forcedeth.c 168 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,5,6 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Changelog:
  33. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  34. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  35. * Check all PCI BARs for the register window.
  36. * udelay added to mii_rw.
  37. * 0.03: 06 Oct 2003: Initialize dev->irq.
  38. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  39. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  40. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  41. * irq mask updated
  42. * 0.07: 14 Oct 2003: Further irq mask updates.
  43. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  44. * added into irq handler, NULL check for drain_ring.
  45. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  46. * requested interrupt sources.
  47. * 0.10: 20 Oct 2003: First cleanup for release.
  48. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  49. * MAC Address init fix, set_multicast cleanup.
  50. * 0.12: 23 Oct 2003: Cleanups for release.
  51. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  52. * Set link speed correctly. start rx before starting
  53. * tx (nv_start_rx sets the link speed).
  54. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  55. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  56. * open.
  57. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  58. * increased to 1628 bytes.
  59. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  60. * the tx length.
  61. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  62. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  63. * addresses, really stop rx if already running
  64. * in nv_start_rx, clean up a bit.
  65. * 0.20: 07 Dec 2003: alloc fixes
  66. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  67. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  68. * on close.
  69. * 0.23: 26 Jan 2004: various small cleanups
  70. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  71. * 0.25: 09 Mar 2004: wol support
  72. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  73. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  74. * added CK804/MCP04 device IDs, code fixes
  75. * for registers, link status and other minor fixes.
  76. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  77. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  78. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  79. * into nv_close, otherwise reenabling for wol can
  80. * cause DMA to kfree'd memory.
  81. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  82. * capabilities.
  83. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  84. * 0.33: 16 May 2005: Support for MCP51 added.
  85. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  86. * 0.35: 26 Jun 2005: Support for MCP55 added.
  87. * 0.36: 28 Jun 2005: Add jumbo frame support.
  88. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  89. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  90. * per-packet flags.
  91. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  92. * 0.40: 19 Jul 2005: Add support for mac address change.
  93. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  94. * of nv_remove
  95. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  96. * in the second (and later) nv_open call
  97. * 0.43: 10 Aug 2005: Add support for tx checksum.
  98. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  99. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  100. * 0.46: 20 Oct 2005: Add irq optimization modes.
  101. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  102. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  103. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  104. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  105. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  106. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  107. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  108. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  109. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  110. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  111. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  112. * 0.58: 30 Oct 2006: Added support for sideband management unit.
  113. * 0.59: 30 Oct 2006: Added support for recoverable error.
  114. * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
  115. *
  116. * Known bugs:
  117. * We suspect that on some hardware no TX done interrupts are generated.
  118. * This means recovery from netif_stop_queue only happens if the hw timer
  119. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  120. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  121. * If your hardware reliably generates tx done interrupts, then you can remove
  122. * DEV_NEED_TIMERIRQ from the driver_data flags.
