page_alloc.c 128 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/debugobjects.h>
  48. #include <asm/tlbflush.h>
  49. #include <asm/div64.h>
  50. #include "internal.h"
  51. /*
  52. * Array of node states.
  53. */
  54. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  55. [N_POSSIBLE] = NODE_MASK_ALL,
  56. [N_ONLINE] = { { [0] = 1UL } },
  57. #ifndef CONFIG_NUMA
  58. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  59. #ifdef CONFIG_HIGHMEM
  60. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  61. #endif
  62. [N_CPU] = { { [0] = 1UL } },
  63. #endif /* NUMA */
  64. };
  65. EXPORT_SYMBOL(node_states);
  66. unsigned long totalram_pages __read_mostly;
  67. unsigned long totalreserve_pages __read_mostly;
  68. long nr_swap_pages;
  69. int percpu_pagelist_fraction;
  70. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  71. int pageblock_order __read_mostly;
  72. #endif
  73. static void __free_pages_ok(struct page *page, unsigned int order);
  74. /*
  75. * results with 256, 32 in the lowmem_reserve sysctl:
  76. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  77. * 1G machine -> (16M dma, 784M normal, 224M high)
  78. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  79. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  80. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  81. *
  82. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  83. * don't need any ZONE_NORMAL reservation
  84. */
  85. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  86. #ifdef CONFIG_ZONE_DMA
  87. 256,
  88. #endif
  89. #ifdef CONFIG_ZONE_DMA32
  90. 256,
  91. #endif
  92. #ifdef CONFIG_HIGHMEM
  93. 32,
  94. #endif
  95. 32,
  96. };
  97. EXPORT_SYMBOL(totalram_pages);
  98. static char * const zone_names[MAX_NR_ZONES] = {
  99. #ifdef CONFIG_ZONE_DMA
  100. "DMA",
  101. #endif
  102. #ifdef CONFIG_ZONE_DMA32
  103. "DMA32",
  104. #endif
  105. "Normal",
  106. #ifdef CONFIG_HIGHMEM
  107. "HighMem",
  108. #endif
  109. "Movable",
  110. };
  111. int min_free_kbytes = 1024;
  112. unsigned long __meminitdata nr_kernel_pages;
  113. unsigned long __meminitdata nr_all_pages;
  114. static unsigned long __meminitdata dma_reserve;
  115. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  116. /*
  117. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  118. * ranges of memory (RAM) that may be registered with add_active_range().
  119. * Ranges passed to add_active_range() will be merged if possible
  120. * so the number of times add_active_range() can be called is
  121. * related to the number of nodes and the number of holes
  122. */
  123. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  124. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  125. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  126. #else
  127. #if MAX_NUMNODES >= 32
  128. /* If there can be many nodes, allow up to 50 holes per node */
  129. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  130. #else
  131. /* By default, allow up to 256 distinct regions */
  132. #define MAX_ACTIVE_REGIONS 256
  133. #endif
  134. #endif
  135. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  136. static int __meminitdata nr_nodemap_entries;
  137. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  138. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  139. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  140. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  141. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  142. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  143. unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. EXPORT_SYMBOL(nr_node_ids);
  153. #endif
  154. int page_group_by_mobility_disabled __read_mostly;
  155. static void set_pageblock_migratetype(struct page *page, int migratetype)
  156. {
  157. set_pageblock_flags_group(page, (unsigned long)migratetype,
  158. PB_migrate, PB_migrate_end);
  159. }
  160. #ifdef CONFIG_DEBUG_VM
  161. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  162. {
  163. int ret = 0;
  164. unsigned seq;
  165. unsigned long pfn = page_to_pfn(page);
  166. do {
  167. seq = zone_span_seqbegin(zone);
  168. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  169. ret = 1;
  170. else if (pfn < zone->zone_start_pfn)
  171. ret = 1;
  172. } while (zone_span_seqretry(zone, seq));
  173. return ret;
  174. }
  175. static int page_is_consistent(struct zone *zone, struct page *page)
  176. {
  177. if (!pfn_valid_within(page_to_pfn(page)))
  178. return 0;
  179. if (zone != page_zone(page))
  180. return 0;
  181. return 1;
  182. }
  183. /*
  184. * Temporary debugging check for pages not lying within a given zone.
  185. */
  186. static int bad_range(struct zone *zone, struct page *page)
  187. {
  188. if (page_outside_zone_boundaries(zone, page))
  189. return 1;
  190. if (!page_is_consistent(zone, page))
  191. return 1;
  192. return 0;
  193. }
  194. #else
  195. static inline int bad_range(struct zone *zone, struct page *page)
  196. {
  197. return 0;
  198. }
  199. #endif
  200. static void bad_page(struct page *page)
  201. {
  202. void *pc = page_get_page_cgroup(page);
  203. printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
  204. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  205. current->comm, page, (int)(2*sizeof(unsigned long)),
  206. (unsigned long)page->flags, page->mapping,
  207. page_mapcount(page), page_count(page));
  208. if (pc) {
  209. printk(KERN_EMERG "cgroup:%p\n", pc);
  210. page_reset_bad_cgroup(page);
  211. }
  212. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  213. KERN_EMERG "Backtrace:\n");
  214. dump_stack();
  215. page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
  216. set_page_count(page, 0);
  217. reset_page_mapcount(page);
  218. page->mapping = NULL;
  219. add_taint(TAINT_BAD_PAGE);
  220. }
  221. /*
  222. * Higher-order pages are called "compound pages". They are structured thusly:
  223. *
  224. * The first PAGE_SIZE page is called the "head page".
  225. *
  226. * The remaining PAGE_SIZE pages are called "tail pages".
  227. *
  228. * All pages have PG_compound set. All pages have their ->private pointing at
  229. * the head page (even the head page has this).
  230. *
  231. * The first tail page's ->lru.next holds the address of the compound page's
  232. * put_page() function. Its ->lru.prev holds the order of allocation.
  233. * This usage means that zero-order pages may not be compound.
  234. */
  235. static void free_compound_page(struct page *page)
  236. {
  237. __free_pages_ok(page, compound_order(page));
  238. }
  239. void prep_compound_page(struct page *page, unsigned long order)
  240. {
  241. int i;
  242. int nr_pages = 1 << order;
  243. set_compound_page_dtor(page, free_compound_page);
  244. set_compound_order(page, order);
  245. __SetPageHead(page);
  246. for (i = 1; i < nr_pages; i++) {
  247. struct page *p = page + i;
  248. __SetPageTail(p);
  249. p->first_page = page;
  250. }
  251. }
  252. static void destroy_compound_page(struct page *page, unsigned long order)
  253. {
  254. int i;
  255. int nr_pages = 1 << order;
  256. if (unlikely(compound_order(page) != order))
  257. bad_page(page);
  258. if (unlikely(!PageHead(page)))
  259. bad_page(page);
  260. __ClearPageHead(page);
  261. for (i = 1; i < nr_pages; i++) {
  262. struct page *p = page + i;
  263. if (unlikely(!PageTail(p) |
  264. (p->first_page != page)))
  265. bad_page(page);
  266. __ClearPageTail(p);
  267. }
  268. }
  269. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  270. {
  271. int i;
  272. /*
  273. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  274. * and __GFP_HIGHMEM from hard or soft interrupt context.
  275. */
  276. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  277. for (i = 0; i < (1 << order); i++)
  278. clear_highpage(page + i);
  279. }
  280. static inline void set_page_order(struct page *page, int order)
  281. {
  282. set_page_private(page, order);
  283. __SetPageBuddy(page);
  284. }
  285. static inline void rmv_page_order(struct page *page)
  286. {
  287. __ClearPageBuddy(page);
  288. set_page_private(page, 0);
  289. }
  290. /*
  291. * Locate the struct page for both the matching buddy in our
  292. * pair (buddy1) and the combined O(n+1) page they form (page).
  293. *
  294. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  295. * the following equation:
  296. * B2 = B1 ^ (1 << O)
  297. * For example, if the starting buddy (buddy2) is #8 its order
  298. * 1 buddy is #10:
  299. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  300. *
  301. * 2) Any buddy B will have an order O+1 parent P which
  302. * satisfies the following equation:
  303. * P = B & ~(1 << O)
  304. *
  305. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  306. */
  307. static inline struct page *
  308. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  309. {
  310. unsigned long buddy_idx = page_idx ^ (1 << order);
  311. return page + (buddy_idx - page_idx);
  312. }
  313. static inline unsigned long
  314. __find_combined_index(unsigned long page_idx, unsigned int order)
  315. {
  316. return (page_idx & ~(1 << order));
  317. }
  318. /*
  319. * This function checks whether a page is free && is the buddy
  320. * we can do coalesce a page and its buddy if
  321. * (a) the buddy is not in a hole &&
  322. * (b) the buddy is in the buddy system &&
  323. * (c) a page and its buddy have the same order &&
  324. * (d) a page and its buddy are in the same zone.
  325. *
  326. * For recording whether a page is in the buddy system, we use PG_buddy.
  327. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  328. *
  329. * For recording page's order, we use page_private(page).
  330. */
  331. static inline int page_is_buddy(struct page *page, struct page *buddy,
  332. int order)
  333. {
  334. if (!pfn_valid_within(page_to_pfn(buddy)))
  335. return 0;
  336. if (page_zone_id(page) != page_zone_id(buddy))
  337. return 0;
  338. if (PageBuddy(buddy) && page_order(buddy) == order) {
  339. BUG_ON(page_count(buddy) != 0);
  340. return 1;
  341. }
  342. return 0;
  343. }
  344. /*
  345. * Freeing function for a buddy system allocator.
  346. *
  347. * The concept of a buddy system is to maintain direct-mapped table
  348. * (containing bit values) for memory blocks of various "orders".
  349. * The bottom level table contains the map for the smallest allocatable
  350. * units of memory (here, pages), and each level above it describes
  351. * pairs of units from the levels below, hence, "buddies".
  352. * At a high level, all that happens here is marking the table entry
  353. * at the bottom level available, and propagating the changes upward
  354. * as necessary, plus some accounting needed to play nicely with other
  355. * parts of the VM system.
  356. * At each level, we keep a list of pages, which are heads of continuous
  357. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  358. * order is recorded in page_private(page) field.
  359. * So when we are allocating or freeing one, we can derive the state of the
  360. * other. That is, if we allocate a small block, and both were
  361. * free, the remainder of the region must be split into blocks.
  362. * If a block is freed, and its buddy is also free, then this
  363. * triggers coalescing into a block of larger size.
  364. *
  365. * -- wli
  366. */
  367. static inline void __free_one_page(struct page *page,
  368. struct zone *zone, unsigned int order)
  369. {
  370. unsigned long page_idx;
  371. int order_size = 1 << order;
  372. int migratetype = get_pageblock_migratetype(page);
  373. if (unlikely(PageCompound(page)))
  374. destroy_compound_page(page, order);
  375. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  376. VM_BUG_ON(page_idx & (order_size - 1));
  377. VM_BUG_ON(bad_range(zone, page));
  378. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  379. while (order < MAX_ORDER-1) {
  380. unsigned long combined_idx;
  381. struct page *buddy;
  382. buddy = __page_find_buddy(page, page_idx, order);
  383. if (!page_is_buddy(page, buddy, order))
  384. break;
  385. /* Our buddy is free, merge with it and move up one order. */
  386. list_del(&buddy->lru);
  387. zone->free_area[order].nr_free--;
  388. rmv_page_order(buddy);
  389. combined_idx = __find_combined_index(page_idx, order);
  390. page = page + (combined_idx - page_idx);
  391. page_idx = combined_idx;
  392. order++;
  393. }
  394. set_page_order(page, order);
  395. list_add(&page->lru,
  396. &zone->free_area[order].free_list[migratetype]);
  397. zone->free_area[order].nr_free++;
  398. }
  399. static inline int free_pages_check(struct page *page)
  400. {
  401. if (unlikely(page_mapcount(page) |
  402. (page->mapping != NULL) |
  403. (page_get_page_cgroup(page) != NULL) |
  404. (page_count(page) != 0) |
  405. (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
  406. bad_page(page);
  407. if (PageDirty(page))
  408. __ClearPageDirty(page);
  409. /*
  410. * For now, we report if PG_reserved was found set, but do not
  411. * clear it, and do not free the page. But we shall soon need
  412. * to do more, for when the ZERO_PAGE count wraps negative.
  413. */
  414. return PageReserved(page);
  415. }
  416. /*
  417. * Frees a list of pages.
  418. * Assumes all pages on list are in same zone, and of same order.
  419. * count is the number of pages to free.
  420. *
  421. * If the zone was previously in an "all pages pinned" state then look to
  422. * see if this freeing clears that state.
  423. *
  424. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  425. * pinned" detection logic.
  426. */
  427. static void free_pages_bulk(struct zone *zone, int count,
  428. struct list_head *list, int order)
  429. {
  430. spin_lock(&zone->lock);
  431. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  432. zone->pages_scanned = 0;
  433. while (count--) {
  434. struct page *page;
  435. VM_BUG_ON(list_empty(list));
  436. page = list_entry(list->prev, struct page, lru);
  437. /* have to delete it as __free_one_page list manipulates */
  438. list_del(&page->lru);
  439. __free_one_page(page, zone, order);
  440. }
  441. spin_unlock(&zone->lock);
  442. }
  443. static void free_one_page(struct zone *zone, struct page *page, int order)
  444. {
  445. spin_lock(&zone->lock);
  446. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  447. zone->pages_scanned = 0;
  448. __free_one_page(page, zone, order);
  449. spin_unlock(&zone->lock);
  450. }
  451. static void __free_pages_ok(struct page *page, unsigned int order)
  452. {
  453. unsigned long flags;
  454. int i;
  455. int reserved = 0;
  456. for (i = 0 ; i < (1 << order) ; ++i)
  457. reserved += free_pages_check(page + i);
  458. if (reserved)
  459. return;
  460. if (!PageHighMem(page)) {
  461. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  462. debug_check_no_obj_freed(page_address(page),
  463. PAGE_SIZE << order);
  464. }
  465. arch_free_page(page, order);
  466. kernel_map_pages(page, 1 << order, 0);
  467. local_irq_save(flags);
  468. __count_vm_events(PGFREE, 1 << order);
  469. free_one_page(page_zone(page), page, order);
  470. local_irq_restore(flags);
  471. }
  472. /*
  473. * permit the bootmem allocator to evade page validation on high-order frees
  474. */
  475. void __free_pages_bootmem(struct page *page, unsigned int order)
  476. {
  477. if (order == 0) {
  478. __ClearPageReserved(page);
  479. set_page_count(page, 0);
  480. set_page_refcounted(page);
  481. __free_page(page);
  482. } else {
  483. int loop;
  484. prefetchw(page);
  485. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  486. struct page *p = &page[loop];
  487. if (loop + 1 < BITS_PER_LONG)
  488. prefetchw(p + 1);
  489. __ClearPageReserved(p);
  490. set_page_count(p, 0);
  491. }
  492. set_page_refcounted(page);
  493. __free_pages(page, order);
  494. }
  495. }
  496. /*
  497. * The order of subdivision here is critical for the IO subsystem.
  498. * Please do not alter this order without good reasons and regression
  499. * testing. Specifically, as large blocks of memory are subdivided,
  500. * the order in which smaller blocks are delivered depends on the order
  501. * they're subdivided in this function. This is the primary factor
  502. * influencing the order in which pages are delivered to the IO
  503. * subsystem according to empirical testing, and this is also justified
  504. * by considering the behavior of a buddy system containing a single
  505. * large block of memory acted on by a series of small allocations.
  506. * This behavior is a critical factor in sglist merging's success.
  507. *
  508. * -- wli
  509. */
  510. static inline void expand(struct zone *zone, struct page *page,
  511. int low, int high, struct free_area *area,
  512. int migratetype)
  513. {
  514. unsigned long size = 1 << high;
  515. while (high > low) {
  516. area--;
  517. high--;
  518. size >>= 1;
  519. VM_BUG_ON(bad_range(zone, &page[size]));
  520. list_add(&page[size].lru, &area->free_list[migratetype]);
  521. area->nr_free++;
  522. set_page_order(&page[size], high);
  523. }
  524. }
  525. /*
  526. * This page is about to be returned from the page allocator
  527. */
  528. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  529. {
  530. if (unlikely(page_mapcount(page) |
  531. (page->mapping != NULL) |
  532. (page_get_page_cgroup(page) != NULL) |
  533. (page_count(page) != 0) |
  534. (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
  535. bad_page(page);
  536. /*
  537. * For now, we report if PG_reserved was found set, but do not
  538. * clear it, and do not allocate the page: as a safety net.
  539. */
  540. if (PageReserved(page))
  541. return 1;
  542. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
  543. 1 << PG_referenced | 1 << PG_arch_1 |
  544. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  545. set_page_private(page, 0);
  546. set_page_refcounted(page);
  547. arch_alloc_page(page, order);
  548. kernel_map_pages(page, 1 << order, 1);
  549. if (gfp_flags & __GFP_ZERO)
  550. prep_zero_page(page, order, gfp_flags);
  551. if (order && (gfp_flags & __GFP_COMP))
  552. prep_compound_page(page, order);
  553. return 0;
  554. }
  555. /*
  556. * Go through the free lists for the given migratetype and remove
  557. * the smallest available page from the freelists
  558. */
  559. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  560. int migratetype)
  561. {
  562. unsigned int current_order;
  563. struct free_area * area;
  564. struct page *page;
  565. /* Find a page of the appropriate size in the preferred list */
  566. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  567. area = &(zone->free_area[current_order]);
  568. if (list_empty(&area->free_list[migratetype]))
  569. continue;
  570. page = list_entry(area->free_list[migratetype].next,
  571. struct page, lru);
  572. list_del(&page->lru);
  573. rmv_page_order(page);
  574. area->nr_free--;
  575. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  576. expand(zone, page, order, current_order, area, migratetype);
  577. return page;
  578. }
  579. return NULL;
  580. }
  581. /*
  582. * This array describes the order lists are fallen back to when
  583. * the free lists for the desirable migrate type are depleted
  584. */
  585. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  586. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  587. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  588. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  589. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  590. };
  591. /*
  592. * Move the free pages in a range to the free lists of the requested type.
