
  2875. temp = I915_READ(dslreg);
  2876. udelay(500);
  2877. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2878. if (wait_for(I915_READ(dslreg) != temp, 5))
  2879. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2880. }
  2881. }
  2882. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2883. {
  2884. struct drm_device *dev = crtc->dev;
  2885. struct drm_i915_private *dev_priv = dev->dev_private;
  2886. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2887. struct intel_encoder *encoder;
  2888. int pipe = intel_crtc->pipe;
  2889. int plane = intel_crtc->plane;
  2890. u32 temp;
  2891. WARN_ON(!crtc->enabled);
  2892. if (intel_crtc->active)
  2893. return;
  2894. intel_crtc->active = true;
  2895. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2896. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2897. intel_update_watermarks(dev);
  2898. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2899. temp = I915_READ(PCH_LVDS);
  2900. if ((temp & LVDS_PORT_EN) == 0)
  2901. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2902. }
  2903. if (intel_crtc->config.has_pch_encoder) {
  2904. /* Note: FDI PLL enabling _must_ be done before we enable the
  2905. * cpu pipes, hence this is separate from all the other fdi/pch
  2906. * enabling. */
  2907. ironlake_fdi_pll_enable(intel_crtc);
  2908. } else {
  2909. assert_fdi_tx_disabled(dev_priv, pipe);
  2910. assert_fdi_rx_disabled(dev_priv, pipe);
  2911. }
  2912. for_each_encoder_on_crtc(dev, crtc, encoder)
  2913. if (encoder->pre_enable)
  2914. encoder->pre_enable(encoder);
  2915. /* Enable panel fitting for LVDS */
  2916. if (dev_priv->pch_pf_size &&
  2917. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2918. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2919. /* Force use of hard-coded filter coefficients
  2920. * as some pre-programmed values are broken,
  2921. * e.g. x201.
  2922. */
  2923. if (IS_IVYBRIDGE(dev))
  2924. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2925. PF_PIPE_SEL_IVB(pipe));
  2926. else
  2927. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2928. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2929. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2930. }
  2931. /*
  2932. * On ILK+ LUT must be loaded before the pipe is running but with
  2933. * clocks enabled
  2934. */
  2935. intel_crtc_load_lut(crtc);
  2936. intel_enable_pipe(dev_priv, pipe,
  2937. intel_crtc->config.has_pch_encoder);
  2938. intel_enable_plane(dev_priv, plane, pipe);
  2939. if (intel_crtc->config.has_pch_encoder)
  2940. ironlake_pch_enable(crtc);
  2941. mutex_lock(&dev->struct_mutex);
  2942. intel_update_fbc(dev);
  2943. mutex_unlock(&dev->struct_mutex);
  2944. intel_crtc_update_cursor(crtc, true);
  2945. for_each_encoder_on_crtc(dev, crtc, encoder)
  2946. encoder->enable(encoder);
  2947. if (HAS_PCH_CPT(dev))
  2948. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2949. /*
  2950. * There seems to be a race in PCH platform hw (at least on some
  2951. * outputs) where an enabled pipe still completes any pageflip right
  2952. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2953. * as the first vblank happend, everything works as expected. Hence just
  2954. * wait for one vblank before returning to avoid strange things
  2955. * happening.
  2956. */
  2957. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2958. }
  2959. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2960. {
  2961. struct drm_device *dev = crtc->dev;
  2962. struct drm_i915_private *dev_priv = dev->dev_private;
  2963. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2964. struct intel_encoder *encoder;
  2965. int pipe = intel_crtc->pipe;
  2966. int plane = intel_crtc->plane;
  2967. WARN_ON(!crtc->enabled);
  2968. if (intel_crtc->active)
  2969. return;
  2970. intel_crtc->active = true;
  2971. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2972. if (intel_crtc->config.has_pch_encoder)
  2973. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2974. intel_update_watermarks(dev);
  2975. if (intel_crtc->config.has_pch_encoder)
  2976. dev_priv->display.fdi_link_train(crtc);
  2977. for_each_encoder_on_crtc(dev, crtc, encoder)
  2978. if (encoder->pre_enable)
  2979. encoder->pre_enable(encoder);
  2980. intel_ddi_enable_pipe_clock(intel_crtc);
  2981. /* Enable panel fitting for eDP */
  2982. if (dev_priv->pch_pf_size &&
  2983. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  2984. /* Force use of hard-coded filter coefficients
  2985. * as some pre-programmed values are broken,
  2986. * e.g. x201.
  2987. */
  2988. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2989. PF_PIPE_SEL_IVB(pipe));
  2990. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2991. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2992. }
  2993. /*
  2994. * On ILK+ LUT must be loaded before the pipe is running but with
  2995. * clocks enabled
  2996. */
  2997. intel_crtc_load_lut(crtc);
  2998. intel_ddi_set_pipe_settings(crtc);
  2999. intel_ddi_enable_transcoder_func(crtc);
  3000. intel_enable_pipe(dev_priv, pipe,
  3001. intel_crtc->config.has_pch_encoder);
  3002. intel_enable_plane(dev_priv, plane, pipe);
  3003. if (intel_crtc->config.has_pch_encoder)
  3004. lpt_pch_enable(crtc);
  3005. mutex_lock(&dev->struct_mutex);
  3006. intel_update_fbc(dev);
  3007. mutex_unlock(&dev->struct_mutex);
  3008. intel_crtc_update_cursor(crtc, true);
  3009. for_each_encoder_on_crtc(dev, crtc, encoder)
  3010. encoder->enable(encoder);
  3011. /*
  3012. * There seems to be a race in PCH platform hw (at least on some
  3013. * outputs) where an enabled pipe still completes any pageflip right
  3014. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3015. * as the first vblank happend, everything works as expected. Hence just
  3016. * wait for one vblank before returning to avoid strange things
  3017. * happening.
  3018. */
  3019. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3020. }
  3021. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3022. {
  3023. struct drm_device *dev = crtc->dev;
  3024. struct drm_i915_private *dev_priv = dev->dev_private;
  3025. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3026. struct intel_encoder *encoder;
  3027. int pipe = intel_crtc->pipe;
  3028. int plane = intel_crtc->plane;
  3029. u32 reg, temp;
  3030. if (!intel_crtc->active)
  3031. return;
  3032. for_each_encoder_on_crtc(dev, crtc, encoder)
  3033. encoder->disable(encoder);
  3034. intel_crtc_wait_for_pending_flips(crtc);
  3035. drm_vblank_off(dev, pipe);
  3036. intel_crtc_update_cursor(crtc, false);
  3037. intel_disable_plane(dev_priv, plane, pipe);
  3038. if (dev_priv->cfb_plane == plane)
  3039. intel_disable_fbc(dev);
  3040. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  3041. intel_disable_pipe(dev_priv, pipe);
  3042. /* Disable PF */
  3043. I915_WRITE(PF_CTL(pipe), 0);
  3044. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3045. for_each_encoder_on_crtc(dev, crtc, encoder)
  3046. if (encoder->post_disable)
  3047. encoder->post_disable(encoder);
  3048. ironlake_fdi_disable(crtc);
  3049. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3050. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3051. if (HAS_PCH_CPT(dev)) {
  3052. /* disable TRANS_DP_CTL */
  3053. reg = TRANS_DP_CTL(pipe);
  3054. temp = I915_READ(reg);
  3055. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  3056. temp |= TRANS_DP_PORT_SEL_NONE;
  3057. I915_WRITE(reg, temp);
  3058. /* disable DPLL_SEL */
  3059. temp = I915_READ(PCH_DPLL_SEL);
  3060. switch (pipe) {
  3061. case 0:
  3062. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  3063. break;
  3064. case 1:
  3065. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3066. break;
  3067. case 2:
  3068. /* C shares PLL A or B */
  3069. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  3070. break;
  3071. default:
  3072. BUG(); /* wtf */
  3073. }
  3074. I915_WRITE(PCH_DPLL_SEL, temp);
  3075. }
  3076. /* disable PCH DPLL */
  3077. intel_disable_pch_pll(intel_crtc);
  3078. ironlake_fdi_pll_disable(intel_crtc);
  3079. intel_crtc->active = false;
  3080. intel_update_watermarks(dev);
  3081. mutex_lock(&dev->struct_mutex);
  3082. intel_update_fbc(dev);
  3083. mutex_unlock(&dev->struct_mutex);
  3084. }
  3085. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3086. {
  3087. struct drm_device *dev = crtc->dev;
  3088. struct drm_i915_private *dev_priv = dev->dev_private;
  3089. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3090. struct intel_encoder *encoder;
  3091. int pipe = intel_crtc->pipe;
  3092. int plane = intel_crtc->plane;
  3093. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3094. if (!intel_crtc->active)
  3095. return;
  3096. for_each_encoder_on_crtc(dev, crtc, encoder)
  3097. encoder->disable(encoder);
  3098. intel_crtc_wait_for_pending_flips(crtc);
  3099. drm_vblank_off(dev, pipe);
  3100. intel_crtc_update_cursor(crtc, false);
  3101. intel_disable_plane(dev_priv, plane, pipe);
  3102. if (dev_priv->cfb_plane == plane)
  3103. intel_disable_fbc(dev);
  3104. if (intel_crtc->config.has_pch_encoder)
  3105. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3106. intel_disable_pipe(dev_priv, pipe);
  3107. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3108. /* XXX: Once we have proper panel fitter state tracking implemented with
  3109. * hardware state read/check support we should switch to only disable
  3110. * the panel fitter when we know it's used. */
  3111. if (intel_using_power_well(dev)) {
  3112. I915_WRITE(PF_CTL(pipe), 0);
  3113. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3114. }
  3115. intel_ddi_disable_pipe_clock(intel_crtc);
  3116. for_each_encoder_on_crtc(dev, crtc, encoder)
  3117. if (encoder->post_disable)
  3118. encoder->post_disable(encoder);
  3119. if (intel_crtc->config.has_pch_encoder) {
  3120. lpt_disable_pch_transcoder(dev_priv);
  3121. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3122. intel_ddi_fdi_disable(crtc);
  3123. }
  3124. intel_crtc->active = false;
  3125. intel_update_watermarks(dev);
  3126. mutex_lock(&dev->struct_mutex);
  3127. intel_update_fbc(dev);
  3128. mutex_unlock(&dev->struct_mutex);
  3129. }
  3130. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3131. {
  3132. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3133. intel_put_pch_pll(intel_crtc);
  3134. }
  3135. static void haswell_crtc_off(struct drm_crtc *crtc)
  3136. {
  3137. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3138. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3139. * start using it. */
  3140. intel_crtc->config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  3141. intel_ddi_put_crtc_pll(crtc);
  3142. }
  3143. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3144. {
  3145. if (!enable && intel_crtc->overlay) {
  3146. struct drm_device *dev = intel_crtc->base.dev;
  3147. struct drm_i915_private *dev_priv = dev->dev_private;
  3148. mutex_lock(&dev->struct_mutex);
  3149. dev_priv->mm.interruptible = false;
  3150. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3151. dev_priv->mm.interruptible = true;
  3152. mutex_unlock(&dev->struct_mutex);
  3153. }
  3154. /* Let userspace switch the overlay on again. In most cases userspace
  3155. * has to recompute where to put it anyway.
  3156. */
  3157. }
  3158. /**
  3159. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3160. * cursor plane briefly if not already running after enabling the display
  3161. * plane.
  3162. * This workaround avoids occasional blank screens when self refresh is
  3163. * enabled.
  3164. */
  3165. static void
  3166. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3167. {
  3168. u32 cntl = I915_READ(CURCNTR(pipe));
  3169. if ((cntl & CURSOR_MODE) == 0) {
  3170. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3171. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3172. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3173. intel_wait_for_vblank(dev_priv->dev, pipe);
  3174. I915_WRITE(CURCNTR(pipe), cntl);
  3175. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3176. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3177. }
  3178. }
  3179. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3180. {
  3181. struct drm_device *dev = crtc->dev;
  3182. struct drm_i915_private *dev_priv = dev->dev_private;
  3183. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3184. struct intel_encoder *encoder;
  3185. int pipe = intel_crtc->pipe;
  3186. int plane = intel_crtc->plane;
  3187. WARN_ON(!crtc->enabled);
  3188. if (intel_crtc->active)
  3189. return;
  3190. intel_crtc->active = true;
  3191. intel_update_watermarks(dev);
  3192. mutex_lock(&dev_priv->dpio_lock);
  3193. for_each_encoder_on_crtc(dev, crtc, encoder)
  3194. if (encoder->pre_pll_enable)
  3195. encoder->pre_pll_enable(encoder);
  3196. intel_enable_pll(dev_priv, pipe);
  3197. for_each_encoder_on_crtc(dev, crtc, encoder)
  3198. if (encoder->pre_enable)
  3199. encoder->pre_enable(encoder);
  3200. /* VLV wants encoder enabling _before_ the pipe is up. */
  3201. for_each_encoder_on_crtc(dev, crtc, encoder)
  3202. encoder->enable(encoder);
  3203. intel_enable_pipe(dev_priv, pipe, false);
  3204. intel_enable_plane(dev_priv, plane, pipe);
  3205. intel_crtc_load_lut(crtc);
  3206. intel_update_fbc(dev);
  3207. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3208. intel_crtc_dpms_overlay(intel_crtc, true);
  3209. intel_crtc_update_cursor(crtc, true);
  3210. mutex_unlock(&dev_priv->dpio_lock);
  3211. }
  3212. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3213. {
  3214. struct drm_device *dev = crtc->dev;
  3215. struct drm_i915_private *dev_priv = dev->dev_private;
  3216. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3217. struct intel_encoder *encoder;
  3218. int pipe = intel_crtc->pipe;
  3219. int plane = intel_crtc->plane;
  3220. WARN_ON(!crtc->enabled);
  3221. if (intel_crtc->active)
  3222. return;
  3223. intel_crtc->active = true;
  3224. intel_update_watermarks(dev);
  3225. intel_enable_pll(dev_priv, pipe);
  3226. for_each_encoder_on_crtc(dev, crtc, encoder)
  3227. if (encoder->pre_enable)
  3228. encoder->pre_enable(encoder);
  3229. intel_enable_pipe(dev_priv, pipe, false);
  3230. intel_enable_plane(dev_priv, plane, pipe);
  3231. if (IS_G4X(dev))
  3232. g4x_fixup_plane(dev_priv, pipe);
  3233. intel_crtc_load_lut(crtc);
  3234. intel_update_fbc(dev);
  3235. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3236. intel_crtc_dpms_overlay(intel_crtc, true);
  3237. intel_crtc_update_cursor(crtc, true);
  3238. for_each_encoder_on_crtc(dev, crtc, encoder)
  3239. encoder->enable(encoder);
  3240. }
  3241. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3242. {
  3243. struct drm_device *dev = crtc->base.dev;
  3244. struct drm_i915_private *dev_priv = dev->dev_private;
  3245. enum pipe pipe;
  3246. uint32_t pctl = I915_READ(PFIT_CONTROL);
  3247. assert_pipe_disabled(dev_priv, crtc->pipe);
  3248. if (INTEL_INFO(dev)->gen >= 4)
  3249. pipe = (pctl & PFIT_PIPE_MASK) >> PFIT_PIPE_SHIFT;
  3250. else
  3251. pipe = PIPE_B;
  3252. if (pipe == crtc->pipe) {
  3253. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n", pctl);
  3254. I915_WRITE(PFIT_CONTROL, 0);
  3255. }
  3256. }
  3257. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3258. {
  3259. struct drm_device *dev = crtc->dev;
  3260. struct drm_i915_private *dev_priv = dev->dev_private;
  3261. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3262. struct intel_encoder *encoder;
  3263. int pipe = intel_crtc->pipe;
  3264. int plane = intel_crtc->plane;
  3265. if (!intel_crtc->active)
  3266. return;
  3267. for_each_encoder_on_crtc(dev, crtc, encoder)
  3268. encoder->disable(encoder);
  3269. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3270. intel_crtc_wait_for_pending_flips(crtc);
  3271. drm_vblank_off(dev, pipe);
  3272. intel_crtc_dpms_overlay(intel_crtc, false);
  3273. intel_crtc_update_cursor(crtc, false);
  3274. if (dev_priv->cfb_plane == plane)
  3275. intel_disable_fbc(dev);
  3276. intel_disable_plane(dev_priv, plane, pipe);
  3277. intel_disable_pipe(dev_priv, pipe);
  3278. i9xx_pfit_disable(intel_crtc);
  3279. for_each_encoder_on_crtc(dev, crtc, encoder)
  3280. if (encoder->post_disable)
  3281. encoder->post_disable(encoder);
  3282. intel_disable_pll(dev_priv, pipe);
  3283. intel_crtc->active = false;
  3284. intel_update_fbc(dev);
  3285. intel_update_watermarks(dev);
  3286. }
  3287. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3288. {
  3289. }
  3290. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3291. bool enabled)
  3292. {
  3293. struct drm_device *dev = crtc->dev;
  3294. struct drm_i915_master_private *master_priv;
  3295. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3296. int pipe = intel_crtc->pipe;
  3297. if (!dev->primary->master)
  3298. return;
  3299. master_priv = dev->primary->master->driver_priv;
  3300. if (!master_priv->sarea_priv)
  3301. return;
  3302. switch (pipe) {
  3303. case 0:
  3304. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3305. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3306. break;
  3307. case 1:
  3308. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3309. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3310. break;
  3311. default:
  3312. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3313. break;
  3314. }
  3315. }
  3316. /**
  3317. * Sets the power management mode of the pipe and plane.
  3318. */
  3319. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3320. {
  3321. struct drm_device *dev = crtc->dev;
  3322. struct drm_i915_private *dev_priv = dev->dev_private;
  3323. struct intel_encoder *intel_encoder;
  3324. bool enable = false;
  3325. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3326. enable |= intel_encoder->connectors_active;
  3327. if (enable)
  3328. dev_priv->display.crtc_enable(crtc);
  3329. else
  3330. dev_priv->display.crtc_disable(crtc);
  3331. intel_crtc_update_sarea(crtc, enable);
  3332. }
  3333. static void intel_crtc_disable(struct drm_crtc *crtc)
  3334. {
  3335. struct drm_device *dev = crtc->dev;
  3336. struct drm_connector *connector;
  3337. struct drm_i915_private *dev_priv = dev->dev_private;
  3338. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3339. /* crtc should still be enabled when we disable it. */
  3340. WARN_ON(!crtc->enabled);
  3341. intel_crtc->eld_vld = false;
  3342. dev_priv->display.crtc_disable(crtc);
  3343. intel_crtc_update_sarea(crtc, false);
  3344. dev_priv->display.off(crtc);
  3345. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3346. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3347. if (crtc->fb) {
  3348. mutex_lock(&dev->struct_mutex);
  3349. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3350. mutex_unlock(&dev->struct_mutex);
  3351. crtc->fb = NULL;
  3352. }
  3353. /* Update computed state. */
  3354. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3355. if (!connector->encoder || !connector->encoder->crtc)
  3356. continue;
  3357. if (connector->encoder->crtc != crtc)
  3358. continue;
  3359. connector->dpms = DRM_MODE_DPMS_OFF;
  3360. to_intel_encoder(connector->encoder)->connectors_active = false;
  3361. }
  3362. }
  3363. void intel_modeset_disable(struct drm_device *dev)
  3364. {
  3365. struct drm_crtc *crtc;
  3366. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3367. if (crtc->enabled)
  3368. intel_crtc_disable(crtc);
  3369. }
  3370. }
  3371. void intel_encoder_destroy(struct drm_encoder *encoder)
  3372. {
  3373. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3374. drm_encoder_cleanup(encoder);
  3375. kfree(intel_encoder);
  3376. }
  3377. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3378. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3379. * state of the entire output pipe. */
  3380. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3381. {
  3382. if (mode == DRM_MODE_DPMS_ON) {
  3383. encoder->connectors_active = true;
  3384. intel_crtc_update_dpms(encoder->base.crtc);
  3385. } else {
  3386. encoder->connectors_active = false;
  3387. intel_crtc_update_dpms(encoder->base.crtc);
  3388. }
  3389. }
  3390. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3391. * internal consistency). */
  3392. static void intel_connector_check_state(struct intel_connector *connector)
  3393. {
  3394. if (connector->get_hw_state(connector)) {
  3395. struct intel_encoder *encoder = connector->encoder;
  3396. struct drm_crtc *crtc;
  3397. bool encoder_enabled;
  3398. enum pipe pipe;
  3399. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3400. connector->base.base.id,
  3401. drm_get_connector_name(&connector->base));
  3402. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3403. "wrong connector dpms state\n");
  3404. WARN(connector->base.encoder != &encoder->base,
  3405. "active connector not linked to encoder\n");
  3406. WARN(!encoder->connectors_active,
  3407. "encoder->connectors_active not set\n");
  3408. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3409. WARN(!encoder_enabled, "encoder not enabled\n");
  3410. if (WARN_ON(!encoder->base.crtc))
  3411. return;
  3412. crtc = encoder->base.crtc;
  3413. WARN(!crtc->enabled, "crtc not enabled\n");
  3414. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3415. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3416. "encoder active on the wrong pipe\n");
  3417. }
  3418. }
  3419. /* Even simpler default implementation, if there's really no special case to
  3420. * consider. */
  3421. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3422. {
  3423. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3424. /* All the simple cases only support two dpms states. */
  3425. if (mode != DRM_MODE_DPMS_ON)
  3426. mode = DRM_MODE_DPMS_OFF;
  3427. if (mode == connector->dpms)
  3428. return;
  3429. connector->dpms = mode;
  3430. /* Only need to change hw state when actually enabled */
  3431. if (encoder->base.crtc)
  3432. intel_encoder_dpms(encoder, mode);
  3433. else
  3434. WARN_ON(encoder->connectors_active != false);
  3435. intel_modeset_check_state(connector->dev);
  3436. }
  3437. /* Simple connector->get_hw_state implementation for encoders that support only
  3438. * one connector and no cloning and hence the encoder state determines the state
  3439. * of the connector. */
  3440. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3441. {
  3442. enum pipe pipe = 0;
  3443. struct intel_encoder *encoder = connector->encoder;
  3444. return encoder->get_hw_state(encoder, &pipe);
  3445. }
  3446. static bool intel_crtc_compute_config(struct drm_crtc *crtc,
  3447. struct intel_crtc_config *pipe_config)
  3448. {
  3449. struct drm_device *dev = crtc->dev;
  3450. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3451. if (HAS_PCH_SPLIT(dev)) {
  3452. /* FDI link clock is fixed at 2.7G */
  3453. if (pipe_config->requested_mode.clock * 3
  3454. > IRONLAKE_FDI_FREQ * 4)
  3455. return false;
  3456. }
  3457. /* All interlaced capable intel hw wants timings in frames. Note though
  3458. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3459. * timings, so we need to be careful not to clobber these.*/
  3460. if (!pipe_config->timings_set)
  3461. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3462. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3463. * with a hsync front porch of 0.