  123. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  124. * superfluous timer interrupts from the nic.
  125. */
  126. #ifdef CONFIG_FORCEDETH_NAPI
  127. #define DRIVERNAPI "-NAPI"
  128. #else
  129. #define DRIVERNAPI
  130. #endif
  131. #define FORCEDETH_VERSION "0.60"
  132. #define DRV_NAME "forcedeth"
  133. #include <linux/module.h>
  134. #include <linux/types.h>
  135. #include <linux/pci.h>
  136. #include <linux/interrupt.h>
  137. #include <linux/netdevice.h>
  138. #include <linux/etherdevice.h>
  139. #include <linux/delay.h>
  140. #include <linux/spinlock.h>
  141. #include <linux/ethtool.h>
  142. #include <linux/timer.h>
  143. #include <linux/skbuff.h>
  144. #include <linux/mii.h>
  145. #include <linux/random.h>
  146. #include <linux/init.h>
  147. #include <linux/if_vlan.h>
  148. #include <linux/dma-mapping.h>
  149. #include <asm/irq.h>
  150. #include <asm/io.h>
  151. #include <asm/uaccess.h>
  152. #include <asm/system.h>
  153. #if 0
  154. #define dprintk printk
  155. #else
  156. #define dprintk(x...) do { } while (0)
  157. #endif
  158. /*
  159. * Hardware access:
  160. */
  161. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  162. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  163. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  164. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  165. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  166. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  167. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  168. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  169. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  170. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  171. #define DEV_HAS_STATISTICS_V1 0x0400 /* device supports hw statistics version 1 */
  172. #define DEV_HAS_STATISTICS_V2 0x0800 /* device supports hw statistics version 2 */
  173. #define DEV_HAS_TEST_EXTENDED 0x1000 /* device supports extended diagnostic test */
  174. #define DEV_HAS_MGMT_UNIT 0x2000 /* device supports management unit */
  175. #define DEV_HAS_CORRECT_MACADDR 0x4000 /* device supports correct mac address order */
  176. enum {
  177. NvRegIrqStatus = 0x000,
  178. #define NVREG_IRQSTAT_MIIEVENT 0x040
  179. #define NVREG_IRQSTAT_MASK 0x81ff
  180. NvRegIrqMask = 0x004,
  181. #define NVREG_IRQ_RX_ERROR 0x0001
  182. #define NVREG_IRQ_RX 0x0002
  183. #define NVREG_IRQ_RX_NOBUF 0x0004
  184. #define NVREG_IRQ_TX_ERR 0x0008
  185. #define NVREG_IRQ_TX_OK 0x0010
  186. #define NVREG_IRQ_TIMER 0x0020
  187. #define NVREG_IRQ_LINK 0x0040
  188. #define NVREG_IRQ_RX_FORCED 0x0080
  189. #define NVREG_IRQ_TX_FORCED 0x0100
  190. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  191. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  192. #define NVREG_IRQMASK_CPU 0x0060
  193. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  194. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  195. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  196. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  197. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  198. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  199. NvRegUnknownSetupReg6 = 0x008,
  200. #define NVREG_UNKSETUP6_VAL 3
  201. /*
  202. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  203. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  204. */
  205. NvRegPollingInterval = 0x00c,
  206. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  207. #define NVREG_POLL_DEFAULT_CPU 13
  208. NvRegMSIMap0 = 0x020,
  209. NvRegMSIMap1 = 0x024,
  210. NvRegMSIIrqMask = 0x030,
  211. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  212. NvRegMisc1 = 0x080,
  213. #define NVREG_MISC1_PAUSE_TX 0x01
  214. #define NVREG_MISC1_HD 0x02
  215. #define NVREG_MISC1_FORCE 0x3b0f3c
  216. NvRegMacReset = 0x3c,
  217. #define NVREG_MAC_RESET_ASSERT 0x0F3
  218. NvRegTransmitterControl = 0x084,
  219. #define NVREG_XMITCTL_START 0x01
  220. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  221. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  222. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  223. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  224. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  225. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  226. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  227. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  228. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  229. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  230. NvRegTransmitterStatus = 0x088,
  231. #define NVREG_XMITSTAT_BUSY 0x01
  232. NvRegPacketFilterFlags = 0x8c,
  233. #define NVREG_PFF_PAUSE_RX 0x08
  234. #define NVREG_PFF_ALWAYS 0x7F0000
  235. #define NVREG_PFF_PROMISC 0x80
  236. #define NVREG_PFF_MYADDR 0x20
  237. #define NVREG_PFF_LOOPBACK 0x10