  593. * Note that start_page and end_pages are not aligned on a pageblock
  594. * boundary. If alignment is required, use move_freepages_block()
  595. */
  596. int move_freepages(struct zone *zone,
  597. struct page *start_page, struct page *end_page,
  598. int migratetype)
  599. {
  600. struct page *page;
  601. unsigned long order;
  602. int pages_moved = 0;
  603. #ifndef CONFIG_HOLES_IN_ZONE
  604. /*
  605. * page_zone is not safe to call in this context when
  606. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  607. * anyway as we check zone boundaries in move_freepages_block().
  608. * Remove at a later date when no bug reports exist related to
  609. * grouping pages by mobility
  610. */
  611. BUG_ON(page_zone(start_page) != page_zone(end_page));
  612. #endif
  613. for (page = start_page; page <= end_page;) {
  614. if (!pfn_valid_within(page_to_pfn(page))) {
  615. page++;
  616. continue;
  617. }
  618. if (!PageBuddy(page)) {
  619. page++;
  620. continue;
  621. }
  622. order = page_order(page);
  623. list_del(&page->lru);
  624. list_add(&page->lru,
  625. &zone->free_area[order].free_list[migratetype]);
  626. page += 1 << order;
  627. pages_moved += 1 << order;
  628. }
  629. return pages_moved;
  630. }
  631. int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
  632. {
  633. unsigned long start_pfn, end_pfn;
  634. struct page *start_page, *end_page;
  635. start_pfn = page_to_pfn(page);
  636. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  637. start_page = pfn_to_page(start_pfn);
  638. end_page = start_page + pageblock_nr_pages - 1;
  639. end_pfn = start_pfn + pageblock_nr_pages - 1;
  640. /* Do not cross zone boundaries */
  641. if (start_pfn < zone->zone_start_pfn)
  642. start_page = page;
  643. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  644. return 0;
  645. return move_freepages(zone, start_page, end_page, migratetype);
  646. }
  647. /* Remove an element from the buddy allocator from the fallback list */
  648. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  649. int start_migratetype)
  650. {
  651. struct free_area * area;
  652. int current_order;
  653. struct page *page;
  654. int migratetype, i;
  655. /* Find the largest possible block of pages in the other list */
  656. for (current_order = MAX_ORDER-1; current_order >= order;
  657. --current_order) {
  658. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  659. migratetype = fallbacks[start_migratetype][i];
  660. /* MIGRATE_RESERVE handled later if necessary */
  661. if (migratetype == MIGRATE_RESERVE)
  662. continue;
  663. area = &(zone->free_area[current_order]);
  664. if (list_empty(&area->free_list[migratetype]))
  665. continue;
  666. page = list_entry(area->free_list[migratetype].next,
  667. struct page, lru);
  668. area->nr_free--;
  669. /*
  670. * If breaking a large block of pages, move all free
  671. * pages to the preferred allocation list. If falling
  672. * back for a reclaimable kernel allocation, be more
  673. * agressive about taking ownership of free pages
  674. */
  675. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  676. start_migratetype == MIGRATE_RECLAIMABLE) {
  677. unsigned long pages;
  678. pages = move_freepages_block(zone, page,
  679. start_migratetype);
  680. /* Claim the whole block if over half of it is free */
  681. if (pages >= (1 << (pageblock_order-1)))
  682. set_pageblock_migratetype(page,
  683. start_migratetype);
  684. migratetype = start_migratetype;
  685. }
  686. /* Remove the page from the freelists */
  687. list_del(&page->lru);
  688. rmv_page_order(page);
  689. __mod_zone_page_state(zone, NR_FREE_PAGES,
  690. -(1UL << order));
  691. if (current_order == pageblock_order)
  692. set_pageblock_migratetype(page,
  693. start_migratetype);
  694. expand(zone, page, order, current_order, area, migratetype);
  695. return page;
  696. }
  697. }
  698. /* Use MIGRATE_RESERVE rather than fail an allocation */
  699. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  700. }
  701. /*
  702. * Do the hard work of removing an element from the buddy allocator.
  703. * Call me with the zone->lock already held.
  704. */
  705. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  706. int migratetype)
  707. {
  708. struct page *page;
  709. page = __rmqueue_smallest(zone, order, migratetype);
  710. if (unlikely(!page))
  711. page = __rmqueue_fallback(zone, order, migratetype);
  712. return page;
  713. }
  714. /*
  715. * Obtain a specified number of elements from the buddy allocator, all under
  716. * a single hold of the lock, for efficiency. Add them to the supplied list.
  717. * Returns the number of new pages which were placed at *list.
  718. */
  719. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  720. unsigned long count, struct list_head *list,
  721. int migratetype)
  722. {
  723. int i;
  724. spin_lock(&zone->lock);
  725. for (i = 0; i < count; ++i) {
  726. struct page *page = __rmqueue(zone, order, migratetype);
  727. if (unlikely(page == NULL))
  728. break;
  729. /*
  730. * Split buddy pages returned by expand() are received here
  731. * in physical page order. The page is added to the callers and
  732. * list and the list head then moves forward. From the callers
  733. * perspective, the linked list is ordered by page number in
  734. * some conditions. This is useful for IO devices that can
  735. * merge IO requests if the physical pages are ordered
  736. * properly.
  737. */
  738. list_add(&page->lru, list);
  739. set_page_private(page, migratetype);
  740. list = &page->lru;
  741. }
  742. spin_unlock(&zone->lock);
  743. return i;
  744. }
  745. #ifdef CONFIG_NUMA
  746. /*
  747. * Called from the vmstat counter updater to drain pagesets of this
  748. * currently executing processor on remote nodes after they have
  749. * expired.
  750. *
  751. * Note that this function must be called with the thread pinned to
  752. * a single processor.
  753. */
  754. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  755. {
  756. unsigned long flags;
  757. int to_drain;
  758. local_irq_save(flags);
  759. if (pcp->count >= pcp->batch)
  760. to_drain = pcp->batch;
  761. else
  762. to_drain = pcp->count;
  763. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  764. pcp->count -= to_drain;
  765. local_irq_restore(flags);
  766. }
  767. #endif
  768. /*
  769. * Drain pages of the indicated processor.
  770. *
  771. * The processor must either be the current processor and the
  772. * thread pinned to the current processor or a processor that
  773. * is not online.
  774. */
  775. static void drain_pages(unsigned int cpu)
  776. {
  777. unsigned long flags;
  778. struct zone *zone;
  779. for_each_zone(zone) {
  780. struct per_cpu_pageset *pset;
  781. struct per_cpu_pages *pcp;
  782. if (!populated_zone(zone))
  783. continue;
  784. pset = zone_pcp(zone, cpu);
  785. pcp = &pset->pcp;
  786. local_irq_save(flags);
  787. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  788. pcp->count = 0;
  789. local_irq_restore(flags);
  790. }
  791. }
  792. /*
  793. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  794. */
  795. void drain_local_pages(void *arg)
  796. {
  797. drain_pages(smp_processor_id());
  798. }
  799. /*
  800. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  801. */
  802. void drain_all_pages(void)
  803. {
  804. on_each_cpu(drain_local_pages, NULL, 1);
  805. }
  806. #ifdef CONFIG_HIBERNATION
  807. void mark_free_pages(struct zone *zone)
  808. {
  809. unsigned long pfn, max_zone_pfn;
  810. unsigned long flags;
  811. int order, t;
  812. struct list_head *curr;
  813. if (!zone->spanned_pages)
  814. return;
  815. spin_lock_irqsave(&zone->lock, flags);
  816. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  817. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  818. if (pfn_valid(pfn)) {
  819. struct page *page = pfn_to_page(pfn);
  820. if (!swsusp_page_is_forbidden(page))
  821. swsusp_unset_page_free(page);
  822. }
  823. for_each_migratetype_order(order, t) {
  824. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  825. unsigned long i;
  826. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  827. for (i = 0; i < (1UL << order); i++)
  828. swsusp_set_page_free(pfn_to_page(pfn + i));
  829. }
  830. }
  831. spin_unlock_irqrestore(&zone->lock, flags);
  832. }
  833. #endif /* CONFIG_PM */
  834. /*
  835. * Free a 0-order page
  836. */
  837. static void free_hot_cold_page(struct page *page, int cold)
  838. {
  839. struct zone *zone = page_zone(page);
  840. struct per_cpu_pages *pcp;
  841. unsigned long flags;
  842. if (PageAnon(page))
  843. page->mapping = NULL;
  844. if (free_pages_check(page))
  845. return;
  846. if (!PageHighMem(page)) {
  847. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  848. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  849. }
  850. arch_free_page(page, 0);
  851. kernel_map_pages(page, 1, 0);
  852. pcp = &zone_pcp(zone, get_cpu())->pcp;
  853. local_irq_save(flags);
  854. __count_vm_event(PGFREE);
  855. if (cold)
  856. list_add_tail(&page->lru, &pcp->list);
  857. else
  858. list_add(&page->lru, &pcp->list);
  859. set_page_private(page, get_pageblock_migratetype(page));
  860. pcp->count++;
  861. if (pcp->count >= pcp->high) {
  862. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  863. pcp->count -= pcp->batch;
  864. }
  865. local_irq_restore(flags);
  866. put_cpu();
  867. }
  868. void free_hot_page(struct page *page)
  869. {
  870. free_hot_cold_page(page, 0);
  871. }
  872. void free_cold_page(struct page *page)
  873. {
  874. free_hot_cold_page(page, 1);
  875. }
  876. /*
  877. * split_page takes a non-compound higher-order page, and splits it into
  878. * n (1<<order) sub-pages: page[0..n]
  879. * Each sub-page must be freed individually.
  880. *
  881. * Note: this is probably too low level an operation for use in drivers.
  882. * Please consult with lkml before using this in your driver.
  883. */
  884. void split_page(struct page *page, unsigned int order)
  885. {
  886. int i;
  887. VM_BUG_ON(PageCompound(page));
  888. VM_BUG_ON(!page_count(page));
  889. for (i = 1; i < (1 << order); i++)
  890. set_page_refcounted(page + i);
  891. }
  892. /*
  893. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  894. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  895. * or two.
  896. */
  897. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  898. struct zone *zone, int order, gfp_t gfp_flags)
  899. {
  900. unsigned long flags;
  901. struct page *page;
  902. int cold = !!(gfp_flags & __GFP_COLD);
  903. int cpu;
  904. int migratetype = allocflags_to_migratetype(gfp_flags);
  905. again:
  906. cpu = get_cpu();
  907. if (likely(order == 0)) {
  908. struct per_cpu_pages *pcp;
  909. pcp = &zone_pcp(zone, cpu)->pcp;
  910. local_irq_save(flags);
  911. if (!pcp->count) {
  912. pcp->count = rmqueue_bulk(zone, 0,
  913. pcp->batch, &pcp->list, migratetype);
  914. if (unlikely(!pcp->count))
  915. goto failed;
  916. }
  917. /* Find a page of the appropriate migrate type */
  918. if (cold) {
  919. list_for_each_entry_reverse(page, &pcp->list, lru)
  920. if (page_private(page) == migratetype)
  921. break;
  922. } else {
  923. list_for_each_entry(page, &pcp->list, lru)
  924. if (page_private(page) == migratetype)
  925. break;
  926. }
  927. /* Allocate more to the pcp list if necessary */
  928. if (unlikely(&page->lru == &pcp->list)) {
  929. pcp->count += rmqueue_bulk(zone, 0,
  930. pcp->batch, &pcp->list, migratetype);
  931. page = list_entry(pcp->list.next, struct page, lru);
  932. }
  933. list_del(&page->lru);
  934. pcp->count--;
  935. } else {
  936. spin_lock_irqsave(&zone->lock, flags);
  937. page = __rmqueue(zone, order, migratetype);
  938. spin_unlock(&zone->lock);
  939. if (!page)
  940. goto failed;
  941. }
  942. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  943. zone_statistics(preferred_zone, zone);
  944. local_irq_restore(flags);
  945. put_cpu();
  946. VM_BUG_ON(bad_range(zone, page));
  947. if (prep_new_page(page, order, gfp_flags))
  948. goto again;
  949. return page;
  950. failed:
  951. local_irq_restore(flags);
  952. put_cpu();
  953. return NULL;
  954. }
  955. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  956. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  957. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  958. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  959. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  960. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  961. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  962. #ifdef CONFIG_FAIL_PAGE_ALLOC
  963. static struct fail_page_alloc_attr {
  964. struct fault_attr attr;
  965. u32 ignore_gfp_highmem;
  966. u32 ignore_gfp_wait;
  967. u32 min_order;
  968. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  969. struct dentry *ignore_gfp_highmem_file;
  970. struct dentry *ignore_gfp_wait_file;
  971. struct dentry *min_order_file;
  972. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  973. } fail_page_alloc = {
  974. .attr = FAULT_ATTR_INITIALIZER,
  975. .ignore_gfp_wait = 1,
  976. .ignore_gfp_highmem = 1,
  977. .min_order = 1,
  978. };
  979. static int __init setup_fail_page_alloc(char *str)
  980. {
  981. return setup_fault_attr(&fail_page_alloc.attr, str);
  982. }
  983. __setup("fail_page_alloc=", setup_fail_page_alloc);
  984. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  985. {
  986. if (order < fail_page_alloc.min_order)
  987. return 0;
  988. if (gfp_mask & __GFP_NOFAIL)
  989. return 0;
  990. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  991. return 0;
  992. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  993. return 0;
  994. return should_fail(&fail_page_alloc.attr, 1 << order);
  995. }
  996. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  997. static int __init fail_page_alloc_debugfs(void)
  998. {
  999. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1000. struct dentry *dir;
  1001. int err;
  1002. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1003. "fail_page_alloc");
  1004. if (err)
  1005. return err;
  1006. dir = fail_page_alloc.attr.dentries.dir;
  1007. fail_page_alloc.ignore_gfp_wait_file =
  1008. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1009. &fail_page_alloc.ignore_gfp_wait);
  1010. fail_page_alloc.ignore_gfp_highmem_file =
  1011. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1012. &fail_page_alloc.ignore_gfp_highmem);
  1013. fail_page_alloc.min_order_file =
  1014. debugfs_create_u32("min-order", mode, dir,
  1015. &fail_page_alloc.min_order);
  1016. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1017. !fail_page_alloc.ignore_gfp_highmem_file ||
  1018. !fail_page_alloc.min_order_file) {
  1019. err = -ENOMEM;
  1020. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1021. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1022. debugfs_remove(fail_page_alloc.min_order_file);
  1023. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1024. }
  1025. return err;
  1026. }
  1027. late_initcall(fail_page_alloc_debugfs);
  1028. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1029. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1030. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1031. {
  1032. return 0;
  1033. }
  1034. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1035. /*
  1036. * Return 1 if free pages are above 'mark'. This takes into account the order
  1037. * of the allocation.
  1038. */
  1039. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1040. int classzone_idx, int alloc_flags)
  1041. {
  1042. /* free_pages my go negative - that's OK */
  1043. long min = mark;
  1044. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1045. int o;
  1046. if (alloc_flags & ALLOC_HIGH)
  1047. min -= min / 2;
  1048. if (alloc_flags & ALLOC_HARDER)
  1049. min -= min / 4;
  1050. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1051. return 0;
  1052. for (o = 0; o < order; o++) {
  1053. /* At the next order, this order's pages become unavailable */
  1054. free_pages -= z->free_area[o].nr_free << o;
  1055. /* Require fewer higher order pages to be free */
  1056. min >>= 1;
  1057. if (free_pages <= min)
  1058. return 0;
  1059. }
  1060. return 1;
  1061. }
  1062. #ifdef CONFIG_NUMA
  1063. /*
  1064. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1065. * skip over zones that are not allowed by the cpuset, or that have
  1066. * been recently (in last second) found to be nearly full. See further
  1067. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1068. * that have to skip over a lot of full or unallowed zones.
  1069. *
  1070. * If the zonelist cache is present in the passed in zonelist, then
  1071. * returns a pointer to the allowed node mask (either the current
  1072. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1073. *
  1074. * If the zonelist cache is not available for this zonelist, does
  1075. * nothing and returns NULL.
  1076. *
  1077. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1078. * a second since last zap'd) then we zap it out (clear its bits.)
  1079. *
  1080. * We hold off even calling zlc_setup, until after we've checked the
  1081. * first zone in the zonelist, on the theory that most allocations will
  1082. * be satisfied from that first zone, so best to examine that zone as
  1083. * quickly as we can.
  1084. */
  1085. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1086. {
  1087. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1088. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1089. zlc = zonelist->zlcache_ptr;
  1090. if (!zlc)
  1091. return NULL;
  1092. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1093. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1094. zlc->last_full_zap = jiffies;
  1095. }
  1096. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1097. &cpuset_current_mems_allowed :
  1098. &node_states[N_HIGH_MEMORY];
  1099. return allowednodes;
  1100. }
  1101. /*
  1102. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1103. * if it is worth looking at further for free memory:
  1104. * 1) Check that the zone isn't thought to be full (doesn't have its
  1105. * bit set in the zonelist_cache fullzones BITMAP).