  3464. */
  3465. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3466. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3467. return false;
  3468. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3469. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3470. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3471. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3472. * for lvds. */
  3473. pipe_config->pipe_bpp = 8*3;
  3474. }
  3475. return true;
  3476. }
  3477. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3478. {
  3479. return 400000; /* FIXME */
  3480. }
  3481. static int i945_get_display_clock_speed(struct drm_device *dev)
  3482. {
  3483. return 400000;
  3484. }
  3485. static int i915_get_display_clock_speed(struct drm_device *dev)
  3486. {
  3487. return 333000;
  3488. }
  3489. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3490. {
  3491. return 200000;
  3492. }
  3493. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3494. {
  3495. u16 gcfgc = 0;
  3496. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3497. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3498. return 133000;
  3499. else {
  3500. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3501. case GC_DISPLAY_CLOCK_333_MHZ:
  3502. return 333000;
  3503. default:
  3504. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3505. return 190000;
  3506. }
  3507. }
  3508. }
  3509. static int i865_get_display_clock_speed(struct drm_device *dev)
  3510. {
  3511. return 266000;
  3512. }
  3513. static int i855_get_display_clock_speed(struct drm_device *dev)
  3514. {
  3515. u16 hpllcc = 0;
  3516. /* Assume that the hardware is in the high speed state. This
  3517. * should be the default.
  3518. */
  3519. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3520. case GC_CLOCK_133_200:
  3521. case GC_CLOCK_100_200:
  3522. return 200000;
  3523. case GC_CLOCK_166_250:
  3524. return 250000;
  3525. case GC_CLOCK_100_133:
  3526. return 133000;
  3527. }
  3528. /* Shouldn't happen */
  3529. return 0;
  3530. }
  3531. static int i830_get_display_clock_speed(struct drm_device *dev)
  3532. {
  3533. return 133000;
  3534. }
  3535. static void
  3536. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  3537. {
  3538. while (*num > 0xffffff || *den > 0xffffff) {
  3539. *num >>= 1;
  3540. *den >>= 1;
  3541. }
  3542. }
  3543. void
  3544. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3545. int pixel_clock, int link_clock,
  3546. struct intel_link_m_n *m_n)
  3547. {
  3548. m_n->tu = 64;
  3549. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3550. m_n->gmch_n = link_clock * nlanes * 8;
  3551. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3552. m_n->link_m = pixel_clock;
  3553. m_n->link_n = link_clock;
  3554. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3555. }
  3556. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3557. {
  3558. if (i915_panel_use_ssc >= 0)
  3559. return i915_panel_use_ssc != 0;
  3560. return dev_priv->lvds_use_ssc
  3561. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3562. }
  3563. static int vlv_get_refclk(struct drm_crtc *crtc)
  3564. {
  3565. struct drm_device *dev = crtc->dev;
  3566. struct drm_i915_private *dev_priv = dev->dev_private;
  3567. int refclk = 27000; /* for DP & HDMI */
  3568. return 100000; /* only one validated so far */
  3569. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3570. refclk = 96000;
  3571. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3572. if (intel_panel_use_ssc(dev_priv))
  3573. refclk = 100000;
  3574. else
  3575. refclk = 96000;
  3576. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3577. refclk = 100000;
  3578. }
  3579. return refclk;
  3580. }
  3581. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3582. {
  3583. struct drm_device *dev = crtc->dev;
  3584. struct drm_i915_private *dev_priv = dev->dev_private;
  3585. int refclk;
  3586. if (IS_VALLEYVIEW(dev)) {
  3587. refclk = vlv_get_refclk(crtc);
  3588. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3589. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3590. refclk = dev_priv->lvds_ssc_freq * 1000;
  3591. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3592. refclk / 1000);
  3593. } else if (!IS_GEN2(dev)) {
  3594. refclk = 96000;
  3595. } else {
  3596. refclk = 48000;
  3597. }
  3598. return refclk;
  3599. }
  3600. static void i9xx_adjust_sdvo_tv_clock(struct intel_crtc *crtc)
  3601. {
  3602. unsigned dotclock = crtc->config.adjusted_mode.clock;
  3603. struct dpll *clock = &crtc->config.dpll;
  3604. /* SDVO TV has fixed PLL values depend on its clock range,
  3605. this mirrors vbios setting. */
  3606. if (dotclock >= 100000 && dotclock < 140500) {
  3607. clock->p1 = 2;
  3608. clock->p2 = 10;
  3609. clock->n = 3;
  3610. clock->m1 = 16;
  3611. clock->m2 = 8;
  3612. } else if (dotclock >= 140500 && dotclock <= 200000) {
  3613. clock->p1 = 1;
  3614. clock->p2 = 10;
  3615. clock->n = 6;
  3616. clock->m1 = 12;
  3617. clock->m2 = 8;
  3618. }
  3619. crtc->config.clock_set = true;
  3620. }
  3621. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3622. intel_clock_t *reduced_clock)
  3623. {
  3624. struct drm_device *dev = crtc->base.dev;
  3625. struct drm_i915_private *dev_priv = dev->dev_private;
  3626. int pipe = crtc->pipe;
  3627. u32 fp, fp2 = 0;
  3628. struct dpll *clock = &crtc->config.dpll;
  3629. if (IS_PINEVIEW(dev)) {
  3630. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3631. if (reduced_clock)
  3632. fp2 = (1 << reduced_clock->n) << 16 |
  3633. reduced_clock->m1 << 8 | reduced_clock->m2;
  3634. } else {
  3635. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3636. if (reduced_clock)
  3637. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3638. reduced_clock->m2;
  3639. }
  3640. I915_WRITE(FP0(pipe), fp);
  3641. crtc->lowfreq_avail = false;
  3642. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3643. reduced_clock && i915_powersave) {
  3644. I915_WRITE(FP1(pipe), fp2);
  3645. crtc->lowfreq_avail = true;
  3646. } else {
  3647. I915_WRITE(FP1(pipe), fp);
  3648. }
  3649. }
  3650. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3651. {
  3652. u32 reg_val;
  3653. /*
  3654. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3655. * and set it to a reasonable value instead.
  3656. */
  3657. reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
  3658. reg_val &= 0xffffff00;
  3659. reg_val |= 0x00000030;
  3660. intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3661. reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
  3662. reg_val &= 0x8cffffff;
  3663. reg_val = 0x8c000000;
  3664. intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3665. reg_val = intel_dpio_read(dev_priv, DPIO_IREF(1));
  3666. reg_val &= 0xffffff00;
  3667. intel_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3668. reg_val = intel_dpio_read(dev_priv, DPIO_CALIBRATION);
  3669. reg_val &= 0x00ffffff;
  3670. reg_val |= 0xb0000000;
  3671. intel_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3672. }
  3673. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3674. {
  3675. if (crtc->config.has_pch_encoder)
  3676. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3677. else
  3678. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3679. }
  3680. static void vlv_update_pll(struct intel_crtc *crtc)
  3681. {
  3682. struct drm_device *dev = crtc->base.dev;
  3683. struct drm_i915_private *dev_priv = dev->dev_private;
  3684. struct drm_display_mode *adjusted_mode =
  3685. &crtc->config.adjusted_mode;
  3686. struct intel_encoder *encoder;
  3687. int pipe = crtc->pipe;
  3688. u32 dpll, mdiv;
  3689. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3690. bool is_hdmi;
  3691. u32 coreclk, reg_val, temp;
  3692. mutex_lock(&dev_priv->dpio_lock);
  3693. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3694. bestn = crtc->config.dpll.n;
  3695. bestm1 = crtc->config.dpll.m1;
  3696. bestm2 = crtc->config.dpll.m2;
  3697. bestp1 = crtc->config.dpll.p1;
  3698. bestp2 = crtc->config.dpll.p2;
  3699. /* See eDP HDMI DPIO driver vbios notes doc */
  3700. /* PLL B needs special handling */
  3701. if (pipe)
  3702. vlv_pllb_recal_opamp(dev_priv);
  3703. /* Set up Tx target for periodic Rcomp update */
  3704. intel_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3705. /* Disable target IRef on PLL */
  3706. reg_val = intel_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3707. reg_val &= 0x00ffffff;
  3708. intel_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3709. /* Disable fast lock */
  3710. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3711. /* Set idtafcrecal before PLL is enabled */
  3712. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3713. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3714. mdiv |= ((bestn << DPIO_N_SHIFT));
  3715. mdiv |= (1 << DPIO_K_SHIFT);
  3716. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI) ||
  3717. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3718. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3719. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3720. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3721. mdiv |= DPIO_ENABLE_CALIBRATION;
  3722. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3723. /* Set HBR and RBR LPF coefficients */
  3724. if (adjusted_mode->clock == 162000 ||
  3725. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3726. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3727. 0x005f0021);
  3728. else
  3729. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3730. 0x00d0000f);
  3731. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3732. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3733. /* Use SSC source */
  3734. if (!pipe)
  3735. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3736. 0x0df40000);
  3737. else
  3738. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3739. 0x0df70000);
  3740. } else { /* HDMI or VGA */
  3741. /* Use bend source */
  3742. if (!pipe)
  3743. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3744. 0x0df70000);
  3745. else
  3746. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3747. 0x0df40000);
  3748. }
  3749. coreclk = intel_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3750. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3751. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3752. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3753. coreclk |= 0x01000000;
  3754. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3755. intel_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3756. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3757. if (encoder->pre_pll_enable)
  3758. encoder->pre_pll_enable(encoder);
  3759. /* Enable DPIO clock input */
  3760. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3761. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3762. if (pipe)
  3763. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3764. dpll |= DPLL_VCO_ENABLE;
  3765. I915_WRITE(DPLL(pipe), dpll);
  3766. POSTING_READ(DPLL(pipe));
  3767. udelay(150);
  3768. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3769. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3770. if (is_hdmi) {
  3771. temp = 0;
  3772. if (crtc->config.pixel_multiplier > 1) {
  3773. temp = (crtc->config.pixel_multiplier - 1)
  3774. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3775. }
  3776. I915_WRITE(DPLL_MD(pipe), temp);
  3777. POSTING_READ(DPLL_MD(pipe));
  3778. }
  3779. if (crtc->config.has_dp_encoder)
  3780. intel_dp_set_m_n(crtc);
  3781. mutex_unlock(&dev_priv->dpio_lock);
  3782. }
  3783. static void i9xx_update_pll(struct intel_crtc *crtc,
  3784. intel_clock_t *reduced_clock,
  3785. int num_connectors)
  3786. {
  3787. struct drm_device *dev = crtc->base.dev;
  3788. struct drm_i915_private *dev_priv = dev->dev_private;
  3789. struct intel_encoder *encoder;
  3790. int pipe = crtc->pipe;
  3791. u32 dpll;
  3792. bool is_sdvo;
  3793. struct dpll *clock = &crtc->config.dpll;
  3794. i9xx_update_pll_dividers(crtc, reduced_clock);
  3795. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3796. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3797. dpll = DPLL_VGA_MODE_DIS;
  3798. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3799. dpll |= DPLLB_MODE_LVDS;
  3800. else
  3801. dpll |= DPLLB_MODE_DAC_SERIAL;
  3802. if (is_sdvo) {
  3803. if ((crtc->config.pixel_multiplier > 1) &&
  3804. (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
  3805. dpll |= (crtc->config.pixel_multiplier - 1)
  3806. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3807. }
  3808. dpll |= DPLL_DVO_HIGH_SPEED;
  3809. }
  3810. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3811. dpll |= DPLL_DVO_HIGH_SPEED;
  3812. /* compute bitmask from p1 value */
  3813. if (IS_PINEVIEW(dev))
  3814. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3815. else {
  3816. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3817. if (IS_G4X(dev) && reduced_clock)
  3818. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3819. }
  3820. switch (clock->p2) {
  3821. case 5:
  3822. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3823. break;
  3824. case 7:
  3825. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3826. break;
  3827. case 10:
  3828. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3829. break;
  3830. case 14:
  3831. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3832. break;
  3833. }
  3834. if (INTEL_INFO(dev)->gen >= 4)
  3835. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3836. if (is_sdvo && intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
  3837. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3838. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_TVOUT))
  3839. /* XXX: just matching BIOS for now */
  3840. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3841. dpll |= 3;
  3842. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3843. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3844. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3845. else
  3846. dpll |= PLL_REF_INPUT_DREFCLK;
  3847. dpll |= DPLL_VCO_ENABLE;
  3848. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3849. POSTING_READ(DPLL(pipe));
  3850. udelay(150);
  3851. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3852. if (encoder->pre_pll_enable)
  3853. encoder->pre_pll_enable(encoder);
  3854. if (crtc->config.has_dp_encoder)
  3855. intel_dp_set_m_n(crtc);
  3856. I915_WRITE(DPLL(pipe), dpll);
  3857. /* Wait for the clocks to stabilize. */
  3858. POSTING_READ(DPLL(pipe));
  3859. udelay(150);
  3860. if (INTEL_INFO(dev)->gen >= 4) {
  3861. u32 temp = 0;
  3862. if (is_sdvo) {
  3863. temp = 0;
  3864. if (crtc->config.pixel_multiplier > 1) {
  3865. temp = (crtc->config.pixel_multiplier - 1)
  3866. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3867. }
  3868. }
  3869. I915_WRITE(DPLL_MD(pipe), temp);
  3870. } else {
  3871. /* The pixel multiplier can only be updated once the
  3872. * DPLL is enabled and the clocks are stable.
  3873. *
  3874. * So write it again.
  3875. */
  3876. I915_WRITE(DPLL(pipe), dpll);
  3877. }
  3878. }
  3879. static void i8xx_update_pll(struct intel_crtc *crtc,
  3880. struct drm_display_mode *adjusted_mode,
  3881. intel_clock_t *reduced_clock,
  3882. int num_connectors)
  3883. {
  3884. struct drm_device *dev = crtc->base.dev;
  3885. struct drm_i915_private *dev_priv = dev->dev_private;
  3886. struct intel_encoder *encoder;
  3887. int pipe = crtc->pipe;
  3888. u32 dpll;
  3889. struct dpll *clock = &crtc->config.dpll;
  3890. i9xx_update_pll_dividers(crtc, reduced_clock);
  3891. dpll = DPLL_VGA_MODE_DIS;
  3892. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3893. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3894. } else {
  3895. if (clock->p1 == 2)
  3896. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3897. else
  3898. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3899. if (clock->p2 == 4)
  3900. dpll |= PLL_P2_DIVIDE_BY_4;
  3901. }
  3902. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3903. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3904. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3905. else
  3906. dpll |= PLL_REF_INPUT_DREFCLK;
  3907. dpll |= DPLL_VCO_ENABLE;
  3908. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3909. POSTING_READ(DPLL(pipe));
  3910. udelay(150);
  3911. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3912. if (encoder->pre_pll_enable)
  3913. encoder->pre_pll_enable(encoder);
  3914. I915_WRITE(DPLL(pipe), dpll);
  3915. /* Wait for the clocks to stabilize. */
  3916. POSTING_READ(DPLL(pipe));
  3917. udelay(150);
  3918. /* The pixel multiplier can only be updated once the
  3919. * DPLL is enabled and the clocks are stable.
  3920. *
  3921. * So write it again.
  3922. */
  3923. I915_WRITE(DPLL(pipe), dpll);
  3924. }
  3925. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3926. struct drm_display_mode *mode,
  3927. struct drm_display_mode *adjusted_mode)
  3928. {
  3929. struct drm_device *dev = intel_crtc->base.dev;
  3930. struct drm_i915_private *dev_priv = dev->dev_private;
  3931. enum pipe pipe = intel_crtc->pipe;
  3932. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3933. uint32_t vsyncshift;
  3934. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3935. /* the chip adds 2 halflines automatically */
  3936. adjusted_mode->crtc_vtotal -= 1;
  3937. adjusted_mode->crtc_vblank_end -= 1;
  3938. vsyncshift = adjusted_mode->crtc_hsync_start
  3939. - adjusted_mode->crtc_htotal / 2;
  3940. } else {
  3941. vsyncshift = 0;
  3942. }
  3943. if (INTEL_INFO(dev)->gen > 3)
  3944. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3945. I915_WRITE(HTOTAL(cpu_transcoder),
  3946. (adjusted_mode->crtc_hdisplay - 1) |
  3947. ((adjusted_mode->crtc_htotal - 1) << 16));
  3948. I915_WRITE(HBLANK(cpu_transcoder),
  3949. (adjusted_mode->crtc_hblank_start - 1) |
  3950. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3951. I915_WRITE(HSYNC(cpu_transcoder),
  3952. (adjusted_mode->crtc_hsync_start - 1) |
  3953. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3954. I915_WRITE(VTOTAL(cpu_transcoder),
  3955. (adjusted_mode->crtc_vdisplay - 1) |
  3956. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3957. I915_WRITE(VBLANK(cpu_transcoder),
  3958. (adjusted_mode->crtc_vblank_start - 1) |
  3959. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3960. I915_WRITE(VSYNC(cpu_transcoder),
  3961. (adjusted_mode->crtc_vsync_start - 1) |
  3962. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3963. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3964. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3965. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3966. * bits. */
  3967. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3968. (pipe == PIPE_B || pipe == PIPE_C))
  3969. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3970. /* pipesrc controls the size that is scaled from, which should
  3971. * always be the user's requested size.
  3972. */
  3973. I915_WRITE(PIPESRC(pipe),
  3974. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3975. }
  3976. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  3977. {
  3978. struct drm_device *dev = intel_crtc->base.dev;
  3979. struct drm_i915_private *dev_priv = dev->dev_private;
  3980. uint32_t pipeconf;
  3981. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  3982. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3983. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3984. * core speed.
  3985. *
  3986. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3987. * pipe == 0 check?
  3988. */
  3989. if (intel_crtc->config.requested_mode.clock >
  3990. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3991. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3992. else
  3993. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  3994. }
  3995. /* default to 8bpc */
  3996. pipeconf &= ~(PIPECONF_BPC_MASK | PIPECONF_DITHER_EN);
  3997. if (intel_crtc->config.has_dp_encoder) {
  3998. if (intel_crtc->config.dither) {
  3999. pipeconf |= PIPECONF_6BPC |
  4000. PIPECONF_DITHER_EN |
  4001. PIPECONF_DITHER_TYPE_SP;
  4002. }
  4003. }
  4004. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(&intel_crtc->base,
  4005. INTEL_OUTPUT_EDP)) {
  4006. if (intel_crtc->config.dither) {
  4007. pipeconf |= PIPECONF_6BPC |
  4008. PIPECONF_ENABLE |
  4009. I965_PIPECONF_ACTIVE;
  4010. }
  4011. }
  4012. if (HAS_PIPE_CXSR(dev)) {
  4013. if (intel_crtc->lowfreq_avail) {
  4014. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4015. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4016. } else {
  4017. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4018. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4019. }
  4020. }
  4021. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4022. if (!IS_GEN2(dev) &&
  4023. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4024. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4025. else
  4026. pipeconf |= PIPECONF_PROGRESSIVE;
  4027. if (IS_VALLEYVIEW(dev)) {
  4028. if (intel_crtc->config.limited_color_range)
  4029. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4030. else
  4031. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  4032. }
  4033. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4034. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4035. }
  4036. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4037. int x, int y,
  4038. struct drm_framebuffer *fb)
  4039. {
  4040. struct drm_device *dev = crtc->dev;
  4041. struct drm_i915_private *dev_priv = dev->dev_private;
  4042. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4043. struct drm_display_mode *adjusted_mode =
  4044. &intel_crtc->config.adjusted_mode;
  4045. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4046. int pipe = intel_crtc->pipe;
  4047. int plane = intel_crtc->plane;
  4048. int refclk, num_connectors = 0;
  4049. intel_clock_t clock, reduced_clock;
  4050. u32 dspcntr;
  4051. bool ok, has_reduced_clock = false, is_sdvo = false;
  4052. bool is_lvds = false, is_tv = false;
  4053. struct intel_encoder *encoder;
  4054. const intel_limit_t *limit;
  4055. int ret;
  4056. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4057. switch (encoder->type) {
  4058. case INTEL_OUTPUT_LVDS:
  4059. is_lvds = true;
  4060. break;
  4061. case INTEL_OUTPUT_SDVO:
  4062. case INTEL_OUTPUT_HDMI:
  4063. is_sdvo = true;
  4064. if (encoder->needs_tv_clock)
  4065. is_tv = true;
  4066. break;
  4067. case INTEL_OUTPUT_TVOUT:
  4068. is_tv = true;
  4069. break;
  4070. }
  4071. num_connectors++;
  4072. }
  4073. refclk = i9xx_get_refclk(crtc, num_connectors);
  4074. /*
  4075. * Returns a set of divisors for the desired target clock with the given
  4076. * refclk, or FALSE. The returned values represent the clock equation:
  4077. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4078. */
  4079. limit = intel_limit(crtc, refclk);
  4080. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4081. &clock);
  4082. if (!ok) {
  4083. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4084. return -EINVAL;
  4085. }
  4086. /* Ensure that the cursor is valid for the new mode before changing... */
  4087. intel_crtc_update_cursor(crtc, true);
  4088. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4089. /*
  4090. * Ensure we match the reduced clock's P to the target clock.
  4091. * If the clocks don't match, we can't switch the display clock
  4092. * by using the FP0/FP1. In such case we will disable the LVDS
  4093. * downclock feature.
  4094. */
  4095. has_reduced_clock = limit->find_pll(limit, crtc,
  4096. dev_priv->lvds_downclock,
  4097. refclk,
  4098. &clock,
  4099. &reduced_clock);
  4100. }
  4101. /* Compat-code for transition, will disappear. */
  4102. if (!intel_crtc->config.clock_set) {
  4103. intel_crtc->config.dpll.n = clock.n;
  4104. intel_crtc->config.dpll.m1 = clock.m1;
  4105. intel_crtc->config.dpll.m2 = clock.m2;
  4106. intel_crtc->config.dpll.p1 = clock.p1;
  4107. intel_crtc->config.dpll.p2 = clock.p2;
  4108. }
  4109. if (is_sdvo && is_tv)
  4110. i9xx_adjust_sdvo_tv_clock(intel_crtc);
  4111. if (IS_GEN2(dev))
  4112. i8xx_update_pll(intel_crtc, adjusted_mode,
  4113. has_reduced_clock ? &reduced_clock : NULL,
  4114. num_connectors);
  4115. else if (IS_VALLEYVIEW(dev))
  4116. vlv_update_pll(intel_crtc);
  4117. else
  4118. i9xx_update_pll(intel_crtc,
  4119. has_reduced_clock ? &reduced_clock : NULL,
  4120. num_connectors);
  4121. /* Set up the display plane register */
  4122. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4123. if (!IS_VALLEYVIEW(dev)) {
  4124. if (pipe == 0)
  4125. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4126. else
  4127. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4128. }
  4129. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4130. drm_mode_debug_printmodeline(mode);
  4131. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4132. /* pipesrc and dspsize control the size that is scaled from,
  4133. * which should always be the user's requested size.
