hw.c 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  48. struct ath9k_channel *chan)
  49. {
  50. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  51. }
  52. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  53. {
  54. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  55. return;
  56. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  57. }
  58. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  59. {
  60. /* You will not have this callback if using the old ANI */
  61. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  62. return;
  63. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  64. }
  65. /********************/
  66. /* Helper Functions */
  67. /********************/
  68. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  69. {
  70. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  71. struct ath_common *common = ath9k_hw_common(ah);
  72. unsigned int clockrate;
  73. if (!ah->curchan) /* should really check for CCK instead */
  74. clockrate = ATH9K_CLOCK_RATE_CCK;
  75. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  76. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  77. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  78. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  79. else
  80. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  81. if (conf_is_ht40(conf))
  82. clockrate *= 2;
  83. common->clockrate = clockrate;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ath_common *common = ath9k_hw_common(ah);
  88. return usecs * common->clockrate;
  89. }
  90. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  91. {
  92. int i;
  93. BUG_ON(timeout < AH_TIME_QUANTUM);
  94. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  95. if ((REG_READ(ah, reg) & mask) == val)
  96. return true;
  97. udelay(AH_TIME_QUANTUM);
  98. }
  99. ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
  100. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  101. timeout, reg, REG_READ(ah, reg), mask, val);
  102. return false;
  103. }
  104. EXPORT_SYMBOL(ath9k_hw_wait);
  105. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  106. int column, unsigned int *writecnt)
  107. {
  108. int r;
  109. ENABLE_REGWRITE_BUFFER(ah);
  110. for (r = 0; r < array->ia_rows; r++) {
  111. REG_WRITE(ah, INI_RA(array, r, 0),
  112. INI_RA(array, r, column));
  113. DO_DELAY(*writecnt);
  114. }
  115. REGWRITE_BUFFER_FLUSH(ah);
  116. }
  117. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  118. {
  119. u32 retval;
  120. int i;
  121. for (i = 0, retval = 0; i < n; i++) {
  122. retval = (retval << 1) | (val & 1);
  123. val >>= 1;
  124. }
  125. return retval;
  126. }
  127. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  128. u8 phy, int kbps,
  129. u32 frameLen, u16 rateix,
  130. bool shortPreamble)
  131. {
  132. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  133. if (kbps == 0)
  134. return 0;
  135. switch (phy) {
  136. case WLAN_RC_PHY_CCK:
  137. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  138. if (shortPreamble)
  139. phyTime >>= 1;
  140. numBits = frameLen << 3;
  141. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  142. break;
  143. case WLAN_RC_PHY_OFDM:
  144. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  145. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  146. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  147. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  148. txTime = OFDM_SIFS_TIME_QUARTER
  149. + OFDM_PREAMBLE_TIME_QUARTER
  150. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  151. } else if (ah->curchan &&
  152. IS_CHAN_HALF_RATE(ah->curchan)) {
  153. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  154. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  155. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  156. txTime = OFDM_SIFS_TIME_HALF +
  157. OFDM_PREAMBLE_TIME_HALF
  158. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  159. } else {
  160. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  161. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  162. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  163. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  164. + (numSymbols * OFDM_SYMBOL_TIME);
  165. }
  166. break;
  167. default:
  168. ath_err(ath9k_hw_common(ah),
  169. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  170. txTime = 0;
  171. break;
  172. }
  173. return txTime;
  174. }
  175. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  176. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  177. struct ath9k_channel *chan,
  178. struct chan_centers *centers)
  179. {
  180. int8_t extoff;
  181. if (!IS_CHAN_HT40(chan)) {
  182. centers->ctl_center = centers->ext_center =
  183. centers->synth_center = chan->channel;
  184. return;
  185. }
  186. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  187. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  188. centers->synth_center =
  189. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  190. extoff = 1;
  191. } else {
  192. centers->synth_center =
  193. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  194. extoff = -1;
  195. }
  196. centers->ctl_center =
  197. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  198. /* 25 MHz spacing is supported by hw but not on upper layers */
  199. centers->ext_center =
  200. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  201. }
  202. /******************/
  203. /* Chip Revisions */
  204. /******************/
  205. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  206. {
  207. u32 val;
  208. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  209. if (val == 0xFF) {
  210. val = REG_READ(ah, AR_SREV);
  211. ah->hw_version.macVersion =
  212. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  213. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  214. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  215. } else {
  216. if (!AR_SREV_9100(ah))
  217. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  218. ah->hw_version.macRev = val & AR_SREV_REVISION;
  219. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  220. ah->is_pciexpress = true;
  221. }
  222. }
  223. /************************************/
  224. /* HW Attach, Detach, Init Routines */
  225. /************************************/
  226. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  227. {
  228. if (!AR_SREV_5416(ah))
  229. return;
  230. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  231. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  232. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  233. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  234. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  235. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  236. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  237. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  238. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  239. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  240. }
  241. /* This should work for all families including legacy */
  242. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  243. {
  244. struct ath_common *common = ath9k_hw_common(ah);
  245. u32 regAddr[2] = { AR_STA_ID0 };
  246. u32 regHold[2];
  247. static const u32 patternData[4] = {
  248. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  249. };
  250. int i, j, loop_max;
  251. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  252. loop_max = 2;
  253. regAddr[1] = AR_PHY_BASE + (8 << 2);
  254. } else
  255. loop_max = 1;
  256. for (i = 0; i < loop_max; i++) {
  257. u32 addr = regAddr[i];
  258. u32 wrData, rdData;
  259. regHold[i] = REG_READ(ah, addr);
  260. for (j = 0; j < 0x100; j++) {
  261. wrData = (j << 16) | j;
  262. REG_WRITE(ah, addr, wrData);
  263. rdData = REG_READ(ah, addr);
  264. if (rdData != wrData) {
  265. ath_err(common,
  266. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  267. addr, wrData, rdData);
  268. return false;
  269. }
  270. }
  271. for (j = 0; j < 4; j++) {
  272. wrData = patternData[j];
  273. REG_WRITE(ah, addr, wrData);
  274. rdData = REG_READ(ah, addr);
  275. if (wrData != rdData) {
  276. ath_err(common,
  277. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  278. addr, wrData, rdData);
  279. return false;
  280. }
  281. }
  282. REG_WRITE(ah, regAddr[i], regHold[i]);
  283. }
  284. udelay(100);
  285. return true;
  286. }
  287. static void ath9k_hw_init_config(struct ath_hw *ah)
  288. {
  289. int i;
  290. ah->config.dma_beacon_response_time = 2;
  291. ah->config.sw_beacon_response_time = 10;
  292. ah->config.additional_swba_backoff = 0;
  293. ah->config.ack_6mb = 0x0;
  294. ah->config.cwm_ignore_extcca = 0;
  295. ah->config.pcie_powersave_enable = 0;
  296. ah->config.pcie_clock_req = 0;
  297. ah->config.pcie_waen = 0;
  298. ah->config.analog_shiftreg = 1;
  299. ah->config.enable_ani = true;
  300. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  301. ah->config.spurchans[i][0] = AR_NO_SPUR;
  302. ah->config.spurchans[i][1] = AR_NO_SPUR;
  303. }
  304. /* PAPRD needs some more work to be enabled */
  305. ah->config.paprd_disable = 1;
  306. ah->config.rx_intr_mitigation = true;
  307. ah->config.pcieSerDesWrite = true;
  308. /*
  309. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  310. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  311. * This means we use it for all AR5416 devices, and the few
  312. * minor PCI AR9280 devices out there.
  313. *
  314. * Serialization is required because these devices do not handle
  315. * well the case of two concurrent reads/writes due to the latency
  316. * involved. During one read/write another read/write can be issued
  317. * on another CPU while the previous read/write may still be working
  318. * on our hardware, if we hit this case the hardware poops in a loop.
  319. * We prevent this by serializing reads and writes.
  320. *
  321. * This issue is not present on PCI-Express devices or pre-AR5416
  322. * devices (legacy, 802.11abg).