  1106. * 2) Check that the zones node (obtained from the zonelist_cache
  1107. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1108. * Return true (non-zero) if zone is worth looking at further, or
  1109. * else return false (zero) if it is not.
  1110. *
  1111. * This check -ignores- the distinction between various watermarks,
  1112. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1113. * found to be full for any variation of these watermarks, it will
  1114. * be considered full for up to one second by all requests, unless
  1115. * we are so low on memory on all allowed nodes that we are forced
  1116. * into the second scan of the zonelist.
  1117. *
  1118. * In the second scan we ignore this zonelist cache and exactly
  1119. * apply the watermarks to all zones, even it is slower to do so.
  1120. * We are low on memory in the second scan, and should leave no stone
  1121. * unturned looking for a free page.
  1122. */
  1123. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1124. nodemask_t *allowednodes)
  1125. {
  1126. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1127. int i; /* index of *z in zonelist zones */
  1128. int n; /* node that zone *z is on */
  1129. zlc = zonelist->zlcache_ptr;
  1130. if (!zlc)
  1131. return 1;
  1132. i = z - zonelist->_zonerefs;
  1133. n = zlc->z_to_n[i];
  1134. /* This zone is worth trying if it is allowed but not full */
  1135. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1136. }
  1137. /*
  1138. * Given 'z' scanning a zonelist, set the corresponding bit in
  1139. * zlc->fullzones, so that subsequent attempts to allocate a page
  1140. * from that zone don't waste time re-examining it.
  1141. */
  1142. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1143. {
  1144. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1145. int i; /* index of *z in zonelist zones */
  1146. zlc = zonelist->zlcache_ptr;
  1147. if (!zlc)
  1148. return;
  1149. i = z - zonelist->_zonerefs;
  1150. set_bit(i, zlc->fullzones);
  1151. }
  1152. #else /* CONFIG_NUMA */
  1153. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1154. {
  1155. return NULL;
  1156. }
  1157. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1158. nodemask_t *allowednodes)
  1159. {
  1160. return 1;
  1161. }
  1162. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1163. {
  1164. }
  1165. #endif /* CONFIG_NUMA */
  1166. /*
  1167. * get_page_from_freelist goes through the zonelist trying to allocate
  1168. * a page.
  1169. */
  1170. static struct page *
  1171. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1172. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1173. {
  1174. struct zoneref *z;
  1175. struct page *page = NULL;
  1176. int classzone_idx;
  1177. struct zone *zone, *preferred_zone;
  1178. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1179. int zlc_active = 0; /* set if using zonelist_cache */
  1180. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1181. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1182. &preferred_zone);
  1183. if (!preferred_zone)
  1184. return NULL;
  1185. classzone_idx = zone_idx(preferred_zone);
  1186. zonelist_scan:
  1187. /*
  1188. * Scan zonelist, looking for a zone with enough free.
  1189. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1190. */
  1191. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1192. high_zoneidx, nodemask) {
  1193. if (NUMA_BUILD && zlc_active &&
  1194. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1195. continue;
  1196. if ((alloc_flags & ALLOC_CPUSET) &&
  1197. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1198. goto try_next_zone;
  1199. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1200. unsigned long mark;
  1201. if (alloc_flags & ALLOC_WMARK_MIN)
  1202. mark = zone->pages_min;
  1203. else if (alloc_flags & ALLOC_WMARK_LOW)
  1204. mark = zone->pages_low;
  1205. else
  1206. mark = zone->pages_high;
  1207. if (!zone_watermark_ok(zone, order, mark,
  1208. classzone_idx, alloc_flags)) {
  1209. if (!zone_reclaim_mode ||
  1210. !zone_reclaim(zone, gfp_mask, order))
  1211. goto this_zone_full;
  1212. }
  1213. }
  1214. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1215. if (page)
  1216. break;
  1217. this_zone_full:
  1218. if (NUMA_BUILD)
  1219. zlc_mark_zone_full(zonelist, z);
  1220. try_next_zone:
  1221. if (NUMA_BUILD && !did_zlc_setup) {
  1222. /* we do zlc_setup after the first zone is tried */
  1223. allowednodes = zlc_setup(zonelist, alloc_flags);
  1224. zlc_active = 1;
  1225. did_zlc_setup = 1;
  1226. }
  1227. }
  1228. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1229. /* Disable zlc cache for second zonelist scan */
  1230. zlc_active = 0;
  1231. goto zonelist_scan;
  1232. }
  1233. return page;
  1234. }
  1235. /*
  1236. * This is the 'heart' of the zoned buddy allocator.
  1237. */
  1238. struct page *
  1239. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1240. struct zonelist *zonelist, nodemask_t *nodemask)
  1241. {
  1242. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1243. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1244. struct zoneref *z;
  1245. struct zone *zone;
  1246. struct page *page;
  1247. struct reclaim_state reclaim_state;
  1248. struct task_struct *p = current;
  1249. int do_retry;
  1250. int alloc_flags;
  1251. unsigned long did_some_progress;
  1252. unsigned long pages_reclaimed = 0;
  1253. might_sleep_if(wait);
  1254. if (should_fail_alloc_page(gfp_mask, order))
  1255. return NULL;
  1256. restart:
  1257. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1258. if (unlikely(!z->zone)) {
  1259. /*
  1260. * Happens if we have an empty zonelist as a result of
  1261. * GFP_THISNODE being used on a memoryless node
  1262. */
  1263. return NULL;
  1264. }
  1265. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1266. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1267. if (page)
  1268. goto got_pg;
  1269. /*
  1270. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1271. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1272. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1273. * using a larger set of nodes after it has established that the
  1274. * allowed per node queues are empty and that nodes are
  1275. * over allocated.
  1276. */
  1277. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1278. goto nopage;
  1279. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1280. wakeup_kswapd(zone, order);
  1281. /*
  1282. * OK, we're below the kswapd watermark and have kicked background
  1283. * reclaim. Now things get more complex, so set up alloc_flags according
  1284. * to how we want to proceed.
  1285. *
  1286. * The caller may dip into page reserves a bit more if the caller
  1287. * cannot run direct reclaim, or if the caller has realtime scheduling
  1288. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1289. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1290. */
  1291. alloc_flags = ALLOC_WMARK_MIN;
  1292. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1293. alloc_flags |= ALLOC_HARDER;
  1294. if (gfp_mask & __GFP_HIGH)
  1295. alloc_flags |= ALLOC_HIGH;
  1296. if (wait)
  1297. alloc_flags |= ALLOC_CPUSET;
  1298. /*
  1299. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1300. * coming from realtime tasks go deeper into reserves.
  1301. *
  1302. * This is the last chance, in general, before the goto nopage.
  1303. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1304. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1305. */
  1306. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1307. high_zoneidx, alloc_flags);
  1308. if (page)
  1309. goto got_pg;
  1310. /* This allocation should allow future memory freeing. */
  1311. rebalance:
  1312. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1313. && !in_interrupt()) {
  1314. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1315. nofail_alloc:
  1316. /* go through the zonelist yet again, ignoring mins */
  1317. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1318. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1319. if (page)
  1320. goto got_pg;
  1321. if (gfp_mask & __GFP_NOFAIL) {
  1322. congestion_wait(WRITE, HZ/50);
  1323. goto nofail_alloc;
  1324. }
  1325. }
  1326. goto nopage;
  1327. }
  1328. /* Atomic allocations - we can't balance anything */
  1329. if (!wait)
  1330. goto nopage;
  1331. cond_resched();
  1332. /* We now go into synchronous reclaim */
  1333. cpuset_memory_pressure_bump();
  1334. p->flags |= PF_MEMALLOC;
  1335. reclaim_state.reclaimed_slab = 0;
  1336. p->reclaim_state = &reclaim_state;
  1337. did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
  1338. p->reclaim_state = NULL;
  1339. p->flags &= ~PF_MEMALLOC;
  1340. cond_resched();
  1341. if (order != 0)
  1342. drain_all_pages();
  1343. if (likely(did_some_progress)) {
  1344. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1345. zonelist, high_zoneidx, alloc_flags);
  1346. if (page)
  1347. goto got_pg;
  1348. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1349. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1350. schedule_timeout_uninterruptible(1);
  1351. goto restart;
  1352. }
  1353. /*
  1354. * Go through the zonelist yet one more time, keep
  1355. * very high watermark here, this is only to catch
  1356. * a parallel oom killing, we must fail if we're still
  1357. * under heavy pressure.
  1358. */
  1359. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1360. order, zonelist, high_zoneidx,
  1361. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1362. if (page) {
  1363. clear_zonelist_oom(zonelist, gfp_mask);
  1364. goto got_pg;
  1365. }
  1366. /* The OOM killer will not help higher order allocs so fail */
  1367. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1368. clear_zonelist_oom(zonelist, gfp_mask);
  1369. goto nopage;
  1370. }
  1371. out_of_memory(zonelist, gfp_mask, order);
  1372. clear_zonelist_oom(zonelist, gfp_mask);
  1373. goto restart;
  1374. }
  1375. /*
  1376. * Don't let big-order allocations loop unless the caller explicitly
  1377. * requests that. Wait for some write requests to complete then retry.
  1378. *
  1379. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1380. * means __GFP_NOFAIL, but that may not be true in other
  1381. * implementations.
  1382. *
  1383. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1384. * specified, then we retry until we no longer reclaim any pages
  1385. * (above), or we've reclaimed an order of pages at least as
  1386. * large as the allocation's order. In both cases, if the
  1387. * allocation still fails, we stop retrying.
  1388. */
  1389. pages_reclaimed += did_some_progress;
  1390. do_retry = 0;
  1391. if (!(gfp_mask & __GFP_NORETRY)) {
  1392. if (order <= PAGE_ALLOC_COSTLY_ORDER) {
  1393. do_retry = 1;
  1394. } else {
  1395. if (gfp_mask & __GFP_REPEAT &&
  1396. pages_reclaimed < (1 << order))
  1397. do_retry = 1;
  1398. }
  1399. if (gfp_mask & __GFP_NOFAIL)
  1400. do_retry = 1;
  1401. }
  1402. if (do_retry) {
  1403. congestion_wait(WRITE, HZ/50);
  1404. goto rebalance;
  1405. }
  1406. nopage:
  1407. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1408. printk(KERN_WARNING "%s: page allocation failure."
  1409. " order:%d, mode:0x%x\n",
  1410. p->comm, order, gfp_mask);
  1411. dump_stack();
  1412. show_mem();
  1413. }
  1414. got_pg:
  1415. return page;
  1416. }
  1417. EXPORT_SYMBOL(__alloc_pages_internal);
  1418. /*
  1419. * Common helper functions.
  1420. */
  1421. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1422. {
  1423. struct page * page;
  1424. page = alloc_pages(gfp_mask, order);
  1425. if (!page)
  1426. return 0;
  1427. return (unsigned long) page_address(page);
  1428. }
  1429. EXPORT_SYMBOL(__get_free_pages);
  1430. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1431. {
  1432. struct page * page;
  1433. /*
  1434. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1435. * a highmem page
  1436. */
  1437. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1438. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1439. if (page)
  1440. return (unsigned long) page_address(page);
  1441. return 0;
  1442. }
  1443. EXPORT_SYMBOL(get_zeroed_page);
  1444. void __pagevec_free(struct pagevec *pvec)
  1445. {
  1446. int i = pagevec_count(pvec);
  1447. while (--i >= 0)
  1448. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1449. }
  1450. void __free_pages(struct page *page, unsigned int order)
  1451. {
  1452. if (put_page_testzero(page)) {
  1453. if (order == 0)
  1454. free_hot_page(page);
  1455. else
  1456. __free_pages_ok(page, order);
  1457. }
  1458. }
  1459. EXPORT_SYMBOL(__free_pages);
  1460. void free_pages(unsigned long addr, unsigned int order)
  1461. {
  1462. if (addr != 0) {
  1463. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1464. __free_pages(virt_to_page((void *)addr), order);
  1465. }
  1466. }
  1467. EXPORT_SYMBOL(free_pages);
  1468. /**
  1469. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1470. * @size: the number of bytes to allocate
  1471. * @gfp_mask: GFP flags for the allocation
  1472. *
  1473. * This function is similar to alloc_pages(), except that it allocates the
  1474. * minimum number of pages to satisfy the request. alloc_pages() can only
  1475. * allocate memory in power-of-two pages.
  1476. *
  1477. * This function is also limited by MAX_ORDER.
  1478. *
  1479. * Memory allocated by this function must be released by free_pages_exact().
  1480. */
  1481. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1482. {
  1483. unsigned int order = get_order(size);
  1484. unsigned long addr;
  1485. addr = __get_free_pages(gfp_mask, order);
  1486. if (addr) {
  1487. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1488. unsigned long used = addr + PAGE_ALIGN(size);
  1489. split_page(virt_to_page(addr), order);
  1490. while (used < alloc_end) {
  1491. free_page(used);
  1492. used += PAGE_SIZE;
  1493. }
  1494. }
  1495. return (void *)addr;
  1496. }
  1497. EXPORT_SYMBOL(alloc_pages_exact);
  1498. /**
  1499. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1500. * @virt: the value returned by alloc_pages_exact.
  1501. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1502. *
  1503. * Release the memory allocated by a previous call to alloc_pages_exact.
  1504. */
  1505. void free_pages_exact(void *virt, size_t size)
  1506. {
  1507. unsigned long addr = (unsigned long)virt;
  1508. unsigned long end = addr + PAGE_ALIGN(size);
  1509. while (addr < end) {
  1510. free_page(addr);
  1511. addr += PAGE_SIZE;
  1512. }
  1513. }
  1514. EXPORT_SYMBOL(free_pages_exact);
  1515. static unsigned int nr_free_zone_pages(int offset)
  1516. {
  1517. struct zoneref *z;
  1518. struct zone *zone;
  1519. /* Just pick one node, since fallback list is circular */
  1520. unsigned int sum = 0;
  1521. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1522. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1523. unsigned long size = zone->present_pages;
  1524. unsigned long high = zone->pages_high;
  1525. if (size > high)
  1526. sum += size - high;
  1527. }
  1528. return sum;
  1529. }
  1530. /*
  1531. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1532. */
  1533. unsigned int nr_free_buffer_pages(void)
  1534. {
  1535. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1536. }
  1537. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1538. /*
  1539. * Amount of free RAM allocatable within all zones
  1540. */
  1541. unsigned int nr_free_pagecache_pages(void)
  1542. {
  1543. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1544. }
  1545. static inline void show_node(struct zone *zone)
  1546. {
  1547. if (NUMA_BUILD)
  1548. printk("Node %d ", zone_to_nid(zone));
  1549. }
  1550. void si_meminfo(struct sysinfo *val)
  1551. {
  1552. val->totalram = totalram_pages;
  1553. val->sharedram = 0;
  1554. val->freeram = global_page_state(NR_FREE_PAGES);
  1555. val->bufferram = nr_blockdev_pages();
  1556. val->totalhigh = totalhigh_pages;
  1557. val->freehigh = nr_free_highpages();
  1558. val->mem_unit = PAGE_SIZE;
  1559. }
  1560. EXPORT_SYMBOL(si_meminfo);
  1561. #ifdef CONFIG_NUMA
  1562. void si_meminfo_node(struct sysinfo *val, int nid)
  1563. {
  1564. pg_data_t *pgdat = NODE_DATA(nid);
  1565. val->totalram = pgdat->node_present_pages;
  1566. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1567. #ifdef CONFIG_HIGHMEM
  1568. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1569. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1570. NR_FREE_PAGES);
  1571. #else
  1572. val->totalhigh = 0;
  1573. val->freehigh = 0;
  1574. #endif
  1575. val->mem_unit = PAGE_SIZE;
  1576. }
  1577. #endif
  1578. #define K(x) ((x) << (PAGE_SHIFT-10))
  1579. /*
  1580. * Show free area list (used inside shift_scroll-lock stuff)
  1581. * We also calculate the percentage fragmentation. We do this by counting the
  1582. * memory on each free list with the exception of the first item on the list.