  4134. */
  4135. I915_WRITE(DSPSIZE(plane),
  4136. ((mode->vdisplay - 1) << 16) |
  4137. (mode->hdisplay - 1));
  4138. I915_WRITE(DSPPOS(plane), 0);
  4139. i9xx_set_pipeconf(intel_crtc);
  4140. I915_WRITE(DSPCNTR(plane), dspcntr);
  4141. POSTING_READ(DSPCNTR(plane));
  4142. ret = intel_pipe_set_base(crtc, x, y, fb);
  4143. intel_update_watermarks(dev);
  4144. return ret;
  4145. }
  4146. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4147. struct intel_crtc_config *pipe_config)
  4148. {
  4149. struct drm_device *dev = crtc->base.dev;
  4150. struct drm_i915_private *dev_priv = dev->dev_private;
  4151. uint32_t tmp;
  4152. tmp = I915_READ(PIPECONF(crtc->pipe));
  4153. if (!(tmp & PIPECONF_ENABLE))
  4154. return false;
  4155. return true;
  4156. }
  4157. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4158. {
  4159. struct drm_i915_private *dev_priv = dev->dev_private;
  4160. struct drm_mode_config *mode_config = &dev->mode_config;
  4161. struct intel_encoder *encoder;
  4162. u32 val, final;
  4163. bool has_lvds = false;
  4164. bool has_cpu_edp = false;
  4165. bool has_pch_edp = false;
  4166. bool has_panel = false;
  4167. bool has_ck505 = false;
  4168. bool can_ssc = false;
  4169. /* We need to take the global config into account */
  4170. list_for_each_entry(encoder, &mode_config->encoder_list,
  4171. base.head) {
  4172. switch (encoder->type) {
  4173. case INTEL_OUTPUT_LVDS:
  4174. has_panel = true;
  4175. has_lvds = true;
  4176. break;
  4177. case INTEL_OUTPUT_EDP:
  4178. has_panel = true;
  4179. if (intel_encoder_is_pch_edp(&encoder->base))
  4180. has_pch_edp = true;
  4181. else
  4182. has_cpu_edp = true;
  4183. break;
  4184. }
  4185. }
  4186. if (HAS_PCH_IBX(dev)) {
  4187. has_ck505 = dev_priv->display_clock_mode;
  4188. can_ssc = has_ck505;
  4189. } else {
  4190. has_ck505 = false;
  4191. can_ssc = true;
  4192. }
  4193. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4194. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4195. has_ck505);
  4196. /* Ironlake: try to setup display ref clock before DPLL
  4197. * enabling. This is only under driver's control after
  4198. * PCH B stepping, previous chipset stepping should be
  4199. * ignoring this setting.
  4200. */
  4201. val = I915_READ(PCH_DREF_CONTROL);
  4202. /* As we must carefully and slowly disable/enable each source in turn,
  4203. * compute the final state we want first and check if we need to
  4204. * make any changes at all.
  4205. */
  4206. final = val;
  4207. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4208. if (has_ck505)
  4209. final |= DREF_NONSPREAD_CK505_ENABLE;
  4210. else
  4211. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4212. final &= ~DREF_SSC_SOURCE_MASK;
  4213. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4214. final &= ~DREF_SSC1_ENABLE;
  4215. if (has_panel) {
  4216. final |= DREF_SSC_SOURCE_ENABLE;
  4217. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4218. final |= DREF_SSC1_ENABLE;
  4219. if (has_cpu_edp) {
  4220. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4221. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4222. else
  4223. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4224. } else
  4225. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4226. } else {
  4227. final |= DREF_SSC_SOURCE_DISABLE;
  4228. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4229. }
  4230. if (final == val)
  4231. return;
  4232. /* Always enable nonspread source */
  4233. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4234. if (has_ck505)
  4235. val |= DREF_NONSPREAD_CK505_ENABLE;
  4236. else
  4237. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4238. if (has_panel) {
  4239. val &= ~DREF_SSC_SOURCE_MASK;
  4240. val |= DREF_SSC_SOURCE_ENABLE;
  4241. /* SSC must be turned on before enabling the CPU output */
  4242. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4243. DRM_DEBUG_KMS("Using SSC on panel\n");
  4244. val |= DREF_SSC1_ENABLE;
  4245. } else
  4246. val &= ~DREF_SSC1_ENABLE;
  4247. /* Get SSC going before enabling the outputs */
  4248. I915_WRITE(PCH_DREF_CONTROL, val);
  4249. POSTING_READ(PCH_DREF_CONTROL);
  4250. udelay(200);
  4251. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4252. /* Enable CPU source on CPU attached eDP */
  4253. if (has_cpu_edp) {
  4254. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4255. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4256. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4257. }
  4258. else
  4259. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4260. } else
  4261. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4262. I915_WRITE(PCH_DREF_CONTROL, val);
  4263. POSTING_READ(PCH_DREF_CONTROL);
  4264. udelay(200);
  4265. } else {
  4266. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4267. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4268. /* Turn off CPU output */
  4269. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4270. I915_WRITE(PCH_DREF_CONTROL, val);
  4271. POSTING_READ(PCH_DREF_CONTROL);
  4272. udelay(200);
  4273. /* Turn off the SSC source */
  4274. val &= ~DREF_SSC_SOURCE_MASK;
  4275. val |= DREF_SSC_SOURCE_DISABLE;
  4276. /* Turn off SSC1 */
  4277. val &= ~DREF_SSC1_ENABLE;
  4278. I915_WRITE(PCH_DREF_CONTROL, val);
  4279. POSTING_READ(PCH_DREF_CONTROL);
  4280. udelay(200);
  4281. }
  4282. BUG_ON(val != final);
  4283. }
  4284. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4285. static void lpt_init_pch_refclk(struct drm_device *dev)
  4286. {
  4287. struct drm_i915_private *dev_priv = dev->dev_private;
  4288. struct drm_mode_config *mode_config = &dev->mode_config;
  4289. struct intel_encoder *encoder;
  4290. bool has_vga = false;
  4291. bool is_sdv = false;
  4292. u32 tmp;
  4293. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4294. switch (encoder->type) {
  4295. case INTEL_OUTPUT_ANALOG:
  4296. has_vga = true;
  4297. break;
  4298. }
  4299. }
  4300. if (!has_vga)
  4301. return;
  4302. mutex_lock(&dev_priv->dpio_lock);
  4303. /* XXX: Rip out SDV support once Haswell ships for real. */
  4304. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4305. is_sdv = true;
  4306. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4307. tmp &= ~SBI_SSCCTL_DISABLE;
  4308. tmp |= SBI_SSCCTL_PATHALT;
  4309. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4310. udelay(24);
  4311. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4312. tmp &= ~SBI_SSCCTL_PATHALT;
  4313. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4314. if (!is_sdv) {
  4315. tmp = I915_READ(SOUTH_CHICKEN2);
  4316. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4317. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4318. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4319. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4320. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4321. tmp = I915_READ(SOUTH_CHICKEN2);
  4322. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4323. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4324. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4325. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4326. 100))
  4327. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4328. }
  4329. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4330. tmp &= ~(0xFF << 24);
  4331. tmp |= (0x12 << 24);
  4332. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4333. if (is_sdv) {
  4334. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4335. tmp |= 0x7FFF;
  4336. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4337. }
  4338. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4339. tmp |= (1 << 11);
  4340. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4341. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4342. tmp |= (1 << 11);
  4343. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4344. if (is_sdv) {
  4345. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4346. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4347. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4348. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4349. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4350. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4351. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4352. tmp |= (0x3F << 8);
  4353. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4354. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4355. tmp |= (0x3F << 8);
  4356. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4357. }
  4358. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4359. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4360. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4361. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4362. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4363. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4364. if (!is_sdv) {
  4365. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4366. tmp &= ~(7 << 13);
  4367. tmp |= (5 << 13);
  4368. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4369. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4370. tmp &= ~(7 << 13);
  4371. tmp |= (5 << 13);
  4372. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4373. }
  4374. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4375. tmp &= ~0xFF;
  4376. tmp |= 0x1C;
  4377. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4378. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4379. tmp &= ~0xFF;
  4380. tmp |= 0x1C;
  4381. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4382. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4383. tmp &= ~(0xFF << 16);
  4384. tmp |= (0x1C << 16);
  4385. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4386. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4387. tmp &= ~(0xFF << 16);
  4388. tmp |= (0x1C << 16);
  4389. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4390. if (!is_sdv) {
  4391. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4392. tmp |= (1 << 27);
  4393. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4394. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4395. tmp |= (1 << 27);
  4396. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4397. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4398. tmp &= ~(0xF << 28);
  4399. tmp |= (4 << 28);
  4400. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4401. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4402. tmp &= ~(0xF << 28);
  4403. tmp |= (4 << 28);
  4404. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4405. }
  4406. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4407. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4408. tmp |= SBI_DBUFF0_ENABLE;
  4409. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4410. mutex_unlock(&dev_priv->dpio_lock);
  4411. }
  4412. /*
  4413. * Initialize reference clocks when the driver loads
  4414. */
  4415. void intel_init_pch_refclk(struct drm_device *dev)
  4416. {
  4417. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4418. ironlake_init_pch_refclk(dev);
  4419. else if (HAS_PCH_LPT(dev))
  4420. lpt_init_pch_refclk(dev);
  4421. }
  4422. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4423. {
  4424. struct drm_device *dev = crtc->dev;
  4425. struct drm_i915_private *dev_priv = dev->dev_private;
  4426. struct intel_encoder *encoder;
  4427. struct intel_encoder *edp_encoder = NULL;
  4428. int num_connectors = 0;
  4429. bool is_lvds = false;
  4430. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4431. switch (encoder->type) {
  4432. case INTEL_OUTPUT_LVDS:
  4433. is_lvds = true;
  4434. break;
  4435. case INTEL_OUTPUT_EDP:
  4436. edp_encoder = encoder;
  4437. break;
  4438. }
  4439. num_connectors++;
  4440. }
  4441. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4442. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4443. dev_priv->lvds_ssc_freq);
  4444. return dev_priv->lvds_ssc_freq * 1000;
  4445. }
  4446. return 120000;
  4447. }
  4448. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4449. struct drm_display_mode *adjusted_mode,
  4450. bool dither)
  4451. {
  4452. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4453. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4454. int pipe = intel_crtc->pipe;
  4455. uint32_t val;
  4456. val = I915_READ(PIPECONF(pipe));
  4457. val &= ~PIPECONF_BPC_MASK;
  4458. switch (intel_crtc->config.pipe_bpp) {
  4459. case 18:
  4460. val |= PIPECONF_6BPC;
  4461. break;
  4462. case 24:
  4463. val |= PIPECONF_8BPC;
  4464. break;
  4465. case 30:
  4466. val |= PIPECONF_10BPC;
  4467. break;
  4468. case 36:
  4469. val |= PIPECONF_12BPC;
  4470. break;
  4471. default:
  4472. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4473. BUG();
  4474. }
  4475. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4476. if (dither)
  4477. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4478. val &= ~PIPECONF_INTERLACE_MASK;
  4479. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4480. val |= PIPECONF_INTERLACED_ILK;
  4481. else
  4482. val |= PIPECONF_PROGRESSIVE;
  4483. if (intel_crtc->config.limited_color_range)
  4484. val |= PIPECONF_COLOR_RANGE_SELECT;
  4485. else
  4486. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4487. I915_WRITE(PIPECONF(pipe), val);
  4488. POSTING_READ(PIPECONF(pipe));
  4489. }
  4490. /*
  4491. * Set up the pipe CSC unit.
  4492. *
  4493. * Currently only full range RGB to limited range RGB conversion
  4494. * is supported, but eventually this should handle various
  4495. * RGB<->YCbCr scenarios as well.
  4496. */
  4497. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4498. {
  4499. struct drm_device *dev = crtc->dev;
  4500. struct drm_i915_private *dev_priv = dev->dev_private;
  4501. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4502. int pipe = intel_crtc->pipe;
  4503. uint16_t coeff = 0x7800; /* 1.0 */
  4504. /*
  4505. * TODO: Check what kind of values actually come out of the pipe
  4506. * with these coeff/postoff values and adjust to get the best
  4507. * accuracy. Perhaps we even need to take the bpc value into
  4508. * consideration.
  4509. */
  4510. if (intel_crtc->config.limited_color_range)
  4511. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4512. /*
  4513. * GY/GU and RY/RU should be the other way around according
  4514. * to BSpec, but reality doesn't agree. Just set them up in
  4515. * a way that results in the correct picture.
  4516. */
  4517. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4518. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4519. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4520. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4521. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4522. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4523. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4524. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4525. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4526. if (INTEL_INFO(dev)->gen > 6) {
  4527. uint16_t postoff = 0;
  4528. if (intel_crtc->config.limited_color_range)
  4529. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4530. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4531. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4532. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4533. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4534. } else {
  4535. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4536. if (intel_crtc->config.limited_color_range)
  4537. mode |= CSC_BLACK_SCREEN_OFFSET;
  4538. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4539. }
  4540. }
  4541. static void haswell_set_pipeconf(struct drm_crtc *crtc,
  4542. struct drm_display_mode *adjusted_mode,
  4543. bool dither)
  4544. {
  4545. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4546. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4547. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4548. uint32_t val;
  4549. val = I915_READ(PIPECONF(cpu_transcoder));
  4550. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4551. if (dither)
  4552. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4553. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4554. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4555. val |= PIPECONF_INTERLACED_ILK;
  4556. else
  4557. val |= PIPECONF_PROGRESSIVE;
  4558. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4559. POSTING_READ(PIPECONF(cpu_transcoder));
  4560. }
  4561. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4562. struct drm_display_mode *adjusted_mode,
  4563. intel_clock_t *clock,
  4564. bool *has_reduced_clock,
  4565. intel_clock_t *reduced_clock)
  4566. {
  4567. struct drm_device *dev = crtc->dev;
  4568. struct drm_i915_private *dev_priv = dev->dev_private;
  4569. struct intel_encoder *intel_encoder;
  4570. int refclk;
  4571. const intel_limit_t *limit;
  4572. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4573. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4574. switch (intel_encoder->type) {
  4575. case INTEL_OUTPUT_LVDS:
  4576. is_lvds = true;
  4577. break;
  4578. case INTEL_OUTPUT_SDVO:
  4579. case INTEL_OUTPUT_HDMI:
  4580. is_sdvo = true;
  4581. if (intel_encoder->needs_tv_clock)
  4582. is_tv = true;
  4583. break;
  4584. case INTEL_OUTPUT_TVOUT:
  4585. is_tv = true;
  4586. break;
  4587. }
  4588. }
  4589. refclk = ironlake_get_refclk(crtc);
  4590. /*
  4591. * Returns a set of divisors for the desired target clock with the given
  4592. * refclk, or FALSE. The returned values represent the clock equation:
  4593. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4594. */
  4595. limit = intel_limit(crtc, refclk);
  4596. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4597. clock);
  4598. if (!ret)
  4599. return false;
  4600. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4601. /*
  4602. * Ensure we match the reduced clock's P to the target clock.
  4603. * If the clocks don't match, we can't switch the display clock
  4604. * by using the FP0/FP1. In such case we will disable the LVDS
  4605. * downclock feature.
  4606. */
  4607. *has_reduced_clock = limit->find_pll(limit, crtc,
  4608. dev_priv->lvds_downclock,
  4609. refclk,
  4610. clock,
  4611. reduced_clock);
  4612. }
  4613. if (is_sdvo && is_tv)
  4614. i9xx_adjust_sdvo_tv_clock(to_intel_crtc(crtc));
  4615. return true;
  4616. }
  4617. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4618. {
  4619. struct drm_i915_private *dev_priv = dev->dev_private;
  4620. uint32_t temp;
  4621. temp = I915_READ(SOUTH_CHICKEN1);
  4622. if (temp & FDI_BC_BIFURCATION_SELECT)
  4623. return;
  4624. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4625. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4626. temp |= FDI_BC_BIFURCATION_SELECT;
  4627. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4628. I915_WRITE(SOUTH_CHICKEN1, temp);
  4629. POSTING_READ(SOUTH_CHICKEN1);
  4630. }
  4631. static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
  4632. {
  4633. struct drm_device *dev = intel_crtc->base.dev;
  4634. struct drm_i915_private *dev_priv = dev->dev_private;
  4635. struct intel_crtc *pipe_B_crtc =
  4636. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  4637. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  4638. pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
  4639. if (intel_crtc->fdi_lanes > 4) {
  4640. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  4641. pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
  4642. /* Clamp lanes to avoid programming the hw with bogus values. */
  4643. intel_crtc->fdi_lanes = 4;
  4644. return false;
  4645. }
  4646. if (INTEL_INFO(dev)->num_pipes == 2)
  4647. return true;
  4648. switch (intel_crtc->pipe) {
  4649. case PIPE_A:
  4650. return true;
  4651. case PIPE_B:
  4652. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  4653. intel_crtc->fdi_lanes > 2) {
  4654. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  4655. pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
  4656. /* Clamp lanes to avoid programming the hw with bogus values. */
  4657. intel_crtc->fdi_lanes = 2;
  4658. return false;
  4659. }
  4660. if (intel_crtc->fdi_lanes > 2)
  4661. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4662. else
  4663. cpt_enable_fdi_bc_bifurcation(dev);
  4664. return true;
  4665. case PIPE_C:
  4666. if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
  4667. if (intel_crtc->fdi_lanes > 2) {
  4668. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  4669. pipe_name(intel_crtc->pipe), intel_crtc->fdi_lanes);
  4670. /* Clamp lanes to avoid programming the hw with bogus values. */
  4671. intel_crtc->fdi_lanes = 2;
  4672. return false;
  4673. }
  4674. } else {
  4675. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  4676. return false;
  4677. }
  4678. cpt_enable_fdi_bc_bifurcation(dev);
  4679. return true;
  4680. default:
  4681. BUG();
  4682. }
  4683. }
  4684. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4685. {
  4686. /*
  4687. * Account for spread spectrum to avoid
  4688. * oversubscribing the link. Max center spread
  4689. * is 2.5%; use 5% for safety's sake.
  4690. */
  4691. u32 bps = target_clock * bpp * 21 / 20;
  4692. return bps / (link_bw * 8) + 1;
  4693. }
  4694. void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  4695. struct intel_link_m_n *m_n)
  4696. {
  4697. struct drm_device *dev = crtc->base.dev;
  4698. struct drm_i915_private *dev_priv = dev->dev_private;
  4699. int pipe = crtc->pipe;
  4700. I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4701. I915_WRITE(TRANSDATA_N1(pipe), m_n->gmch_n);
  4702. I915_WRITE(TRANSDPLINK_M1(pipe), m_n->link_m);
  4703. I915_WRITE(TRANSDPLINK_N1(pipe), m_n->link_n);
  4704. }
  4705. void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  4706. struct intel_link_m_n *m_n)
  4707. {
  4708. struct drm_device *dev = crtc->base.dev;
  4709. struct drm_i915_private *dev_priv = dev->dev_private;
  4710. int pipe = crtc->pipe;
  4711. enum transcoder transcoder = crtc->config.cpu_transcoder;
  4712. if (INTEL_INFO(dev)->gen >= 5) {
  4713. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4714. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  4715. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  4716. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  4717. } else {
  4718. I915_WRITE(PIPE_GMCH_DATA_M(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  4719. I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n->gmch_n);
  4720. I915_WRITE(PIPE_DP_LINK_M(pipe), m_n->link_m);
  4721. I915_WRITE(PIPE_DP_LINK_N(pipe), m_n->link_n);
  4722. }
  4723. }
  4724. static void ironlake_fdi_set_m_n(struct drm_crtc *crtc)
  4725. {
  4726. struct drm_device *dev = crtc->dev;
  4727. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4728. struct drm_display_mode *adjusted_mode =
  4729. &intel_crtc->config.adjusted_mode;
  4730. struct intel_link_m_n m_n = {0};
  4731. int target_clock, lane, link_bw;
  4732. /* FDI is a binary signal running at ~2.7GHz, encoding
  4733. * each output octet as 10 bits. The actual frequency
  4734. * is stored as a divider into a 100MHz clock, and the
  4735. * mode pixel clock is stored in units of 1KHz.
  4736. * Hence the bw of each lane in terms of the mode signal
  4737. * is:
  4738. */
  4739. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4740. if (intel_crtc->config.pixel_target_clock)
  4741. target_clock = intel_crtc->config.pixel_target_clock;
  4742. else
  4743. target_clock = adjusted_mode->clock;
  4744. lane = ironlake_get_lanes_required(target_clock, link_bw,
  4745. intel_crtc->config.pipe_bpp);
  4746. intel_crtc->fdi_lanes = lane;
  4747. if (intel_crtc->config.pixel_multiplier > 1)
  4748. link_bw *= intel_crtc->config.pixel_multiplier;
  4749. intel_link_compute_m_n(intel_crtc->config.pipe_bpp, lane, target_clock,
  4750. link_bw, &m_n);
  4751. intel_cpu_transcoder_set_m_n(intel_crtc, &m_n);
  4752. }
  4753. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4754. intel_clock_t *clock, u32 *fp,
  4755. intel_clock_t *reduced_clock, u32 *fp2)
  4756. {
  4757. struct drm_crtc *crtc = &intel_crtc->base;
  4758. struct drm_device *dev = crtc->dev;
  4759. struct drm_i915_private *dev_priv = dev->dev_private;
  4760. struct intel_encoder *intel_encoder;
  4761. uint32_t dpll;
  4762. int factor, num_connectors = 0;
  4763. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4764. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4765. switch (intel_encoder->type) {
  4766. case INTEL_OUTPUT_LVDS:
  4767. is_lvds = true;
  4768. break;
  4769. case INTEL_OUTPUT_SDVO:
  4770. case INTEL_OUTPUT_HDMI:
  4771. is_sdvo = true;
  4772. if (intel_encoder->needs_tv_clock)
  4773. is_tv = true;
  4774. break;
  4775. case INTEL_OUTPUT_TVOUT:
  4776. is_tv = true;
  4777. break;
  4778. }
  4779. num_connectors++;
  4780. }
  4781. /* Enable autotuning of the PLL clock (if permissible) */
  4782. factor = 21;
  4783. if (is_lvds) {
  4784. if ((intel_panel_use_ssc(dev_priv) &&
  4785. dev_priv->lvds_ssc_freq == 100) ||
  4786. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4787. factor = 25;
  4788. } else if (is_sdvo && is_tv)
  4789. factor = 20;
  4790. if (clock->m < factor * clock->n)
  4791. *fp |= FP_CB_TUNE;
  4792. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4793. *fp2 |= FP_CB_TUNE;
  4794. dpll = 0;
  4795. if (is_lvds)
  4796. dpll |= DPLLB_MODE_LVDS;
  4797. else
  4798. dpll |= DPLLB_MODE_DAC_SERIAL;
  4799. if (is_sdvo) {
  4800. if (intel_crtc->config.pixel_multiplier > 1) {
  4801. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4802. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4803. }
  4804. dpll |= DPLL_DVO_HIGH_SPEED;
  4805. }
  4806. if (intel_crtc->config.has_dp_encoder &&
  4807. intel_crtc->config.has_pch_encoder)
  4808. dpll |= DPLL_DVO_HIGH_SPEED;
  4809. /* compute bitmask from p1 value */
  4810. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4811. /* also FPA1 */
  4812. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4813. switch (clock->p2) {
  4814. case 5:
  4815. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4816. break;
  4817. case 7:
  4818. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4819. break;
  4820. case 10:
  4821. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4822. break;
  4823. case 14:
  4824. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4825. break;
  4826. }
  4827. if (is_sdvo && is_tv)
  4828. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4829. else if (is_tv)
  4830. /* XXX: just matching BIOS for now */
  4831. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4832. dpll |= 3;
  4833. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4834. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4835. else
  4836. dpll |= PLL_REF_INPUT_DREFCLK;
  4837. return dpll;
  4838. }
  4839. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4840. int x, int y,
  4841. struct drm_framebuffer *fb)
  4842. {
  4843. struct drm_device *dev = crtc->dev;
  4844. struct drm_i915_private *dev_priv = dev->dev_private;
  4845. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4846. struct drm_display_mode *adjusted_mode =
  4847. &intel_crtc->config.adjusted_mode;
  4848. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4849. int pipe = intel_crtc->pipe;
  4850. int plane = intel_crtc->plane;
  4851. int num_connectors = 0;
  4852. intel_clock_t clock, reduced_clock;
  4853. u32 dpll, fp = 0, fp2 = 0;
  4854. bool ok, has_reduced_clock = false;
  4855. bool is_lvds = false;
  4856. struct intel_encoder *encoder;
  4857. int ret;
  4858. bool dither, fdi_config_ok;
  4859. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4860. switch (encoder->type) {
  4861. case INTEL_OUTPUT_LVDS:
  4862. is_lvds = true;
  4863. break;
  4864. }
  4865. num_connectors++;
  4866. }
  4867. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4868. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4869. intel_crtc->config.cpu_transcoder = pipe;
  4870. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4871. &has_reduced_clock, &reduced_clock);
  4872. if (!ok) {
  4873. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4874. return -EINVAL;
  4875. }
  4876. /* Compat-code for transition, will disappear. */
  4877. if (!intel_crtc->config.clock_set) {
  4878. intel_crtc->config.dpll.n = clock.n;
  4879. intel_crtc->config.dpll.m1 = clock.m1;
  4880. intel_crtc->config.dpll.m2 = clock.m2;
  4881. intel_crtc->config.dpll.p1 = clock.p1;
  4882. intel_crtc->config.dpll.p2 = clock.p2;
  4883. }
  4884. /* Ensure that the cursor is valid for the new mode before changing... */
  4885. intel_crtc_update_cursor(crtc, true);
  4886. /* determine panel color depth */
  4887. dither = intel_crtc->config.dither;
  4888. if (is_lvds && dev_priv->lvds_dither)
  4889. dither = true;
  4890. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4891. if (has_reduced_clock)
  4892. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4893. reduced_clock.m2;
  4894. dpll = ironlake_compute_dpll(intel_crtc, &clock, &fp, &reduced_clock,
  4895. has_reduced_clock ? &fp2 : NULL);
  4896. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  4897. drm_mode_debug_printmodeline(mode);
  4898. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4899. if (intel_crtc->config.has_pch_encoder) {
  4900. struct intel_pch_pll *pll;
  4901. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4902. if (pll == NULL) {
  4903. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4904. pipe_name(pipe));
  4905. return -EINVAL;
  4906. }
  4907. } else
  4908. intel_put_pch_pll(intel_crtc);
  4909. if (intel_crtc->config.has_dp_encoder)
  4910. intel_dp_set_m_n(intel_crtc);
  4911. for_each_encoder_on_crtc(dev, crtc, encoder)
  4912. if (encoder->pre_pll_enable)
  4913. encoder->pre_pll_enable(encoder);
  4914. if (intel_crtc->pch_pll) {
  4915. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4916. /* Wait for the clocks to stabilize. */
  4917. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4918. udelay(150);
  4919. /* The pixel multiplier can only be updated once the
  4920. * DPLL is enabled and the clocks are stable.