  323. */
  324. if (num_possible_cpus() > 1)
  325. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  326. }
  327. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  328. {
  329. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  330. regulatory->country_code = CTRY_DEFAULT;
  331. regulatory->power_limit = MAX_RATE_POWER;
  332. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  333. ah->hw_version.magic = AR5416_MAGIC;
  334. ah->hw_version.subvendorid = 0;
  335. ah->atim_window = 0;
  336. ah->sta_id1_defaults =
  337. AR_STA_ID1_CRPT_MIC_ENABLE |
  338. AR_STA_ID1_MCAST_KSRCH;
  339. if (AR_SREV_9100(ah))
  340. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  341. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  342. ah->slottime = 20;
  343. ah->globaltxtimeout = (u32) -1;
  344. ah->power_mode = ATH9K_PM_UNDEFINED;
  345. }
  346. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  347. {
  348. struct ath_common *common = ath9k_hw_common(ah);
  349. u32 sum;
  350. int i;
  351. u16 eeval;
  352. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  353. sum = 0;
  354. for (i = 0; i < 3; i++) {
  355. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  356. sum += eeval;
  357. common->macaddr[2 * i] = eeval >> 8;
  358. common->macaddr[2 * i + 1] = eeval & 0xff;
  359. }
  360. if (sum == 0 || sum == 0xffff * 3)
  361. return -EADDRNOTAVAIL;
  362. return 0;
  363. }
  364. static int ath9k_hw_post_init(struct ath_hw *ah)
  365. {
  366. struct ath_common *common = ath9k_hw_common(ah);
  367. int ecode;
  368. if (common->bus_ops->ath_bus_type != ATH_USB) {
  369. if (!ath9k_hw_chip_test(ah))
  370. return -ENODEV;
  371. }
  372. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  373. ecode = ar9002_hw_rf_claim(ah);
  374. if (ecode != 0)
  375. return ecode;
  376. }
  377. ecode = ath9k_hw_eeprom_init(ah);
  378. if (ecode != 0)
  379. return ecode;
  380. ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  381. "Eeprom VER: %d, REV: %d\n",
  382. ah->eep_ops->get_eeprom_ver(ah),
  383. ah->eep_ops->get_eeprom_rev(ah));
  384. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  385. if (ecode) {
  386. ath_err(ath9k_hw_common(ah),
  387. "Failed allocating banks for external radio\n");
  388. ath9k_hw_rf_free_ext_banks(ah);
  389. return ecode;
  390. }
  391. if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
  392. ath9k_hw_ani_setup(ah);
  393. ath9k_hw_ani_init(ah);
  394. }
  395. return 0;
  396. }
  397. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  398. {
  399. if (AR_SREV_9300_20_OR_LATER(ah))
  400. ar9003_hw_attach_ops(ah);
  401. else
  402. ar9002_hw_attach_ops(ah);
  403. }
  404. /* Called for all hardware families */
  405. static int __ath9k_hw_init(struct ath_hw *ah)
  406. {
  407. struct ath_common *common = ath9k_hw_common(ah);
  408. int r = 0;
  409. if (ah->hw_version.devid == AR5416_AR9100_DEVID)
  410. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  411. ath9k_hw_read_revisions(ah);
  412. /*
  413. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  414. * We need to do this to avoid RMW of this register. We cannot
  415. * read the reg when chip is asleep.
  416. */
  417. ah->WARegVal = REG_READ(ah, AR_WA);
  418. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  419. AR_WA_ASPM_TIMER_BASED_DISABLE);
  420. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  421. ath_err(common, "Couldn't reset chip\n");
  422. return -EIO;
  423. }
  424. ath9k_hw_init_defaults(ah);
  425. ath9k_hw_init_config(ah);
  426. ath9k_hw_attach_ops(ah);
  427. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  428. ath_err(common, "Couldn't wakeup chip\n");
  429. return -EIO;
  430. }
  431. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  432. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  433. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  434. !ah->is_pciexpress)) {
  435. ah->config.serialize_regmode =
  436. SER_REG_MODE_ON;
  437. } else {
  438. ah->config.serialize_regmode =
  439. SER_REG_MODE_OFF;
  440. }
  441. }
  442. ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  443. ah->config.serialize_regmode);
  444. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  445. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  446. else
  447. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  448. switch (ah->hw_version.macVersion) {
  449. case AR_SREV_VERSION_5416_PCI:
  450. case AR_SREV_VERSION_5416_PCIE:
  451. case AR_SREV_VERSION_9160:
  452. case AR_SREV_VERSION_9100:
  453. case AR_SREV_VERSION_9280:
  454. case AR_SREV_VERSION_9285:
  455. case AR_SREV_VERSION_9287:
  456. case AR_SREV_VERSION_9271:
  457. case AR_SREV_VERSION_9300:
  458. case AR_SREV_VERSION_9485:
  459. break;
  460. default:
  461. ath_err(common,
  462. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  463. ah->hw_version.macVersion, ah->hw_version.macRev);
  464. return -EOPNOTSUPP;
  465. }
  466. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah))
  467. ah->is_pciexpress = false;
  468. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  469. ath9k_hw_init_cal_settings(ah);
  470. ah->ani_function = ATH9K_ANI_ALL;
  471. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  472. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  473. if (!AR_SREV_9300_20_OR_LATER(ah))
  474. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  475. ath9k_hw_init_mode_regs(ah);
  476. if (ah->is_pciexpress)
  477. ath9k_hw_configpcipowersave(ah, 0, 0);
  478. else
  479. ath9k_hw_disablepcie(ah);
  480. if (!AR_SREV_9300_20_OR_LATER(ah))
  481. ar9002_hw_cck_chan14_spread(ah);
  482. r = ath9k_hw_post_init(ah);
  483. if (r)
  484. return r;
  485. ath9k_hw_init_mode_gain_regs(ah);
  486. r = ath9k_hw_fill_cap_info(ah);
  487. if (r)
  488. return r;
  489. r = ath9k_hw_init_macaddr(ah);
  490. if (r) {
  491. ath_err(common, "Failed to initialize MAC address\n");
  492. return r;
  493. }
  494. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  495. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  496. else
  497. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  498. ah->bb_watchdog_timeout_ms = 25;
  499. common->state = ATH_HW_INITIALIZED;
  500. return 0;
  501. }
  502. int ath9k_hw_init(struct ath_hw *ah)
  503. {
  504. int ret;
  505. struct ath_common *common = ath9k_hw_common(ah);
  506. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  507. switch (ah->hw_version.devid) {
  508. case AR5416_DEVID_PCI:
  509. case AR5416_DEVID_PCIE:
  510. case AR5416_AR9100_DEVID:
  511. case AR9160_DEVID_PCI:
  512. case AR9280_DEVID_PCI:
  513. case AR9280_DEVID_PCIE:
  514. case AR9285_DEVID_PCIE:
  515. case AR9287_DEVID_PCI:
  516. case AR9287_DEVID_PCIE:
  517. case AR2427_DEVID_PCIE:
  518. case AR9300_DEVID_PCIE:
  519. case AR9300_DEVID_AR9485_PCIE:
  520. break;
  521. default:
  522. if (common->bus_ops->ath_bus_type == ATH_USB)
  523. break;
  524. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  525. ah->hw_version.devid);
  526. return -EOPNOTSUPP;
  527. }
  528. ret = __ath9k_hw_init(ah);
  529. if (ret) {
  530. ath_err(common,
  531. "Unable to initialize hardware; initialization status: %d\n",
  532. ret);
  533. return ret;
  534. }
  535. return 0;
  536. }
  537. EXPORT_SYMBOL(ath9k_hw_init);
  538. static void ath9k_hw_init_qos(struct ath_hw *ah)
  539. {
  540. ENABLE_REGWRITE_BUFFER(ah);
  541. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  542. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  543. REG_WRITE(ah, AR_QOS_NO_ACK,
  544. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  545. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  546. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  547. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  548. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  549. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  550. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  551. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  552. REGWRITE_BUFFER_FLUSH(ah);
  553. }
  554. unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  555. {
  556. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  557. udelay(100);
  558. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  559. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  560. udelay(100);
  561. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  562. }
  563. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  564. #define DPLL3_PHASE_SHIFT_VAL 0x1
  565. static void ath9k_hw_init_pll(struct ath_hw *ah,
  566. struct ath9k_channel *chan)
  567. {
  568. u32 pll;
  569. if (AR_SREV_9485(ah)) {
  570. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  571. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  572. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  573. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  574. AR_CH0_DPLL2_KD, 0x40);
  575. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  576. AR_CH0_DPLL2_KI, 0x4);
  577. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  578. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  579. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  580. AR_CH0_BB_DPLL1_NINI, 0x58);