  1583. */
  1584. void show_free_areas(void)
  1585. {
  1586. int cpu;
  1587. struct zone *zone;
  1588. for_each_zone(zone) {
  1589. if (!populated_zone(zone))
  1590. continue;
  1591. show_node(zone);
  1592. printk("%s per-cpu:\n", zone->name);
  1593. for_each_online_cpu(cpu) {
  1594. struct per_cpu_pageset *pageset;
  1595. pageset = zone_pcp(zone, cpu);
  1596. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1597. cpu, pageset->pcp.high,
  1598. pageset->pcp.batch, pageset->pcp.count);
  1599. }
  1600. }
  1601. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1602. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1603. global_page_state(NR_ACTIVE),
  1604. global_page_state(NR_INACTIVE),
  1605. global_page_state(NR_FILE_DIRTY),
  1606. global_page_state(NR_WRITEBACK),
  1607. global_page_state(NR_UNSTABLE_NFS),
  1608. global_page_state(NR_FREE_PAGES),
  1609. global_page_state(NR_SLAB_RECLAIMABLE) +
  1610. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1611. global_page_state(NR_FILE_MAPPED),
  1612. global_page_state(NR_PAGETABLE),
  1613. global_page_state(NR_BOUNCE));
  1614. for_each_zone(zone) {
  1615. int i;
  1616. if (!populated_zone(zone))
  1617. continue;
  1618. show_node(zone);
  1619. printk("%s"
  1620. " free:%lukB"
  1621. " min:%lukB"
  1622. " low:%lukB"
  1623. " high:%lukB"
  1624. " active:%lukB"
  1625. " inactive:%lukB"
  1626. " present:%lukB"
  1627. " pages_scanned:%lu"
  1628. " all_unreclaimable? %s"
  1629. "\n",
  1630. zone->name,
  1631. K(zone_page_state(zone, NR_FREE_PAGES)),
  1632. K(zone->pages_min),
  1633. K(zone->pages_low),
  1634. K(zone->pages_high),
  1635. K(zone_page_state(zone, NR_ACTIVE)),
  1636. K(zone_page_state(zone, NR_INACTIVE)),
  1637. K(zone->present_pages),
  1638. zone->pages_scanned,
  1639. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1640. );
  1641. printk("lowmem_reserve[]:");
  1642. for (i = 0; i < MAX_NR_ZONES; i++)
  1643. printk(" %lu", zone->lowmem_reserve[i]);
  1644. printk("\n");
  1645. }
  1646. for_each_zone(zone) {
  1647. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1648. if (!populated_zone(zone))
  1649. continue;
  1650. show_node(zone);
  1651. printk("%s: ", zone->name);
  1652. spin_lock_irqsave(&zone->lock, flags);
  1653. for (order = 0; order < MAX_ORDER; order++) {
  1654. nr[order] = zone->free_area[order].nr_free;
  1655. total += nr[order] << order;
  1656. }
  1657. spin_unlock_irqrestore(&zone->lock, flags);
  1658. for (order = 0; order < MAX_ORDER; order++)
  1659. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1660. printk("= %lukB\n", K(total));
  1661. }
  1662. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1663. show_swap_cache_info();
  1664. }
  1665. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1666. {
  1667. zoneref->zone = zone;
  1668. zoneref->zone_idx = zone_idx(zone);
  1669. }
  1670. /*
  1671. * Builds allocation fallback zone lists.
  1672. *
  1673. * Add all populated zones of a node to the zonelist.
  1674. */
  1675. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1676. int nr_zones, enum zone_type zone_type)
  1677. {
  1678. struct zone *zone;
  1679. BUG_ON(zone_type >= MAX_NR_ZONES);
  1680. zone_type++;
  1681. do {
  1682. zone_type--;
  1683. zone = pgdat->node_zones + zone_type;
  1684. if (populated_zone(zone)) {
  1685. zoneref_set_zone(zone,
  1686. &zonelist->_zonerefs[nr_zones++]);
  1687. check_highest_zone(zone_type);
  1688. }
  1689. } while (zone_type);
  1690. return nr_zones;
  1691. }
  1692. /*
  1693. * zonelist_order:
  1694. * 0 = automatic detection of better ordering.
  1695. * 1 = order by ([node] distance, -zonetype)
  1696. * 2 = order by (-zonetype, [node] distance)
  1697. *
  1698. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1699. * the same zonelist. So only NUMA can configure this param.
  1700. */
  1701. #define ZONELIST_ORDER_DEFAULT 0
  1702. #define ZONELIST_ORDER_NODE 1
  1703. #define ZONELIST_ORDER_ZONE 2
  1704. /* zonelist order in the kernel.
  1705. * set_zonelist_order() will set this to NODE or ZONE.
  1706. */
  1707. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1708. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1709. #ifdef CONFIG_NUMA
  1710. /* The value user specified ....changed by config */
  1711. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1712. /* string for sysctl */
  1713. #define NUMA_ZONELIST_ORDER_LEN 16
  1714. char numa_zonelist_order[16] = "default";
  1715. /*
  1716. * interface for configure zonelist ordering.
  1717. * command line option "numa_zonelist_order"
  1718. * = "[dD]efault - default, automatic configuration.
  1719. * = "[nN]ode - order by node locality, then by zone within node
  1720. * = "[zZ]one - order by zone, then by locality within zone
  1721. */
  1722. static int __parse_numa_zonelist_order(char *s)
  1723. {
  1724. if (*s == 'd' || *s == 'D') {
  1725. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1726. } else if (*s == 'n' || *s == 'N') {
  1727. user_zonelist_order = ZONELIST_ORDER_NODE;
  1728. } else if (*s == 'z' || *s == 'Z') {
  1729. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1730. } else {
  1731. printk(KERN_WARNING
  1732. "Ignoring invalid numa_zonelist_order value: "
  1733. "%s\n", s);
  1734. return -EINVAL;
  1735. }
  1736. return 0;
  1737. }
  1738. static __init int setup_numa_zonelist_order(char *s)
  1739. {
  1740. if (s)
  1741. return __parse_numa_zonelist_order(s);
  1742. return 0;
  1743. }
  1744. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1745. /*
  1746. * sysctl handler for numa_zonelist_order
  1747. */
  1748. int numa_zonelist_order_handler(ctl_table *table, int write,
  1749. struct file *file, void __user *buffer, size_t *length,
  1750. loff_t *ppos)
  1751. {
  1752. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1753. int ret;
  1754. if (write)
  1755. strncpy(saved_string, (char*)table->data,
  1756. NUMA_ZONELIST_ORDER_LEN);
  1757. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1758. if (ret)
  1759. return ret;
  1760. if (write) {
  1761. int oldval = user_zonelist_order;
  1762. if (__parse_numa_zonelist_order((char*)table->data)) {
  1763. /*
  1764. * bogus value. restore saved string
  1765. */
  1766. strncpy((char*)table->data, saved_string,
  1767. NUMA_ZONELIST_ORDER_LEN);
  1768. user_zonelist_order = oldval;
  1769. } else if (oldval != user_zonelist_order)
  1770. build_all_zonelists();
  1771. }
  1772. return 0;
  1773. }
  1774. #define MAX_NODE_LOAD (num_online_nodes())
  1775. static int node_load[MAX_NUMNODES];
  1776. /**
  1777. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1778. * @node: node whose fallback list we're appending
  1779. * @used_node_mask: nodemask_t of already used nodes
  1780. *
  1781. * We use a number of factors to determine which is the next node that should
  1782. * appear on a given node's fallback list. The node should not have appeared
  1783. * already in @node's fallback list, and it should be the next closest node
  1784. * according to the distance array (which contains arbitrary distance values
  1785. * from each node to each node in the system), and should also prefer nodes
  1786. * with no CPUs, since presumably they'll have very little allocation pressure
  1787. * on them otherwise.
  1788. * It returns -1 if no node is found.
  1789. */
  1790. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1791. {
  1792. int n, val;
  1793. int min_val = INT_MAX;
  1794. int best_node = -1;
  1795. node_to_cpumask_ptr(tmp, 0);
  1796. /* Use the local node if we haven't already */
  1797. if (!node_isset(node, *used_node_mask)) {
  1798. node_set(node, *used_node_mask);
  1799. return node;
  1800. }
  1801. for_each_node_state(n, N_HIGH_MEMORY) {
  1802. /* Don't want a node to appear more than once */
  1803. if (node_isset(n, *used_node_mask))
  1804. continue;
  1805. /* Use the distance array to find the distance */
  1806. val = node_distance(node, n);
  1807. /* Penalize nodes under us ("prefer the next node") */
  1808. val += (n < node);
  1809. /* Give preference to headless and unused nodes */
  1810. node_to_cpumask_ptr_next(tmp, n);
  1811. if (!cpus_empty(*tmp))
  1812. val += PENALTY_FOR_NODE_WITH_CPUS;
  1813. /* Slight preference for less loaded node */
  1814. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1815. val += node_load[n];
  1816. if (val < min_val) {
  1817. min_val = val;
  1818. best_node = n;
  1819. }
  1820. }
  1821. if (best_node >= 0)
  1822. node_set(best_node, *used_node_mask);
  1823. return best_node;
  1824. }
  1825. /*
  1826. * Build zonelists ordered by node and zones within node.
  1827. * This results in maximum locality--normal zone overflows into local
  1828. * DMA zone, if any--but risks exhausting DMA zone.
  1829. */
  1830. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1831. {
  1832. int j;
  1833. struct zonelist *zonelist;
  1834. zonelist = &pgdat->node_zonelists[0];
  1835. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1836. ;
  1837. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1838. MAX_NR_ZONES - 1);
  1839. zonelist->_zonerefs[j].zone = NULL;
  1840. zonelist->_zonerefs[j].zone_idx = 0;
  1841. }
  1842. /*
  1843. * Build gfp_thisnode zonelists
  1844. */
  1845. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1846. {
  1847. int j;
  1848. struct zonelist *zonelist;
  1849. zonelist = &pgdat->node_zonelists[1];
  1850. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1851. zonelist->_zonerefs[j].zone = NULL;
  1852. zonelist->_zonerefs[j].zone_idx = 0;
  1853. }
  1854. /*
  1855. * Build zonelists ordered by zone and nodes within zones.
  1856. * This results in conserving DMA zone[s] until all Normal memory is
  1857. * exhausted, but results in overflowing to remote node while memory
  1858. * may still exist in local DMA zone.
  1859. */
  1860. static int node_order[MAX_NUMNODES];
  1861. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1862. {
  1863. int pos, j, node;
  1864. int zone_type; /* needs to be signed */
  1865. struct zone *z;
  1866. struct zonelist *zonelist;
  1867. zonelist = &pgdat->node_zonelists[0];
  1868. pos = 0;
  1869. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1870. for (j = 0; j < nr_nodes; j++) {
  1871. node = node_order[j];
  1872. z = &NODE_DATA(node)->node_zones[zone_type];
  1873. if (populated_zone(z)) {
  1874. zoneref_set_zone(z,
  1875. &zonelist->_zonerefs[pos++]);
  1876. check_highest_zone(zone_type);
  1877. }
  1878. }
  1879. }
  1880. zonelist->_zonerefs[pos].zone = NULL;
  1881. zonelist->_zonerefs[pos].zone_idx = 0;
  1882. }
  1883. static int default_zonelist_order(void)
  1884. {
  1885. int nid, zone_type;
  1886. unsigned long low_kmem_size,total_size;
  1887. struct zone *z;
  1888. int average_size;
  1889. /*
  1890. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1891. * If they are really small and used heavily, the system can fall
  1892. * into OOM very easily.
  1893. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1894. */
  1895. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1896. low_kmem_size = 0;
  1897. total_size = 0;
  1898. for_each_online_node(nid) {
  1899. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1900. z = &NODE_DATA(nid)->node_zones[zone_type];
  1901. if (populated_zone(z)) {
  1902. if (zone_type < ZONE_NORMAL)
  1903. low_kmem_size += z->present_pages;
  1904. total_size += z->present_pages;
  1905. }
  1906. }
  1907. }
  1908. if (!low_kmem_size || /* there are no DMA area. */
  1909. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1910. return ZONELIST_ORDER_NODE;
  1911. /*
  1912. * look into each node's config.
  1913. * If there is a node whose DMA/DMA32 memory is very big area on
  1914. * local memory, NODE_ORDER may be suitable.
  1915. */
  1916. average_size = total_size /
  1917. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1918. for_each_online_node(nid) {
  1919. low_kmem_size = 0;
  1920. total_size = 0;
  1921. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1922. z = &NODE_DATA(nid)->node_zones[zone_type];
  1923. if (populated_zone(z)) {
  1924. if (zone_type < ZONE_NORMAL)
  1925. low_kmem_size += z->present_pages;
  1926. total_size += z->present_pages;
  1927. }
  1928. }
  1929. if (low_kmem_size &&
  1930. total_size > average_size && /* ignore small node */
  1931. low_kmem_size > total_size * 70/100)
  1932. return ZONELIST_ORDER_NODE;
  1933. }
  1934. return ZONELIST_ORDER_ZONE;
  1935. }
  1936. static void set_zonelist_order(void)
  1937. {
  1938. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1939. current_zonelist_order = default_zonelist_order();
  1940. else
  1941. current_zonelist_order = user_zonelist_order;
  1942. }
  1943. static void build_zonelists(pg_data_t *pgdat)
  1944. {
  1945. int j, node, load;
  1946. enum zone_type i;
  1947. nodemask_t used_mask;
  1948. int local_node, prev_node;
  1949. struct zonelist *zonelist;
  1950. int order = current_zonelist_order;
  1951. /* initialize zonelists */
  1952. for (i = 0; i < MAX_ZONELISTS; i++) {
  1953. zonelist = pgdat->node_zonelists + i;
  1954. zonelist->_zonerefs[0].zone = NULL;
  1955. zonelist->_zonerefs[0].zone_idx = 0;
  1956. }
  1957. /* NUMA-aware ordering of nodes */
  1958. local_node = pgdat->node_id;
  1959. load = num_online_nodes();
  1960. prev_node = local_node;
  1961. nodes_clear(used_mask);
  1962. memset(node_load, 0, sizeof(node_load));
  1963. memset(node_order, 0, sizeof(node_order));
  1964. j = 0;
  1965. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1966. int distance = node_distance(local_node, node);
  1967. /*
  1968. * If another node is sufficiently far away then it is better
  1969. * to reclaim pages in a zone before going off node.
  1970. */
  1971. if (distance > RECLAIM_DISTANCE)
  1972. zone_reclaim_mode = 1;
  1973. /*
  1974. * We don't want to pressure a particular node.
  1975. * So adding penalty to the first node in same
  1976. * distance group to make it round-robin.
  1977. */
  1978. if (distance != node_distance(local_node, prev_node))
  1979. node_load[node] = load;
  1980. prev_node = node;
  1981. load--;
  1982. if (order == ZONELIST_ORDER_NODE)
  1983. build_zonelists_in_node_order(pgdat, node);
  1984. else
  1985. node_order[j++] = node; /* remember order */
  1986. }
  1987. if (order == ZONELIST_ORDER_ZONE) {
  1988. /* calculate node order -- i.e., DMA last! */
  1989. build_zonelists_in_zone_order(pgdat, j);
  1990. }
  1991. build_thisnode_zonelists(pgdat);
  1992. }
  1993. /* Construct the zonelist performance cache - see further mmzone.h */
  1994. static void build_zonelist_cache(pg_data_t *pgdat)
  1995. {
  1996. struct zonelist *zonelist;
  1997. struct zonelist_cache *zlc;
  1998. struct zoneref *z;
  1999. zonelist = &pgdat->node_zonelists[0];
  2000. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2001. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2002. for (z = zonelist->_zonerefs; z->zone; z++)
  2003. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2004. }
  2005. #else /* CONFIG_NUMA */
  2006. static void set_zonelist_order(void)
  2007. {
  2008. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2009. }
  2010. static void build_zonelists(pg_data_t *pgdat)
  2011. {
  2012. int node, local_node;
  2013. enum zone_type j;
  2014. struct zonelist *zonelist;
  2015. local_node = pgdat->node_id;
  2016. zonelist = &pgdat->node_zonelists[0];
  2017. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2018. /*
  2019. * Now we build the zonelist so that it contains the zones
  2020. * of all the other nodes.
  2021. * We don't want to pressure a particular node, so when
  2022. * building the zones for node N, we make sure that the
  2023. * zones coming right after the local ones are those from
  2024. * node N+1 (modulo N)
  2025. */
  2026. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2027. if (!node_online(node))
  2028. continue;
  2029. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2030. MAX_NR_ZONES - 1);
  2031. }
  2032. for (node = 0; node < local_node; node++) {
  2033. if (!node_online(node))
  2034. continue;
  2035. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2036. MAX_NR_ZONES - 1);
  2037. }
  2038. zonelist->_zonerefs[j].zone = NULL;
  2039. zonelist->_zonerefs[j].zone_idx = 0;
  2040. }
  2041. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2042. static void build_zonelist_cache(pg_data_t *pgdat)
  2043. {
  2044. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2045. }
  2046. #endif /* CONFIG_NUMA */
  2047. /* return values int ....just for stop_machine_run() */
  2048. static int __build_all_zonelists(void *dummy)
  2049. {
  2050. int nid;
  2051. for_each_online_node(nid) {
  2052. pg_data_t *pgdat = NODE_DATA(nid);
  2053. build_zonelists(pgdat);
  2054. build_zonelist_cache(pgdat);
  2055. }
  2056. return 0;
  2057. }
  2058. void build_all_zonelists(void)
  2059. {
  2060. set_zonelist_order();
  2061. if (system_state == SYSTEM_BOOTING) {
  2062. __build_all_zonelists(NULL);
  2063. mminit_verify_zonelist();
  2064. cpuset_init_current_mems_allowed();
  2065. } else {
  2066. /* we have to stop all cpus to guarantee there is no user
  2067. of zonelist */
  2068. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  2069. /* cpuset refresh routine should be here */
  2070. }
  2071. vm_total_pages = nr_free_pagecache_pages();
  2072. /*
  2073. * Disable grouping by mobility if the number of pages in the
  2074. * system is too low to allow the mechanism to work. It would be
  2075. * more accurate, but expensive to check per-zone. This check is
  2076. * made on memory-hotadd so a system can start with mobility
  2077. * disabled and enable it later
  2078. */
  2079. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2080. page_group_by_mobility_disabled = 1;
  2081. else
  2082. page_group_by_mobility_disabled = 0;
  2083. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2084. "Total pages: %ld\n",
  2085. num_online_nodes(),
  2086. zonelist_order_name[current_zonelist_order],
  2087. page_group_by_mobility_disabled ? "off" : "on",
  2088. vm_total_pages);
  2089. #ifdef CONFIG_NUMA
  2090. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2091. #endif
  2092. }
  2093. /*
  2094. * Helper functions to size the waitqueue hash table.
  2095. * Essentially these want to choose hash table sizes sufficiently
  2096. * large so that collisions trying to wait on pages are rare.