  4921. *
  4922. * So write it again.
  4923. */
  4924. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4925. }
  4926. intel_crtc->lowfreq_avail = false;
  4927. if (intel_crtc->pch_pll) {
  4928. if (is_lvds && has_reduced_clock && i915_powersave) {
  4929. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4930. intel_crtc->lowfreq_avail = true;
  4931. } else {
  4932. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4933. }
  4934. }
  4935. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4936. /* Note, this also computes intel_crtc->fdi_lanes which is used below in
  4937. * ironlake_check_fdi_lanes. */
  4938. intel_crtc->fdi_lanes = 0;
  4939. if (intel_crtc->config.has_pch_encoder)
  4940. ironlake_fdi_set_m_n(crtc);
  4941. fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
  4942. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4943. /* Set up the display plane register */
  4944. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4945. POSTING_READ(DSPCNTR(plane));
  4946. ret = intel_pipe_set_base(crtc, x, y, fb);
  4947. intel_update_watermarks(dev);
  4948. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4949. return fdi_config_ok ? ret : -EINVAL;
  4950. }
  4951. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4952. struct intel_crtc_config *pipe_config)
  4953. {
  4954. struct drm_device *dev = crtc->base.dev;
  4955. struct drm_i915_private *dev_priv = dev->dev_private;
  4956. uint32_t tmp;
  4957. tmp = I915_READ(PIPECONF(crtc->pipe));
  4958. if (!(tmp & PIPECONF_ENABLE))
  4959. return false;
  4960. if (I915_READ(TRANSCONF(crtc->pipe)) & TRANS_ENABLE)
  4961. pipe_config->has_pch_encoder = true;
  4962. return true;
  4963. }
  4964. static void haswell_modeset_global_resources(struct drm_device *dev)
  4965. {
  4966. struct drm_i915_private *dev_priv = dev->dev_private;
  4967. bool enable = false;
  4968. struct intel_crtc *crtc;
  4969. struct intel_encoder *encoder;
  4970. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4971. if (crtc->pipe != PIPE_A && crtc->base.enabled)
  4972. enable = true;
  4973. /* XXX: Should check for edp transcoder here, but thanks to init
  4974. * sequence that's not yet available. Just in case desktop eDP
  4975. * on PORT D is possible on haswell, too. */
  4976. }
  4977. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  4978. base.head) {
  4979. if (encoder->type != INTEL_OUTPUT_EDP &&
  4980. encoder->connectors_active)
  4981. enable = true;
  4982. }
  4983. /* Even the eDP panel fitter is outside the always-on well. */
  4984. if (dev_priv->pch_pf_size)
  4985. enable = true;
  4986. intel_set_power_well(dev, enable);
  4987. }
  4988. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4989. int x, int y,
  4990. struct drm_framebuffer *fb)
  4991. {
  4992. struct drm_device *dev = crtc->dev;
  4993. struct drm_i915_private *dev_priv = dev->dev_private;
  4994. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4995. struct drm_display_mode *adjusted_mode =
  4996. &intel_crtc->config.adjusted_mode;
  4997. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4998. int pipe = intel_crtc->pipe;
  4999. int plane = intel_crtc->plane;
  5000. int num_connectors = 0;
  5001. bool is_cpu_edp = false;
  5002. struct intel_encoder *encoder;
  5003. int ret;
  5004. bool dither;
  5005. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5006. switch (encoder->type) {
  5007. case INTEL_OUTPUT_EDP:
  5008. if (!intel_encoder_is_pch_edp(&encoder->base))
  5009. is_cpu_edp = true;
  5010. break;
  5011. }
  5012. num_connectors++;
  5013. }
  5014. if (is_cpu_edp)
  5015. intel_crtc->config.cpu_transcoder = TRANSCODER_EDP;
  5016. else
  5017. intel_crtc->config.cpu_transcoder = pipe;
  5018. /* We are not sure yet this won't happen. */
  5019. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  5020. INTEL_PCH_TYPE(dev));
  5021. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  5022. num_connectors, pipe_name(pipe));
  5023. WARN_ON(I915_READ(PIPECONF(intel_crtc->config.cpu_transcoder)) &
  5024. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  5025. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  5026. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  5027. return -EINVAL;
  5028. /* Ensure that the cursor is valid for the new mode before changing... */
  5029. intel_crtc_update_cursor(crtc, true);
  5030. /* determine panel color depth */
  5031. dither = intel_crtc->config.dither;
  5032. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe_name(pipe));
  5033. drm_mode_debug_printmodeline(mode);
  5034. if (intel_crtc->config.has_dp_encoder)
  5035. intel_dp_set_m_n(intel_crtc);
  5036. intel_crtc->lowfreq_avail = false;
  5037. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  5038. if (intel_crtc->config.has_pch_encoder)
  5039. ironlake_fdi_set_m_n(crtc);
  5040. haswell_set_pipeconf(crtc, adjusted_mode, dither);
  5041. intel_set_pipe_csc(crtc);
  5042. /* Set up the display plane register */
  5043. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5044. POSTING_READ(DSPCNTR(plane));
  5045. ret = intel_pipe_set_base(crtc, x, y, fb);
  5046. intel_update_watermarks(dev);
  5047. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  5048. return ret;
  5049. }
  5050. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5051. struct intel_crtc_config *pipe_config)
  5052. {
  5053. struct drm_device *dev = crtc->base.dev;
  5054. struct drm_i915_private *dev_priv = dev->dev_private;
  5055. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  5056. uint32_t tmp;
  5057. if (!intel_using_power_well(dev_priv->dev) &&
  5058. cpu_transcoder != TRANSCODER_EDP)
  5059. return false;
  5060. tmp = I915_READ(PIPECONF(cpu_transcoder));
  5061. if (!(tmp & PIPECONF_ENABLE))
  5062. return false;
  5063. /*
  5064. * aswell has only FDI/PCH transcoder A. It is which is connected to
  5065. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5066. * the PCH transcoder is on.
  5067. */
  5068. tmp = I915_READ(TRANS_DDI_FUNC_CTL(crtc->pipe));
  5069. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5070. I915_READ(TRANSCONF(PIPE_A)) & TRANS_ENABLE)
  5071. pipe_config->has_pch_encoder = true;
  5072. return true;
  5073. }
  5074. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5075. int x, int y,
  5076. struct drm_framebuffer *fb)
  5077. {
  5078. struct drm_device *dev = crtc->dev;
  5079. struct drm_i915_private *dev_priv = dev->dev_private;
  5080. struct drm_encoder_helper_funcs *encoder_funcs;
  5081. struct intel_encoder *encoder;
  5082. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5083. struct drm_display_mode *adjusted_mode =
  5084. &intel_crtc->config.adjusted_mode;
  5085. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5086. int pipe = intel_crtc->pipe;
  5087. int ret;
  5088. drm_vblank_pre_modeset(dev, pipe);
  5089. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5090. drm_vblank_post_modeset(dev, pipe);
  5091. if (ret != 0)
  5092. return ret;
  5093. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5094. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5095. encoder->base.base.id,
  5096. drm_get_encoder_name(&encoder->base),
  5097. mode->base.id, mode->name);
  5098. if (encoder->mode_set) {
  5099. encoder->mode_set(encoder);
  5100. } else {
  5101. encoder_funcs = encoder->base.helper_private;
  5102. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5103. }
  5104. }
  5105. return 0;
  5106. }
  5107. static bool intel_eld_uptodate(struct drm_connector *connector,
  5108. int reg_eldv, uint32_t bits_eldv,
  5109. int reg_elda, uint32_t bits_elda,
  5110. int reg_edid)
  5111. {
  5112. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5113. uint8_t *eld = connector->eld;
  5114. uint32_t i;
  5115. i = I915_READ(reg_eldv);
  5116. i &= bits_eldv;
  5117. if (!eld[0])
  5118. return !i;
  5119. if (!i)
  5120. return false;
  5121. i = I915_READ(reg_elda);
  5122. i &= ~bits_elda;
  5123. I915_WRITE(reg_elda, i);
  5124. for (i = 0; i < eld[2]; i++)
  5125. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5126. return false;
  5127. return true;
  5128. }
  5129. static void g4x_write_eld(struct drm_connector *connector,
  5130. struct drm_crtc *crtc)
  5131. {
  5132. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5133. uint8_t *eld = connector->eld;
  5134. uint32_t eldv;
  5135. uint32_t len;
  5136. uint32_t i;
  5137. i = I915_READ(G4X_AUD_VID_DID);
  5138. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5139. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5140. else
  5141. eldv = G4X_ELDV_DEVCTG;
  5142. if (intel_eld_uptodate(connector,
  5143. G4X_AUD_CNTL_ST, eldv,
  5144. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5145. G4X_HDMIW_HDMIEDID))
  5146. return;
  5147. i = I915_READ(G4X_AUD_CNTL_ST);
  5148. i &= ~(eldv | G4X_ELD_ADDR);
  5149. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5150. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5151. if (!eld[0])
  5152. return;
  5153. len = min_t(uint8_t, eld[2], len);
  5154. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5155. for (i = 0; i < len; i++)
  5156. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5157. i = I915_READ(G4X_AUD_CNTL_ST);
  5158. i |= eldv;
  5159. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5160. }
  5161. static void haswell_write_eld(struct drm_connector *connector,
  5162. struct drm_crtc *crtc)
  5163. {
  5164. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5165. uint8_t *eld = connector->eld;
  5166. struct drm_device *dev = crtc->dev;
  5167. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5168. uint32_t eldv;
  5169. uint32_t i;
  5170. int len;
  5171. int pipe = to_intel_crtc(crtc)->pipe;
  5172. int tmp;
  5173. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5174. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5175. int aud_config = HSW_AUD_CFG(pipe);
  5176. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5177. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5178. /* Audio output enable */
  5179. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5180. tmp = I915_READ(aud_cntrl_st2);
  5181. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5182. I915_WRITE(aud_cntrl_st2, tmp);
  5183. /* Wait for 1 vertical blank */
  5184. intel_wait_for_vblank(dev, pipe);
  5185. /* Set ELD valid state */
  5186. tmp = I915_READ(aud_cntrl_st2);
  5187. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5188. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5189. I915_WRITE(aud_cntrl_st2, tmp);
  5190. tmp = I915_READ(aud_cntrl_st2);
  5191. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5192. /* Enable HDMI mode */
  5193. tmp = I915_READ(aud_config);
  5194. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5195. /* clear N_programing_enable and N_value_index */
  5196. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5197. I915_WRITE(aud_config, tmp);
  5198. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5199. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5200. intel_crtc->eld_vld = true;
  5201. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5202. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5203. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5204. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5205. } else
  5206. I915_WRITE(aud_config, 0);
  5207. if (intel_eld_uptodate(connector,
  5208. aud_cntrl_st2, eldv,
  5209. aud_cntl_st, IBX_ELD_ADDRESS,
  5210. hdmiw_hdmiedid))
  5211. return;
  5212. i = I915_READ(aud_cntrl_st2);
  5213. i &= ~eldv;
  5214. I915_WRITE(aud_cntrl_st2, i);
  5215. if (!eld[0])
  5216. return;
  5217. i = I915_READ(aud_cntl_st);
  5218. i &= ~IBX_ELD_ADDRESS;
  5219. I915_WRITE(aud_cntl_st, i);
  5220. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5221. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5222. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5223. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5224. for (i = 0; i < len; i++)
  5225. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5226. i = I915_READ(aud_cntrl_st2);
  5227. i |= eldv;
  5228. I915_WRITE(aud_cntrl_st2, i);
  5229. }
  5230. static void ironlake_write_eld(struct drm_connector *connector,
  5231. struct drm_crtc *crtc)
  5232. {
  5233. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5234. uint8_t *eld = connector->eld;
  5235. uint32_t eldv;
  5236. uint32_t i;
  5237. int len;
  5238. int hdmiw_hdmiedid;
  5239. int aud_config;
  5240. int aud_cntl_st;
  5241. int aud_cntrl_st2;
  5242. int pipe = to_intel_crtc(crtc)->pipe;
  5243. if (HAS_PCH_IBX(connector->dev)) {
  5244. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5245. aud_config = IBX_AUD_CFG(pipe);
  5246. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5247. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5248. } else {
  5249. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5250. aud_config = CPT_AUD_CFG(pipe);
  5251. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5252. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5253. }
  5254. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5255. i = I915_READ(aud_cntl_st);
  5256. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5257. if (!i) {
  5258. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5259. /* operate blindly on all ports */
  5260. eldv = IBX_ELD_VALIDB;
  5261. eldv |= IBX_ELD_VALIDB << 4;
  5262. eldv |= IBX_ELD_VALIDB << 8;
  5263. } else {
  5264. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5265. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5266. }
  5267. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5268. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5269. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5270. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5271. } else
  5272. I915_WRITE(aud_config, 0);
  5273. if (intel_eld_uptodate(connector,
  5274. aud_cntrl_st2, eldv,
  5275. aud_cntl_st, IBX_ELD_ADDRESS,
  5276. hdmiw_hdmiedid))
  5277. return;
  5278. i = I915_READ(aud_cntrl_st2);
  5279. i &= ~eldv;
  5280. I915_WRITE(aud_cntrl_st2, i);
  5281. if (!eld[0])
  5282. return;
  5283. i = I915_READ(aud_cntl_st);
  5284. i &= ~IBX_ELD_ADDRESS;
  5285. I915_WRITE(aud_cntl_st, i);
  5286. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5287. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5288. for (i = 0; i < len; i++)
  5289. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5290. i = I915_READ(aud_cntrl_st2);
  5291. i |= eldv;
  5292. I915_WRITE(aud_cntrl_st2, i);
  5293. }
  5294. void intel_write_eld(struct drm_encoder *encoder,
  5295. struct drm_display_mode *mode)
  5296. {
  5297. struct drm_crtc *crtc = encoder->crtc;
  5298. struct drm_connector *connector;
  5299. struct drm_device *dev = encoder->dev;
  5300. struct drm_i915_private *dev_priv = dev->dev_private;
  5301. connector = drm_select_eld(encoder, mode);
  5302. if (!connector)
  5303. return;
  5304. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5305. connector->base.id,
  5306. drm_get_connector_name(connector),
  5307. connector->encoder->base.id,
  5308. drm_get_encoder_name(connector->encoder));
  5309. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5310. if (dev_priv->display.write_eld)
  5311. dev_priv->display.write_eld(connector, crtc);
  5312. }
  5313. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5314. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5315. {
  5316. struct drm_device *dev = crtc->dev;
  5317. struct drm_i915_private *dev_priv = dev->dev_private;
  5318. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5319. int palreg = PALETTE(intel_crtc->pipe);
  5320. int i;
  5321. /* The clocks have to be on to load the palette. */
  5322. if (!crtc->enabled || !intel_crtc->active)
  5323. return;
  5324. /* use legacy palette for Ironlake */
  5325. if (HAS_PCH_SPLIT(dev))
  5326. palreg = LGC_PALETTE(intel_crtc->pipe);
  5327. for (i = 0; i < 256; i++) {
  5328. I915_WRITE(palreg + 4 * i,
  5329. (intel_crtc->lut_r[i] << 16) |
  5330. (intel_crtc->lut_g[i] << 8) |
  5331. intel_crtc->lut_b[i]);
  5332. }
  5333. }
  5334. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5335. {
  5336. struct drm_device *dev = crtc->dev;
  5337. struct drm_i915_private *dev_priv = dev->dev_private;
  5338. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5339. bool visible = base != 0;
  5340. u32 cntl;
  5341. if (intel_crtc->cursor_visible == visible)
  5342. return;
  5343. cntl = I915_READ(_CURACNTR);
  5344. if (visible) {
  5345. /* On these chipsets we can only modify the base whilst
  5346. * the cursor is disabled.
  5347. */
  5348. I915_WRITE(_CURABASE, base);
  5349. cntl &= ~(CURSOR_FORMAT_MASK);
  5350. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5351. cntl |= CURSOR_ENABLE |
  5352. CURSOR_GAMMA_ENABLE |
  5353. CURSOR_FORMAT_ARGB;
  5354. } else
  5355. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5356. I915_WRITE(_CURACNTR, cntl);
  5357. intel_crtc->cursor_visible = visible;
  5358. }
  5359. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5360. {
  5361. struct drm_device *dev = crtc->dev;
  5362. struct drm_i915_private *dev_priv = dev->dev_private;
  5363. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5364. int pipe = intel_crtc->pipe;
  5365. bool visible = base != 0;
  5366. if (intel_crtc->cursor_visible != visible) {
  5367. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5368. if (base) {
  5369. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5370. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5371. cntl |= pipe << 28; /* Connect to correct pipe */
  5372. } else {
  5373. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5374. cntl |= CURSOR_MODE_DISABLE;
  5375. }
  5376. I915_WRITE(CURCNTR(pipe), cntl);
  5377. intel_crtc->cursor_visible = visible;
  5378. }
  5379. /* and commit changes on next vblank */
  5380. I915_WRITE(CURBASE(pipe), base);
  5381. }
  5382. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5383. {
  5384. struct drm_device *dev = crtc->dev;
  5385. struct drm_i915_private *dev_priv = dev->dev_private;
  5386. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5387. int pipe = intel_crtc->pipe;
  5388. bool visible = base != 0;
  5389. if (intel_crtc->cursor_visible != visible) {
  5390. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5391. if (base) {
  5392. cntl &= ~CURSOR_MODE;
  5393. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5394. } else {
  5395. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5396. cntl |= CURSOR_MODE_DISABLE;
  5397. }
  5398. if (IS_HASWELL(dev))
  5399. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5400. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5401. intel_crtc->cursor_visible = visible;
  5402. }
  5403. /* and commit changes on next vblank */
  5404. I915_WRITE(CURBASE_IVB(pipe), base);
  5405. }
  5406. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5407. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5408. bool on)
  5409. {
  5410. struct drm_device *dev = crtc->dev;
  5411. struct drm_i915_private *dev_priv = dev->dev_private;
  5412. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5413. int pipe = intel_crtc->pipe;
  5414. int x = intel_crtc->cursor_x;
  5415. int y = intel_crtc->cursor_y;
  5416. u32 base, pos;
  5417. bool visible;
  5418. pos = 0;
  5419. if (on && crtc->enabled && crtc->fb) {
  5420. base = intel_crtc->cursor_addr;
  5421. if (x > (int) crtc->fb->width)
  5422. base = 0;
  5423. if (y > (int) crtc->fb->height)
  5424. base = 0;
  5425. } else
  5426. base = 0;
  5427. if (x < 0) {
  5428. if (x + intel_crtc->cursor_width < 0)
  5429. base = 0;
  5430. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5431. x = -x;
  5432. }
  5433. pos |= x << CURSOR_X_SHIFT;
  5434. if (y < 0) {
  5435. if (y + intel_crtc->cursor_height < 0)
  5436. base = 0;
  5437. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5438. y = -y;
  5439. }
  5440. pos |= y << CURSOR_Y_SHIFT;
  5441. visible = base != 0;
  5442. if (!visible && !intel_crtc->cursor_visible)
  5443. return;
  5444. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5445. I915_WRITE(CURPOS_IVB(pipe), pos);
  5446. ivb_update_cursor(crtc, base);
  5447. } else {
  5448. I915_WRITE(CURPOS(pipe), pos);
  5449. if (IS_845G(dev) || IS_I865G(dev))
  5450. i845_update_cursor(crtc, base);
  5451. else
  5452. i9xx_update_cursor(crtc, base);
  5453. }
  5454. }
  5455. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5456. struct drm_file *file,
  5457. uint32_t handle,
  5458. uint32_t width, uint32_t height)
  5459. {
  5460. struct drm_device *dev = crtc->dev;
  5461. struct drm_i915_private *dev_priv = dev->dev_private;
  5462. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5463. struct drm_i915_gem_object *obj;
  5464. uint32_t addr;
  5465. int ret;
  5466. /* if we want to turn off the cursor ignore width and height */
  5467. if (!handle) {
  5468. DRM_DEBUG_KMS("cursor off\n");
  5469. addr = 0;
  5470. obj = NULL;
  5471. mutex_lock(&dev->struct_mutex);
  5472. goto finish;
  5473. }
  5474. /* Currently we only support 64x64 cursors */
  5475. if (width != 64 || height != 64) {
  5476. DRM_ERROR("we currently only support 64x64 cursors\n");
  5477. return -EINVAL;
  5478. }
  5479. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5480. if (&obj->base == NULL)
  5481. return -ENOENT;
  5482. if (obj->base.size < width * height * 4) {
  5483. DRM_ERROR("buffer is to small\n");
  5484. ret = -ENOMEM;
  5485. goto fail;
  5486. }
  5487. /* we only need to pin inside GTT if cursor is non-phy */
  5488. mutex_lock(&dev->struct_mutex);
  5489. if (!dev_priv->info->cursor_needs_physical) {
  5490. unsigned alignment;
  5491. if (obj->tiling_mode) {
  5492. DRM_ERROR("cursor cannot be tiled\n");
  5493. ret = -EINVAL;
  5494. goto fail_locked;
  5495. }
  5496. /* Note that the w/a also requires 2 PTE of padding following
  5497. * the bo. We currently fill all unused PTE with the shadow
  5498. * page and so we should always have valid PTE following the
  5499. * cursor preventing the VT-d warning.