  581. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  582. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  583. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  584. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  585. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  586. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  587. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  588. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  589. /* program BB PLL phase_shift to 0x6 */
  590. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  591. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  592. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  593. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  594. udelay(1000);
  595. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  596. AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
  597. } else if (AR_SREV_9340(ah)) {
  598. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  599. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  600. udelay(1000);
  601. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  602. udelay(100);
  603. if (ah->is_clk_25mhz) {
  604. pll2_divint = 0x54;
  605. pll2_divfrac = 0x1eb85;
  606. refdiv = 3;
  607. } else {
  608. pll2_divint = 88;
  609. pll2_divfrac = 0;
  610. refdiv = 5;
  611. }
  612. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  613. regval |= (0x1 << 16);
  614. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  615. udelay(100);
  616. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  617. (pll2_divint << 18) | pll2_divfrac);
  618. udelay(100);
  619. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  620. regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
  621. (0x4 << 26) | (0x18 << 19);
  622. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  623. REG_WRITE(ah, AR_PHY_PLL_MODE,
  624. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  625. udelay(1000);
  626. }
  627. pll = ath9k_hw_compute_pll_control(ah, chan);
  628. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  629. if (AR_SREV_9485(ah) || AR_SREV_9340(ah))
  630. udelay(1000);
  631. /* Switch the core clock for ar9271 to 117Mhz */
  632. if (AR_SREV_9271(ah)) {
  633. udelay(500);
  634. REG_WRITE(ah, 0x50040, 0x304);
  635. }
  636. udelay(RTC_PLL_SETTLE_DELAY);
  637. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  638. if (AR_SREV_9340(ah)) {
  639. if (ah->is_clk_25mhz) {
  640. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  641. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  642. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  643. } else {
  644. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  645. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  646. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  647. }
  648. udelay(100);
  649. }
  650. }
  651. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  652. enum nl80211_iftype opmode)
  653. {
  654. u32 imr_reg = AR_IMR_TXERR |
  655. AR_IMR_TXURN |
  656. AR_IMR_RXERR |
  657. AR_IMR_RXORN |
  658. AR_IMR_BCNMISC;
  659. if (AR_SREV_9300_20_OR_LATER(ah)) {
  660. imr_reg |= AR_IMR_RXOK_HP;
  661. if (ah->config.rx_intr_mitigation)
  662. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  663. else
  664. imr_reg |= AR_IMR_RXOK_LP;
  665. } else {
  666. if (ah->config.rx_intr_mitigation)
  667. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  668. else
  669. imr_reg |= AR_IMR_RXOK;
  670. }
  671. if (ah->config.tx_intr_mitigation)
  672. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  673. else
  674. imr_reg |= AR_IMR_TXOK;
  675. if (opmode == NL80211_IFTYPE_AP)
  676. imr_reg |= AR_IMR_MIB;
  677. ENABLE_REGWRITE_BUFFER(ah);
  678. REG_WRITE(ah, AR_IMR, imr_reg);
  679. ah->imrs2_reg |= AR_IMR_S2_GTT;
  680. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  681. if (!AR_SREV_9100(ah)) {
  682. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  683. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  684. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  685. }
  686. REGWRITE_BUFFER_FLUSH(ah);
  687. if (AR_SREV_9300_20_OR_LATER(ah)) {
  688. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  689. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  690. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  691. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  692. }
  693. }
  694. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  695. {
  696. u32 val = ath9k_hw_mac_to_clks(ah, us);
  697. val = min(val, (u32) 0xFFFF);
  698. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  699. }
  700. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  701. {
  702. u32 val = ath9k_hw_mac_to_clks(ah, us);
  703. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  704. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  705. }
  706. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  707. {
  708. u32 val = ath9k_hw_mac_to_clks(ah, us);
  709. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  710. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  711. }
  712. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  713. {
  714. if (tu > 0xFFFF) {
  715. ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
  716. "bad global tx timeout %u\n", tu);
  717. ah->globaltxtimeout = (u32) -1;
  718. return false;
  719. } else {
  720. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  721. ah->globaltxtimeout = tu;
  722. return true;
  723. }
  724. }
  725. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  726. {
  727. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  728. int acktimeout;
  729. int slottime;
  730. int sifstime;
  731. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  732. ah->misc_mode);
  733. if (ah->misc_mode != 0)
  734. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  735. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  736. sifstime = 16;
  737. else
  738. sifstime = 10;
  739. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  740. slottime = ah->slottime + 3 * ah->coverage_class;
  741. acktimeout = slottime + sifstime;
  742. /*
  743. * Workaround for early ACK timeouts, add an offset to match the
  744. * initval's 64us ack timeout value.
  745. * This was initially only meant to work around an issue with delayed
  746. * BA frames in some implementations, but it has been found to fix ACK
  747. * timeout issues in other cases as well.
  748. */
  749. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  750. acktimeout += 64 - sifstime - ah->slottime;
  751. ath9k_hw_setslottime(ah, ah->slottime);
  752. ath9k_hw_set_ack_timeout(ah, acktimeout);
  753. ath9k_hw_set_cts_timeout(ah, acktimeout);
  754. if (ah->globaltxtimeout != (u32) -1)
  755. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  756. }
  757. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  758. void ath9k_hw_deinit(struct ath_hw *ah)
  759. {
  760. struct ath_common *common = ath9k_hw_common(ah);
  761. if (common->state < ATH_HW_INITIALIZED)
  762. goto free_hw;
  763. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  764. free_hw:
  765. ath9k_hw_rf_free_ext_banks(ah);
  766. }
  767. EXPORT_SYMBOL(ath9k_hw_deinit);
  768. /*******/
  769. /* INI */
  770. /*******/
  771. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  772. {
  773. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  774. if (IS_CHAN_B(chan))
  775. ctl |= CTL_11B;
  776. else if (IS_CHAN_G(chan))
  777. ctl |= CTL_11G;
  778. else
  779. ctl |= CTL_11A;
  780. return ctl;
  781. }
  782. /****************************************/
  783. /* Reset and Channel Switching Routines */
  784. /****************************************/
  785. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  786. {
  787. struct ath_common *common = ath9k_hw_common(ah);
  788. ENABLE_REGWRITE_BUFFER(ah);
  789. /*
  790. * set AHB_MODE not to do cacheline prefetches
  791. */
  792. if (!AR_SREV_9300_20_OR_LATER(ah))
  793. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  794. /*
  795. * let mac dma reads be in 128 byte chunks
  796. */
  797. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  798. REGWRITE_BUFFER_FLUSH(ah);
  799. /*
  800. * Restore TX Trigger Level to its pre-reset value.
  801. * The initial value depends on whether aggregation is enabled, and is
  802. * adjusted whenever underruns are detected.
  803. */
  804. if (!AR_SREV_9300_20_OR_LATER(ah))
  805. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  806. ENABLE_REGWRITE_BUFFER(ah);
  807. /*
  808. * let mac dma writes be in 128 byte chunks
  809. */
  810. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  811. /*
  812. * Setup receive FIFO threshold to hold off TX activities
  813. */
  814. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  815. if (AR_SREV_9300_20_OR_LATER(ah)) {
  816. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  817. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  818. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  819. ah->caps.rx_status_len);
  820. }
  821. /*
  822. * reduce the number of usable entries in PCU TXBUF to avoid
  823. * wrap around issues.
  824. */
  825. if (AR_SREV_9285(ah)) {
  826. /* For AR9285 the number of Fifos are reduced to half.