  2097. * But in fact, the number of active page waitqueues on typical
  2098. * systems is ridiculously low, less than 200. So this is even
  2099. * conservative, even though it seems large.
  2100. *
  2101. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2102. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2103. */
  2104. #define PAGES_PER_WAITQUEUE 256
  2105. #ifndef CONFIG_MEMORY_HOTPLUG
  2106. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2107. {
  2108. unsigned long size = 1;
  2109. pages /= PAGES_PER_WAITQUEUE;
  2110. while (size < pages)
  2111. size <<= 1;
  2112. /*
  2113. * Once we have dozens or even hundreds of threads sleeping
  2114. * on IO we've got bigger problems than wait queue collision.
  2115. * Limit the size of the wait table to a reasonable size.
  2116. */
  2117. size = min(size, 4096UL);
  2118. return max(size, 4UL);
  2119. }
  2120. #else
  2121. /*
  2122. * A zone's size might be changed by hot-add, so it is not possible to determine
  2123. * a suitable size for its wait_table. So we use the maximum size now.
  2124. *
  2125. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2126. *
  2127. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2128. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2129. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2130. *
  2131. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2132. * or more by the traditional way. (See above). It equals:
  2133. *
  2134. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2135. * ia64(16K page size) : = ( 8G + 4M)byte.
  2136. * powerpc (64K page size) : = (32G +16M)byte.
  2137. */
  2138. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2139. {
  2140. return 4096UL;
  2141. }
  2142. #endif
  2143. /*
  2144. * This is an integer logarithm so that shifts can be used later
  2145. * to extract the more random high bits from the multiplicative
  2146. * hash function before the remainder is taken.
  2147. */
  2148. static inline unsigned long wait_table_bits(unsigned long size)
  2149. {
  2150. return ffz(~size);
  2151. }
  2152. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2153. /*
  2154. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2155. * of blocks reserved is based on zone->pages_min. The memory within the
  2156. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2157. * higher will lead to a bigger reserve which will get freed as contiguous
  2158. * blocks as reclaim kicks in
  2159. */
  2160. static void setup_zone_migrate_reserve(struct zone *zone)
  2161. {
  2162. unsigned long start_pfn, pfn, end_pfn;
  2163. struct page *page;
  2164. unsigned long reserve, block_migratetype;
  2165. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2166. start_pfn = zone->zone_start_pfn;
  2167. end_pfn = start_pfn + zone->spanned_pages;
  2168. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2169. pageblock_order;
  2170. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2171. if (!pfn_valid(pfn))
  2172. continue;
  2173. page = pfn_to_page(pfn);
  2174. /* Blocks with reserved pages will never free, skip them. */
  2175. if (PageReserved(page))
  2176. continue;
  2177. block_migratetype = get_pageblock_migratetype(page);
  2178. /* If this block is reserved, account for it */
  2179. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2180. reserve--;
  2181. continue;
  2182. }
  2183. /* Suitable for reserving if this block is movable */
  2184. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2185. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2186. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2187. reserve--;
  2188. continue;
  2189. }
  2190. /*
  2191. * If the reserve is met and this is a previous reserved block,
  2192. * take it back
  2193. */
  2194. if (block_migratetype == MIGRATE_RESERVE) {
  2195. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2196. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2197. }
  2198. }
  2199. }
  2200. /*
  2201. * Initially all pages are reserved - free ones are freed
  2202. * up by free_all_bootmem() once the early boot process is
  2203. * done. Non-atomic initialization, single-pass.
  2204. */
  2205. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2206. unsigned long start_pfn, enum memmap_context context)
  2207. {
  2208. struct page *page;
  2209. unsigned long end_pfn = start_pfn + size;
  2210. unsigned long pfn;
  2211. struct zone *z;
  2212. z = &NODE_DATA(nid)->node_zones[zone];
  2213. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2214. /*
  2215. * There can be holes in boot-time mem_map[]s
  2216. * handed to this function. They do not
  2217. * exist on hotplugged memory.
  2218. */
  2219. if (context == MEMMAP_EARLY) {
  2220. if (!early_pfn_valid(pfn))
  2221. continue;
  2222. if (!early_pfn_in_nid(pfn, nid))
  2223. continue;
  2224. }
  2225. page = pfn_to_page(pfn);
  2226. set_page_links(page, zone, nid, pfn);
  2227. mminit_verify_page_links(page, zone, nid, pfn);
  2228. init_page_count(page);
  2229. reset_page_mapcount(page);
  2230. SetPageReserved(page);
  2231. /*
  2232. * Mark the block movable so that blocks are reserved for
  2233. * movable at startup. This will force kernel allocations
  2234. * to reserve their blocks rather than leaking throughout
  2235. * the address space during boot when many long-lived
  2236. * kernel allocations are made. Later some blocks near
  2237. * the start are marked MIGRATE_RESERVE by
  2238. * setup_zone_migrate_reserve()
  2239. *
  2240. * bitmap is created for zone's valid pfn range. but memmap
  2241. * can be created for invalid pages (for alignment)
  2242. * check here not to call set_pageblock_migratetype() against
  2243. * pfn out of zone.
  2244. */
  2245. if ((z->zone_start_pfn <= pfn)
  2246. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2247. && !(pfn & (pageblock_nr_pages - 1)))
  2248. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2249. INIT_LIST_HEAD(&page->lru);
  2250. #ifdef WANT_PAGE_VIRTUAL
  2251. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2252. if (!is_highmem_idx(zone))
  2253. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2254. #endif
  2255. }
  2256. }
  2257. static void __meminit zone_init_free_lists(struct zone *zone)
  2258. {
  2259. int order, t;
  2260. for_each_migratetype_order(order, t) {
  2261. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2262. zone->free_area[order].nr_free = 0;
  2263. }
  2264. }
  2265. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2266. #define memmap_init(size, nid, zone, start_pfn) \
  2267. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2268. #endif
  2269. static int zone_batchsize(struct zone *zone)
  2270. {
  2271. int batch;
  2272. /*
  2273. * The per-cpu-pages pools are set to around 1000th of the
  2274. * size of the zone. But no more than 1/2 of a meg.
  2275. *
  2276. * OK, so we don't know how big the cache is. So guess.
  2277. */
  2278. batch = zone->present_pages / 1024;
  2279. if (batch * PAGE_SIZE > 512 * 1024)
  2280. batch = (512 * 1024) / PAGE_SIZE;
  2281. batch /= 4; /* We effectively *= 4 below */
  2282. if (batch < 1)
  2283. batch = 1;
  2284. /*
  2285. * Clamp the batch to a 2^n - 1 value. Having a power
  2286. * of 2 value was found to be more likely to have
  2287. * suboptimal cache aliasing properties in some cases.
  2288. *
  2289. * For example if 2 tasks are alternately allocating
  2290. * batches of pages, one task can end up with a lot
  2291. * of pages of one half of the possible page colors
  2292. * and the other with pages of the other colors.
  2293. */
  2294. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2295. return batch;
  2296. }
  2297. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2298. {
  2299. struct per_cpu_pages *pcp;
  2300. memset(p, 0, sizeof(*p));
  2301. pcp = &p->pcp;
  2302. pcp->count = 0;
  2303. pcp->high = 6 * batch;
  2304. pcp->batch = max(1UL, 1 * batch);
  2305. INIT_LIST_HEAD(&pcp->list);
  2306. }
  2307. /*
  2308. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2309. * to the value high for the pageset p.
  2310. */
  2311. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2312. unsigned long high)
  2313. {
  2314. struct per_cpu_pages *pcp;
  2315. pcp = &p->pcp;
  2316. pcp->high = high;
  2317. pcp->batch = max(1UL, high/4);
  2318. if ((high/4) > (PAGE_SHIFT * 8))
  2319. pcp->batch = PAGE_SHIFT * 8;
  2320. }
  2321. #ifdef CONFIG_NUMA
  2322. /*
  2323. * Boot pageset table. One per cpu which is going to be used for all
  2324. * zones and all nodes. The parameters will be set in such a way
  2325. * that an item put on a list will immediately be handed over to
  2326. * the buddy list. This is safe since pageset manipulation is done
  2327. * with interrupts disabled.
  2328. *
  2329. * Some NUMA counter updates may also be caught by the boot pagesets.
  2330. *
  2331. * The boot_pagesets must be kept even after bootup is complete for
  2332. * unused processors and/or zones. They do play a role for bootstrapping
  2333. * hotplugged processors.
  2334. *
  2335. * zoneinfo_show() and maybe other functions do
  2336. * not check if the processor is online before following the pageset pointer.
  2337. * Other parts of the kernel may not check if the zone is available.
  2338. */
  2339. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2340. /*
  2341. * Dynamically allocate memory for the
  2342. * per cpu pageset array in struct zone.
  2343. */
  2344. static int __cpuinit process_zones(int cpu)
  2345. {
  2346. struct zone *zone, *dzone;
  2347. int node = cpu_to_node(cpu);
  2348. node_set_state(node, N_CPU); /* this node has a cpu */
  2349. for_each_zone(zone) {
  2350. if (!populated_zone(zone))
  2351. continue;
  2352. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2353. GFP_KERNEL, node);
  2354. if (!zone_pcp(zone, cpu))
  2355. goto bad;
  2356. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2357. if (percpu_pagelist_fraction)
  2358. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2359. (zone->present_pages / percpu_pagelist_fraction));
  2360. }
  2361. return 0;
  2362. bad:
  2363. for_each_zone(dzone) {
  2364. if (!populated_zone(dzone))
  2365. continue;
  2366. if (dzone == zone)
  2367. break;
  2368. kfree(zone_pcp(dzone, cpu));
  2369. zone_pcp(dzone, cpu) = NULL;
  2370. }
  2371. return -ENOMEM;
  2372. }
  2373. static inline void free_zone_pagesets(int cpu)
  2374. {
  2375. struct zone *zone;
  2376. for_each_zone(zone) {
  2377. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2378. /* Free per_cpu_pageset if it is slab allocated */
  2379. if (pset != &boot_pageset[cpu])
  2380. kfree(pset);
  2381. zone_pcp(zone, cpu) = NULL;
  2382. }
  2383. }
  2384. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2385. unsigned long action,
  2386. void *hcpu)
  2387. {
  2388. int cpu = (long)hcpu;
  2389. int ret = NOTIFY_OK;
  2390. switch (action) {
  2391. case CPU_UP_PREPARE:
  2392. case CPU_UP_PREPARE_FROZEN:
  2393. if (process_zones(cpu))
  2394. ret = NOTIFY_BAD;
  2395. break;
  2396. case CPU_UP_CANCELED:
  2397. case CPU_UP_CANCELED_FROZEN:
  2398. case CPU_DEAD:
  2399. case CPU_DEAD_FROZEN:
  2400. free_zone_pagesets(cpu);
  2401. break;
  2402. default:
  2403. break;
  2404. }
  2405. return ret;
  2406. }
  2407. static struct notifier_block __cpuinitdata pageset_notifier =
  2408. { &pageset_cpuup_callback, NULL, 0 };
  2409. void __init setup_per_cpu_pageset(void)
  2410. {
  2411. int err;
  2412. /* Initialize per_cpu_pageset for cpu 0.
  2413. * A cpuup callback will do this for every cpu
  2414. * as it comes online
  2415. */
  2416. err = process_zones(smp_processor_id());
  2417. BUG_ON(err);
  2418. register_cpu_notifier(&pageset_notifier);
  2419. }
  2420. #endif
  2421. static noinline __init_refok
  2422. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2423. {
  2424. int i;
  2425. struct pglist_data *pgdat = zone->zone_pgdat;
  2426. size_t alloc_size;
  2427. /*
  2428. * The per-page waitqueue mechanism uses hashed waitqueues
  2429. * per zone.
  2430. */
  2431. zone->wait_table_hash_nr_entries =
  2432. wait_table_hash_nr_entries(zone_size_pages);
  2433. zone->wait_table_bits =
  2434. wait_table_bits(zone->wait_table_hash_nr_entries);
  2435. alloc_size = zone->wait_table_hash_nr_entries
  2436. * sizeof(wait_queue_head_t);
  2437. if (!slab_is_available()) {
  2438. zone->wait_table = (wait_queue_head_t *)
  2439. alloc_bootmem_node(pgdat, alloc_size);
  2440. } else {
  2441. /*
  2442. * This case means that a zone whose size was 0 gets new memory
  2443. * via memory hot-add.
  2444. * But it may be the case that a new node was hot-added. In
  2445. * this case vmalloc() will not be able to use this new node's
  2446. * memory - this wait_table must be initialized to use this new
  2447. * node itself as well.
  2448. * To use this new node's memory, further consideration will be
  2449. * necessary.
  2450. */
  2451. zone->wait_table = vmalloc(alloc_size);
  2452. }
  2453. if (!zone->wait_table)
  2454. return -ENOMEM;
  2455. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2456. init_waitqueue_head(zone->wait_table + i);
  2457. return 0;
  2458. }
  2459. static __meminit void zone_pcp_init(struct zone *zone)
  2460. {
  2461. int cpu;
  2462. unsigned long batch = zone_batchsize(zone);
  2463. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2464. #ifdef CONFIG_NUMA
  2465. /* Early boot. Slab allocator not functional yet */
  2466. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2467. setup_pageset(&boot_pageset[cpu],0);
  2468. #else
  2469. setup_pageset(zone_pcp(zone,cpu), batch);
  2470. #endif
  2471. }
  2472. if (zone->present_pages)
  2473. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2474. zone->name, zone->present_pages, batch);
  2475. }
  2476. __meminit int init_currently_empty_zone(struct zone *zone,
  2477. unsigned long zone_start_pfn,
  2478. unsigned long size,
  2479. enum memmap_context context)
  2480. {
  2481. struct pglist_data *pgdat = zone->zone_pgdat;
  2482. int ret;
  2483. ret = zone_wait_table_init(zone, size);
  2484. if (ret)
  2485. return ret;
  2486. pgdat->nr_zones = zone_idx(zone) + 1;
  2487. zone->zone_start_pfn = zone_start_pfn;
  2488. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2489. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2490. pgdat->node_id,
  2491. (unsigned long)zone_idx(zone),
  2492. zone_start_pfn, (zone_start_pfn + size));
  2493. zone_init_free_lists(zone);
  2494. return 0;
  2495. }
  2496. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2497. /*
  2498. * Basic iterator support. Return the first range of PFNs for a node
  2499. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2500. */
  2501. static int __meminit first_active_region_index_in_nid(int nid)
  2502. {
  2503. int i;
  2504. for (i = 0; i < nr_nodemap_entries; i++)
  2505. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2506. return i;
  2507. return -1;
  2508. }
  2509. /*
  2510. * Basic iterator support. Return the next active range of PFNs for a node
  2511. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2512. */
  2513. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2514. {
  2515. for (index = index + 1; index < nr_nodemap_entries; index++)
  2516. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2517. return index;
  2518. return -1;
  2519. }
  2520. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2521. /*
  2522. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2523. * Architectures may implement their own version but if add_active_range()
  2524. * was used and there are no special requirements, this is a convenient
  2525. * alternative
  2526. */
  2527. int __meminit early_pfn_to_nid(unsigned long pfn)
  2528. {
  2529. int i;
  2530. for (i = 0; i < nr_nodemap_entries; i++) {
  2531. unsigned long start_pfn = early_node_map[i].start_pfn;
  2532. unsigned long end_pfn = early_node_map[i].end_pfn;
  2533. if (start_pfn <= pfn && pfn < end_pfn)
  2534. return early_node_map[i].nid;
  2535. }
  2536. return 0;
  2537. }
  2538. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2539. /* Basic iterator support to walk early_node_map[] */
  2540. #define for_each_active_range_index_in_nid(i, nid) \
  2541. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2542. i = next_active_region_index_in_nid(i, nid))
  2543. /**
  2544. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2545. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2546. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2547. *
  2548. * If an architecture guarantees that all ranges registered with
  2549. * add_active_ranges() contain no holes and may be freed, this
  2550. * this function may be used instead of calling free_bootmem() manually.
  2551. */
  2552. void __init free_bootmem_with_active_regions(int nid,
  2553. unsigned long max_low_pfn)
  2554. {
  2555. int i;
  2556. for_each_active_range_index_in_nid(i, nid) {
  2557. unsigned long size_pages = 0;
  2558. unsigned long end_pfn = early_node_map[i].end_pfn;
  2559. if (early_node_map[i].start_pfn >= max_low_pfn)
  2560. continue;
  2561. if (end_pfn > max_low_pfn)
  2562. end_pfn = max_low_pfn;
  2563. size_pages = end_pfn - early_node_map[i].start_pfn;
  2564. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2565. PFN_PHYS(early_node_map[i].start_pfn),
  2566. size_pages << PAGE_SHIFT);
  2567. }
  2568. }
  2569. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2570. {
  2571. int i;
  2572. int ret;
  2573. for_each_active_range_index_in_nid(i, nid) {
  2574. ret = work_fn(early_node_map[i].start_pfn,
  2575. early_node_map[i].end_pfn, data);
  2576. if (ret)
  2577. break;
  2578. }
  2579. }
  2580. /**
  2581. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2582. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2583. *
  2584. * If an architecture guarantees that all ranges registered with
  2585. * add_active_ranges() contain no holes and may be freed, this
  2586. * function may be used instead of calling memory_present() manually.