  5500. */
  5501. alignment = 0;
  5502. if (need_vtd_wa(dev))
  5503. alignment = 64*1024;
  5504. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5505. if (ret) {
  5506. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5507. goto fail_locked;
  5508. }
  5509. ret = i915_gem_object_put_fence(obj);
  5510. if (ret) {
  5511. DRM_ERROR("failed to release fence for cursor");
  5512. goto fail_unpin;
  5513. }
  5514. addr = obj->gtt_offset;
  5515. } else {
  5516. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5517. ret = i915_gem_attach_phys_object(dev, obj,
  5518. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5519. align);
  5520. if (ret) {
  5521. DRM_ERROR("failed to attach phys object\n");
  5522. goto fail_locked;
  5523. }
  5524. addr = obj->phys_obj->handle->busaddr;
  5525. }
  5526. if (IS_GEN2(dev))
  5527. I915_WRITE(CURSIZE, (height << 12) | width);
  5528. finish:
  5529. if (intel_crtc->cursor_bo) {
  5530. if (dev_priv->info->cursor_needs_physical) {
  5531. if (intel_crtc->cursor_bo != obj)
  5532. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5533. } else
  5534. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5535. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5536. }
  5537. mutex_unlock(&dev->struct_mutex);
  5538. intel_crtc->cursor_addr = addr;
  5539. intel_crtc->cursor_bo = obj;
  5540. intel_crtc->cursor_width = width;
  5541. intel_crtc->cursor_height = height;
  5542. intel_crtc_update_cursor(crtc, true);
  5543. return 0;
  5544. fail_unpin:
  5545. i915_gem_object_unpin(obj);
  5546. fail_locked:
  5547. mutex_unlock(&dev->struct_mutex);
  5548. fail:
  5549. drm_gem_object_unreference_unlocked(&obj->base);
  5550. return ret;
  5551. }
  5552. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5553. {
  5554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5555. intel_crtc->cursor_x = x;
  5556. intel_crtc->cursor_y = y;
  5557. intel_crtc_update_cursor(crtc, true);
  5558. return 0;
  5559. }
  5560. /** Sets the color ramps on behalf of RandR */
  5561. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5562. u16 blue, int regno)
  5563. {
  5564. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5565. intel_crtc->lut_r[regno] = red >> 8;
  5566. intel_crtc->lut_g[regno] = green >> 8;
  5567. intel_crtc->lut_b[regno] = blue >> 8;
  5568. }
  5569. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5570. u16 *blue, int regno)
  5571. {
  5572. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5573. *red = intel_crtc->lut_r[regno] << 8;
  5574. *green = intel_crtc->lut_g[regno] << 8;
  5575. *blue = intel_crtc->lut_b[regno] << 8;
  5576. }
  5577. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5578. u16 *blue, uint32_t start, uint32_t size)
  5579. {
  5580. int end = (start + size > 256) ? 256 : start + size, i;
  5581. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5582. for (i = start; i < end; i++) {
  5583. intel_crtc->lut_r[i] = red[i] >> 8;
  5584. intel_crtc->lut_g[i] = green[i] >> 8;
  5585. intel_crtc->lut_b[i] = blue[i] >> 8;
  5586. }
  5587. intel_crtc_load_lut(crtc);
  5588. }
  5589. /* VESA 640x480x72Hz mode to set on the pipe */
  5590. static struct drm_display_mode load_detect_mode = {
  5591. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5592. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5593. };
  5594. static struct drm_framebuffer *
  5595. intel_framebuffer_create(struct drm_device *dev,
  5596. struct drm_mode_fb_cmd2 *mode_cmd,
  5597. struct drm_i915_gem_object *obj)
  5598. {
  5599. struct intel_framebuffer *intel_fb;
  5600. int ret;
  5601. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5602. if (!intel_fb) {
  5603. drm_gem_object_unreference_unlocked(&obj->base);
  5604. return ERR_PTR(-ENOMEM);
  5605. }
  5606. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5607. if (ret) {
  5608. drm_gem_object_unreference_unlocked(&obj->base);
  5609. kfree(intel_fb);
  5610. return ERR_PTR(ret);
  5611. }
  5612. return &intel_fb->base;
  5613. }
  5614. static u32
  5615. intel_framebuffer_pitch_for_width(int width, int bpp)
  5616. {
  5617. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5618. return ALIGN(pitch, 64);
  5619. }
  5620. static u32
  5621. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5622. {
  5623. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5624. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5625. }
  5626. static struct drm_framebuffer *
  5627. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5628. struct drm_display_mode *mode,
  5629. int depth, int bpp)
  5630. {
  5631. struct drm_i915_gem_object *obj;
  5632. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5633. obj = i915_gem_alloc_object(dev,
  5634. intel_framebuffer_size_for_mode(mode, bpp));
  5635. if (obj == NULL)
  5636. return ERR_PTR(-ENOMEM);
  5637. mode_cmd.width = mode->hdisplay;
  5638. mode_cmd.height = mode->vdisplay;
  5639. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5640. bpp);
  5641. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5642. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5643. }
  5644. static struct drm_framebuffer *
  5645. mode_fits_in_fbdev(struct drm_device *dev,
  5646. struct drm_display_mode *mode)
  5647. {
  5648. struct drm_i915_private *dev_priv = dev->dev_private;
  5649. struct drm_i915_gem_object *obj;
  5650. struct drm_framebuffer *fb;
  5651. if (dev_priv->fbdev == NULL)
  5652. return NULL;
  5653. obj = dev_priv->fbdev->ifb.obj;
  5654. if (obj == NULL)
  5655. return NULL;
  5656. fb = &dev_priv->fbdev->ifb.base;
  5657. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5658. fb->bits_per_pixel))
  5659. return NULL;
  5660. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5661. return NULL;
  5662. return fb;
  5663. }
  5664. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5665. struct drm_display_mode *mode,
  5666. struct intel_load_detect_pipe *old)
  5667. {
  5668. struct intel_crtc *intel_crtc;
  5669. struct intel_encoder *intel_encoder =
  5670. intel_attached_encoder(connector);
  5671. struct drm_crtc *possible_crtc;
  5672. struct drm_encoder *encoder = &intel_encoder->base;
  5673. struct drm_crtc *crtc = NULL;
  5674. struct drm_device *dev = encoder->dev;
  5675. struct drm_framebuffer *fb;
  5676. int i = -1;
  5677. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5678. connector->base.id, drm_get_connector_name(connector),
  5679. encoder->base.id, drm_get_encoder_name(encoder));
  5680. /*
  5681. * Algorithm gets a little messy:
  5682. *
  5683. * - if the connector already has an assigned crtc, use it (but make
  5684. * sure it's on first)
  5685. *
  5686. * - try to find the first unused crtc that can drive this connector,
  5687. * and use that if we find one
  5688. */
  5689. /* See if we already have a CRTC for this connector */
  5690. if (encoder->crtc) {
  5691. crtc = encoder->crtc;
  5692. mutex_lock(&crtc->mutex);
  5693. old->dpms_mode = connector->dpms;
  5694. old->load_detect_temp = false;
  5695. /* Make sure the crtc and connector are running */
  5696. if (connector->dpms != DRM_MODE_DPMS_ON)
  5697. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5698. return true;
  5699. }
  5700. /* Find an unused one (if possible) */
  5701. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5702. i++;
  5703. if (!(encoder->possible_crtcs & (1 << i)))
  5704. continue;
  5705. if (!possible_crtc->enabled) {
  5706. crtc = possible_crtc;
  5707. break;
  5708. }
  5709. }
  5710. /*
  5711. * If we didn't find an unused CRTC, don't use any.
  5712. */
  5713. if (!crtc) {
  5714. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5715. return false;
  5716. }
  5717. mutex_lock(&crtc->mutex);
  5718. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5719. to_intel_connector(connector)->new_encoder = intel_encoder;
  5720. intel_crtc = to_intel_crtc(crtc);
  5721. old->dpms_mode = connector->dpms;
  5722. old->load_detect_temp = true;
  5723. old->release_fb = NULL;
  5724. if (!mode)
  5725. mode = &load_detect_mode;
  5726. /* We need a framebuffer large enough to accommodate all accesses
  5727. * that the plane may generate whilst we perform load detection.
  5728. * We can not rely on the fbcon either being present (we get called
  5729. * during its initialisation to detect all boot displays, or it may
  5730. * not even exist) or that it is large enough to satisfy the
  5731. * requested mode.
  5732. */
  5733. fb = mode_fits_in_fbdev(dev, mode);
  5734. if (fb == NULL) {
  5735. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5736. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5737. old->release_fb = fb;
  5738. } else
  5739. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5740. if (IS_ERR(fb)) {
  5741. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5742. mutex_unlock(&crtc->mutex);
  5743. return false;
  5744. }
  5745. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5746. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5747. if (old->release_fb)
  5748. old->release_fb->funcs->destroy(old->release_fb);
  5749. mutex_unlock(&crtc->mutex);
  5750. return false;
  5751. }
  5752. /* let the connector get through one full cycle before testing */
  5753. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5754. return true;
  5755. }
  5756. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5757. struct intel_load_detect_pipe *old)
  5758. {
  5759. struct intel_encoder *intel_encoder =
  5760. intel_attached_encoder(connector);
  5761. struct drm_encoder *encoder = &intel_encoder->base;
  5762. struct drm_crtc *crtc = encoder->crtc;
  5763. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5764. connector->base.id, drm_get_connector_name(connector),
  5765. encoder->base.id, drm_get_encoder_name(encoder));
  5766. if (old->load_detect_temp) {
  5767. to_intel_connector(connector)->new_encoder = NULL;
  5768. intel_encoder->new_crtc = NULL;
  5769. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5770. if (old->release_fb) {
  5771. drm_framebuffer_unregister_private(old->release_fb);
  5772. drm_framebuffer_unreference(old->release_fb);
  5773. }
  5774. mutex_unlock(&crtc->mutex);
  5775. return;
  5776. }
  5777. /* Switch crtc and encoder back off if necessary */
  5778. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5779. connector->funcs->dpms(connector, old->dpms_mode);
  5780. mutex_unlock(&crtc->mutex);
  5781. }
  5782. /* Returns the clock of the currently programmed mode of the given pipe. */
  5783. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5784. {
  5785. struct drm_i915_private *dev_priv = dev->dev_private;
  5786. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5787. int pipe = intel_crtc->pipe;
  5788. u32 dpll = I915_READ(DPLL(pipe));
  5789. u32 fp;
  5790. intel_clock_t clock;
  5791. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5792. fp = I915_READ(FP0(pipe));
  5793. else
  5794. fp = I915_READ(FP1(pipe));
  5795. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5796. if (IS_PINEVIEW(dev)) {
  5797. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5798. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5799. } else {
  5800. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5801. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5802. }
  5803. if (!IS_GEN2(dev)) {
  5804. if (IS_PINEVIEW(dev))
  5805. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5806. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5807. else
  5808. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5809. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5810. switch (dpll & DPLL_MODE_MASK) {
  5811. case DPLLB_MODE_DAC_SERIAL:
  5812. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5813. 5 : 10;
  5814. break;
  5815. case DPLLB_MODE_LVDS:
  5816. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5817. 7 : 14;
  5818. break;
  5819. default:
  5820. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5821. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5822. return 0;
  5823. }
  5824. /* XXX: Handle the 100Mhz refclk */
  5825. intel_clock(dev, 96000, &clock);
  5826. } else {
  5827. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5828. if (is_lvds) {
  5829. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5830. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5831. clock.p2 = 14;
  5832. if ((dpll & PLL_REF_INPUT_MASK) ==
  5833. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5834. /* XXX: might not be 66MHz */
  5835. intel_clock(dev, 66000, &clock);
  5836. } else
  5837. intel_clock(dev, 48000, &clock);
  5838. } else {
  5839. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5840. clock.p1 = 2;
  5841. else {
  5842. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5843. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5844. }
  5845. if (dpll & PLL_P2_DIVIDE_BY_4)
  5846. clock.p2 = 4;
  5847. else
  5848. clock.p2 = 2;
  5849. intel_clock(dev, 48000, &clock);
  5850. }
  5851. }
  5852. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5853. * i830PllIsValid() because it relies on the xf86_config connector
  5854. * configuration being accurate, which it isn't necessarily.
  5855. */
  5856. return clock.dot;
  5857. }
  5858. /** Returns the currently programmed mode of the given pipe. */
  5859. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5860. struct drm_crtc *crtc)
  5861. {
  5862. struct drm_i915_private *dev_priv = dev->dev_private;
  5863. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5864. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5865. struct drm_display_mode *mode;
  5866. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5867. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5868. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5869. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5870. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5871. if (!mode)
  5872. return NULL;
  5873. mode->clock = intel_crtc_clock_get(dev, crtc);
  5874. mode->hdisplay = (htot & 0xffff) + 1;
  5875. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5876. mode->hsync_start = (hsync & 0xffff) + 1;
  5877. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5878. mode->vdisplay = (vtot & 0xffff) + 1;
  5879. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5880. mode->vsync_start = (vsync & 0xffff) + 1;
  5881. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5882. drm_mode_set_name(mode);
  5883. return mode;
  5884. }
  5885. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5886. {
  5887. struct drm_device *dev = crtc->dev;
  5888. drm_i915_private_t *dev_priv = dev->dev_private;
  5889. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5890. int pipe = intel_crtc->pipe;
  5891. int dpll_reg = DPLL(pipe);
  5892. int dpll;
  5893. if (HAS_PCH_SPLIT(dev))
  5894. return;
  5895. if (!dev_priv->lvds_downclock_avail)
  5896. return;
  5897. dpll = I915_READ(dpll_reg);
  5898. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5899. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5900. assert_panel_unlocked(dev_priv, pipe);
  5901. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5902. I915_WRITE(dpll_reg, dpll);
  5903. intel_wait_for_vblank(dev, pipe);
  5904. dpll = I915_READ(dpll_reg);
  5905. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5906. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5907. }
  5908. }
  5909. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5910. {
  5911. struct drm_device *dev = crtc->dev;
  5912. drm_i915_private_t *dev_priv = dev->dev_private;
  5913. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5914. if (HAS_PCH_SPLIT(dev))
  5915. return;
  5916. if (!dev_priv->lvds_downclock_avail)
  5917. return;
  5918. /*
  5919. * Since this is called by a timer, we should never get here in
  5920. * the manual case.
  5921. */
  5922. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5923. int pipe = intel_crtc->pipe;
  5924. int dpll_reg = DPLL(pipe);
  5925. int dpll;
  5926. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5927. assert_panel_unlocked(dev_priv, pipe);
  5928. dpll = I915_READ(dpll_reg);
  5929. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5930. I915_WRITE(dpll_reg, dpll);
  5931. intel_wait_for_vblank(dev, pipe);
  5932. dpll = I915_READ(dpll_reg);
  5933. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5934. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5935. }
  5936. }
  5937. void intel_mark_busy(struct drm_device *dev)
  5938. {
  5939. i915_update_gfx_val(dev->dev_private);
  5940. }
  5941. void intel_mark_idle(struct drm_device *dev)
  5942. {
  5943. struct drm_crtc *crtc;
  5944. if (!i915_powersave)
  5945. return;
  5946. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5947. if (!crtc->fb)
  5948. continue;
  5949. intel_decrease_pllclock(crtc);
  5950. }
  5951. }
  5952. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5953. {
  5954. struct drm_device *dev = obj->base.dev;
  5955. struct drm_crtc *crtc;
  5956. if (!i915_powersave)
  5957. return;
  5958. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5959. if (!crtc->fb)
  5960. continue;
  5961. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5962. intel_increase_pllclock(crtc);
  5963. }
  5964. }
  5965. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5966. {
  5967. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5968. struct drm_device *dev = crtc->dev;
  5969. struct intel_unpin_work *work;
  5970. unsigned long flags;
  5971. spin_lock_irqsave(&dev->event_lock, flags);
  5972. work = intel_crtc->unpin_work;
  5973. intel_crtc->unpin_work = NULL;
  5974. spin_unlock_irqrestore(&dev->event_lock, flags);
  5975. if (work) {
  5976. cancel_work_sync(&work->work);
  5977. kfree(work);
  5978. }
  5979. drm_crtc_cleanup(crtc);
  5980. kfree(intel_crtc);
  5981. }
  5982. static void intel_unpin_work_fn(struct work_struct *__work)
  5983. {
  5984. struct intel_unpin_work *work =
  5985. container_of(__work, struct intel_unpin_work, work);
  5986. struct drm_device *dev = work->crtc->dev;
  5987. mutex_lock(&dev->struct_mutex);
  5988. intel_unpin_fb_obj(work->old_fb_obj);
  5989. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5990. drm_gem_object_unreference(&work->old_fb_obj->base);
  5991. intel_update_fbc(dev);
  5992. mutex_unlock(&dev->struct_mutex);
  5993. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5994. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5995. kfree(work);
  5996. }
  5997. static void do_intel_finish_page_flip(struct drm_device *dev,
  5998. struct drm_crtc *crtc)
  5999. {
  6000. drm_i915_private_t *dev_priv = dev->dev_private;
  6001. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6002. struct intel_unpin_work *work;
  6003. unsigned long flags;
  6004. /* Ignore early vblank irqs */
  6005. if (intel_crtc == NULL)
  6006. return;
  6007. spin_lock_irqsave(&dev->event_lock, flags);
  6008. work = intel_crtc->unpin_work;
  6009. /* Ensure we don't miss a work->pending update ... */
  6010. smp_rmb();
  6011. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6012. spin_unlock_irqrestore(&dev->event_lock, flags);
  6013. return;
  6014. }
  6015. /* and that the unpin work is consistent wrt ->pending. */
  6016. smp_rmb();
  6017. intel_crtc->unpin_work = NULL;
  6018. if (work->event)
  6019. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6020. drm_vblank_put(dev, intel_crtc->pipe);
  6021. spin_unlock_irqrestore(&dev->event_lock, flags);
  6022. wake_up_all(&dev_priv->pending_flip_queue);
  6023. queue_work(dev_priv->wq, &work->work);
  6024. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6025. }
  6026. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6027. {
  6028. drm_i915_private_t *dev_priv = dev->dev_private;
  6029. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6030. do_intel_finish_page_flip(dev, crtc);
  6031. }
  6032. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6033. {
  6034. drm_i915_private_t *dev_priv = dev->dev_private;
  6035. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6036. do_intel_finish_page_flip(dev, crtc);
  6037. }
  6038. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6039. {
  6040. drm_i915_private_t *dev_priv = dev->dev_private;
  6041. struct intel_crtc *intel_crtc =
  6042. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6043. unsigned long flags;
  6044. /* NB: An MMIO update of the plane base pointer will also
  6045. * generate a page-flip completion irq, i.e. every modeset
  6046. * is also accompanied by a spurious intel_prepare_page_flip().
  6047. */
  6048. spin_lock_irqsave(&dev->event_lock, flags);
  6049. if (intel_crtc->unpin_work)
  6050. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6051. spin_unlock_irqrestore(&dev->event_lock, flags);
  6052. }
  6053. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6054. {
  6055. /* Ensure that the work item is consistent when activating it ... */
  6056. smp_wmb();
  6057. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6058. /* and that it is marked active as soon as the irq could fire. */
  6059. smp_wmb();
  6060. }
  6061. static int intel_gen2_queue_flip(struct drm_device *dev,
  6062. struct drm_crtc *crtc,
  6063. struct drm_framebuffer *fb,
  6064. struct drm_i915_gem_object *obj)
  6065. {
  6066. struct drm_i915_private *dev_priv = dev->dev_private;
  6067. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6068. u32 flip_mask;
  6069. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6070. int ret;
  6071. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6072. if (ret)
  6073. goto err;
  6074. ret = intel_ring_begin(ring, 6);
  6075. if (ret)
  6076. goto err_unpin;
  6077. /* Can't queue multiple flips, so wait for the previous
  6078. * one to finish before executing the next.
  6079. */
  6080. if (intel_crtc->plane)
  6081. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6082. else
  6083. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6084. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6085. intel_ring_emit(ring, MI_NOOP);
  6086. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6087. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6088. intel_ring_emit(ring, fb->pitches[0]);
  6089. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6090. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6091. intel_mark_page_flip_active(intel_crtc);
  6092. intel_ring_advance(ring);
  6093. return 0;
  6094. err_unpin:
  6095. intel_unpin_fb_obj(obj);
  6096. err:
  6097. return ret;
  6098. }
  6099. static int intel_gen3_queue_flip(struct drm_device *dev,
  6100. struct drm_crtc *crtc,
  6101. struct drm_framebuffer *fb,
  6102. struct drm_i915_gem_object *obj)
  6103. {
  6104. struct drm_i915_private *dev_priv = dev->dev_private;
  6105. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6106. u32 flip_mask;
  6107. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6108. int ret;
  6109. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6110. if (ret)
  6111. goto err;
  6112. ret = intel_ring_begin(ring, 6);
  6113. if (ret)
  6114. goto err_unpin;
  6115. if (intel_crtc->plane)
  6116. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6117. else
  6118. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6119. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6120. intel_ring_emit(ring, MI_NOOP);
  6121. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6122. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6123. intel_ring_emit(ring, fb->pitches[0]);
  6124. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6125. intel_ring_emit(ring, MI_NOOP);
  6126. intel_mark_page_flip_active(intel_crtc);
  6127. intel_ring_advance(ring);
  6128. return 0;
  6129. err_unpin:
  6130. intel_unpin_fb_obj(obj);
  6131. err:
  6132. return ret;
  6133. }
  6134. static int intel_gen4_queue_flip(struct drm_device *dev,
  6135. struct drm_crtc *crtc,
  6136. struct drm_framebuffer *fb,
  6137. struct drm_i915_gem_object *obj)
  6138. {
  6139. struct drm_i915_private *dev_priv = dev->dev_private;
  6140. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6141. uint32_t pf, pipesrc;
  6142. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6143. int ret;
  6144. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6145. if (ret)
  6146. goto err;
  6147. ret = intel_ring_begin(ring, 4);
  6148. if (ret)
  6149. goto err_unpin;
  6150. /* i965+ uses the linear or tiled offsets from the
  6151. * Display Registers (which do not change across a page-flip)
  6152. * so we need only reprogram the base address.
  6153. */
  6154. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6155. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6156. intel_ring_emit(ring, fb->pitches[0]);
  6157. intel_ring_emit(ring,
  6158. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6159. obj->tiling_mode);
  6160. /* XXX Enabling the panel-fitter across page-flip is so far
  6161. * untested on non-native modes, so ignore it for now.