  827. * So set the usable tx buf size also to half to
  828. * avoid data/delimiter underruns
  829. */
  830. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  831. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  832. } else if (!AR_SREV_9271(ah)) {
  833. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  834. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  835. }
  836. REGWRITE_BUFFER_FLUSH(ah);
  837. if (AR_SREV_9300_20_OR_LATER(ah))
  838. ath9k_hw_reset_txstatus_ring(ah);
  839. }
  840. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  841. {
  842. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  843. u32 set = AR_STA_ID1_KSRCH_MODE;
  844. switch (opmode) {
  845. case NL80211_IFTYPE_ADHOC:
  846. case NL80211_IFTYPE_MESH_POINT:
  847. set |= AR_STA_ID1_ADHOC;
  848. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  849. break;
  850. case NL80211_IFTYPE_AP:
  851. set |= AR_STA_ID1_STA_AP;
  852. /* fall through */
  853. case NL80211_IFTYPE_STATION:
  854. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  855. break;
  856. default:
  857. if (!ah->is_monitoring)
  858. set = 0;
  859. break;
  860. }
  861. REG_RMW(ah, AR_STA_ID1, set, mask);
  862. }
  863. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  864. u32 *coef_mantissa, u32 *coef_exponent)
  865. {
  866. u32 coef_exp, coef_man;
  867. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  868. if ((coef_scaled >> coef_exp) & 0x1)
  869. break;
  870. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  871. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  872. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  873. *coef_exponent = coef_exp - 16;
  874. }
  875. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  876. {
  877. u32 rst_flags;
  878. u32 tmpReg;
  879. if (AR_SREV_9100(ah)) {
  880. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  881. AR_RTC_DERIVED_CLK_PERIOD, 1);
  882. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  883. }
  884. ENABLE_REGWRITE_BUFFER(ah);
  885. if (AR_SREV_9300_20_OR_LATER(ah)) {
  886. REG_WRITE(ah, AR_WA, ah->WARegVal);
  887. udelay(10);
  888. }
  889. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  890. AR_RTC_FORCE_WAKE_ON_INT);
  891. if (AR_SREV_9100(ah)) {
  892. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  893. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  894. } else {
  895. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  896. if (tmpReg &
  897. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  898. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  899. u32 val;
  900. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  901. val = AR_RC_HOSTIF;
  902. if (!AR_SREV_9300_20_OR_LATER(ah))
  903. val |= AR_RC_AHB;
  904. REG_WRITE(ah, AR_RC, val);
  905. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  906. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  907. rst_flags = AR_RTC_RC_MAC_WARM;
  908. if (type == ATH9K_RESET_COLD)
  909. rst_flags |= AR_RTC_RC_MAC_COLD;
  910. }
  911. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  912. REGWRITE_BUFFER_FLUSH(ah);
  913. udelay(50);
  914. REG_WRITE(ah, AR_RTC_RC, 0);
  915. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  916. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  917. "RTC stuck in MAC reset\n");
  918. return false;
  919. }
  920. if (!AR_SREV_9100(ah))
  921. REG_WRITE(ah, AR_RC, 0);
  922. if (AR_SREV_9100(ah))
  923. udelay(50);
  924. return true;
  925. }
  926. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  927. {
  928. ENABLE_REGWRITE_BUFFER(ah);
  929. if (AR_SREV_9300_20_OR_LATER(ah)) {
  930. REG_WRITE(ah, AR_WA, ah->WARegVal);
  931. udelay(10);
  932. }
  933. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  934. AR_RTC_FORCE_WAKE_ON_INT);
  935. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  936. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  937. REG_WRITE(ah, AR_RTC_RESET, 0);
  938. REGWRITE_BUFFER_FLUSH(ah);
  939. if (!AR_SREV_9300_20_OR_LATER(ah))
  940. udelay(2);
  941. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  942. REG_WRITE(ah, AR_RC, 0);
  943. REG_WRITE(ah, AR_RTC_RESET, 1);
  944. if (!ath9k_hw_wait(ah,
  945. AR_RTC_STATUS,
  946. AR_RTC_STATUS_M,
  947. AR_RTC_STATUS_ON,
  948. AH_WAIT_TIMEOUT)) {
  949. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  950. "RTC not waking up\n");
  951. return false;
  952. }
  953. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  954. }
  955. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  956. {
  957. if (AR_SREV_9300_20_OR_LATER(ah)) {
  958. REG_WRITE(ah, AR_WA, ah->WARegVal);
  959. udelay(10);
  960. }
  961. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  962. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  963. switch (type) {
  964. case ATH9K_RESET_POWER_ON:
  965. return ath9k_hw_set_reset_power_on(ah);
  966. case ATH9K_RESET_WARM:
  967. case ATH9K_RESET_COLD:
  968. return ath9k_hw_set_reset(ah, type);
  969. default:
  970. return false;
  971. }
  972. }
  973. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  974. struct ath9k_channel *chan)
  975. {
  976. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  977. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  978. return false;
  979. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  980. return false;
  981. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  982. return false;
  983. ah->chip_fullsleep = false;
  984. ath9k_hw_init_pll(ah, chan);
  985. ath9k_hw_set_rfmode(ah, chan);
  986. return true;
  987. }
  988. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  989. struct ath9k_channel *chan)
  990. {
  991. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  992. struct ath_common *common = ath9k_hw_common(ah);
  993. struct ieee80211_channel *channel = chan->chan;
  994. u32 qnum;
  995. int r;
  996. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  997. if (ath9k_hw_numtxpending(ah, qnum)) {
  998. ath_dbg(common, ATH_DBG_QUEUE,
  999. "Transmit frames pending on queue %d\n", qnum);
  1000. return false;
  1001. }
  1002. }
  1003. if (!ath9k_hw_rfbus_req(ah)) {
  1004. ath_err(common, "Could not kill baseband RX\n");
  1005. return false;
  1006. }
  1007. ath9k_hw_set_channel_regs(ah, chan);
  1008. r = ath9k_hw_rf_set_freq(ah, chan);
  1009. if (r) {
  1010. ath_err(common, "Failed to set channel\n");
  1011. return false;
  1012. }
  1013. ath9k_hw_set_clockrate(ah);
  1014. ah->eep_ops->set_txpower(ah, chan,
  1015. ath9k_regd_get_ctl(regulatory, chan),
  1016. channel->max_antenna_gain * 2,
  1017. channel->max_power * 2,
  1018. min((u32) MAX_RATE_POWER,
  1019. (u32) regulatory->power_limit), false);
  1020. ath9k_hw_rfbus_done(ah);
  1021. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1022. ath9k_hw_set_delta_slope(ah, chan);
  1023. ath9k_hw_spur_mitigate_freq(ah, chan);
  1024. return true;
  1025. }
  1026. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1027. {
  1028. u32 gpio_mask = ah->gpio_mask;
  1029. int i;
  1030. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1031. if (!(gpio_mask & 1))
  1032. continue;
  1033. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1034. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1035. }
  1036. }
  1037. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1038. {
  1039. int count = 50;
  1040. u32 reg;
  1041. if (AR_SREV_9285_12_OR_LATER(ah))
  1042. return true;
  1043. do {
  1044. reg = REG_READ(ah, AR_OBS_BUS_1);
  1045. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1046. continue;
  1047. switch (reg & 0x7E000B00) {
  1048. case 0x1E000000:
  1049. case 0x52000B00:
  1050. case 0x18000B00:
  1051. continue;
  1052. default:
  1053. return true;
  1054. }
  1055. } while (count-- > 0);
  1056. return false;
  1057. }
  1058. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1059. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1060. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  1061. {
  1062. struct ath_common *common = ath9k_hw_common(ah);
  1063. u32 saveLedState;
  1064. struct ath9k_channel *curchan = ah->curchan;
  1065. u32 saveDefAntenna;
  1066. u32 macStaId1;
  1067. u64 tsf = 0;
  1068. int i, r;
  1069. ah->txchainmask = common->tx_chainmask;
  1070. ah->rxchainmask = common->rx_chainmask;
  1071. if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
  1072. ath9k_hw_abortpcurecv(ah);
  1073. if (!ath9k_hw_stopdmarecv(ah)) {
  1074. ath_dbg(common, ATH_DBG_XMIT,
  1075. "Failed to stop receive dma\n");
  1076. bChannelChange = false;
  1077. }
  1078. }
  1079. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1080. return -EIO;
  1081. if (curchan && !ah->chip_fullsleep)
  1082. ath9k_hw_getnf(ah, curchan);
  1083. ah->caldata = caldata;
  1084. if (caldata &&
  1085. (chan->channel != caldata->channel ||
  1086. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1087. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1088. /* Operating channel changed, reset channel calibration data */