  2587. */
  2588. void __init sparse_memory_present_with_active_regions(int nid)
  2589. {
  2590. int i;
  2591. for_each_active_range_index_in_nid(i, nid)
  2592. memory_present(early_node_map[i].nid,
  2593. early_node_map[i].start_pfn,
  2594. early_node_map[i].end_pfn);
  2595. }
  2596. /**
  2597. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2598. * @nid: The nid of the node to push the boundary for
  2599. * @start_pfn: The start pfn of the node
  2600. * @end_pfn: The end pfn of the node
  2601. *
  2602. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2603. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2604. * be hotplugged even though no physical memory exists. This function allows
  2605. * an arch to push out the node boundaries so mem_map is allocated that can
  2606. * be used later.
  2607. */
  2608. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2609. void __init push_node_boundaries(unsigned int nid,
  2610. unsigned long start_pfn, unsigned long end_pfn)
  2611. {
  2612. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2613. "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2614. nid, start_pfn, end_pfn);
  2615. /* Initialise the boundary for this node if necessary */
  2616. if (node_boundary_end_pfn[nid] == 0)
  2617. node_boundary_start_pfn[nid] = -1UL;
  2618. /* Update the boundaries */
  2619. if (node_boundary_start_pfn[nid] > start_pfn)
  2620. node_boundary_start_pfn[nid] = start_pfn;
  2621. if (node_boundary_end_pfn[nid] < end_pfn)
  2622. node_boundary_end_pfn[nid] = end_pfn;
  2623. }
  2624. /* If necessary, push the node boundary out for reserve hotadd */
  2625. static void __meminit account_node_boundary(unsigned int nid,
  2626. unsigned long *start_pfn, unsigned long *end_pfn)
  2627. {
  2628. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2629. "Entering account_node_boundary(%u, %lu, %lu)\n",
  2630. nid, *start_pfn, *end_pfn);
  2631. /* Return if boundary information has not been provided */
  2632. if (node_boundary_end_pfn[nid] == 0)
  2633. return;
  2634. /* Check the boundaries and update if necessary */
  2635. if (node_boundary_start_pfn[nid] < *start_pfn)
  2636. *start_pfn = node_boundary_start_pfn[nid];
  2637. if (node_boundary_end_pfn[nid] > *end_pfn)
  2638. *end_pfn = node_boundary_end_pfn[nid];
  2639. }
  2640. #else
  2641. void __init push_node_boundaries(unsigned int nid,
  2642. unsigned long start_pfn, unsigned long end_pfn) {}
  2643. static void __meminit account_node_boundary(unsigned int nid,
  2644. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2645. #endif
  2646. /**
  2647. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2648. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2649. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2650. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2651. *
  2652. * It returns the start and end page frame of a node based on information
  2653. * provided by an arch calling add_active_range(). If called for a node
  2654. * with no available memory, a warning is printed and the start and end
  2655. * PFNs will be 0.
  2656. */
  2657. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2658. unsigned long *start_pfn, unsigned long *end_pfn)
  2659. {
  2660. int i;
  2661. *start_pfn = -1UL;
  2662. *end_pfn = 0;
  2663. for_each_active_range_index_in_nid(i, nid) {
  2664. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2665. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2666. }
  2667. if (*start_pfn == -1UL)
  2668. *start_pfn = 0;
  2669. /* Push the node boundaries out if requested */
  2670. account_node_boundary(nid, start_pfn, end_pfn);
  2671. }
  2672. /*
  2673. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2674. * assumption is made that zones within a node are ordered in monotonic
  2675. * increasing memory addresses so that the "highest" populated zone is used
  2676. */
  2677. void __init find_usable_zone_for_movable(void)
  2678. {
  2679. int zone_index;
  2680. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2681. if (zone_index == ZONE_MOVABLE)
  2682. continue;
  2683. if (arch_zone_highest_possible_pfn[zone_index] >
  2684. arch_zone_lowest_possible_pfn[zone_index])
  2685. break;
  2686. }
  2687. VM_BUG_ON(zone_index == -1);
  2688. movable_zone = zone_index;
  2689. }
  2690. /*
  2691. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2692. * because it is sized independant of architecture. Unlike the other zones,
  2693. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2694. * in each node depending on the size of each node and how evenly kernelcore
  2695. * is distributed. This helper function adjusts the zone ranges
  2696. * provided by the architecture for a given node by using the end of the
  2697. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2698. * zones within a node are in order of monotonic increases memory addresses
  2699. */
  2700. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2701. unsigned long zone_type,
  2702. unsigned long node_start_pfn,
  2703. unsigned long node_end_pfn,
  2704. unsigned long *zone_start_pfn,
  2705. unsigned long *zone_end_pfn)
  2706. {
  2707. /* Only adjust if ZONE_MOVABLE is on this node */
  2708. if (zone_movable_pfn[nid]) {
  2709. /* Size ZONE_MOVABLE */
  2710. if (zone_type == ZONE_MOVABLE) {
  2711. *zone_start_pfn = zone_movable_pfn[nid];
  2712. *zone_end_pfn = min(node_end_pfn,
  2713. arch_zone_highest_possible_pfn[movable_zone]);
  2714. /* Adjust for ZONE_MOVABLE starting within this range */
  2715. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2716. *zone_end_pfn > zone_movable_pfn[nid]) {
  2717. *zone_end_pfn = zone_movable_pfn[nid];
  2718. /* Check if this whole range is within ZONE_MOVABLE */
  2719. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2720. *zone_start_pfn = *zone_end_pfn;
  2721. }
  2722. }
  2723. /*
  2724. * Return the number of pages a zone spans in a node, including holes
  2725. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2726. */
  2727. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2728. unsigned long zone_type,
  2729. unsigned long *ignored)
  2730. {
  2731. unsigned long node_start_pfn, node_end_pfn;
  2732. unsigned long zone_start_pfn, zone_end_pfn;
  2733. /* Get the start and end of the node and zone */
  2734. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2735. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2736. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2737. adjust_zone_range_for_zone_movable(nid, zone_type,
  2738. node_start_pfn, node_end_pfn,
  2739. &zone_start_pfn, &zone_end_pfn);
  2740. /* Check that this node has pages within the zone's required range */
  2741. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2742. return 0;
  2743. /* Move the zone boundaries inside the node if necessary */
  2744. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2745. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2746. /* Return the spanned pages */
  2747. return zone_end_pfn - zone_start_pfn;
  2748. }
  2749. /*
  2750. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2751. * then all holes in the requested range will be accounted for.
  2752. */
  2753. unsigned long __meminit __absent_pages_in_range(int nid,
  2754. unsigned long range_start_pfn,
  2755. unsigned long range_end_pfn)
  2756. {
  2757. int i = 0;
  2758. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2759. unsigned long start_pfn;
  2760. /* Find the end_pfn of the first active range of pfns in the node */
  2761. i = first_active_region_index_in_nid(nid);
  2762. if (i == -1)
  2763. return 0;
  2764. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2765. /* Account for ranges before physical memory on this node */
  2766. if (early_node_map[i].start_pfn > range_start_pfn)
  2767. hole_pages = prev_end_pfn - range_start_pfn;
  2768. /* Find all holes for the zone within the node */
  2769. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2770. /* No need to continue if prev_end_pfn is outside the zone */
  2771. if (prev_end_pfn >= range_end_pfn)
  2772. break;
  2773. /* Make sure the end of the zone is not within the hole */
  2774. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2775. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2776. /* Update the hole size cound and move on */
  2777. if (start_pfn > range_start_pfn) {
  2778. BUG_ON(prev_end_pfn > start_pfn);
  2779. hole_pages += start_pfn - prev_end_pfn;
  2780. }
  2781. prev_end_pfn = early_node_map[i].end_pfn;
  2782. }
  2783. /* Account for ranges past physical memory on this node */
  2784. if (range_end_pfn > prev_end_pfn)
  2785. hole_pages += range_end_pfn -
  2786. max(range_start_pfn, prev_end_pfn);
  2787. return hole_pages;
  2788. }
  2789. /**
  2790. * absent_pages_in_range - Return number of page frames in holes within a range
  2791. * @start_pfn: The start PFN to start searching for holes
  2792. * @end_pfn: The end PFN to stop searching for holes
  2793. *
  2794. * It returns the number of pages frames in memory holes within a range.
  2795. */
  2796. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2797. unsigned long end_pfn)
  2798. {
  2799. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2800. }
  2801. /* Return the number of page frames in holes in a zone on a node */
  2802. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2803. unsigned long zone_type,
  2804. unsigned long *ignored)
  2805. {
  2806. unsigned long node_start_pfn, node_end_pfn;
  2807. unsigned long zone_start_pfn, zone_end_pfn;
  2808. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2809. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2810. node_start_pfn);
  2811. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2812. node_end_pfn);
  2813. adjust_zone_range_for_zone_movable(nid, zone_type,
  2814. node_start_pfn, node_end_pfn,
  2815. &zone_start_pfn, &zone_end_pfn);
  2816. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2817. }
  2818. #else
  2819. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2820. unsigned long zone_type,
  2821. unsigned long *zones_size)
  2822. {
  2823. return zones_size[zone_type];
  2824. }
  2825. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2826. unsigned long zone_type,
  2827. unsigned long *zholes_size)
  2828. {
  2829. if (!zholes_size)
  2830. return 0;
  2831. return zholes_size[zone_type];
  2832. }
  2833. #endif
  2834. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2835. unsigned long *zones_size, unsigned long *zholes_size)
  2836. {
  2837. unsigned long realtotalpages, totalpages = 0;
  2838. enum zone_type i;
  2839. for (i = 0; i < MAX_NR_ZONES; i++)
  2840. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2841. zones_size);
  2842. pgdat->node_spanned_pages = totalpages;
  2843. realtotalpages = totalpages;
  2844. for (i = 0; i < MAX_NR_ZONES; i++)
  2845. realtotalpages -=
  2846. zone_absent_pages_in_node(pgdat->node_id, i,
  2847. zholes_size);
  2848. pgdat->node_present_pages = realtotalpages;
  2849. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2850. realtotalpages);
  2851. }
  2852. #ifndef CONFIG_SPARSEMEM
  2853. /*
  2854. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2855. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2856. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2857. * round what is now in bits to nearest long in bits, then return it in
  2858. * bytes.
  2859. */
  2860. static unsigned long __init usemap_size(unsigned long zonesize)
  2861. {
  2862. unsigned long usemapsize;
  2863. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2864. usemapsize = usemapsize >> pageblock_order;
  2865. usemapsize *= NR_PAGEBLOCK_BITS;
  2866. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2867. return usemapsize / 8;
  2868. }
  2869. static void __init setup_usemap(struct pglist_data *pgdat,
  2870. struct zone *zone, unsigned long zonesize)
  2871. {
  2872. unsigned long usemapsize = usemap_size(zonesize);
  2873. zone->pageblock_flags = NULL;
  2874. if (usemapsize) {
  2875. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2876. memset(zone->pageblock_flags, 0, usemapsize);
  2877. }
  2878. }
  2879. #else
  2880. static void inline setup_usemap(struct pglist_data *pgdat,
  2881. struct zone *zone, unsigned long zonesize) {}
  2882. #endif /* CONFIG_SPARSEMEM */
  2883. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2884. /* Return a sensible default order for the pageblock size. */
  2885. static inline int pageblock_default_order(void)
  2886. {
  2887. if (HPAGE_SHIFT > PAGE_SHIFT)
  2888. return HUGETLB_PAGE_ORDER;
  2889. return MAX_ORDER-1;
  2890. }
  2891. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2892. static inline void __init set_pageblock_order(unsigned int order)
  2893. {
  2894. /* Check that pageblock_nr_pages has not already been setup */
  2895. if (pageblock_order)
  2896. return;
  2897. /*
  2898. * Assume the largest contiguous order of interest is a huge page.
  2899. * This value may be variable depending on boot parameters on IA64
  2900. */
  2901. pageblock_order = order;
  2902. }
  2903. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2904. /*
  2905. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2906. * and pageblock_default_order() are unused as pageblock_order is set
  2907. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2908. * pageblock_order based on the kernel config
  2909. */
  2910. static inline int pageblock_default_order(unsigned int order)
  2911. {
  2912. return MAX_ORDER-1;
  2913. }
  2914. #define set_pageblock_order(x) do {} while (0)
  2915. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2916. /*
  2917. * Set up the zone data structures:
  2918. * - mark all pages reserved
  2919. * - mark all memory queues empty
  2920. * - clear the memory bitmaps
  2921. */
  2922. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2923. unsigned long *zones_size, unsigned long *zholes_size)
  2924. {
  2925. enum zone_type j;
  2926. int nid = pgdat->node_id;
  2927. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2928. int ret;
  2929. pgdat_resize_init(pgdat);
  2930. pgdat->nr_zones = 0;
  2931. init_waitqueue_head(&pgdat->kswapd_wait);
  2932. pgdat->kswapd_max_order = 0;
  2933. for (j = 0; j < MAX_NR_ZONES; j++) {
  2934. struct zone *zone = pgdat->node_zones + j;
  2935. unsigned long size, realsize, memmap_pages;
  2936. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2937. realsize = size - zone_absent_pages_in_node(nid, j,
  2938. zholes_size);
  2939. /*
  2940. * Adjust realsize so that it accounts for how much memory
  2941. * is used by this zone for memmap. This affects the watermark
  2942. * and per-cpu initialisations
  2943. */
  2944. memmap_pages =
  2945. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  2946. if (realsize >= memmap_pages) {
  2947. realsize -= memmap_pages;
  2948. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2949. "%s zone: %lu pages used for memmap\n",
  2950. zone_names[j], memmap_pages);
  2951. } else
  2952. printk(KERN_WARNING
  2953. " %s zone: %lu pages exceeds realsize %lu\n",
  2954. zone_names[j], memmap_pages, realsize);
  2955. /* Account for reserved pages */
  2956. if (j == 0 && realsize > dma_reserve) {
  2957. realsize -= dma_reserve;
  2958. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2959. "%s zone: %lu pages reserved\n",
  2960. zone_names[0], dma_reserve);
  2961. }
  2962. if (!is_highmem_idx(j))
  2963. nr_kernel_pages += realsize;
  2964. nr_all_pages += realsize;
  2965. zone->spanned_pages = size;
  2966. zone->present_pages = realsize;
  2967. #ifdef CONFIG_NUMA
  2968. zone->node = nid;
  2969. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2970. / 100;
  2971. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2972. #endif
  2973. zone->name = zone_names[j];
  2974. spin_lock_init(&zone->lock);
  2975. spin_lock_init(&zone->lru_lock);
  2976. zone_seqlock_init(zone);
  2977. zone->zone_pgdat = pgdat;
  2978. zone->prev_priority = DEF_PRIORITY;
  2979. zone_pcp_init(zone);
  2980. INIT_LIST_HEAD(&zone->active_list);
  2981. INIT_LIST_HEAD(&zone->inactive_list);
  2982. zone->nr_scan_active = 0;
  2983. zone->nr_scan_inactive = 0;
  2984. zap_zone_vm_stats(zone);
  2985. zone->flags = 0;
  2986. if (!size)
  2987. continue;
  2988. set_pageblock_order(pageblock_default_order());
  2989. setup_usemap(pgdat, zone, size);
  2990. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2991. size, MEMMAP_EARLY);
  2992. BUG_ON(ret);
  2993. memmap_init(size, nid, j, zone_start_pfn);
  2994. zone_start_pfn += size;
  2995. }
  2996. }
  2997. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2998. {
  2999. /* Skip empty nodes */
  3000. if (!pgdat->node_spanned_pages)
  3001. return;
  3002. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3003. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3004. if (!pgdat->node_mem_map) {
  3005. unsigned long size, start, end;
  3006. struct page *map;
  3007. /*
  3008. * The zone's endpoints aren't required to be MAX_ORDER
  3009. * aligned but the node_mem_map endpoints must be in order
  3010. * for the buddy allocator to function correctly.
  3011. */
  3012. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3013. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3014. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3015. size = (end - start) * sizeof(struct page);
  3016. map = alloc_remap(pgdat->node_id, size);
  3017. if (!map)
  3018. map = alloc_bootmem_node(pgdat, size);
  3019. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3020. }
  3021. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3022. /*
  3023. * With no DISCONTIG, the global mem_map is just set as node 0's
  3024. */
  3025. if (pgdat == NODE_DATA(0)) {
  3026. mem_map = NODE_DATA(0)->node_mem_map;
  3027. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3028. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3029. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3030. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3031. }
  3032. #endif
  3033. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3034. }
  3035. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3036. unsigned long node_start_pfn, unsigned long *zholes_size)
  3037. {
  3038. pg_data_t *pgdat = NODE_DATA(nid);
  3039. pgdat->node_id = nid;
  3040. pgdat->node_start_pfn = node_start_pfn;
  3041. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3042. alloc_node_mem_map(pgdat);
  3043. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3044. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3045. nid, (unsigned long)pgdat,
  3046. (unsigned long)pgdat->node_mem_map);
  3047. #endif
  3048. free_area_init_core(pgdat, zones_size, zholes_size);
  3049. }
  3050. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3051. #if MAX_NUMNODES > 1
  3052. /*
  3053. * Figure out the number of possible node ids.
  3054. */
  3055. static void __init setup_nr_node_ids(void)
  3056. {
  3057. unsigned int node;
  3058. unsigned int highest = 0;
  3059. for_each_node_mask(node, node_possible_map)
  3060. highest = node;
  3061. nr_node_ids = highest + 1;
  3062. }
  3063. #else
  3064. static inline void setup_nr_node_ids(void)
  3065. {
  3066. }
  3067. #endif
  3068. /**
  3069. * add_active_range - Register a range of PFNs backed by physical memory
  3070. * @nid: The node ID the range resides on
  3071. * @start_pfn: The start PFN of the available physical memory
  3072. * @end_pfn: The end PFN of the available physical memory
  3073. *
  3074. * These ranges are stored in an early_node_map[] and later used by
  3075. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3076. * range spans a memory hole, it is up to the architecture to ensure
  3077. * the memory is not freed by the bootmem allocator. If possible
  3078. * the range being registered will be merged with existing ranges.