  6162. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6163. */
  6164. pf = 0;
  6165. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6166. intel_ring_emit(ring, pf | pipesrc);
  6167. intel_mark_page_flip_active(intel_crtc);
  6168. intel_ring_advance(ring);
  6169. return 0;
  6170. err_unpin:
  6171. intel_unpin_fb_obj(obj);
  6172. err:
  6173. return ret;
  6174. }
  6175. static int intel_gen6_queue_flip(struct drm_device *dev,
  6176. struct drm_crtc *crtc,
  6177. struct drm_framebuffer *fb,
  6178. struct drm_i915_gem_object *obj)
  6179. {
  6180. struct drm_i915_private *dev_priv = dev->dev_private;
  6181. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6182. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6183. uint32_t pf, pipesrc;
  6184. int ret;
  6185. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6186. if (ret)
  6187. goto err;
  6188. ret = intel_ring_begin(ring, 4);
  6189. if (ret)
  6190. goto err_unpin;
  6191. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6192. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6193. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6194. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6195. /* Contrary to the suggestions in the documentation,
  6196. * "Enable Panel Fitter" does not seem to be required when page
  6197. * flipping with a non-native mode, and worse causes a normal
  6198. * modeset to fail.
  6199. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6200. */
  6201. pf = 0;
  6202. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6203. intel_ring_emit(ring, pf | pipesrc);
  6204. intel_mark_page_flip_active(intel_crtc);
  6205. intel_ring_advance(ring);
  6206. return 0;
  6207. err_unpin:
  6208. intel_unpin_fb_obj(obj);
  6209. err:
  6210. return ret;
  6211. }
  6212. /*
  6213. * On gen7 we currently use the blit ring because (in early silicon at least)
  6214. * the render ring doesn't give us interrpts for page flip completion, which
  6215. * means clients will hang after the first flip is queued. Fortunately the
  6216. * blit ring generates interrupts properly, so use it instead.
  6217. */
  6218. static int intel_gen7_queue_flip(struct drm_device *dev,
  6219. struct drm_crtc *crtc,
  6220. struct drm_framebuffer *fb,
  6221. struct drm_i915_gem_object *obj)
  6222. {
  6223. struct drm_i915_private *dev_priv = dev->dev_private;
  6224. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6225. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6226. uint32_t plane_bit = 0;
  6227. int ret;
  6228. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6229. if (ret)
  6230. goto err;
  6231. switch(intel_crtc->plane) {
  6232. case PLANE_A:
  6233. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6234. break;
  6235. case PLANE_B:
  6236. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6237. break;
  6238. case PLANE_C:
  6239. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6240. break;
  6241. default:
  6242. WARN_ONCE(1, "unknown plane in flip command\n");
  6243. ret = -ENODEV;
  6244. goto err_unpin;
  6245. }
  6246. ret = intel_ring_begin(ring, 4);
  6247. if (ret)
  6248. goto err_unpin;
  6249. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6250. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6251. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6252. intel_ring_emit(ring, (MI_NOOP));
  6253. intel_mark_page_flip_active(intel_crtc);
  6254. intel_ring_advance(ring);
  6255. return 0;
  6256. err_unpin:
  6257. intel_unpin_fb_obj(obj);
  6258. err:
  6259. return ret;
  6260. }
  6261. static int intel_default_queue_flip(struct drm_device *dev,
  6262. struct drm_crtc *crtc,
  6263. struct drm_framebuffer *fb,
  6264. struct drm_i915_gem_object *obj)
  6265. {
  6266. return -ENODEV;
  6267. }
  6268. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6269. struct drm_framebuffer *fb,
  6270. struct drm_pending_vblank_event *event)
  6271. {
  6272. struct drm_device *dev = crtc->dev;
  6273. struct drm_i915_private *dev_priv = dev->dev_private;
  6274. struct drm_framebuffer *old_fb = crtc->fb;
  6275. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6276. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6277. struct intel_unpin_work *work;
  6278. unsigned long flags;
  6279. int ret;
  6280. /* Can't change pixel format via MI display flips. */
  6281. if (fb->pixel_format != crtc->fb->pixel_format)
  6282. return -EINVAL;
  6283. /*
  6284. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6285. * Note that pitch changes could also affect these register.
  6286. */
  6287. if (INTEL_INFO(dev)->gen > 3 &&
  6288. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6289. fb->pitches[0] != crtc->fb->pitches[0]))
  6290. return -EINVAL;
  6291. work = kzalloc(sizeof *work, GFP_KERNEL);
  6292. if (work == NULL)
  6293. return -ENOMEM;
  6294. work->event = event;
  6295. work->crtc = crtc;
  6296. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6297. INIT_WORK(&work->work, intel_unpin_work_fn);
  6298. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6299. if (ret)
  6300. goto free_work;
  6301. /* We borrow the event spin lock for protecting unpin_work */
  6302. spin_lock_irqsave(&dev->event_lock, flags);
  6303. if (intel_crtc->unpin_work) {
  6304. spin_unlock_irqrestore(&dev->event_lock, flags);
  6305. kfree(work);
  6306. drm_vblank_put(dev, intel_crtc->pipe);
  6307. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6308. return -EBUSY;
  6309. }
  6310. intel_crtc->unpin_work = work;
  6311. spin_unlock_irqrestore(&dev->event_lock, flags);
  6312. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6313. flush_workqueue(dev_priv->wq);
  6314. ret = i915_mutex_lock_interruptible(dev);
  6315. if (ret)
  6316. goto cleanup;
  6317. /* Reference the objects for the scheduled work. */
  6318. drm_gem_object_reference(&work->old_fb_obj->base);
  6319. drm_gem_object_reference(&obj->base);
  6320. crtc->fb = fb;
  6321. work->pending_flip_obj = obj;
  6322. work->enable_stall_check = true;
  6323. atomic_inc(&intel_crtc->unpin_work_count);
  6324. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6325. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6326. if (ret)
  6327. goto cleanup_pending;
  6328. intel_disable_fbc(dev);
  6329. intel_mark_fb_busy(obj);
  6330. mutex_unlock(&dev->struct_mutex);
  6331. trace_i915_flip_request(intel_crtc->plane, obj);
  6332. return 0;
  6333. cleanup_pending:
  6334. atomic_dec(&intel_crtc->unpin_work_count);
  6335. crtc->fb = old_fb;
  6336. drm_gem_object_unreference(&work->old_fb_obj->base);
  6337. drm_gem_object_unreference(&obj->base);
  6338. mutex_unlock(&dev->struct_mutex);
  6339. cleanup:
  6340. spin_lock_irqsave(&dev->event_lock, flags);
  6341. intel_crtc->unpin_work = NULL;
  6342. spin_unlock_irqrestore(&dev->event_lock, flags);
  6343. drm_vblank_put(dev, intel_crtc->pipe);
  6344. free_work:
  6345. kfree(work);
  6346. return ret;
  6347. }
  6348. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6349. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6350. .load_lut = intel_crtc_load_lut,
  6351. };
  6352. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6353. {
  6354. struct intel_encoder *other_encoder;
  6355. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6356. if (WARN_ON(!crtc))
  6357. return false;
  6358. list_for_each_entry(other_encoder,
  6359. &crtc->dev->mode_config.encoder_list,
  6360. base.head) {
  6361. if (&other_encoder->new_crtc->base != crtc ||
  6362. encoder == other_encoder)
  6363. continue;
  6364. else
  6365. return true;
  6366. }
  6367. return false;
  6368. }
  6369. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6370. struct drm_crtc *crtc)
  6371. {
  6372. struct drm_device *dev;
  6373. struct drm_crtc *tmp;
  6374. int crtc_mask = 1;
  6375. WARN(!crtc, "checking null crtc?\n");
  6376. dev = crtc->dev;
  6377. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6378. if (tmp == crtc)
  6379. break;
  6380. crtc_mask <<= 1;
  6381. }
  6382. if (encoder->possible_crtcs & crtc_mask)
  6383. return true;
  6384. return false;
  6385. }
  6386. /**
  6387. * intel_modeset_update_staged_output_state
  6388. *
  6389. * Updates the staged output configuration state, e.g. after we've read out the
  6390. * current hw state.
  6391. */
  6392. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6393. {
  6394. struct intel_encoder *encoder;
  6395. struct intel_connector *connector;
  6396. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6397. base.head) {
  6398. connector->new_encoder =
  6399. to_intel_encoder(connector->base.encoder);
  6400. }
  6401. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6402. base.head) {
  6403. encoder->new_crtc =
  6404. to_intel_crtc(encoder->base.crtc);
  6405. }
  6406. }
  6407. /**
  6408. * intel_modeset_commit_output_state
  6409. *
  6410. * This function copies the stage display pipe configuration to the real one.
  6411. */
  6412. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6413. {
  6414. struct intel_encoder *encoder;
  6415. struct intel_connector *connector;
  6416. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6417. base.head) {
  6418. connector->base.encoder = &connector->new_encoder->base;
  6419. }
  6420. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6421. base.head) {
  6422. encoder->base.crtc = &encoder->new_crtc->base;
  6423. }
  6424. }
  6425. static int
  6426. pipe_config_set_bpp(struct drm_crtc *crtc,
  6427. struct drm_framebuffer *fb,
  6428. struct intel_crtc_config *pipe_config)
  6429. {
  6430. struct drm_device *dev = crtc->dev;
  6431. struct drm_connector *connector;
  6432. int bpp;
  6433. switch (fb->pixel_format) {
  6434. case DRM_FORMAT_C8:
  6435. bpp = 8*3; /* since we go through a colormap */
  6436. break;
  6437. case DRM_FORMAT_XRGB1555:
  6438. case DRM_FORMAT_ARGB1555:
  6439. /* checked in intel_framebuffer_init already */
  6440. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6441. return -EINVAL;
  6442. case DRM_FORMAT_RGB565:
  6443. bpp = 6*3; /* min is 18bpp */
  6444. break;
  6445. case DRM_FORMAT_XBGR8888:
  6446. case DRM_FORMAT_ABGR8888:
  6447. /* checked in intel_framebuffer_init already */
  6448. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6449. return -EINVAL;
  6450. case DRM_FORMAT_XRGB8888:
  6451. case DRM_FORMAT_ARGB8888:
  6452. bpp = 8*3;
  6453. break;
  6454. case DRM_FORMAT_XRGB2101010:
  6455. case DRM_FORMAT_ARGB2101010:
  6456. case DRM_FORMAT_XBGR2101010:
  6457. case DRM_FORMAT_ABGR2101010:
  6458. /* checked in intel_framebuffer_init already */
  6459. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6460. return -EINVAL;
  6461. bpp = 10*3;
  6462. break;
  6463. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6464. default:
  6465. DRM_DEBUG_KMS("unsupported depth\n");
  6466. return -EINVAL;
  6467. }
  6468. pipe_config->pipe_bpp = bpp;
  6469. /* Clamp display bpp to EDID value */
  6470. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6471. head) {
  6472. if (connector->encoder && connector->encoder->crtc != crtc)
  6473. continue;
  6474. /* Don't use an invalid EDID bpc value */
  6475. if (connector->display_info.bpc &&
  6476. connector->display_info.bpc * 3 < bpp) {
  6477. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6478. bpp, connector->display_info.bpc*3);
  6479. pipe_config->pipe_bpp = connector->display_info.bpc*3;
  6480. }
  6481. }
  6482. return bpp;
  6483. }
  6484. static struct intel_crtc_config *
  6485. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6486. struct drm_framebuffer *fb,
  6487. struct drm_display_mode *mode)
  6488. {
  6489. struct drm_device *dev = crtc->dev;
  6490. struct drm_encoder_helper_funcs *encoder_funcs;
  6491. struct intel_encoder *encoder;
  6492. struct intel_crtc_config *pipe_config;
  6493. int plane_bpp;
  6494. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6495. if (!pipe_config)
  6496. return ERR_PTR(-ENOMEM);
  6497. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6498. drm_mode_copy(&pipe_config->requested_mode, mode);
  6499. plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
  6500. if (plane_bpp < 0)
  6501. goto fail;
  6502. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6503. * adjust it according to limitations or connector properties, and also
  6504. * a chance to reject the mode entirely.
  6505. */
  6506. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6507. base.head) {
  6508. if (&encoder->new_crtc->base != crtc)
  6509. continue;
  6510. if (encoder->compute_config) {
  6511. if (!(encoder->compute_config(encoder, pipe_config))) {
  6512. DRM_DEBUG_KMS("Encoder config failure\n");
  6513. goto fail;
  6514. }
  6515. continue;
  6516. }
  6517. encoder_funcs = encoder->base.helper_private;
  6518. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6519. &pipe_config->requested_mode,
  6520. &pipe_config->adjusted_mode))) {
  6521. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6522. goto fail;
  6523. }
  6524. }
  6525. if (!(intel_crtc_compute_config(crtc, pipe_config))) {
  6526. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6527. goto fail;
  6528. }
  6529. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6530. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6531. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6532. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6533. return pipe_config;
  6534. fail:
  6535. kfree(pipe_config);
  6536. return ERR_PTR(-EINVAL);
  6537. }
  6538. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6539. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6540. static void
  6541. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6542. unsigned *prepare_pipes, unsigned *disable_pipes)
  6543. {
  6544. struct intel_crtc *intel_crtc;
  6545. struct drm_device *dev = crtc->dev;
  6546. struct intel_encoder *encoder;
  6547. struct intel_connector *connector;
  6548. struct drm_crtc *tmp_crtc;
  6549. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6550. /* Check which crtcs have changed outputs connected to them, these need
  6551. * to be part of the prepare_pipes mask. We don't (yet) support global
  6552. * modeset across multiple crtcs, so modeset_pipes will only have one
  6553. * bit set at most. */
  6554. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6555. base.head) {
  6556. if (connector->base.encoder == &connector->new_encoder->base)
  6557. continue;
  6558. if (connector->base.encoder) {
  6559. tmp_crtc = connector->base.encoder->crtc;
  6560. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6561. }
  6562. if (connector->new_encoder)
  6563. *prepare_pipes |=
  6564. 1 << connector->new_encoder->new_crtc->pipe;
  6565. }
  6566. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6567. base.head) {
  6568. if (encoder->base.crtc == &encoder->new_crtc->base)
  6569. continue;
  6570. if (encoder->base.crtc) {
  6571. tmp_crtc = encoder->base.crtc;
  6572. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6573. }
  6574. if (encoder->new_crtc)
  6575. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6576. }
  6577. /* Check for any pipes that will be fully disabled ... */
  6578. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6579. base.head) {
  6580. bool used = false;
  6581. /* Don't try to disable disabled crtcs. */
  6582. if (!intel_crtc->base.enabled)
  6583. continue;
  6584. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6585. base.head) {
  6586. if (encoder->new_crtc == intel_crtc)
  6587. used = true;
  6588. }
  6589. if (!used)
  6590. *disable_pipes |= 1 << intel_crtc->pipe;
  6591. }
  6592. /* set_mode is also used to update properties on life display pipes. */
  6593. intel_crtc = to_intel_crtc(crtc);
  6594. if (crtc->enabled)
  6595. *prepare_pipes |= 1 << intel_crtc->pipe;
  6596. /*
  6597. * For simplicity do a full modeset on any pipe where the output routing
  6598. * changed. We could be more clever, but that would require us to be
  6599. * more careful with calling the relevant encoder->mode_set functions.
  6600. */
  6601. if (*prepare_pipes)
  6602. *modeset_pipes = *prepare_pipes;
  6603. /* ... and mask these out. */
  6604. *modeset_pipes &= ~(*disable_pipes);
  6605. *prepare_pipes &= ~(*disable_pipes);
  6606. /*
  6607. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6608. * obies this rule, but the modeset restore mode of
  6609. * intel_modeset_setup_hw_state does not.
  6610. */
  6611. *modeset_pipes &= 1 << intel_crtc->pipe;
  6612. *prepare_pipes &= 1 << intel_crtc->pipe;
  6613. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6614. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6615. }
  6616. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6617. {
  6618. struct drm_encoder *encoder;
  6619. struct drm_device *dev = crtc->dev;
  6620. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6621. if (encoder->crtc == crtc)
  6622. return true;
  6623. return false;
  6624. }
  6625. static void
  6626. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6627. {
  6628. struct intel_encoder *intel_encoder;
  6629. struct intel_crtc *intel_crtc;
  6630. struct drm_connector *connector;
  6631. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6632. base.head) {
  6633. if (!intel_encoder->base.crtc)
  6634. continue;
  6635. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6636. if (prepare_pipes & (1 << intel_crtc->pipe))
  6637. intel_encoder->connectors_active = false;
  6638. }
  6639. intel_modeset_commit_output_state(dev);
  6640. /* Update computed state. */
  6641. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6642. base.head) {
  6643. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6644. }
  6645. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6646. if (!connector->encoder || !connector->encoder->crtc)
  6647. continue;
  6648. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6649. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6650. struct drm_property *dpms_property =
  6651. dev->mode_config.dpms_property;
  6652. connector->dpms = DRM_MODE_DPMS_ON;
  6653. drm_object_property_set_value(&connector->base,
  6654. dpms_property,
  6655. DRM_MODE_DPMS_ON);
  6656. intel_encoder = to_intel_encoder(connector->encoder);
  6657. intel_encoder->connectors_active = true;
  6658. }
  6659. }
  6660. }
  6661. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6662. list_for_each_entry((intel_crtc), \
  6663. &(dev)->mode_config.crtc_list, \
  6664. base.head) \
  6665. if (mask & (1 <<(intel_crtc)->pipe)) \
  6666. static bool
  6667. intel_pipe_config_compare(struct intel_crtc_config *current_config,
  6668. struct intel_crtc_config *pipe_config)
  6669. {
  6670. if (current_config->has_pch_encoder != pipe_config->has_pch_encoder) {
  6671. DRM_ERROR("mismatch in has_pch_encoder "
  6672. "(expected %i, found %i)\n",
  6673. current_config->has_pch_encoder,
  6674. pipe_config->has_pch_encoder);
  6675. return false;
  6676. }
  6677. return true;
  6678. }
  6679. void
  6680. intel_modeset_check_state(struct drm_device *dev)
  6681. {
  6682. drm_i915_private_t *dev_priv = dev->dev_private;
  6683. struct intel_crtc *crtc;
  6684. struct intel_encoder *encoder;
  6685. struct intel_connector *connector;
  6686. struct intel_crtc_config pipe_config;
  6687. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6688. base.head) {
  6689. /* This also checks the encoder/connector hw state with the
  6690. * ->get_hw_state callbacks. */
  6691. intel_connector_check_state(connector);
  6692. WARN(&connector->new_encoder->base != connector->base.encoder,
  6693. "connector's staged encoder doesn't match current encoder\n");
  6694. }
  6695. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6696. base.head) {
  6697. bool enabled = false;
  6698. bool active = false;
  6699. enum pipe pipe, tracked_pipe;
  6700. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6701. encoder->base.base.id,
  6702. drm_get_encoder_name(&encoder->base));
  6703. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6704. "encoder's stage crtc doesn't match current crtc\n");
  6705. WARN(encoder->connectors_active && !encoder->base.crtc,
  6706. "encoder's active_connectors set, but no crtc\n");
  6707. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6708. base.head) {
  6709. if (connector->base.encoder != &encoder->base)
  6710. continue;
  6711. enabled = true;
  6712. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6713. active = true;
  6714. }
  6715. WARN(!!encoder->base.crtc != enabled,
  6716. "encoder's enabled state mismatch "
  6717. "(expected %i, found %i)\n",
  6718. !!encoder->base.crtc, enabled);
  6719. WARN(active && !encoder->base.crtc,
  6720. "active encoder with no crtc\n");
  6721. WARN(encoder->connectors_active != active,
  6722. "encoder's computed active state doesn't match tracked active state "
  6723. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6724. active = encoder->get_hw_state(encoder, &pipe);
  6725. WARN(active != encoder->connectors_active,
  6726. "encoder's hw state doesn't match sw tracking "
  6727. "(expected %i, found %i)\n",
  6728. encoder->connectors_active, active);
  6729. if (!encoder->base.crtc)
  6730. continue;
  6731. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6732. WARN(active && pipe != tracked_pipe,
  6733. "active encoder's pipe doesn't match"
  6734. "(expected %i, found %i)\n",
  6735. tracked_pipe, pipe);
  6736. }
  6737. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6738. base.head) {
  6739. bool enabled = false;
  6740. bool active = false;
  6741. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6742. crtc->base.base.id);
  6743. WARN(crtc->active && !crtc->base.enabled,
  6744. "active crtc, but not enabled in sw tracking\n");
  6745. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6746. base.head) {
  6747. if (encoder->base.crtc != &crtc->base)
  6748. continue;
  6749. enabled = true;
  6750. if (encoder->connectors_active)
  6751. active = true;
  6752. }
  6753. WARN(active != crtc->active,
  6754. "crtc's computed active state doesn't match tracked active state "
  6755. "(expected %i, found %i)\n", active, crtc->active);
  6756. WARN(enabled != crtc->base.enabled,
  6757. "crtc's computed enabled state doesn't match tracked enabled state "
  6758. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6759. memset(&pipe_config, 0, sizeof(pipe_config));
  6760. active = dev_priv->display.get_pipe_config(crtc,
  6761. &pipe_config);
  6762. WARN(crtc->active != active,
  6763. "crtc active state doesn't match with hw state "
  6764. "(expected %i, found %i)\n", crtc->active, active);
  6765. WARN(active &&
  6766. !intel_pipe_config_compare(&crtc->config, &pipe_config),
  6767. "pipe state doesn't match!\n");
  6768. }
  6769. }
  6770. static int __intel_set_mode(struct drm_crtc *crtc,
  6771. struct drm_display_mode *mode,
  6772. int x, int y, struct drm_framebuffer *fb)
  6773. {
  6774. struct drm_device *dev = crtc->dev;
  6775. drm_i915_private_t *dev_priv = dev->dev_private;
  6776. struct drm_display_mode *saved_mode, *saved_hwmode;
  6777. struct intel_crtc_config *pipe_config = NULL;
  6778. struct intel_crtc *intel_crtc;
  6779. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6780. int ret = 0;
  6781. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6782. if (!saved_mode)
  6783. return -ENOMEM;
  6784. saved_hwmode = saved_mode + 1;
  6785. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6786. &prepare_pipes, &disable_pipes);
  6787. *saved_hwmode = crtc->hwmode;
  6788. *saved_mode = crtc->mode;
  6789. /* Hack: Because we don't (yet) support global modeset on multiple
  6790. * crtcs, we don't keep track of the new mode for more than one crtc.
  6791. * Hence simply check whether any bit is set in modeset_pipes in all the
  6792. * pieces of code that are not yet converted to deal with mutliple crtcs
  6793. * changing their mode at the same time. */
  6794. if (modeset_pipes) {
  6795. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6796. if (IS_ERR(pipe_config)) {
  6797. ret = PTR_ERR(pipe_config);
  6798. pipe_config = NULL;
  6799. goto out;
  6800. }
  6801. }
  6802. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6803. intel_crtc_disable(&intel_crtc->base);
  6804. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6805. if (intel_crtc->base.enabled)
  6806. dev_priv->display.crtc_disable(&intel_crtc->base);
  6807. }
  6808. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6809. * to set it here already despite that we pass it down the callchain.
  6810. */
  6811. if (modeset_pipes) {
  6812. enum transcoder tmp = to_intel_crtc(crtc)->config.cpu_transcoder;
  6813. crtc->mode = *mode;
  6814. /* mode_set/enable/disable functions rely on a correct pipe
  6815. * config. */
  6816. to_intel_crtc(crtc)->config = *pipe_config;
  6817. to_intel_crtc(crtc)->config.cpu_transcoder = tmp;
  6818. }
  6819. /* Only after disabling all output pipelines that will be changed can we
  6820. * update the the output configuration. */
  6821. intel_modeset_update_state(dev, prepare_pipes);
  6822. if (dev_priv->display.modeset_global_resources)
  6823. dev_priv->display.modeset_global_resources(dev);
  6824. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6825. * on the DPLL.