  1089. memset(caldata, 0, sizeof(*caldata));
  1090. ath9k_init_nfcal_hist_buffer(ah, chan);
  1091. }
  1092. if (bChannelChange &&
  1093. (ah->chip_fullsleep != true) &&
  1094. (ah->curchan != NULL) &&
  1095. (chan->channel != ah->curchan->channel) &&
  1096. ((chan->channelFlags & CHANNEL_ALL) ==
  1097. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1098. (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
  1099. if (ath9k_hw_channel_change(ah, chan)) {
  1100. ath9k_hw_loadnf(ah, ah->curchan);
  1101. ath9k_hw_start_nfcal(ah, true);
  1102. if (AR_SREV_9271(ah))
  1103. ar9002_hw_load_ani_reg(ah, chan);
  1104. return 0;
  1105. }
  1106. }
  1107. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1108. if (saveDefAntenna == 0)
  1109. saveDefAntenna = 1;
  1110. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1111. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1112. if (AR_SREV_9100(ah) ||
  1113. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1114. tsf = ath9k_hw_gettsf64(ah);
  1115. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1116. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1117. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1118. ath9k_hw_mark_phy_inactive(ah);
  1119. ah->paprd_table_write_done = false;
  1120. /* Only required on the first reset */
  1121. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1122. REG_WRITE(ah,
  1123. AR9271_RESET_POWER_DOWN_CONTROL,
  1124. AR9271_RADIO_RF_RST);
  1125. udelay(50);
  1126. }
  1127. if (!ath9k_hw_chip_reset(ah, chan)) {
  1128. ath_err(common, "Chip reset failed\n");
  1129. return -EINVAL;
  1130. }
  1131. /* Only required on the first reset */
  1132. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1133. ah->htc_reset_init = false;
  1134. REG_WRITE(ah,
  1135. AR9271_RESET_POWER_DOWN_CONTROL,
  1136. AR9271_GATE_MAC_CTL);
  1137. udelay(50);
  1138. }
  1139. /* Restore TSF */
  1140. if (tsf)
  1141. ath9k_hw_settsf64(ah, tsf);
  1142. if (AR_SREV_9280_20_OR_LATER(ah))
  1143. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1144. if (!AR_SREV_9300_20_OR_LATER(ah))
  1145. ar9002_hw_enable_async_fifo(ah);
  1146. r = ath9k_hw_process_ini(ah, chan);
  1147. if (r)
  1148. return r;
  1149. /*
  1150. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1151. * right after the chip reset. When that happens, write a new
  1152. * value after the initvals have been applied, with an offset
  1153. * based on measured time difference
  1154. */
  1155. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1156. tsf += 1500;
  1157. ath9k_hw_settsf64(ah, tsf);
  1158. }
  1159. /* Setup MFP options for CCMP */
  1160. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1161. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1162. * frames when constructing CCMP AAD. */
  1163. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1164. 0xc7ff);
  1165. ah->sw_mgmt_crypto = false;
  1166. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1167. /* Disable hardware crypto for management frames */
  1168. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1169. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1170. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1171. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1172. ah->sw_mgmt_crypto = true;
  1173. } else
  1174. ah->sw_mgmt_crypto = true;
  1175. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1176. ath9k_hw_set_delta_slope(ah, chan);
  1177. ath9k_hw_spur_mitigate_freq(ah, chan);
  1178. ah->eep_ops->set_board_values(ah, chan);
  1179. ENABLE_REGWRITE_BUFFER(ah);
  1180. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1181. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1182. | macStaId1
  1183. | AR_STA_ID1_RTS_USE_DEF
  1184. | (ah->config.
  1185. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1186. | ah->sta_id1_defaults);
  1187. ath_hw_setbssidmask(common);
  1188. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1189. ath9k_hw_write_associd(ah);
  1190. REG_WRITE(ah, AR_ISR, ~0);
  1191. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1192. REGWRITE_BUFFER_FLUSH(ah);
  1193. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1194. r = ath9k_hw_rf_set_freq(ah, chan);
  1195. if (r)
  1196. return r;
  1197. ath9k_hw_set_clockrate(ah);
  1198. ENABLE_REGWRITE_BUFFER(ah);
  1199. for (i = 0; i < AR_NUM_DCU; i++)
  1200. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1201. REGWRITE_BUFFER_FLUSH(ah);
  1202. ah->intr_txqs = 0;
  1203. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1204. ath9k_hw_resettxqueue(ah, i);
  1205. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1206. ath9k_hw_ani_cache_ini_regs(ah);
  1207. ath9k_hw_init_qos(ah);
  1208. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1209. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1210. ath9k_hw_init_global_settings(ah);
  1211. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1212. ar9002_hw_update_async_fifo(ah);
  1213. ar9002_hw_enable_wep_aggregation(ah);
  1214. }
  1215. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1216. ath9k_hw_set_dma(ah);
  1217. REG_WRITE(ah, AR_OBS, 8);
  1218. if (ah->config.rx_intr_mitigation) {
  1219. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1220. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1221. }
  1222. if (ah->config.tx_intr_mitigation) {
  1223. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1224. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1225. }
  1226. ath9k_hw_init_bb(ah, chan);
  1227. if (!ath9k_hw_init_cal(ah, chan))
  1228. return -EIO;
  1229. ENABLE_REGWRITE_BUFFER(ah);
  1230. ath9k_hw_restore_chainmask(ah);
  1231. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1232. REGWRITE_BUFFER_FLUSH(ah);
  1233. /*
  1234. * For big endian systems turn on swapping for descriptors
  1235. */
  1236. if (AR_SREV_9100(ah)) {
  1237. u32 mask;
  1238. mask = REG_READ(ah, AR_CFG);
  1239. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1240. ath_dbg(common, ATH_DBG_RESET,
  1241. "CFG Byte Swap Set 0x%x\n", mask);
  1242. } else {
  1243. mask =
  1244. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1245. REG_WRITE(ah, AR_CFG, mask);
  1246. ath_dbg(common, ATH_DBG_RESET,
  1247. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1248. }
  1249. } else {
  1250. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1251. /* Configure AR9271 target WLAN */
  1252. if (AR_SREV_9271(ah))
  1253. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1254. else
  1255. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1256. }
  1257. #ifdef __BIG_ENDIAN
  1258. else if (AR_SREV_9340(ah))
  1259. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1260. else
  1261. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1262. #endif
  1263. }
  1264. if (ah->btcoex_hw.enabled)
  1265. ath9k_hw_btcoex_enable(ah);
  1266. if (AR_SREV_9300_20_OR_LATER(ah))
  1267. ar9003_hw_bb_watchdog_config(ah);
  1268. ath9k_hw_apply_gpio_override(ah);
  1269. return 0;
  1270. }
  1271. EXPORT_SYMBOL(ath9k_hw_reset);
  1272. /******************************/
  1273. /* Power Management (Chipset) */
  1274. /******************************/
  1275. /*
  1276. * Notify Power Mgt is disabled in self-generated frames.
  1277. * If requested, force chip to sleep.
  1278. */
  1279. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1280. {
  1281. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1282. if (setChip) {
  1283. /*
  1284. * Clear the RTC force wake bit to allow the
  1285. * mac to go to sleep.
  1286. */
  1287. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1288. AR_RTC_FORCE_WAKE_EN);
  1289. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1290. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1291. /* Shutdown chip. Active low */
  1292. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1293. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1294. AR_RTC_RESET_EN);
  1295. }
  1296. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1297. if (AR_SREV_9300_20_OR_LATER(ah))
  1298. REG_WRITE(ah, AR_WA,
  1299. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1300. }
  1301. /*
  1302. * Notify Power Management is enabled in self-generating
  1303. * frames. If request, set power mode of chip to
  1304. * auto/normal. Duration in units of 128us (1/8 TU).
  1305. */
  1306. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1307. {
  1308. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1309. if (setChip) {
  1310. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1311. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1312. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1313. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1314. AR_RTC_FORCE_WAKE_ON_INT);
  1315. } else {
  1316. /*
  1317. * Clear the RTC force wake bit to allow the
  1318. * mac to go to sleep.