  3079. */
  3080. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3081. unsigned long end_pfn)
  3082. {
  3083. int i;
  3084. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3085. "Entering add_active_range(%d, %#lx, %#lx) "
  3086. "%d entries of %d used\n",
  3087. nid, start_pfn, end_pfn,
  3088. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3089. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3090. /* Merge with existing active regions if possible */
  3091. for (i = 0; i < nr_nodemap_entries; i++) {
  3092. if (early_node_map[i].nid != nid)
  3093. continue;
  3094. /* Skip if an existing region covers this new one */
  3095. if (start_pfn >= early_node_map[i].start_pfn &&
  3096. end_pfn <= early_node_map[i].end_pfn)
  3097. return;
  3098. /* Merge forward if suitable */
  3099. if (start_pfn <= early_node_map[i].end_pfn &&
  3100. end_pfn > early_node_map[i].end_pfn) {
  3101. early_node_map[i].end_pfn = end_pfn;
  3102. return;
  3103. }
  3104. /* Merge backward if suitable */
  3105. if (start_pfn < early_node_map[i].end_pfn &&
  3106. end_pfn >= early_node_map[i].start_pfn) {
  3107. early_node_map[i].start_pfn = start_pfn;
  3108. return;
  3109. }
  3110. }
  3111. /* Check that early_node_map is large enough */
  3112. if (i >= MAX_ACTIVE_REGIONS) {
  3113. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3114. MAX_ACTIVE_REGIONS);
  3115. return;
  3116. }
  3117. early_node_map[i].nid = nid;
  3118. early_node_map[i].start_pfn = start_pfn;
  3119. early_node_map[i].end_pfn = end_pfn;
  3120. nr_nodemap_entries = i + 1;
  3121. }
  3122. /**
  3123. * remove_active_range - Shrink an existing registered range of PFNs
  3124. * @nid: The node id the range is on that should be shrunk
  3125. * @start_pfn: The new PFN of the range
  3126. * @end_pfn: The new PFN of the range
  3127. *
  3128. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3129. * The map is kept near the end physical page range that has already been
  3130. * registered. This function allows an arch to shrink an existing registered
  3131. * range.
  3132. */
  3133. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3134. unsigned long end_pfn)
  3135. {
  3136. int i, j;
  3137. int removed = 0;
  3138. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3139. nid, start_pfn, end_pfn);
  3140. /* Find the old active region end and shrink */
  3141. for_each_active_range_index_in_nid(i, nid) {
  3142. if (early_node_map[i].start_pfn >= start_pfn &&
  3143. early_node_map[i].end_pfn <= end_pfn) {
  3144. /* clear it */
  3145. early_node_map[i].start_pfn = 0;
  3146. early_node_map[i].end_pfn = 0;
  3147. removed = 1;
  3148. continue;
  3149. }
  3150. if (early_node_map[i].start_pfn < start_pfn &&
  3151. early_node_map[i].end_pfn > start_pfn) {
  3152. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3153. early_node_map[i].end_pfn = start_pfn;
  3154. if (temp_end_pfn > end_pfn)
  3155. add_active_range(nid, end_pfn, temp_end_pfn);
  3156. continue;
  3157. }
  3158. if (early_node_map[i].start_pfn >= start_pfn &&
  3159. early_node_map[i].end_pfn > end_pfn &&
  3160. early_node_map[i].start_pfn < end_pfn) {
  3161. early_node_map[i].start_pfn = end_pfn;
  3162. continue;
  3163. }
  3164. }
  3165. if (!removed)
  3166. return;
  3167. /* remove the blank ones */
  3168. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3169. if (early_node_map[i].nid != nid)
  3170. continue;
  3171. if (early_node_map[i].end_pfn)
  3172. continue;
  3173. /* we found it, get rid of it */
  3174. for (j = i; j < nr_nodemap_entries - 1; j++)
  3175. memcpy(&early_node_map[j], &early_node_map[j+1],
  3176. sizeof(early_node_map[j]));
  3177. j = nr_nodemap_entries - 1;
  3178. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3179. nr_nodemap_entries--;
  3180. }
  3181. }
  3182. /**
  3183. * remove_all_active_ranges - Remove all currently registered regions
  3184. *
  3185. * During discovery, it may be found that a table like SRAT is invalid
  3186. * and an alternative discovery method must be used. This function removes
  3187. * all currently registered regions.
  3188. */
  3189. void __init remove_all_active_ranges(void)
  3190. {
  3191. memset(early_node_map, 0, sizeof(early_node_map));
  3192. nr_nodemap_entries = 0;
  3193. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3194. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3195. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3196. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3197. }
  3198. /* Compare two active node_active_regions */
  3199. static int __init cmp_node_active_region(const void *a, const void *b)
  3200. {
  3201. struct node_active_region *arange = (struct node_active_region *)a;
  3202. struct node_active_region *brange = (struct node_active_region *)b;
  3203. /* Done this way to avoid overflows */
  3204. if (arange->start_pfn > brange->start_pfn)
  3205. return 1;
  3206. if (arange->start_pfn < brange->start_pfn)
  3207. return -1;
  3208. return 0;
  3209. }
  3210. /* sort the node_map by start_pfn */
  3211. static void __init sort_node_map(void)
  3212. {
  3213. sort(early_node_map, (size_t)nr_nodemap_entries,
  3214. sizeof(struct node_active_region),
  3215. cmp_node_active_region, NULL);
  3216. }
  3217. /* Find the lowest pfn for a node */
  3218. unsigned long __init find_min_pfn_for_node(int nid)
  3219. {
  3220. int i;
  3221. unsigned long min_pfn = ULONG_MAX;
  3222. /* Assuming a sorted map, the first range found has the starting pfn */
  3223. for_each_active_range_index_in_nid(i, nid)
  3224. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3225. if (min_pfn == ULONG_MAX) {
  3226. printk(KERN_WARNING
  3227. "Could not find start_pfn for node %d\n", nid);
  3228. return 0;
  3229. }
  3230. return min_pfn;
  3231. }
  3232. /**
  3233. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3234. *
  3235. * It returns the minimum PFN based on information provided via
  3236. * add_active_range().
  3237. */
  3238. unsigned long __init find_min_pfn_with_active_regions(void)
  3239. {
  3240. return find_min_pfn_for_node(MAX_NUMNODES);
  3241. }
  3242. /**
  3243. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  3244. *
  3245. * It returns the maximum PFN based on information provided via
  3246. * add_active_range().
  3247. */
  3248. unsigned long __init find_max_pfn_with_active_regions(void)
  3249. {
  3250. int i;
  3251. unsigned long max_pfn = 0;
  3252. for (i = 0; i < nr_nodemap_entries; i++)
  3253. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  3254. return max_pfn;
  3255. }
  3256. /*
  3257. * early_calculate_totalpages()
  3258. * Sum pages in active regions for movable zone.
  3259. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3260. */
  3261. static unsigned long __init early_calculate_totalpages(void)
  3262. {
  3263. int i;
  3264. unsigned long totalpages = 0;
  3265. for (i = 0; i < nr_nodemap_entries; i++) {
  3266. unsigned long pages = early_node_map[i].end_pfn -
  3267. early_node_map[i].start_pfn;
  3268. totalpages += pages;
  3269. if (pages)
  3270. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3271. }
  3272. return totalpages;
  3273. }
  3274. /*
  3275. * Find the PFN the Movable zone begins in each node. Kernel memory
  3276. * is spread evenly between nodes as long as the nodes have enough
  3277. * memory. When they don't, some nodes will have more kernelcore than
  3278. * others
  3279. */
  3280. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3281. {
  3282. int i, nid;
  3283. unsigned long usable_startpfn;
  3284. unsigned long kernelcore_node, kernelcore_remaining;
  3285. unsigned long totalpages = early_calculate_totalpages();
  3286. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3287. /*
  3288. * If movablecore was specified, calculate what size of
  3289. * kernelcore that corresponds so that memory usable for
  3290. * any allocation type is evenly spread. If both kernelcore
  3291. * and movablecore are specified, then the value of kernelcore
  3292. * will be used for required_kernelcore if it's greater than
  3293. * what movablecore would have allowed.
  3294. */
  3295. if (required_movablecore) {
  3296. unsigned long corepages;
  3297. /*
  3298. * Round-up so that ZONE_MOVABLE is at least as large as what
  3299. * was requested by the user
  3300. */
  3301. required_movablecore =
  3302. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3303. corepages = totalpages - required_movablecore;
  3304. required_kernelcore = max(required_kernelcore, corepages);
  3305. }
  3306. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3307. if (!required_kernelcore)
  3308. return;
  3309. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3310. find_usable_zone_for_movable();
  3311. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3312. restart:
  3313. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3314. kernelcore_node = required_kernelcore / usable_nodes;
  3315. for_each_node_state(nid, N_HIGH_MEMORY) {
  3316. /*
  3317. * Recalculate kernelcore_node if the division per node
  3318. * now exceeds what is necessary to satisfy the requested
  3319. * amount of memory for the kernel
  3320. */
  3321. if (required_kernelcore < kernelcore_node)
  3322. kernelcore_node = required_kernelcore / usable_nodes;
  3323. /*
  3324. * As the map is walked, we track how much memory is usable
  3325. * by the kernel using kernelcore_remaining. When it is
  3326. * 0, the rest of the node is usable by ZONE_MOVABLE
  3327. */
  3328. kernelcore_remaining = kernelcore_node;
  3329. /* Go through each range of PFNs within this node */
  3330. for_each_active_range_index_in_nid(i, nid) {
  3331. unsigned long start_pfn, end_pfn;
  3332. unsigned long size_pages;
  3333. start_pfn = max(early_node_map[i].start_pfn,
  3334. zone_movable_pfn[nid]);
  3335. end_pfn = early_node_map[i].end_pfn;
  3336. if (start_pfn >= end_pfn)
  3337. continue;
  3338. /* Account for what is only usable for kernelcore */
  3339. if (start_pfn < usable_startpfn) {
  3340. unsigned long kernel_pages;
  3341. kernel_pages = min(end_pfn, usable_startpfn)
  3342. - start_pfn;
  3343. kernelcore_remaining -= min(kernel_pages,
  3344. kernelcore_remaining);
  3345. required_kernelcore -= min(kernel_pages,
  3346. required_kernelcore);
  3347. /* Continue if range is now fully accounted */
  3348. if (end_pfn <= usable_startpfn) {
  3349. /*
  3350. * Push zone_movable_pfn to the end so
  3351. * that if we have to rebalance
  3352. * kernelcore across nodes, we will
  3353. * not double account here
  3354. */
  3355. zone_movable_pfn[nid] = end_pfn;
  3356. continue;
  3357. }
  3358. start_pfn = usable_startpfn;
  3359. }
  3360. /*
  3361. * The usable PFN range for ZONE_MOVABLE is from
  3362. * start_pfn->end_pfn. Calculate size_pages as the
  3363. * number of pages used as kernelcore
  3364. */
  3365. size_pages = end_pfn - start_pfn;
  3366. if (size_pages > kernelcore_remaining)
  3367. size_pages = kernelcore_remaining;
  3368. zone_movable_pfn[nid] = start_pfn + size_pages;
  3369. /*
  3370. * Some kernelcore has been met, update counts and
  3371. * break if the kernelcore for this node has been
  3372. * satisified
  3373. */
  3374. required_kernelcore -= min(required_kernelcore,
  3375. size_pages);
  3376. kernelcore_remaining -= size_pages;
  3377. if (!kernelcore_remaining)
  3378. break;
  3379. }
  3380. }
  3381. /*
  3382. * If there is still required_kernelcore, we do another pass with one
  3383. * less node in the count. This will push zone_movable_pfn[nid] further
  3384. * along on the nodes that still have memory until kernelcore is
  3385. * satisified
  3386. */
  3387. usable_nodes--;
  3388. if (usable_nodes && required_kernelcore > usable_nodes)
  3389. goto restart;
  3390. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3391. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3392. zone_movable_pfn[nid] =
  3393. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3394. }
  3395. /* Any regular memory on that node ? */
  3396. static void check_for_regular_memory(pg_data_t *pgdat)
  3397. {
  3398. #ifdef CONFIG_HIGHMEM
  3399. enum zone_type zone_type;
  3400. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3401. struct zone *zone = &pgdat->node_zones[zone_type];
  3402. if (zone->present_pages)
  3403. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3404. }
  3405. #endif
  3406. }
  3407. /**
  3408. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3409. * @max_zone_pfn: an array of max PFNs for each zone
  3410. *
  3411. * This will call free_area_init_node() for each active node in the system.
  3412. * Using the page ranges provided by add_active_range(), the size of each
  3413. * zone in each node and their holes is calculated. If the maximum PFN
  3414. * between two adjacent zones match, it is assumed that the zone is empty.
  3415. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3416. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3417. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3418. * at arch_max_dma_pfn.
  3419. */
  3420. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3421. {
  3422. unsigned long nid;
  3423. enum zone_type i;
  3424. /* Sort early_node_map as initialisation assumes it is sorted */
  3425. sort_node_map();
  3426. /* Record where the zone boundaries are */
  3427. memset(arch_zone_lowest_possible_pfn, 0,
  3428. sizeof(arch_zone_lowest_possible_pfn));
  3429. memset(arch_zone_highest_possible_pfn, 0,
  3430. sizeof(arch_zone_highest_possible_pfn));
  3431. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3432. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3433. for (i = 1; i < MAX_NR_ZONES; i++) {
  3434. if (i == ZONE_MOVABLE)
  3435. continue;
  3436. arch_zone_lowest_possible_pfn[i] =
  3437. arch_zone_highest_possible_pfn[i-1];
  3438. arch_zone_highest_possible_pfn[i] =
  3439. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3440. }
  3441. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3442. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3443. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3444. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3445. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3446. /* Print out the zone ranges */
  3447. printk("Zone PFN ranges:\n");
  3448. for (i = 0; i < MAX_NR_ZONES; i++) {
  3449. if (i == ZONE_MOVABLE)
  3450. continue;
  3451. printk(" %-8s %0#10lx -> %0#10lx\n",
  3452. zone_names[i],
  3453. arch_zone_lowest_possible_pfn[i],
  3454. arch_zone_highest_possible_pfn[i]);
  3455. }
  3456. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3457. printk("Movable zone start PFN for each node\n");
  3458. for (i = 0; i < MAX_NUMNODES; i++) {
  3459. if (zone_movable_pfn[i])
  3460. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3461. }
  3462. /* Print out the early_node_map[] */
  3463. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3464. for (i = 0; i < nr_nodemap_entries; i++)
  3465. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3466. early_node_map[i].start_pfn,
  3467. early_node_map[i].end_pfn);
  3468. /* Initialise every node */
  3469. mminit_verify_pageflags_layout();
  3470. setup_nr_node_ids();
  3471. for_each_online_node(nid) {
  3472. pg_data_t *pgdat = NODE_DATA(nid);
  3473. free_area_init_node(nid, NULL,
  3474. find_min_pfn_for_node(nid), NULL);
  3475. /* Any memory on that node */
  3476. if (pgdat->node_present_pages)
  3477. node_set_state(nid, N_HIGH_MEMORY);
  3478. check_for_regular_memory(pgdat);
  3479. }
  3480. }
  3481. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3482. {
  3483. unsigned long long coremem;
  3484. if (!p)
  3485. return -EINVAL;
  3486. coremem = memparse(p, &p);
  3487. *core = coremem >> PAGE_SHIFT;
  3488. /* Paranoid check that UL is enough for the coremem value */
  3489. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3490. return 0;
  3491. }
  3492. /*
  3493. * kernelcore=size sets the amount of memory for use for allocations that
  3494. * cannot be reclaimed or migrated.
  3495. */
  3496. static int __init cmdline_parse_kernelcore(char *p)
  3497. {
  3498. return cmdline_parse_core(p, &required_kernelcore);
  3499. }
  3500. /*
  3501. * movablecore=size sets the amount of memory for use for allocations that
  3502. * can be reclaimed or migrated.
  3503. */
  3504. static int __init cmdline_parse_movablecore(char *p)
  3505. {
  3506. return cmdline_parse_core(p, &required_movablecore);
  3507. }
  3508. early_param("kernelcore", cmdline_parse_kernelcore);
  3509. early_param("movablecore", cmdline_parse_movablecore);
  3510. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3511. /**
  3512. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3513. * @new_dma_reserve: The number of pages to mark reserved
  3514. *
  3515. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3516. * In the DMA zone, a significant percentage may be consumed by kernel image
  3517. * and other unfreeable allocations which can skew the watermarks badly. This
  3518. * function may optionally be used to account for unfreeable pages in the
  3519. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3520. * smaller per-cpu batchsize.
  3521. */
  3522. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3523. {
  3524. dma_reserve = new_dma_reserve;
  3525. }
  3526. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3527. struct pglist_data contig_page_data = { .bdata = &bootmem_node_data[0] };
  3528. EXPORT_SYMBOL(contig_page_data);
  3529. #endif
  3530. void __init free_area_init(unsigned long *zones_size)
  3531. {
  3532. free_area_init_node(0, zones_size,
  3533. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3534. }
  3535. static int page_alloc_cpu_notify(struct notifier_block *self,
  3536. unsigned long action, void *hcpu)
  3537. {
  3538. int cpu = (unsigned long)hcpu;
  3539. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3540. drain_pages(cpu);
  3541. /*
  3542. * Spill the event counters of the dead processor
  3543. * into the current processors event counters.