  6826. */
  6827. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6828. ret = intel_crtc_mode_set(&intel_crtc->base,
  6829. x, y, fb);
  6830. if (ret)
  6831. goto done;
  6832. }
  6833. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6834. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6835. dev_priv->display.crtc_enable(&intel_crtc->base);
  6836. if (modeset_pipes) {
  6837. /* Store real post-adjustment hardware mode. */
  6838. crtc->hwmode = pipe_config->adjusted_mode;
  6839. /* Calculate and store various constants which
  6840. * are later needed by vblank and swap-completion
  6841. * timestamping. They are derived from true hwmode.
  6842. */
  6843. drm_calc_timestamping_constants(crtc);
  6844. }
  6845. /* FIXME: add subpixel order */
  6846. done:
  6847. if (ret && crtc->enabled) {
  6848. crtc->hwmode = *saved_hwmode;
  6849. crtc->mode = *saved_mode;
  6850. }
  6851. out:
  6852. kfree(pipe_config);
  6853. kfree(saved_mode);
  6854. return ret;
  6855. }
  6856. int intel_set_mode(struct drm_crtc *crtc,
  6857. struct drm_display_mode *mode,
  6858. int x, int y, struct drm_framebuffer *fb)
  6859. {
  6860. int ret;
  6861. ret = __intel_set_mode(crtc, mode, x, y, fb);
  6862. if (ret == 0)
  6863. intel_modeset_check_state(crtc->dev);
  6864. return ret;
  6865. }
  6866. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  6867. {
  6868. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  6869. }
  6870. #undef for_each_intel_crtc_masked
  6871. static void intel_set_config_free(struct intel_set_config *config)
  6872. {
  6873. if (!config)
  6874. return;
  6875. kfree(config->save_connector_encoders);
  6876. kfree(config->save_encoder_crtcs);
  6877. kfree(config);
  6878. }
  6879. static int intel_set_config_save_state(struct drm_device *dev,
  6880. struct intel_set_config *config)
  6881. {
  6882. struct drm_encoder *encoder;
  6883. struct drm_connector *connector;
  6884. int count;
  6885. config->save_encoder_crtcs =
  6886. kcalloc(dev->mode_config.num_encoder,
  6887. sizeof(struct drm_crtc *), GFP_KERNEL);
  6888. if (!config->save_encoder_crtcs)
  6889. return -ENOMEM;
  6890. config->save_connector_encoders =
  6891. kcalloc(dev->mode_config.num_connector,
  6892. sizeof(struct drm_encoder *), GFP_KERNEL);
  6893. if (!config->save_connector_encoders)
  6894. return -ENOMEM;
  6895. /* Copy data. Note that driver private data is not affected.
  6896. * Should anything bad happen only the expected state is
  6897. * restored, not the drivers personal bookkeeping.
  6898. */
  6899. count = 0;
  6900. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6901. config->save_encoder_crtcs[count++] = encoder->crtc;
  6902. }
  6903. count = 0;
  6904. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6905. config->save_connector_encoders[count++] = connector->encoder;
  6906. }
  6907. return 0;
  6908. }
  6909. static void intel_set_config_restore_state(struct drm_device *dev,
  6910. struct intel_set_config *config)
  6911. {
  6912. struct intel_encoder *encoder;
  6913. struct intel_connector *connector;
  6914. int count;
  6915. count = 0;
  6916. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6917. encoder->new_crtc =
  6918. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6919. }
  6920. count = 0;
  6921. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6922. connector->new_encoder =
  6923. to_intel_encoder(config->save_connector_encoders[count++]);
  6924. }
  6925. }
  6926. static void
  6927. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6928. struct intel_set_config *config)
  6929. {
  6930. /* We should be able to check here if the fb has the same properties
  6931. * and then just flip_or_move it */
  6932. if (set->crtc->fb != set->fb) {
  6933. /* If we have no fb then treat it as a full mode set */
  6934. if (set->crtc->fb == NULL) {
  6935. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6936. config->mode_changed = true;
  6937. } else if (set->fb == NULL) {
  6938. config->mode_changed = true;
  6939. } else if (set->fb->pixel_format !=
  6940. set->crtc->fb->pixel_format) {
  6941. config->mode_changed = true;
  6942. } else
  6943. config->fb_changed = true;
  6944. }
  6945. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6946. config->fb_changed = true;
  6947. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6948. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6949. drm_mode_debug_printmodeline(&set->crtc->mode);
  6950. drm_mode_debug_printmodeline(set->mode);
  6951. config->mode_changed = true;
  6952. }
  6953. }
  6954. static int
  6955. intel_modeset_stage_output_state(struct drm_device *dev,
  6956. struct drm_mode_set *set,
  6957. struct intel_set_config *config)
  6958. {
  6959. struct drm_crtc *new_crtc;
  6960. struct intel_connector *connector;
  6961. struct intel_encoder *encoder;
  6962. int count, ro;
  6963. /* The upper layers ensure that we either disable a crtc or have a list
  6964. * of connectors. For paranoia, double-check this. */
  6965. WARN_ON(!set->fb && (set->num_connectors != 0));
  6966. WARN_ON(set->fb && (set->num_connectors == 0));
  6967. count = 0;
  6968. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6969. base.head) {
  6970. /* Otherwise traverse passed in connector list and get encoders
  6971. * for them. */
  6972. for (ro = 0; ro < set->num_connectors; ro++) {
  6973. if (set->connectors[ro] == &connector->base) {
  6974. connector->new_encoder = connector->encoder;
  6975. break;
  6976. }
  6977. }
  6978. /* If we disable the crtc, disable all its connectors. Also, if
  6979. * the connector is on the changing crtc but not on the new
  6980. * connector list, disable it. */
  6981. if ((!set->fb || ro == set->num_connectors) &&
  6982. connector->base.encoder &&
  6983. connector->base.encoder->crtc == set->crtc) {
  6984. connector->new_encoder = NULL;
  6985. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6986. connector->base.base.id,
  6987. drm_get_connector_name(&connector->base));
  6988. }
  6989. if (&connector->new_encoder->base != connector->base.encoder) {
  6990. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6991. config->mode_changed = true;
  6992. }
  6993. }
  6994. /* connector->new_encoder is now updated for all connectors. */
  6995. /* Update crtc of enabled connectors. */
  6996. count = 0;
  6997. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6998. base.head) {
  6999. if (!connector->new_encoder)
  7000. continue;
  7001. new_crtc = connector->new_encoder->base.crtc;
  7002. for (ro = 0; ro < set->num_connectors; ro++) {
  7003. if (set->connectors[ro] == &connector->base)
  7004. new_crtc = set->crtc;
  7005. }
  7006. /* Make sure the new CRTC will work with the encoder */
  7007. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7008. new_crtc)) {
  7009. return -EINVAL;
  7010. }
  7011. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7012. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7013. connector->base.base.id,
  7014. drm_get_connector_name(&connector->base),
  7015. new_crtc->base.id);
  7016. }
  7017. /* Check for any encoders that needs to be disabled. */
  7018. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7019. base.head) {
  7020. list_for_each_entry(connector,
  7021. &dev->mode_config.connector_list,
  7022. base.head) {
  7023. if (connector->new_encoder == encoder) {
  7024. WARN_ON(!connector->new_encoder->new_crtc);
  7025. goto next_encoder;
  7026. }
  7027. }
  7028. encoder->new_crtc = NULL;
  7029. next_encoder:
  7030. /* Only now check for crtc changes so we don't miss encoders
  7031. * that will be disabled. */
  7032. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7033. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7034. config->mode_changed = true;
  7035. }
  7036. }
  7037. /* Now we've also updated encoder->new_crtc for all encoders. */
  7038. return 0;
  7039. }
  7040. static int intel_crtc_set_config(struct drm_mode_set *set)
  7041. {
  7042. struct drm_device *dev;
  7043. struct drm_mode_set save_set;
  7044. struct intel_set_config *config;
  7045. int ret;
  7046. BUG_ON(!set);
  7047. BUG_ON(!set->crtc);
  7048. BUG_ON(!set->crtc->helper_private);
  7049. /* Enforce sane interface api - has been abused by the fb helper. */
  7050. BUG_ON(!set->mode && set->fb);
  7051. BUG_ON(set->fb && set->num_connectors == 0);
  7052. if (set->fb) {
  7053. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7054. set->crtc->base.id, set->fb->base.id,
  7055. (int)set->num_connectors, set->x, set->y);
  7056. } else {
  7057. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7058. }
  7059. dev = set->crtc->dev;
  7060. ret = -ENOMEM;
  7061. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7062. if (!config)
  7063. goto out_config;
  7064. ret = intel_set_config_save_state(dev, config);
  7065. if (ret)
  7066. goto out_config;
  7067. save_set.crtc = set->crtc;
  7068. save_set.mode = &set->crtc->mode;
  7069. save_set.x = set->crtc->x;
  7070. save_set.y = set->crtc->y;
  7071. save_set.fb = set->crtc->fb;
  7072. /* Compute whether we need a full modeset, only an fb base update or no
  7073. * change at all. In the future we might also check whether only the
  7074. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7075. * such cases. */
  7076. intel_set_config_compute_mode_changes(set, config);
  7077. ret = intel_modeset_stage_output_state(dev, set, config);
  7078. if (ret)
  7079. goto fail;
  7080. if (config->mode_changed) {
  7081. if (set->mode) {
  7082. DRM_DEBUG_KMS("attempting to set mode from"
  7083. " userspace\n");
  7084. drm_mode_debug_printmodeline(set->mode);
  7085. }
  7086. ret = intel_set_mode(set->crtc, set->mode,
  7087. set->x, set->y, set->fb);
  7088. if (ret) {
  7089. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  7090. set->crtc->base.id, ret);
  7091. goto fail;
  7092. }
  7093. } else if (config->fb_changed) {
  7094. intel_crtc_wait_for_pending_flips(set->crtc);
  7095. ret = intel_pipe_set_base(set->crtc,
  7096. set->x, set->y, set->fb);
  7097. }
  7098. intel_set_config_free(config);
  7099. return 0;
  7100. fail:
  7101. intel_set_config_restore_state(dev, config);
  7102. /* Try to restore the config */
  7103. if (config->mode_changed &&
  7104. intel_set_mode(save_set.crtc, save_set.mode,
  7105. save_set.x, save_set.y, save_set.fb))
  7106. DRM_ERROR("failed to restore config after modeset failure\n");
  7107. out_config:
  7108. intel_set_config_free(config);
  7109. return ret;
  7110. }
  7111. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7112. .cursor_set = intel_crtc_cursor_set,
  7113. .cursor_move = intel_crtc_cursor_move,
  7114. .gamma_set = intel_crtc_gamma_set,
  7115. .set_config = intel_crtc_set_config,
  7116. .destroy = intel_crtc_destroy,
  7117. .page_flip = intel_crtc_page_flip,
  7118. };
  7119. static void intel_cpu_pll_init(struct drm_device *dev)
  7120. {
  7121. if (HAS_DDI(dev))
  7122. intel_ddi_pll_init(dev);
  7123. }
  7124. static void intel_pch_pll_init(struct drm_device *dev)
  7125. {
  7126. drm_i915_private_t *dev_priv = dev->dev_private;
  7127. int i;
  7128. if (dev_priv->num_pch_pll == 0) {
  7129. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7130. return;
  7131. }
  7132. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7133. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7134. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7135. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7136. }
  7137. }
  7138. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7139. {
  7140. drm_i915_private_t *dev_priv = dev->dev_private;
  7141. struct intel_crtc *intel_crtc;
  7142. int i;
  7143. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7144. if (intel_crtc == NULL)
  7145. return;
  7146. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7147. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7148. for (i = 0; i < 256; i++) {
  7149. intel_crtc->lut_r[i] = i;
  7150. intel_crtc->lut_g[i] = i;
  7151. intel_crtc->lut_b[i] = i;
  7152. }
  7153. /* Swap pipes & planes for FBC on pre-965 */
  7154. intel_crtc->pipe = pipe;
  7155. intel_crtc->plane = pipe;
  7156. intel_crtc->config.cpu_transcoder = pipe;
  7157. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7158. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7159. intel_crtc->plane = !pipe;
  7160. }
  7161. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7162. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7163. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7164. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7165. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7166. }
  7167. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7168. struct drm_file *file)
  7169. {
  7170. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7171. struct drm_mode_object *drmmode_obj;
  7172. struct intel_crtc *crtc;
  7173. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7174. return -ENODEV;
  7175. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7176. DRM_MODE_OBJECT_CRTC);
  7177. if (!drmmode_obj) {
  7178. DRM_ERROR("no such CRTC id\n");
  7179. return -EINVAL;
  7180. }
  7181. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7182. pipe_from_crtc_id->pipe = crtc->pipe;
  7183. return 0;
  7184. }
  7185. static int intel_encoder_clones(struct intel_encoder *encoder)
  7186. {
  7187. struct drm_device *dev = encoder->base.dev;
  7188. struct intel_encoder *source_encoder;
  7189. int index_mask = 0;
  7190. int entry = 0;
  7191. list_for_each_entry(source_encoder,
  7192. &dev->mode_config.encoder_list, base.head) {
  7193. if (encoder == source_encoder)
  7194. index_mask |= (1 << entry);
  7195. /* Intel hw has only one MUX where enocoders could be cloned. */
  7196. if (encoder->cloneable && source_encoder->cloneable)
  7197. index_mask |= (1 << entry);
  7198. entry++;
  7199. }
  7200. return index_mask;
  7201. }
  7202. static bool has_edp_a(struct drm_device *dev)
  7203. {
  7204. struct drm_i915_private *dev_priv = dev->dev_private;
  7205. if (!IS_MOBILE(dev))
  7206. return false;
  7207. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7208. return false;
  7209. if (IS_GEN5(dev) &&
  7210. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7211. return false;
  7212. return true;
  7213. }
  7214. static void intel_setup_outputs(struct drm_device *dev)
  7215. {
  7216. struct drm_i915_private *dev_priv = dev->dev_private;
  7217. struct intel_encoder *encoder;
  7218. bool dpd_is_edp = false;
  7219. bool has_lvds;
  7220. has_lvds = intel_lvds_init(dev);
  7221. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7222. /* disable the panel fitter on everything but LVDS */
  7223. I915_WRITE(PFIT_CONTROL, 0);
  7224. }
  7225. if (!IS_ULT(dev))
  7226. intel_crt_init(dev);
  7227. if (HAS_DDI(dev)) {
  7228. int found;
  7229. /* Haswell uses DDI functions to detect digital outputs */
  7230. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7231. /* DDI A only supports eDP */
  7232. if (found)
  7233. intel_ddi_init(dev, PORT_A);
  7234. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7235. * register */
  7236. found = I915_READ(SFUSE_STRAP);
  7237. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7238. intel_ddi_init(dev, PORT_B);
  7239. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7240. intel_ddi_init(dev, PORT_C);
  7241. if (found & SFUSE_STRAP_DDID_DETECTED)
  7242. intel_ddi_init(dev, PORT_D);
  7243. } else if (HAS_PCH_SPLIT(dev)) {
  7244. int found;
  7245. dpd_is_edp = intel_dpd_is_edp(dev);
  7246. if (has_edp_a(dev))
  7247. intel_dp_init(dev, DP_A, PORT_A);
  7248. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7249. /* PCH SDVOB multiplex with HDMIB */
  7250. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7251. if (!found)
  7252. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7253. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7254. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7255. }
  7256. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7257. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7258. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7259. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7260. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7261. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7262. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7263. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7264. } else if (IS_VALLEYVIEW(dev)) {
  7265. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7266. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7267. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7268. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7269. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7270. PORT_B);
  7271. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7272. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7273. }
  7274. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7275. bool found = false;
  7276. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7277. DRM_DEBUG_KMS("probing SDVOB\n");
  7278. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7279. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7280. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7281. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7282. }
  7283. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  7284. DRM_DEBUG_KMS("probing DP_B\n");
  7285. intel_dp_init(dev, DP_B, PORT_B);
  7286. }
  7287. }
  7288. /* Before G4X SDVOC doesn't have its own detect register */
  7289. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7290. DRM_DEBUG_KMS("probing SDVOC\n");
  7291. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7292. }
  7293. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7294. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7295. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7296. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7297. }
  7298. if (SUPPORTS_INTEGRATED_DP(dev)) {
  7299. DRM_DEBUG_KMS("probing DP_C\n");
  7300. intel_dp_init(dev, DP_C, PORT_C);
  7301. }
  7302. }
  7303. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7304. (I915_READ(DP_D) & DP_DETECTED)) {
  7305. DRM_DEBUG_KMS("probing DP_D\n");
  7306. intel_dp_init(dev, DP_D, PORT_D);
  7307. }
  7308. } else if (IS_GEN2(dev))
  7309. intel_dvo_init(dev);
  7310. if (SUPPORTS_TV(dev))
  7311. intel_tv_init(dev);
  7312. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7313. encoder->base.possible_crtcs = encoder->crtc_mask;
  7314. encoder->base.possible_clones =
  7315. intel_encoder_clones(encoder);
  7316. }
  7317. intel_init_pch_refclk(dev);
  7318. drm_helper_move_panel_connectors_to_head(dev);
  7319. }
  7320. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7321. {
  7322. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7323. drm_framebuffer_cleanup(fb);
  7324. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7325. kfree(intel_fb);
  7326. }
  7327. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7328. struct drm_file *file,
  7329. unsigned int *handle)
  7330. {
  7331. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7332. struct drm_i915_gem_object *obj = intel_fb->obj;
  7333. return drm_gem_handle_create(file, &obj->base, handle);
  7334. }
  7335. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7336. .destroy = intel_user_framebuffer_destroy,
  7337. .create_handle = intel_user_framebuffer_create_handle,
  7338. };
  7339. int intel_framebuffer_init(struct drm_device *dev,
  7340. struct intel_framebuffer *intel_fb,
  7341. struct drm_mode_fb_cmd2 *mode_cmd,
  7342. struct drm_i915_gem_object *obj)
  7343. {
  7344. int ret;
  7345. if (obj->tiling_mode == I915_TILING_Y) {
  7346. DRM_DEBUG("hardware does not support tiling Y\n");
  7347. return -EINVAL;
  7348. }
  7349. if (mode_cmd->pitches[0] & 63) {
  7350. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7351. mode_cmd->pitches[0]);
  7352. return -EINVAL;
  7353. }
  7354. /* FIXME <= Gen4 stride limits are bit unclear */
  7355. if (mode_cmd->pitches[0] > 32768) {
  7356. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7357. mode_cmd->pitches[0]);
  7358. return -EINVAL;
  7359. }
  7360. if (obj->tiling_mode != I915_TILING_NONE &&
  7361. mode_cmd->pitches[0] != obj->stride) {
  7362. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7363. mode_cmd->pitches[0], obj->stride);
  7364. return -EINVAL;
  7365. }
  7366. /* Reject formats not supported by any plane early. */
  7367. switch (mode_cmd->pixel_format) {
  7368. case DRM_FORMAT_C8:
  7369. case DRM_FORMAT_RGB565:
  7370. case DRM_FORMAT_XRGB8888:
  7371. case DRM_FORMAT_ARGB8888:
  7372. break;
  7373. case DRM_FORMAT_XRGB1555:
  7374. case DRM_FORMAT_ARGB1555:
  7375. if (INTEL_INFO(dev)->gen > 3) {
  7376. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7377. return -EINVAL;
  7378. }
  7379. break;
  7380. case DRM_FORMAT_XBGR8888:
  7381. case DRM_FORMAT_ABGR8888:
  7382. case DRM_FORMAT_XRGB2101010:
  7383. case DRM_FORMAT_ARGB2101010:
  7384. case DRM_FORMAT_XBGR2101010:
  7385. case DRM_FORMAT_ABGR2101010:
  7386. if (INTEL_INFO(dev)->gen < 4) {
  7387. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7388. return -EINVAL;
  7389. }
  7390. break;
  7391. case DRM_FORMAT_YUYV:
  7392. case DRM_FORMAT_UYVY:
  7393. case DRM_FORMAT_YVYU:
  7394. case DRM_FORMAT_VYUY:
  7395. if (INTEL_INFO(dev)->gen < 5) {
  7396. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7397. return -EINVAL;
  7398. }
  7399. break;
  7400. default:
  7401. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7402. return -EINVAL;
  7403. }
  7404. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7405. if (mode_cmd->offsets[0] != 0)
  7406. return -EINVAL;
  7407. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7408. intel_fb->obj = obj;
  7409. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7410. if (ret) {
  7411. DRM_ERROR("framebuffer init failed %d\n", ret);
  7412. return ret;
  7413. }
  7414. return 0;
  7415. }
  7416. static struct drm_framebuffer *
  7417. intel_user_framebuffer_create(struct drm_device *dev,
  7418. struct drm_file *filp,
  7419. struct drm_mode_fb_cmd2 *mode_cmd)
  7420. {
  7421. struct drm_i915_gem_object *obj;
  7422. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7423. mode_cmd->handles[0]));
  7424. if (&obj->base == NULL)
  7425. return ERR_PTR(-ENOENT);
  7426. return intel_framebuffer_create(dev, mode_cmd, obj);
  7427. }
  7428. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7429. .fb_create = intel_user_framebuffer_create,
  7430. .output_poll_changed = intel_fb_output_poll_changed,
  7431. };
  7432. /* Set up chip specific display functions */
  7433. static void intel_init_display(struct drm_device *dev)
  7434. {
  7435. struct drm_i915_private *dev_priv = dev->dev_private;
  7436. if (HAS_DDI(dev)) {
  7437. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7438. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7439. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7440. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7441. dev_priv->display.off = haswell_crtc_off;
  7442. dev_priv->display.update_plane = ironlake_update_plane;
  7443. } else if (HAS_PCH_SPLIT(dev)) {
  7444. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7445. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7446. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7447. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7448. dev_priv->display.off = ironlake_crtc_off;
  7449. dev_priv->display.update_plane = ironlake_update_plane;
  7450. } else if (IS_VALLEYVIEW(dev)) {
  7451. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7452. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7453. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7454. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7455. dev_priv->display.off = i9xx_crtc_off;
  7456. dev_priv->display.update_plane = i9xx_update_plane;
  7457. } else {
  7458. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7459. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7460. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7461. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7462. dev_priv->display.off = i9xx_crtc_off;
  7463. dev_priv->display.update_plane = i9xx_update_plane;
  7464. }
  7465. /* Returns the core display clock speed */
  7466. if (IS_VALLEYVIEW(dev))
  7467. dev_priv->display.get_display_clock_speed =
  7468. valleyview_get_display_clock_speed;
  7469. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7470. dev_priv->display.get_display_clock_speed =
  7471. i945_get_display_clock_speed;
  7472. else if (IS_I915G(dev))
  7473. dev_priv->display.get_display_clock_speed =
  7474. i915_get_display_clock_speed;
  7475. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7476. dev_priv->display.get_display_clock_speed =
  7477. i9xx_misc_get_display_clock_speed;
  7478. else if (IS_I915GM(dev))
  7479. dev_priv->display.get_display_clock_speed =
  7480. i915gm_get_display_clock_speed;
  7481. else if (IS_I865G(dev))
  7482. dev_priv->display.get_display_clock_speed =
  7483. i865_get_display_clock_speed;
  7484. else if (IS_I85X(dev))
  7485. dev_priv->display.get_display_clock_speed =
  7486. i855_get_display_clock_speed;
  7487. else /* 852, 830 */
  7488. dev_priv->display.get_display_clock_speed =
  7489. i830_get_display_clock_speed;
  7490. if (HAS_PCH_SPLIT(dev)) {
  7491. if (IS_GEN5(dev)) {
  7492. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7493. dev_priv->display.write_eld = ironlake_write_eld;
  7494. } else if (IS_GEN6(dev)) {
  7495. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7496. dev_priv->display.write_eld = ironlake_write_eld;
  7497. } else if (IS_IVYBRIDGE(dev)) {
  7498. /* FIXME: detect B0+ stepping and use auto training */
  7499. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7500. dev_priv->display.write_eld = ironlake_write_eld;
  7501. dev_priv->display.modeset_global_resources =
  7502. ivb_modeset_global_resources;
  7503. } else if (IS_HASWELL(dev)) {
  7504. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7505. dev_priv->display.write_eld = haswell_write_eld;
  7506. dev_priv->display.modeset_global_resources =
  7507. haswell_modeset_global_resources;
  7508. }
  7509. } else if (IS_G4X(dev)) {
  7510. dev_priv->display.write_eld = g4x_write_eld;
  7511. }
  7512. /* Default just returns -ENODEV to indicate unsupported */
  7513. dev_priv->display.queue_flip = intel_default_queue_flip;
  7514. switch (INTEL_INFO(dev)->gen) {
  7515. case 2:
  7516. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7517. break;
  7518. case 3:
  7519. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7520. break;
  7521. case 4:
  7522. case 5:
  7523. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7524. break;
  7525. case 6:
  7526. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7527. break;
  7528. case 7:
  7529. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7530. break;
  7531. }
  7532. }
  7533. /*
  7534. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7535. * resume, or other times. This quirk makes sure that's the case for
  7536. * affected systems.