  1319. */
  1320. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1321. AR_RTC_FORCE_WAKE_EN);
  1322. }
  1323. }
  1324. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1325. if (AR_SREV_9300_20_OR_LATER(ah))
  1326. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1327. }
  1328. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1329. {
  1330. u32 val;
  1331. int i;
  1332. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1333. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1334. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1335. udelay(10);
  1336. }
  1337. if (setChip) {
  1338. if ((REG_READ(ah, AR_RTC_STATUS) &
  1339. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1340. if (ath9k_hw_set_reset_reg(ah,
  1341. ATH9K_RESET_POWER_ON) != true) {
  1342. return false;
  1343. }
  1344. if (!AR_SREV_9300_20_OR_LATER(ah))
  1345. ath9k_hw_init_pll(ah, NULL);
  1346. }
  1347. if (AR_SREV_9100(ah))
  1348. REG_SET_BIT(ah, AR_RTC_RESET,
  1349. AR_RTC_RESET_EN);
  1350. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1351. AR_RTC_FORCE_WAKE_EN);
  1352. udelay(50);
  1353. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1354. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1355. if (val == AR_RTC_STATUS_ON)
  1356. break;
  1357. udelay(50);
  1358. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1359. AR_RTC_FORCE_WAKE_EN);
  1360. }
  1361. if (i == 0) {
  1362. ath_err(ath9k_hw_common(ah),
  1363. "Failed to wakeup in %uus\n",
  1364. POWER_UP_TIME / 20);
  1365. return false;
  1366. }
  1367. }
  1368. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1369. return true;
  1370. }
  1371. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1372. {
  1373. struct ath_common *common = ath9k_hw_common(ah);
  1374. int status = true, setChip = true;
  1375. static const char *modes[] = {
  1376. "AWAKE",
  1377. "FULL-SLEEP",
  1378. "NETWORK SLEEP",
  1379. "UNDEFINED"
  1380. };
  1381. if (ah->power_mode == mode)
  1382. return status;
  1383. ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
  1384. modes[ah->power_mode], modes[mode]);
  1385. switch (mode) {
  1386. case ATH9K_PM_AWAKE:
  1387. status = ath9k_hw_set_power_awake(ah, setChip);
  1388. break;
  1389. case ATH9K_PM_FULL_SLEEP:
  1390. ath9k_set_power_sleep(ah, setChip);
  1391. ah->chip_fullsleep = true;
  1392. break;
  1393. case ATH9K_PM_NETWORK_SLEEP:
  1394. ath9k_set_power_network_sleep(ah, setChip);
  1395. break;
  1396. default:
  1397. ath_err(common, "Unknown power mode %u\n", mode);
  1398. return false;
  1399. }
  1400. ah->power_mode = mode;
  1401. /*
  1402. * XXX: If this warning never comes up after a while then
  1403. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1404. * ath9k_hw_setpower() return type void.
  1405. */
  1406. if (!(ah->ah_flags & AH_UNPLUGGED))
  1407. ATH_DBG_WARN_ON_ONCE(!status);
  1408. return status;
  1409. }
  1410. EXPORT_SYMBOL(ath9k_hw_setpower);
  1411. /*******************/
  1412. /* Beacon Handling */
  1413. /*******************/
  1414. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1415. {
  1416. int flags = 0;
  1417. ENABLE_REGWRITE_BUFFER(ah);
  1418. switch (ah->opmode) {
  1419. case NL80211_IFTYPE_ADHOC:
  1420. case NL80211_IFTYPE_MESH_POINT:
  1421. REG_SET_BIT(ah, AR_TXCFG,
  1422. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1423. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1424. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1425. flags |= AR_NDP_TIMER_EN;
  1426. case NL80211_IFTYPE_AP:
  1427. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1428. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1429. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1430. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1431. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1432. flags |=
  1433. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1434. break;
  1435. default:
  1436. ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1437. "%s: unsupported opmode: %d\n",
  1438. __func__, ah->opmode);
  1439. return;
  1440. break;
  1441. }
  1442. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1443. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1444. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1445. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1446. REGWRITE_BUFFER_FLUSH(ah);
  1447. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1448. }
  1449. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1450. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1451. const struct ath9k_beacon_state *bs)
  1452. {
  1453. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1454. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1455. struct ath_common *common = ath9k_hw_common(ah);
  1456. ENABLE_REGWRITE_BUFFER(ah);
  1457. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1458. REG_WRITE(ah, AR_BEACON_PERIOD,
  1459. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1460. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1461. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1462. REGWRITE_BUFFER_FLUSH(ah);
  1463. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1464. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1465. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1466. if (bs->bs_sleepduration > beaconintval)
  1467. beaconintval = bs->bs_sleepduration;
  1468. dtimperiod = bs->bs_dtimperiod;
  1469. if (bs->bs_sleepduration > dtimperiod)
  1470. dtimperiod = bs->bs_sleepduration;
  1471. if (beaconintval == dtimperiod)
  1472. nextTbtt = bs->bs_nextdtim;
  1473. else
  1474. nextTbtt = bs->bs_nexttbtt;
  1475. ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1476. ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1477. ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1478. ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1479. ENABLE_REGWRITE_BUFFER(ah);
  1480. REG_WRITE(ah, AR_NEXT_DTIM,
  1481. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1482. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1483. REG_WRITE(ah, AR_SLEEP1,
  1484. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1485. | AR_SLEEP1_ASSUME_DTIM);
  1486. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1487. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1488. else
  1489. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1490. REG_WRITE(ah, AR_SLEEP2,
  1491. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1492. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1493. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1494. REGWRITE_BUFFER_FLUSH(ah);
  1495. REG_SET_BIT(ah, AR_TIMER_MODE,
  1496. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1497. AR_DTIM_TIMER_EN);
  1498. /* TSF Out of Range Threshold */
  1499. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1500. }
  1501. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1502. /*******************/
  1503. /* HW Capabilities */
  1504. /*******************/
  1505. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1506. {
  1507. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1508. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1509. struct ath_common *common = ath9k_hw_common(ah);
  1510. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1511. u16 capField = 0, eeval;
  1512. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1513. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1514. regulatory->current_rd = eeval;
  1515. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1516. if (AR_SREV_9285_12_OR_LATER(ah))
  1517. eeval |= AR9285_RDEXT_DEFAULT;
  1518. regulatory->current_rd_ext = eeval;
  1519. capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
  1520. if (ah->opmode != NL80211_IFTYPE_AP &&
  1521. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1522. if (regulatory->current_rd == 0x64 ||
  1523. regulatory->current_rd == 0x65)
  1524. regulatory->current_rd += 5;
  1525. else if (regulatory->current_rd == 0x41)
  1526. regulatory->current_rd = 0x43;
  1527. ath_dbg(common, ATH_DBG_REGULATORY,
  1528. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1529. }
  1530. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1531. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1532. ath_err(common,
  1533. "no band has been marked as supported in EEPROM\n");
  1534. return -EINVAL;
  1535. }
  1536. if (eeval & AR5416_OPFLAGS_11A)
  1537. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1538. if (eeval & AR5416_OPFLAGS_11G)
  1539. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1540. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1541. /*
  1542. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1543. * the EEPROM.