  3544. * This artificially elevates the count of the current
  3545. * processor.
  3546. */
  3547. vm_events_fold_cpu(cpu);
  3548. /*
  3549. * Zero the differential counters of the dead processor
  3550. * so that the vm statistics are consistent.
  3551. *
  3552. * This is only okay since the processor is dead and cannot
  3553. * race with what we are doing.
  3554. */
  3555. refresh_cpu_vm_stats(cpu);
  3556. }
  3557. return NOTIFY_OK;
  3558. }
  3559. void __init page_alloc_init(void)
  3560. {
  3561. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3562. }
  3563. /*
  3564. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3565. * or min_free_kbytes changes.
  3566. */
  3567. static void calculate_totalreserve_pages(void)
  3568. {
  3569. struct pglist_data *pgdat;
  3570. unsigned long reserve_pages = 0;
  3571. enum zone_type i, j;
  3572. for_each_online_pgdat(pgdat) {
  3573. for (i = 0; i < MAX_NR_ZONES; i++) {
  3574. struct zone *zone = pgdat->node_zones + i;
  3575. unsigned long max = 0;
  3576. /* Find valid and maximum lowmem_reserve in the zone */
  3577. for (j = i; j < MAX_NR_ZONES; j++) {
  3578. if (zone->lowmem_reserve[j] > max)
  3579. max = zone->lowmem_reserve[j];
  3580. }
  3581. /* we treat pages_high as reserved pages. */
  3582. max += zone->pages_high;
  3583. if (max > zone->present_pages)
  3584. max = zone->present_pages;
  3585. reserve_pages += max;
  3586. }
  3587. }
  3588. totalreserve_pages = reserve_pages;
  3589. }
  3590. /*
  3591. * setup_per_zone_lowmem_reserve - called whenever
  3592. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3593. * has a correct pages reserved value, so an adequate number of
  3594. * pages are left in the zone after a successful __alloc_pages().
  3595. */
  3596. static void setup_per_zone_lowmem_reserve(void)
  3597. {
  3598. struct pglist_data *pgdat;
  3599. enum zone_type j, idx;
  3600. for_each_online_pgdat(pgdat) {
  3601. for (j = 0; j < MAX_NR_ZONES; j++) {
  3602. struct zone *zone = pgdat->node_zones + j;
  3603. unsigned long present_pages = zone->present_pages;
  3604. zone->lowmem_reserve[j] = 0;
  3605. idx = j;
  3606. while (idx) {
  3607. struct zone *lower_zone;
  3608. idx--;
  3609. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3610. sysctl_lowmem_reserve_ratio[idx] = 1;
  3611. lower_zone = pgdat->node_zones + idx;
  3612. lower_zone->lowmem_reserve[j] = present_pages /
  3613. sysctl_lowmem_reserve_ratio[idx];
  3614. present_pages += lower_zone->present_pages;
  3615. }
  3616. }
  3617. }
  3618. /* update totalreserve_pages */
  3619. calculate_totalreserve_pages();
  3620. }
  3621. /**
  3622. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3623. *
  3624. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3625. * with respect to min_free_kbytes.
  3626. */
  3627. void setup_per_zone_pages_min(void)
  3628. {
  3629. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3630. unsigned long lowmem_pages = 0;
  3631. struct zone *zone;
  3632. unsigned long flags;
  3633. /* Calculate total number of !ZONE_HIGHMEM pages */
  3634. for_each_zone(zone) {
  3635. if (!is_highmem(zone))
  3636. lowmem_pages += zone->present_pages;
  3637. }
  3638. for_each_zone(zone) {
  3639. u64 tmp;
  3640. spin_lock_irqsave(&zone->lru_lock, flags);
  3641. tmp = (u64)pages_min * zone->present_pages;
  3642. do_div(tmp, lowmem_pages);
  3643. if (is_highmem(zone)) {
  3644. /*
  3645. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3646. * need highmem pages, so cap pages_min to a small
  3647. * value here.
  3648. *
  3649. * The (pages_high-pages_low) and (pages_low-pages_min)
  3650. * deltas controls asynch page reclaim, and so should
  3651. * not be capped for highmem.
  3652. */
  3653. int min_pages;
  3654. min_pages = zone->present_pages / 1024;
  3655. if (min_pages < SWAP_CLUSTER_MAX)
  3656. min_pages = SWAP_CLUSTER_MAX;
  3657. if (min_pages > 128)
  3658. min_pages = 128;
  3659. zone->pages_min = min_pages;
  3660. } else {
  3661. /*
  3662. * If it's a lowmem zone, reserve a number of pages
  3663. * proportionate to the zone's size.
  3664. */
  3665. zone->pages_min = tmp;
  3666. }
  3667. zone->pages_low = zone->pages_min + (tmp >> 2);
  3668. zone->pages_high = zone->pages_min + (tmp >> 1);
  3669. setup_zone_migrate_reserve(zone);
  3670. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3671. }
  3672. /* update totalreserve_pages */
  3673. calculate_totalreserve_pages();
  3674. }
  3675. /*
  3676. * Initialise min_free_kbytes.
  3677. *
  3678. * For small machines we want it small (128k min). For large machines
  3679. * we want it large (64MB max). But it is not linear, because network
  3680. * bandwidth does not increase linearly with machine size. We use
  3681. *
  3682. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3683. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3684. *
  3685. * which yields
  3686. *
  3687. * 16MB: 512k
  3688. * 32MB: 724k
  3689. * 64MB: 1024k
  3690. * 128MB: 1448k
  3691. * 256MB: 2048k
  3692. * 512MB: 2896k
  3693. * 1024MB: 4096k
  3694. * 2048MB: 5792k
  3695. * 4096MB: 8192k
  3696. * 8192MB: 11584k
  3697. * 16384MB: 16384k
  3698. */
  3699. static int __init init_per_zone_pages_min(void)
  3700. {
  3701. unsigned long lowmem_kbytes;
  3702. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3703. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3704. if (min_free_kbytes < 128)
  3705. min_free_kbytes = 128;
  3706. if (min_free_kbytes > 65536)
  3707. min_free_kbytes = 65536;
  3708. setup_per_zone_pages_min();
  3709. setup_per_zone_lowmem_reserve();
  3710. return 0;
  3711. }
  3712. module_init(init_per_zone_pages_min)
  3713. /*
  3714. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3715. * that we can call two helper functions whenever min_free_kbytes
  3716. * changes.
  3717. */
  3718. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3719. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3720. {
  3721. proc_dointvec(table, write, file, buffer, length, ppos);
  3722. if (write)
  3723. setup_per_zone_pages_min();
  3724. return 0;
  3725. }
  3726. #ifdef CONFIG_NUMA
  3727. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3728. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3729. {
  3730. struct zone *zone;
  3731. int rc;
  3732. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3733. if (rc)
  3734. return rc;
  3735. for_each_zone(zone)
  3736. zone->min_unmapped_pages = (zone->present_pages *
  3737. sysctl_min_unmapped_ratio) / 100;
  3738. return 0;
  3739. }
  3740. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3741. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3742. {
  3743. struct zone *zone;
  3744. int rc;
  3745. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3746. if (rc)
  3747. return rc;
  3748. for_each_zone(zone)
  3749. zone->min_slab_pages = (zone->present_pages *
  3750. sysctl_min_slab_ratio) / 100;
  3751. return 0;
  3752. }
  3753. #endif
  3754. /*
  3755. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3756. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3757. * whenever sysctl_lowmem_reserve_ratio changes.
  3758. *
  3759. * The reserve ratio obviously has absolutely no relation with the
  3760. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3761. * if in function of the boot time zone sizes.
  3762. */
  3763. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3764. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3765. {
  3766. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3767. setup_per_zone_lowmem_reserve();
  3768. return 0;
  3769. }
  3770. /*
  3771. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3772. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3773. * can have before it gets flushed back to buddy allocator.
  3774. */
  3775. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3776. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3777. {
  3778. struct zone *zone;
  3779. unsigned int cpu;
  3780. int ret;
  3781. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3782. if (!write || (ret == -EINVAL))
  3783. return ret;
  3784. for_each_zone(zone) {
  3785. for_each_online_cpu(cpu) {
  3786. unsigned long high;
  3787. high = zone->present_pages / percpu_pagelist_fraction;
  3788. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3789. }
  3790. }
  3791. return 0;
  3792. }
  3793. int hashdist = HASHDIST_DEFAULT;
  3794. #ifdef CONFIG_NUMA
  3795. static int __init set_hashdist(char *str)
  3796. {
  3797. if (!str)
  3798. return 0;
  3799. hashdist = simple_strtoul(str, &str, 0);
  3800. return 1;
  3801. }
  3802. __setup("hashdist=", set_hashdist);
  3803. #endif
  3804. /*
  3805. * allocate a large system hash table from bootmem
  3806. * - it is assumed that the hash table must contain an exact power-of-2
  3807. * quantity of entries
  3808. * - limit is the number of hash buckets, not the total allocation size
  3809. */
  3810. void *__init alloc_large_system_hash(const char *tablename,
  3811. unsigned long bucketsize,
  3812. unsigned long numentries,
  3813. int scale,
  3814. int flags,
  3815. unsigned int *_hash_shift,
  3816. unsigned int *_hash_mask,
  3817. unsigned long limit)
  3818. {
  3819. unsigned long long max = limit;
  3820. unsigned long log2qty, size;
  3821. void *table = NULL;
  3822. /* allow the kernel cmdline to have a say */
  3823. if (!numentries) {
  3824. /* round applicable memory size up to nearest megabyte */
  3825. numentries = nr_kernel_pages;
  3826. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3827. numentries >>= 20 - PAGE_SHIFT;
  3828. numentries <<= 20 - PAGE_SHIFT;
  3829. /* limit to 1 bucket per 2^scale bytes of low memory */
  3830. if (scale > PAGE_SHIFT)
  3831. numentries >>= (scale - PAGE_SHIFT);
  3832. else
  3833. numentries <<= (PAGE_SHIFT - scale);
  3834. /* Make sure we've got at least a 0-order allocation.. */
  3835. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3836. numentries = PAGE_SIZE / bucketsize;
  3837. }
  3838. numentries = roundup_pow_of_two(numentries);
  3839. /* limit allocation size to 1/16 total memory by default */
  3840. if (max == 0) {
  3841. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3842. do_div(max, bucketsize);
  3843. }
  3844. if (numentries > max)
  3845. numentries = max;
  3846. log2qty = ilog2(numentries);
  3847. do {
  3848. size = bucketsize << log2qty;
  3849. if (flags & HASH_EARLY)
  3850. table = alloc_bootmem(size);
  3851. else if (hashdist)
  3852. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3853. else {
  3854. unsigned long order = get_order(size);
  3855. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3856. /*
  3857. * If bucketsize is not a power-of-two, we may free
  3858. * some pages at the end of hash table.
  3859. */
  3860. if (table) {
  3861. unsigned long alloc_end = (unsigned long)table +
  3862. (PAGE_SIZE << order);
  3863. unsigned long used = (unsigned long)table +
  3864. PAGE_ALIGN(size);
  3865. split_page(virt_to_page(table), order);
  3866. while (used < alloc_end) {
  3867. free_page(used);
  3868. used += PAGE_SIZE;
  3869. }
  3870. }
  3871. }
  3872. } while (!table && size > PAGE_SIZE && --log2qty);
  3873. if (!table)
  3874. panic("Failed to allocate %s hash table\n", tablename);
  3875. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3876. tablename,
  3877. (1U << log2qty),
  3878. ilog2(size) - PAGE_SHIFT,
  3879. size);
  3880. if (_hash_shift)
  3881. *_hash_shift = log2qty;
  3882. if (_hash_mask)
  3883. *_hash_mask = (1 << log2qty) - 1;
  3884. return table;
  3885. }
  3886. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3887. struct page *pfn_to_page(unsigned long pfn)
  3888. {
  3889. return __pfn_to_page(pfn);
  3890. }
  3891. unsigned long page_to_pfn(struct page *page)
  3892. {
  3893. return __page_to_pfn(page);
  3894. }
  3895. EXPORT_SYMBOL(pfn_to_page);
  3896. EXPORT_SYMBOL(page_to_pfn);
  3897. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3898. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3899. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3900. unsigned long pfn)
  3901. {
  3902. #ifdef CONFIG_SPARSEMEM
  3903. return __pfn_to_section(pfn)->pageblock_flags;
  3904. #else
  3905. return zone->pageblock_flags;
  3906. #endif /* CONFIG_SPARSEMEM */
  3907. }
  3908. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3909. {
  3910. #ifdef CONFIG_SPARSEMEM
  3911. pfn &= (PAGES_PER_SECTION-1);
  3912. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3913. #else
  3914. pfn = pfn - zone->zone_start_pfn;
  3915. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3916. #endif /* CONFIG_SPARSEMEM */
  3917. }
  3918. /**
  3919. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3920. * @page: The page within the block of interest
  3921. * @start_bitidx: The first bit of interest to retrieve
  3922. * @end_bitidx: The last bit of interest
  3923. * returns pageblock_bits flags
  3924. */
  3925. unsigned long get_pageblock_flags_group(struct page *page,
  3926. int start_bitidx, int end_bitidx)
  3927. {
  3928. struct zone *zone;
  3929. unsigned long *bitmap;
  3930. unsigned long pfn, bitidx;
  3931. unsigned long flags = 0;
  3932. unsigned long value = 1;
  3933. zone = page_zone(page);
  3934. pfn = page_to_pfn(page);
  3935. bitmap = get_pageblock_bitmap(zone, pfn);
  3936. bitidx = pfn_to_bitidx(zone, pfn);
  3937. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3938. if (test_bit(bitidx + start_bitidx, bitmap))
  3939. flags |= value;
  3940. return flags;
  3941. }
  3942. /**
  3943. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3944. * @page: The page within the block of interest
  3945. * @start_bitidx: The first bit of interest
  3946. * @end_bitidx: The last bit of interest
  3947. * @flags: The flags to set
  3948. */
  3949. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3950. int start_bitidx, int end_bitidx)
  3951. {
  3952. struct zone *zone;
  3953. unsigned long *bitmap;
  3954. unsigned long pfn, bitidx;
  3955. unsigned long value = 1;
  3956. zone = page_zone(page);
  3957. pfn = page_to_pfn(page);
  3958. bitmap = get_pageblock_bitmap(zone, pfn);
  3959. bitidx = pfn_to_bitidx(zone, pfn);
  3960. VM_BUG_ON(pfn < zone->zone_start_pfn);
  3961. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  3962. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3963. if (flags & value)
  3964. __set_bit(bitidx + start_bitidx, bitmap);
  3965. else
  3966. __clear_bit(bitidx + start_bitidx, bitmap);
  3967. }
  3968. /*
  3969. * This is designed as sub function...plz see page_isolation.c also.
  3970. * set/clear page block's type to be ISOLATE.
  3971. * page allocater never alloc memory from ISOLATE block.
  3972. */
  3973. int set_migratetype_isolate(struct page *page)
  3974. {
  3975. struct zone *zone;
  3976. unsigned long flags;
  3977. int ret = -EBUSY;
  3978. zone = page_zone(page);
  3979. spin_lock_irqsave(&zone->lock, flags);
  3980. /*
  3981. * In future, more migrate types will be able to be isolation target.
  3982. */
  3983. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3984. goto out;
  3985. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3986. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3987. ret = 0;
  3988. out:
  3989. spin_unlock_irqrestore(&zone->lock, flags);
  3990. if (!ret)
  3991. drain_all_pages();
  3992. return ret;
  3993. }
  3994. void unset_migratetype_isolate(struct page *page)
  3995. {
  3996. struct zone *zone;
  3997. unsigned long flags;
  3998. zone = page_zone(page);
  3999. spin_lock_irqsave(&zone->lock, flags);
  4000. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4001. goto out;
  4002. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4003. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4004. out:
  4005. spin_unlock_irqrestore(&zone->lock, flags);
  4006. }
  4007. #ifdef CONFIG_MEMORY_HOTREMOVE
  4008. /*
  4009. * All pages in the range must be isolated before calling this.
  4010. */
  4011. void
  4012. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4013. {
  4014. struct page *page;
  4015. struct zone *zone;
  4016. int order, i;
  4017. unsigned long pfn;
  4018. unsigned long flags;
  4019. /* find the first valid pfn */
  4020. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4021. if (pfn_valid(pfn))
  4022. break;
  4023. if (pfn == end_pfn)
  4024. return;
  4025. zone = page_zone(pfn_to_page(pfn));
  4026. spin_lock_irqsave(&zone->lock, flags);
  4027. pfn = start_pfn;
  4028. while (pfn < end_pfn) {
  4029. if (!pfn_valid(pfn)) {
  4030. pfn++;
  4031. continue;
  4032. }
  4033. page = pfn_to_page(pfn);
  4034. BUG_ON(page_count(page));
  4035. BUG_ON(!PageBuddy(page));
  4036. order = page_order(page);
  4037. #ifdef CONFIG_DEBUG_VM
  4038. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4039. pfn, 1 << order, end_pfn);
  4040. #endif
  4041. list_del(&page->lru);
  4042. rmv_page_order(page);
  4043. zone->free_area[order].nr_free--;
  4044. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4045. - (1UL << order));
  4046. for (i = 0; i < (1 << order); i++)
  4047. SetPageReserved((page+i));
  4048. pfn += (1 << order);
  4049. }
  4050. spin_unlock_irqrestore(&zone->lock, flags);
  4051. }
  4052. #endif