  7537. */
  7538. static void quirk_pipea_force(struct drm_device *dev)
  7539. {
  7540. struct drm_i915_private *dev_priv = dev->dev_private;
  7541. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7542. DRM_INFO("applying pipe a force quirk\n");
  7543. }
  7544. /*
  7545. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7546. */
  7547. static void quirk_ssc_force_disable(struct drm_device *dev)
  7548. {
  7549. struct drm_i915_private *dev_priv = dev->dev_private;
  7550. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7551. DRM_INFO("applying lvds SSC disable quirk\n");
  7552. }
  7553. /*
  7554. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7555. * brightness value
  7556. */
  7557. static void quirk_invert_brightness(struct drm_device *dev)
  7558. {
  7559. struct drm_i915_private *dev_priv = dev->dev_private;
  7560. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7561. DRM_INFO("applying inverted panel brightness quirk\n");
  7562. }
  7563. struct intel_quirk {
  7564. int device;
  7565. int subsystem_vendor;
  7566. int subsystem_device;
  7567. void (*hook)(struct drm_device *dev);
  7568. };
  7569. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7570. struct intel_dmi_quirk {
  7571. void (*hook)(struct drm_device *dev);
  7572. const struct dmi_system_id (*dmi_id_list)[];
  7573. };
  7574. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7575. {
  7576. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7577. return 1;
  7578. }
  7579. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7580. {
  7581. .dmi_id_list = &(const struct dmi_system_id[]) {
  7582. {
  7583. .callback = intel_dmi_reverse_brightness,
  7584. .ident = "NCR Corporation",
  7585. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7586. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7587. },
  7588. },
  7589. { } /* terminating entry */
  7590. },
  7591. .hook = quirk_invert_brightness,
  7592. },
  7593. };
  7594. static struct intel_quirk intel_quirks[] = {
  7595. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7596. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7597. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7598. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7599. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7600. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7601. /* 830/845 need to leave pipe A & dpll A up */
  7602. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7603. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7604. /* Lenovo U160 cannot use SSC on LVDS */
  7605. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7606. /* Sony Vaio Y cannot use SSC on LVDS */
  7607. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7608. /* Acer Aspire 5734Z must invert backlight brightness */
  7609. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7610. /* Acer/eMachines G725 */
  7611. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7612. /* Acer/eMachines e725 */
  7613. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7614. /* Acer/Packard Bell NCL20 */
  7615. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7616. /* Acer Aspire 4736Z */
  7617. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7618. };
  7619. static void intel_init_quirks(struct drm_device *dev)
  7620. {
  7621. struct pci_dev *d = dev->pdev;
  7622. int i;
  7623. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7624. struct intel_quirk *q = &intel_quirks[i];
  7625. if (d->device == q->device &&
  7626. (d->subsystem_vendor == q->subsystem_vendor ||
  7627. q->subsystem_vendor == PCI_ANY_ID) &&
  7628. (d->subsystem_device == q->subsystem_device ||
  7629. q->subsystem_device == PCI_ANY_ID))
  7630. q->hook(dev);
  7631. }
  7632. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7633. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7634. intel_dmi_quirks[i].hook(dev);
  7635. }
  7636. }
  7637. /* Disable the VGA plane that we never use */
  7638. static void i915_disable_vga(struct drm_device *dev)
  7639. {
  7640. struct drm_i915_private *dev_priv = dev->dev_private;
  7641. u8 sr1;
  7642. u32 vga_reg = i915_vgacntrl_reg(dev);
  7643. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7644. outb(SR01, VGA_SR_INDEX);
  7645. sr1 = inb(VGA_SR_DATA);
  7646. outb(sr1 | 1<<5, VGA_SR_DATA);
  7647. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7648. udelay(300);
  7649. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7650. POSTING_READ(vga_reg);
  7651. }
  7652. void intel_modeset_init_hw(struct drm_device *dev)
  7653. {
  7654. intel_init_power_well(dev);
  7655. intel_prepare_ddi(dev);
  7656. intel_init_clock_gating(dev);
  7657. mutex_lock(&dev->struct_mutex);
  7658. intel_enable_gt_powersave(dev);
  7659. mutex_unlock(&dev->struct_mutex);
  7660. }
  7661. void intel_modeset_init(struct drm_device *dev)
  7662. {
  7663. struct drm_i915_private *dev_priv = dev->dev_private;
  7664. int i, j, ret;
  7665. drm_mode_config_init(dev);
  7666. dev->mode_config.min_width = 0;
  7667. dev->mode_config.min_height = 0;
  7668. dev->mode_config.preferred_depth = 24;
  7669. dev->mode_config.prefer_shadow = 1;
  7670. dev->mode_config.funcs = &intel_mode_funcs;
  7671. intel_init_quirks(dev);
  7672. intel_init_pm(dev);
  7673. if (INTEL_INFO(dev)->num_pipes == 0)
  7674. return;
  7675. intel_init_display(dev);
  7676. if (IS_GEN2(dev)) {
  7677. dev->mode_config.max_width = 2048;
  7678. dev->mode_config.max_height = 2048;
  7679. } else if (IS_GEN3(dev)) {
  7680. dev->mode_config.max_width = 4096;
  7681. dev->mode_config.max_height = 4096;
  7682. } else {
  7683. dev->mode_config.max_width = 8192;
  7684. dev->mode_config.max_height = 8192;
  7685. }
  7686. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7687. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7688. INTEL_INFO(dev)->num_pipes,
  7689. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7690. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7691. intel_crtc_init(dev, i);
  7692. for (j = 0; j < dev_priv->num_plane; j++) {
  7693. ret = intel_plane_init(dev, i, j);
  7694. if (ret)
  7695. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7696. pipe_name(i), sprite_name(i, j), ret);
  7697. }
  7698. }
  7699. intel_cpu_pll_init(dev);
  7700. intel_pch_pll_init(dev);
  7701. /* Just disable it once at startup */
  7702. i915_disable_vga(dev);
  7703. intel_setup_outputs(dev);
  7704. /* Just in case the BIOS is doing something questionable. */
  7705. intel_disable_fbc(dev);
  7706. }
  7707. static void
  7708. intel_connector_break_all_links(struct intel_connector *connector)
  7709. {
  7710. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7711. connector->base.encoder = NULL;
  7712. connector->encoder->connectors_active = false;
  7713. connector->encoder->base.crtc = NULL;
  7714. }
  7715. static void intel_enable_pipe_a(struct drm_device *dev)
  7716. {
  7717. struct intel_connector *connector;
  7718. struct drm_connector *crt = NULL;
  7719. struct intel_load_detect_pipe load_detect_temp;
  7720. /* We can't just switch on the pipe A, we need to set things up with a
  7721. * proper mode and output configuration. As a gross hack, enable pipe A
  7722. * by enabling the load detect pipe once. */
  7723. list_for_each_entry(connector,
  7724. &dev->mode_config.connector_list,
  7725. base.head) {
  7726. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7727. crt = &connector->base;
  7728. break;
  7729. }
  7730. }
  7731. if (!crt)
  7732. return;
  7733. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7734. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7735. }
  7736. static bool
  7737. intel_check_plane_mapping(struct intel_crtc *crtc)
  7738. {
  7739. struct drm_device *dev = crtc->base.dev;
  7740. struct drm_i915_private *dev_priv = dev->dev_private;
  7741. u32 reg, val;
  7742. if (INTEL_INFO(dev)->num_pipes == 1)
  7743. return true;
  7744. reg = DSPCNTR(!crtc->plane);
  7745. val = I915_READ(reg);
  7746. if ((val & DISPLAY_PLANE_ENABLE) &&
  7747. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7748. return false;
  7749. return true;
  7750. }
  7751. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7752. {
  7753. struct drm_device *dev = crtc->base.dev;
  7754. struct drm_i915_private *dev_priv = dev->dev_private;
  7755. u32 reg;
  7756. /* Clear any frame start delays used for debugging left by the BIOS */
  7757. reg = PIPECONF(crtc->config.cpu_transcoder);
  7758. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7759. /* We need to sanitize the plane -> pipe mapping first because this will
  7760. * disable the crtc (and hence change the state) if it is wrong. Note
  7761. * that gen4+ has a fixed plane -> pipe mapping. */
  7762. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7763. struct intel_connector *connector;
  7764. bool plane;
  7765. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7766. crtc->base.base.id);
  7767. /* Pipe has the wrong plane attached and the plane is active.
  7768. * Temporarily change the plane mapping and disable everything
  7769. * ... */
  7770. plane = crtc->plane;
  7771. crtc->plane = !plane;
  7772. dev_priv->display.crtc_disable(&crtc->base);
  7773. crtc->plane = plane;
  7774. /* ... and break all links. */
  7775. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7776. base.head) {
  7777. if (connector->encoder->base.crtc != &crtc->base)
  7778. continue;
  7779. intel_connector_break_all_links(connector);
  7780. }
  7781. WARN_ON(crtc->active);
  7782. crtc->base.enabled = false;
  7783. }
  7784. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7785. crtc->pipe == PIPE_A && !crtc->active) {
  7786. /* BIOS forgot to enable pipe A, this mostly happens after
  7787. * resume. Force-enable the pipe to fix this, the update_dpms
  7788. * call below we restore the pipe to the right state, but leave
  7789. * the required bits on. */
  7790. intel_enable_pipe_a(dev);
  7791. }
  7792. /* Adjust the state of the output pipe according to whether we
  7793. * have active connectors/encoders. */
  7794. intel_crtc_update_dpms(&crtc->base);
  7795. if (crtc->active != crtc->base.enabled) {
  7796. struct intel_encoder *encoder;
  7797. /* This can happen either due to bugs in the get_hw_state
  7798. * functions or because the pipe is force-enabled due to the
  7799. * pipe A quirk. */
  7800. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7801. crtc->base.base.id,
  7802. crtc->base.enabled ? "enabled" : "disabled",
  7803. crtc->active ? "enabled" : "disabled");
  7804. crtc->base.enabled = crtc->active;
  7805. /* Because we only establish the connector -> encoder ->
  7806. * crtc links if something is active, this means the
  7807. * crtc is now deactivated. Break the links. connector
  7808. * -> encoder links are only establish when things are
  7809. * actually up, hence no need to break them. */
  7810. WARN_ON(crtc->active);
  7811. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7812. WARN_ON(encoder->connectors_active);
  7813. encoder->base.crtc = NULL;
  7814. }
  7815. }
  7816. }
  7817. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7818. {
  7819. struct intel_connector *connector;
  7820. struct drm_device *dev = encoder->base.dev;
  7821. /* We need to check both for a crtc link (meaning that the
  7822. * encoder is active and trying to read from a pipe) and the
  7823. * pipe itself being active. */
  7824. bool has_active_crtc = encoder->base.crtc &&
  7825. to_intel_crtc(encoder->base.crtc)->active;
  7826. if (encoder->connectors_active && !has_active_crtc) {
  7827. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7828. encoder->base.base.id,
  7829. drm_get_encoder_name(&encoder->base));
  7830. /* Connector is active, but has no active pipe. This is
  7831. * fallout from our resume register restoring. Disable
  7832. * the encoder manually again. */
  7833. if (encoder->base.crtc) {
  7834. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7835. encoder->base.base.id,
  7836. drm_get_encoder_name(&encoder->base));
  7837. encoder->disable(encoder);
  7838. }
  7839. /* Inconsistent output/port/pipe state happens presumably due to
  7840. * a bug in one of the get_hw_state functions. Or someplace else
  7841. * in our code, like the register restore mess on resume. Clamp
  7842. * things to off as a safer default. */
  7843. list_for_each_entry(connector,
  7844. &dev->mode_config.connector_list,
  7845. base.head) {
  7846. if (connector->encoder != encoder)
  7847. continue;
  7848. intel_connector_break_all_links(connector);
  7849. }
  7850. }
  7851. /* Enabled encoders without active connectors will be fixed in
  7852. * the crtc fixup. */
  7853. }
  7854. void i915_redisable_vga(struct drm_device *dev)
  7855. {
  7856. struct drm_i915_private *dev_priv = dev->dev_private;
  7857. u32 vga_reg = i915_vgacntrl_reg(dev);
  7858. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  7859. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  7860. i915_disable_vga(dev);
  7861. }
  7862. }
  7863. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7864. * and i915 state tracking structures. */
  7865. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7866. bool force_restore)
  7867. {
  7868. struct drm_i915_private *dev_priv = dev->dev_private;
  7869. enum pipe pipe;
  7870. u32 tmp;
  7871. struct drm_plane *plane;
  7872. struct intel_crtc *crtc;
  7873. struct intel_encoder *encoder;
  7874. struct intel_connector *connector;
  7875. if (HAS_DDI(dev)) {
  7876. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7877. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7878. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7879. case TRANS_DDI_EDP_INPUT_A_ON:
  7880. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7881. pipe = PIPE_A;
  7882. break;
  7883. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7884. pipe = PIPE_B;
  7885. break;
  7886. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7887. pipe = PIPE_C;
  7888. break;
  7889. default:
  7890. /* A bogus value has been programmed, disable
  7891. * the transcoder */
  7892. WARN(1, "Bogus eDP source %08x\n", tmp);
  7893. intel_ddi_disable_transcoder_func(dev_priv,
  7894. TRANSCODER_EDP);
  7895. goto setup_pipes;
  7896. }
  7897. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7898. crtc->config.cpu_transcoder = TRANSCODER_EDP;
  7899. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7900. pipe_name(pipe));
  7901. }
  7902. }
  7903. setup_pipes:
  7904. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7905. base.head) {
  7906. enum transcoder tmp = crtc->config.cpu_transcoder;
  7907. memset(&crtc->config, 0, sizeof(crtc->config));
  7908. crtc->config.cpu_transcoder = tmp;
  7909. crtc->active = dev_priv->display.get_pipe_config(crtc,
  7910. &crtc->config);
  7911. crtc->base.enabled = crtc->active;
  7912. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7913. crtc->base.base.id,
  7914. crtc->active ? "enabled" : "disabled");
  7915. }
  7916. if (HAS_DDI(dev))
  7917. intel_ddi_setup_hw_pll_state(dev);
  7918. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7919. base.head) {
  7920. pipe = 0;
  7921. if (encoder->get_hw_state(encoder, &pipe)) {
  7922. encoder->base.crtc =
  7923. dev_priv->pipe_to_crtc_mapping[pipe];
  7924. } else {
  7925. encoder->base.crtc = NULL;
  7926. }
  7927. encoder->connectors_active = false;
  7928. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7929. encoder->base.base.id,
  7930. drm_get_encoder_name(&encoder->base),
  7931. encoder->base.crtc ? "enabled" : "disabled",
  7932. pipe);
  7933. }
  7934. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7935. base.head) {
  7936. if (connector->get_hw_state(connector)) {
  7937. connector->base.dpms = DRM_MODE_DPMS_ON;
  7938. connector->encoder->connectors_active = true;
  7939. connector->base.encoder = &connector->encoder->base;
  7940. } else {
  7941. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7942. connector->base.encoder = NULL;
  7943. }
  7944. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7945. connector->base.base.id,
  7946. drm_get_connector_name(&connector->base),
  7947. connector->base.encoder ? "enabled" : "disabled");
  7948. }
  7949. /* HW state is read out, now we need to sanitize this mess. */
  7950. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7951. base.head) {
  7952. intel_sanitize_encoder(encoder);
  7953. }
  7954. for_each_pipe(pipe) {
  7955. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7956. intel_sanitize_crtc(crtc);
  7957. }
  7958. if (force_restore) {
  7959. /*
  7960. * We need to use raw interfaces for restoring state to avoid
  7961. * checking (bogus) intermediate states.
  7962. */
  7963. for_each_pipe(pipe) {
  7964. struct drm_crtc *crtc =
  7965. dev_priv->pipe_to_crtc_mapping[pipe];
  7966. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  7967. crtc->fb);
  7968. }
  7969. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  7970. intel_plane_restore(plane);
  7971. i915_redisable_vga(dev);
  7972. } else {
  7973. intel_modeset_update_staged_output_state(dev);
  7974. }
  7975. intel_modeset_check_state(dev);
  7976. drm_mode_config_reset(dev);
  7977. }
  7978. void intel_modeset_gem_init(struct drm_device *dev)
  7979. {
  7980. intel_modeset_init_hw(dev);
  7981. intel_setup_overlay(dev);
  7982. intel_modeset_setup_hw_state(dev, false);
  7983. }
  7984. void intel_modeset_cleanup(struct drm_device *dev)
  7985. {
  7986. struct drm_i915_private *dev_priv = dev->dev_private;
  7987. struct drm_crtc *crtc;
  7988. struct intel_crtc *intel_crtc;
  7989. drm_kms_helper_poll_fini(dev);
  7990. mutex_lock(&dev->struct_mutex);
  7991. intel_unregister_dsm_handler();
  7992. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7993. /* Skip inactive CRTCs */
  7994. if (!crtc->fb)
  7995. continue;
  7996. intel_crtc = to_intel_crtc(crtc);
  7997. intel_increase_pllclock(crtc);
  7998. }
  7999. intel_disable_fbc(dev);
  8000. intel_disable_gt_powersave(dev);
  8001. ironlake_teardown_rc6(dev);
  8002. mutex_unlock(&dev->struct_mutex);
  8003. /* Disable the irq before mode object teardown, for the irq might
  8004. * enqueue unpin/hotplug work. */
  8005. drm_irq_uninstall(dev);
  8006. cancel_work_sync(&dev_priv->hotplug_work);
  8007. cancel_work_sync(&dev_priv->rps.work);
  8008. /* flush any delayed tasks or pending work */
  8009. flush_scheduled_work();
  8010. /* destroy backlight, if any, before the connectors */
  8011. intel_panel_destroy_backlight(dev);
  8012. drm_mode_config_cleanup(dev);
  8013. intel_cleanup_overlay(dev);
  8014. }
  8015. /*
  8016. * Return which encoder is currently attached for connector.
  8017. */
  8018. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8019. {
  8020. return &intel_attached_encoder(connector)->base;
  8021. }
  8022. void intel_connector_attach_encoder(struct intel_connector *connector,
  8023. struct intel_encoder *encoder)
  8024. {
  8025. connector->encoder = encoder;
  8026. drm_mode_connector_attach_encoder(&connector->base,
  8027. &encoder->base);
  8028. }
  8029. /*
  8030. * set vga decode state - true == enable VGA decode
  8031. */
  8032. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8033. {
  8034. struct drm_i915_private *dev_priv = dev->dev_private;
  8035. u16 gmch_ctrl;
  8036. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8037. if (state)
  8038. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8039. else
  8040. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8041. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8042. return 0;
  8043. }
  8044. #ifdef CONFIG_DEBUG_FS
  8045. #include <linux/seq_file.h>
  8046. struct intel_display_error_state {
  8047. struct intel_cursor_error_state {
  8048. u32 control;
  8049. u32 position;
  8050. u32 base;
  8051. u32 size;
  8052. } cursor[I915_MAX_PIPES];
  8053. struct intel_pipe_error_state {
  8054. u32 conf;
  8055. u32 source;
  8056. u32 htotal;
  8057. u32 hblank;
  8058. u32 hsync;
  8059. u32 vtotal;
  8060. u32 vblank;
  8061. u32 vsync;
  8062. } pipe[I915_MAX_PIPES];
  8063. struct intel_plane_error_state {
  8064. u32 control;
  8065. u32 stride;
  8066. u32 size;
  8067. u32 pos;
  8068. u32 addr;
  8069. u32 surface;
  8070. u32 tile_offset;
  8071. } plane[I915_MAX_PIPES];
  8072. };
  8073. struct intel_display_error_state *
  8074. intel_display_capture_error_state(struct drm_device *dev)
  8075. {
  8076. drm_i915_private_t *dev_priv = dev->dev_private;
  8077. struct intel_display_error_state *error;
  8078. enum transcoder cpu_transcoder;
  8079. int i;
  8080. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8081. if (error == NULL)
  8082. return NULL;
  8083. for_each_pipe(i) {
  8084. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8085. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8086. error->cursor[i].control = I915_READ(CURCNTR(i));
  8087. error->cursor[i].position = I915_READ(CURPOS(i));
  8088. error->cursor[i].base = I915_READ(CURBASE(i));
  8089. } else {
  8090. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8091. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8092. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8093. }
  8094. error->plane[i].control = I915_READ(DSPCNTR(i));
  8095. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8096. if (INTEL_INFO(dev)->gen <= 3) {
  8097. error->plane[i].size = I915_READ(DSPSIZE(i));
  8098. error->plane[i].pos = I915_READ(DSPPOS(i));
  8099. }
  8100. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8101. error->plane[i].addr = I915_READ(DSPADDR(i));
  8102. if (INTEL_INFO(dev)->gen >= 4) {
  8103. error->plane[i].surface = I915_READ(DSPSURF(i));
  8104. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8105. }
  8106. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8107. error->pipe[i].source = I915_READ(PIPESRC(i));
  8108. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8109. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8110. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8111. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8112. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8113. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8114. }
  8115. return error;
  8116. }
  8117. void
  8118. intel_display_print_error_state(struct seq_file *m,
  8119. struct drm_device *dev,
  8120. struct intel_display_error_state *error)
  8121. {
  8122. int i;
  8123. seq_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8124. for_each_pipe(i) {
  8125. seq_printf(m, "Pipe [%d]:\n", i);
  8126. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8127. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8128. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8129. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8130. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8131. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8132. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8133. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8134. seq_printf(m, "Plane [%d]:\n", i);
  8135. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8136. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8137. if (INTEL_INFO(dev)->gen <= 3) {
  8138. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8139. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  8140. }
  8141. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8142. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8143. if (INTEL_INFO(dev)->gen >= 4) {
  8144. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8145. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8146. }
  8147. seq_printf(m, "Cursor [%d]:\n", i);
  8148. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8149. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  8150. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8151. }
  8152. }
  8153. #endif