  1544. */
  1545. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1546. !(eeval & AR5416_OPFLAGS_11A) &&
  1547. !(AR_SREV_9271(ah)))
  1548. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1549. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1550. else if (AR_SREV_9100(ah))
  1551. pCap->rx_chainmask = 0x7;
  1552. else
  1553. /* Use rx_chainmask from EEPROM. */
  1554. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1555. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1556. /* enable key search for every frame in an aggregate */
  1557. if (AR_SREV_9300_20_OR_LATER(ah))
  1558. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1559. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1560. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  1561. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1562. else
  1563. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1564. if (AR_SREV_9271(ah))
  1565. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1566. else if (AR_DEVID_7010(ah))
  1567. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1568. else if (AR_SREV_9285_12_OR_LATER(ah))
  1569. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1570. else if (AR_SREV_9280_20_OR_LATER(ah))
  1571. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1572. else
  1573. pCap->num_gpio_pins = AR_NUM_GPIO;
  1574. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1575. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1576. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1577. } else {
  1578. pCap->rts_aggr_limit = (8 * 1024);
  1579. }
  1580. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1581. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1582. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1583. ah->rfkill_gpio =
  1584. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1585. ah->rfkill_polarity =
  1586. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1587. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1588. }
  1589. #endif
  1590. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1591. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1592. else
  1593. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1594. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1595. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1596. else
  1597. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1598. if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
  1599. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
  1600. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
  1601. if (AR_SREV_9285(ah)) {
  1602. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1603. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
  1604. } else {
  1605. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1606. }
  1607. } else {
  1608. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1609. }
  1610. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1611. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  1612. if (!AR_SREV_9485(ah))
  1613. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  1614. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1615. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1616. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1617. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1618. pCap->txs_len = sizeof(struct ar9003_txs);
  1619. if (!ah->config.paprd_disable &&
  1620. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1621. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1622. } else {
  1623. pCap->tx_desc_len = sizeof(struct ath_desc);
  1624. if (AR_SREV_9280_20(ah) &&
  1625. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1626. AR5416_EEP_MINOR_VER_16) ||
  1627. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1628. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1629. }
  1630. if (AR_SREV_9300_20_OR_LATER(ah))
  1631. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1632. if (AR_SREV_9300_20_OR_LATER(ah))
  1633. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  1634. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1635. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1636. if (AR_SREV_9285(ah))
  1637. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  1638. ant_div_ctl1 =
  1639. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1640. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  1641. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1642. }
  1643. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1644. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  1645. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  1646. }
  1647. if (AR_SREV_9485_10(ah)) {
  1648. pCap->pcie_lcr_extsync_en = true;
  1649. pCap->pcie_lcr_offset = 0x80;
  1650. }
  1651. tx_chainmask = pCap->tx_chainmask;
  1652. rx_chainmask = pCap->rx_chainmask;
  1653. while (tx_chainmask || rx_chainmask) {
  1654. if (tx_chainmask & BIT(0))
  1655. pCap->max_txchains++;
  1656. if (rx_chainmask & BIT(0))
  1657. pCap->max_rxchains++;
  1658. tx_chainmask >>= 1;
  1659. rx_chainmask >>= 1;
  1660. }
  1661. return 0;
  1662. }
  1663. /****************************/
  1664. /* GPIO / RFKILL / Antennae */
  1665. /****************************/
  1666. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1667. u32 gpio, u32 type)
  1668. {
  1669. int addr;
  1670. u32 gpio_shift, tmp;
  1671. if (gpio > 11)
  1672. addr = AR_GPIO_OUTPUT_MUX3;
  1673. else if (gpio > 5)
  1674. addr = AR_GPIO_OUTPUT_MUX2;
  1675. else
  1676. addr = AR_GPIO_OUTPUT_MUX1;
  1677. gpio_shift = (gpio % 6) * 5;
  1678. if (AR_SREV_9280_20_OR_LATER(ah)
  1679. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1680. REG_RMW(ah, addr, (type << gpio_shift),
  1681. (0x1f << gpio_shift));
  1682. } else {
  1683. tmp = REG_READ(ah, addr);
  1684. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1685. tmp &= ~(0x1f << gpio_shift);
  1686. tmp |= (type << gpio_shift);
  1687. REG_WRITE(ah, addr, tmp);
  1688. }
  1689. }
  1690. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1691. {
  1692. u32 gpio_shift;
  1693. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1694. if (AR_DEVID_7010(ah)) {
  1695. gpio_shift = gpio;
  1696. REG_RMW(ah, AR7010_GPIO_OE,
  1697. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1698. (AR7010_GPIO_OE_MASK << gpio_shift));
  1699. return;
  1700. }
  1701. gpio_shift = gpio << 1;
  1702. REG_RMW(ah,
  1703. AR_GPIO_OE_OUT,
  1704. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1705. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1706. }
  1707. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1708. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1709. {
  1710. #define MS_REG_READ(x, y) \
  1711. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1712. if (gpio >= ah->caps.num_gpio_pins)
  1713. return 0xffffffff;
  1714. if (AR_DEVID_7010(ah)) {
  1715. u32 val;
  1716. val = REG_READ(ah, AR7010_GPIO_IN);
  1717. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1718. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1719. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  1720. AR_GPIO_BIT(gpio)) != 0;
  1721. else if (AR_SREV_9271(ah))
  1722. return MS_REG_READ(AR9271, gpio) != 0;
  1723. else if (AR_SREV_9287_11_OR_LATER(ah))
  1724. return MS_REG_READ(AR9287, gpio) != 0;
  1725. else if (AR_SREV_9285_12_OR_LATER(ah))
  1726. return MS_REG_READ(AR9285, gpio) != 0;
  1727. else if (AR_SREV_9280_20_OR_LATER(ah))
  1728. return MS_REG_READ(AR928X, gpio) != 0;
  1729. else
  1730. return MS_REG_READ(AR, gpio) != 0;
  1731. }
  1732. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1733. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1734. u32 ah_signal_type)
  1735. {
  1736. u32 gpio_shift;
  1737. if (AR_DEVID_7010(ah)) {
  1738. gpio_shift = gpio;
  1739. REG_RMW(ah, AR7010_GPIO_OE,
  1740. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1741. (AR7010_GPIO_OE_MASK << gpio_shift));
  1742. return;
  1743. }
  1744. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1745. gpio_shift = 2 * gpio;
  1746. REG_RMW(ah,
  1747. AR_GPIO_OE_OUT,
  1748. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1749. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1750. }
  1751. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1752. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1753. {
  1754. if (AR_DEVID_7010(ah)) {
  1755. val = val ? 0 : 1;
  1756. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1757. AR_GPIO_BIT(gpio));
  1758. return;
  1759. }
  1760. if (AR_SREV_9271(ah))
  1761. val = ~val;
  1762. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1763. AR_GPIO_BIT(gpio));
  1764. }
  1765. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1766. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1767. {
  1768. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1769. }
  1770. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1771. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1772. {
  1773. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1774. }
  1775. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1776. /*********************/
  1777. /* General Operation */
  1778. /*********************/
  1779. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  1780. {
  1781. u32 bits = REG_READ(ah, AR_RX_FILTER);
  1782. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  1783. if (phybits & AR_PHY_ERR_RADAR)
  1784. bits |= ATH9K_RX_FILTER_PHYRADAR;
  1785. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  1786. bits |= ATH9K_RX_FILTER_PHYERR;
  1787. return bits;
  1788. }
  1789. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  1790. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  1791. {
  1792. u32 phybits;
  1793. ENABLE_REGWRITE_BUFFER(ah);
  1794. REG_WRITE(ah, AR_RX_FILTER, bits);
  1795. phybits = 0;
  1796. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  1797. phybits |= AR_PHY_ERR_RADAR;
  1798. if (bits & ATH9K_RX_FILTER_PHYERR)
  1799. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  1800. REG_WRITE(ah, AR_PHY_ERR, phybits);
  1801. if (phybits)
  1802. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1803. else
  1804. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1805. REGWRITE_BUFFER_FLUSH(ah);
  1806. }
  1807. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  1808. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  1809. {
  1810. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1811. return false;
  1812. ath9k_hw_init_pll(ah, NULL);
  1813. return true;
  1814. }
  1815. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  1816. bool ath9k_hw_disable(struct ath_hw *ah)
  1817. {
  1818. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1819. return false;
  1820. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  1821. return false;
  1822. ath9k_hw_init_pll(ah, NULL);
  1823. return true;
  1824. }
  1825. EXPORT_SYMBOL(ath9k_hw_disable);
  1826. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  1827. {
  1828. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1829. struct ath9k_channel *chan = ah->curchan;
  1830. struct ieee80211_channel *channel = chan->chan;
  1831. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  1832. ah->eep_ops->set_txpower(ah, chan,
  1833. ath9k_regd_get_ctl(regulatory, chan),
  1834. channel->max_antenna_gain * 2,
  1835. channel->max_power * 2,
  1836. min((u32) MAX_RATE_POWER,
  1837. (u32) regulatory->power_limit), test);
  1838. }
  1839. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  1840. void ath9k_hw_setopmode(struct ath_hw *ah)
  1841. {
  1842. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1843. }
  1844. EXPORT_SYMBOL(ath9k_hw_setopmode);
  1845. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  1846. {
  1847. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  1848. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  1849. }
  1850. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  1851. void ath9k_hw_write_associd(struct ath_hw *ah)
  1852. {
  1853. struct ath_common *common = ath9k_hw_common(ah);
  1854. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  1855. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  1856. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1857. }
  1858. EXPORT_SYMBOL(ath9k_hw_write_associd);
  1859. #define ATH9K_MAX_TSF_READ 10
  1860. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  1861. {
  1862. u32 tsf_lower, tsf_upper1, tsf_upper2;
  1863. int i;
  1864. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  1865. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  1866. tsf_lower = REG_READ(ah, AR_TSF_L32);
  1867. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  1868. if (tsf_upper2 == tsf_upper1)
  1869. break;
  1870. tsf_upper1 = tsf_upper2;
  1871. }
  1872. WARN_ON( i == ATH9K_MAX_TSF_READ );
  1873. return (((u64)tsf_upper1 << 32) | tsf_lower);
  1874. }
  1875. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  1876. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  1877. {
  1878. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  1879. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  1880. }
  1881. EXPORT_SYMBOL(ath9k_hw_settsf64);
  1882. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  1883. {
  1884. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  1885. AH_TSF_WRITE_TIMEOUT))
  1886. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  1887. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  1888. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  1889. }
  1890. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  1891. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  1892. {
  1893. if (setting)
  1894. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  1895. else
  1896. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  1897. }
  1898. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  1899. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  1900. {
  1901. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1902. u32 macmode;
  1903. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  1904. macmode = AR_2040_JOINED_RX_CLEAR;
  1905. else
  1906. macmode = 0;
  1907. REG_WRITE(ah, AR_2040_MODE, macmode);
  1908. }
  1909. /* HW Generic timers configuration */
  1910. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  1911. {
  1912. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1913. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1914. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1915. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1916. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1917. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1918. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1919. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1920. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  1921. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  1922. AR_NDP2_TIMER_MODE, 0x0002},
  1923. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  1924. AR_NDP2_TIMER_MODE, 0x0004},
  1925. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  1926. AR_NDP2_TIMER_MODE, 0x0008},
  1927. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  1928. AR_NDP2_TIMER_MODE, 0x0010},
  1929. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  1930. AR_NDP2_TIMER_MODE, 0x0020},
  1931. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  1932. AR_NDP2_TIMER_MODE, 0x0040},
  1933. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  1934. AR_NDP2_TIMER_MODE, 0x0080}
  1935. };
  1936. /* HW generic timer primitives */
  1937. /* compute and clear index of rightmost 1 */
  1938. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  1939. {
  1940. u32 b;
  1941. b = *mask;
  1942. b &= (0-b);
  1943. *mask &= ~b;
  1944. b *= debruijn32;
  1945. b >>= 27;
  1946. return timer_table->gen_timer_index[b];
  1947. }
  1948. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  1949. {
  1950. return REG_READ(ah, AR_TSF_L32);
  1951. }
  1952. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  1953. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  1954. void (*trigger)(void *),
  1955. void (*overflow)(void *),
  1956. void *arg,
  1957. u8 timer_index)
  1958. {
  1959. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1960. struct ath_gen_timer *timer;
  1961. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  1962. if (timer == NULL) {
  1963. ath_err(ath9k_hw_common(ah),
  1964. "Failed to allocate memory for hw timer[%d]\n",
  1965. timer_index);
  1966. return NULL;
  1967. }
  1968. /* allocate a hardware generic timer slot */
  1969. timer_table->timers[timer_index] = timer;
  1970. timer->index = timer_index;
  1971. timer->trigger = trigger;
  1972. timer->overflow = overflow;
  1973. timer->arg = arg;
  1974. return timer;
  1975. }
  1976. EXPORT_SYMBOL(ath_gen_timer_alloc);
  1977. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  1978. struct ath_gen_timer *timer,
  1979. u32 timer_next,
  1980. u32 timer_period)
  1981. {
  1982. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1983. u32 tsf;
  1984. BUG_ON(!timer_period);
  1985. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1986. tsf = ath9k_hw_gettsf32(ah);
  1987. ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  1988. "current tsf %x period %x timer_next %x\n",
  1989. tsf, timer_period, timer_next);
  1990. /*
  1991. * Pull timer_next forward if the current TSF already passed it
  1992. * because of software latency
  1993. */
  1994. if (timer_next < tsf)
  1995. timer_next = tsf + timer_period;
  1996. /*
  1997. * Program generic timer registers
  1998. */
  1999. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2000. timer_next);
  2001. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2002. timer_period);
  2003. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2004. gen_tmr_configuration[timer->index].mode_mask);
  2005. /* Enable both trigger and thresh interrupt masks */
  2006. REG_SET_BIT(ah, AR_IMR_S5,
  2007. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2008. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2009. }
  2010. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2011. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2012. {
  2013. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2014. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2015. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2016. return;
  2017. }
  2018. /* Clear generic timer enable bits. */
  2019. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2020. gen_tmr_configuration[timer->index].mode_mask);
  2021. /* Disable both trigger and thresh interrupt masks */
  2022. REG_CLR_BIT(ah, AR_IMR_S5,
  2023. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2024. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2025. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2026. }
  2027. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2028. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2029. {
  2030. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2031. /* free the hardware generic timer slot */
  2032. timer_table->timers[timer->index] = NULL;
  2033. kfree(timer);
  2034. }
  2035. EXPORT_SYMBOL(ath_gen_timer_free);
  2036. /*
  2037. * Generic Timer Interrupts handling
  2038. */
  2039. void ath_gen_timer_isr(struct ath_hw *ah)
  2040. {
  2041. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2042. struct ath_gen_timer *timer;
  2043. struct ath_common *common = ath9k_hw_common(ah);
  2044. u32 trigger_mask, thresh_mask, index;
  2045. /* get hardware generic timer interrupt status */
  2046. trigger_mask = ah->intr_gen_timer_trigger;
  2047. thresh_mask = ah->intr_gen_timer_thresh;
  2048. trigger_mask &= timer_table->timer_mask.val;
  2049. thresh_mask &= timer_table->timer_mask.val;
  2050. trigger_mask &= ~thresh_mask;
  2051. while (thresh_mask) {
  2052. index = rightmost_index(timer_table, &thresh_mask);
  2053. timer = timer_table->timers[index];
  2054. BUG_ON(!timer);
  2055. ath_dbg(common, ATH_DBG_HWTIMER,
  2056. "TSF overflow for Gen timer %d\n", index);
  2057. timer->overflow(timer->arg);
  2058. }
  2059. while (trigger_mask) {
  2060. index = rightmost_index(timer_table, &trigger_mask);
  2061. timer = timer_table->timers[index];
  2062. BUG_ON(!timer);
  2063. ath_dbg(common, ATH_DBG_HWTIMER,
  2064. "Gen timer[%d] trigger\n", index);
  2065. timer->trigger(timer->arg);
  2066. }
  2067. }
  2068. EXPORT_SYMBOL(ath_gen_timer_isr);
  2069. /********/
  2070. /* HTC */
  2071. /********/
  2072. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2073. {
  2074. ah->htc_reset_init = true;
  2075. }
  2076. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2077. static struct {
  2078. u32 version;
  2079. const char * name;
  2080. } ath_mac_bb_names[] = {
  2081. /* Devices with external radios */
  2082. { AR_SREV_VERSION_5416_PCI, "5416" },
  2083. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2084. { AR_SREV_VERSION_9100, "9100" },
  2085. { AR_SREV_VERSION_9160, "9160" },
  2086. /* Single-chip solutions */
  2087. { AR_SREV_VERSION_9280, "9280" },
  2088. { AR_SREV_VERSION_9285, "9285" },
  2089. { AR_SREV_VERSION_9287, "9287" },
  2090. { AR_SREV_VERSION_9271, "9271" },
  2091. { AR_SREV_VERSION_9300, "9300" },
  2092. { AR_SREV_VERSION_9485, "9485" },
  2093. };
  2094. /* For devices with external radios */
  2095. static struct {
  2096. u16 version;
  2097. const char * name;
  2098. } ath_rf_names[] = {
  2099. { 0, "5133" },
  2100. { AR_RAD5133_SREV_MAJOR, "5133" },
  2101. { AR_RAD5122_SREV_MAJOR, "5122" },
  2102. { AR_RAD2133_SREV_MAJOR, "2133" },
  2103. { AR_RAD2122_SREV_MAJOR, "2122" }
  2104. };
  2105. /*
  2106. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2107. */
  2108. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2109. {
  2110. int i;
  2111. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2112. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2113. return ath_mac_bb_names[i].name;
  2114. }
  2115. }
  2116. return "????";
  2117. }
  2118. /*
  2119. * Return the RF name. "????" is returned if the RF is unknown.
  2120. * Used for devices with external radios.
  2121. */
  2122. static const char *ath9k_hw_rf_name(u16 rf_version)
  2123. {
  2124. int i;
  2125. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2126. if (ath_rf_names[i].version == rf_version) {
  2127. return ath_rf_names[i].name;
  2128. }
  2129. }
  2130. return "????";
  2131. }
  2132. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2133. {
  2134. int used;
  2135. /* chipsets >= AR9280 are single-chip */
  2136. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2137. used = snprintf(hw_name, len,
  2138. "Atheros AR%s Rev:%x",
  2139. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2140. ah->hw_version.macRev);
  2141. }
  2142. else {
  2143. used = snprintf(hw_name, len,
  2144. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2145. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2146. ah->hw_version.macRev,
  2147. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2148. AR_RADIO_SREV_MAJOR)),
  2149. ah->hw_version.phyRev);
  2150. }
  2151. hw_name[used] = '\0';
  2152. }
  2153. EXPORT_SYMBOL(ath9k_hw_name);