  238. NvRegOffloadConfig = 0x90,
  239. #define NVREG_OFFLOAD_HOMEPHY 0x601
  240. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  241. NvRegReceiverControl = 0x094,
  242. #define NVREG_RCVCTL_START 0x01
  243. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  244. NvRegReceiverStatus = 0x98,
  245. #define NVREG_RCVSTAT_BUSY 0x01
  246. NvRegRandomSeed = 0x9c,
  247. #define NVREG_RNDSEED_MASK 0x00ff
  248. #define NVREG_RNDSEED_FORCE 0x7f00
  249. #define NVREG_RNDSEED_FORCE2 0x2d00
  250. #define NVREG_RNDSEED_FORCE3 0x7400
  251. NvRegTxDeferral = 0xA0,
  252. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  253. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  254. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  255. NvRegRxDeferral = 0xA4,
  256. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  257. NvRegMacAddrA = 0xA8,
  258. NvRegMacAddrB = 0xAC,
  259. NvRegMulticastAddrA = 0xB0,
  260. #define NVREG_MCASTADDRA_FORCE 0x01
  261. NvRegMulticastAddrB = 0xB4,
  262. NvRegMulticastMaskA = 0xB8,
  263. NvRegMulticastMaskB = 0xBC,
  264. NvRegPhyInterface = 0xC0,
  265. #define PHY_RGMII 0x10000000
  266. NvRegTxRingPhysAddr = 0x100,
  267. NvRegRxRingPhysAddr = 0x104,
  268. NvRegRingSizes = 0x108,
  269. #define NVREG_RINGSZ_TXSHIFT 0
  270. #define NVREG_RINGSZ_RXSHIFT 16
  271. NvRegTransmitPoll = 0x10c,
  272. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  273. NvRegLinkSpeed = 0x110,
  274. #define NVREG_LINKSPEED_FORCE 0x10000
  275. #define NVREG_LINKSPEED_10 1000
  276. #define NVREG_LINKSPEED_100 100
  277. #define NVREG_LINKSPEED_1000 50
  278. #define NVREG_LINKSPEED_MASK (0xFFF)
  279. NvRegUnknownSetupReg5 = 0x130,
  280. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  281. NvRegTxWatermark = 0x13c,
  282. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  283. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  284. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  285. NvRegTxRxControl = 0x144,
  286. #define NVREG_TXRXCTL_KICK 0x0001
  287. #define NVREG_TXRXCTL_BIT1 0x0002
  288. #define NVREG_TXRXCTL_BIT2 0x0004
  289. #define NVREG_TXRXCTL_IDLE 0x0008
  290. #define NVREG_TXRXCTL_RESET 0x0010
  291. #define NVREG_TXRXCTL_RXCHECK 0x0400
  292. #define NVREG_TXRXCTL_DESC_1 0
  293. #define NVREG_TXRXCTL_DESC_2 0x002100
  294. #define NVREG_TXRXCTL_DESC_3 0xc02200
  295. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  296. #define NVREG_TXRXCTL_VLANINS 0x00080
  297. NvRegTxRingPhysAddrHigh = 0x148,
  298. NvRegRxRingPhysAddrHigh = 0x14C,
  299. NvRegTxPauseFrame = 0x170,
  300. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  301. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  302. NvRegMIIStatus = 0x180,
  303. #define NVREG_MIISTAT_ERROR 0x0001
  304. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  305. #define NVREG_MIISTAT_MASK 0x000f
  306. #define NVREG_MIISTAT_MASK2 0x000f
  307. NvRegMIIMask = 0x184,
  308. #define NVREG_MII_LINKCHANGE 0x0008
  309. NvRegAdapterControl = 0x188,
  310. #define NVREG_ADAPTCTL_START 0x02
  311. #define NVREG_ADAPTCTL_LINKUP 0x04
  312. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  313. #define NVREG_ADAPTCTL_RUNNING 0x100000
  314. #define NVREG_ADAPTCTL_PHYSHIFT 24
  315. NvRegMIISpeed = 0x18c,
  316. #define NVREG_MIISPEED_BIT8 (1<<8)
  317. #define NVREG_MIIDELAY 5
  318. NvRegMIIControl = 0x190,
  319. #define NVREG_MIICTL_INUSE 0x08000
  320. #define NVREG_MIICTL_WRITE 0x00400
  321. #define NVREG_MIICTL_ADDRSHIFT 5
  322. NvRegMIIData = 0x194,
  323. NvRegWakeUpFlags = 0x200,
  324. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  325. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  326. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  327. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  328. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  329. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  330. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  331. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  332. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  333. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  334. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  335. NvRegPatternCRC = 0x204,
  336. NvRegPatternMask = 0x208,
  337. NvRegPowerCap = 0x268,
  338. #define NVREG_POWERCAP_D3SUPP (1<<30)
  339. #define NVREG_POWERCAP_D2SUPP (1<<26)
  340. #define NVREG_POWERCAP_D1SUPP (1<<25)
  341. NvRegPowerState = 0x26c,
  342. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  343. #define NVREG_POWERSTATE_VALID 0x0100
  344. #define NVREG_POWERSTATE_MASK 0x0003
  345. #define NVREG_POWERSTATE_D0 0x0000
  346. #define NVREG_POWERSTATE_D1 0x0001
  347. #define NVREG_POWERSTATE_D2 0x0002
  348. #define NVREG_POWERSTATE_D3 0x0003
  349. NvRegTxCnt = 0x280,
  350. NvRegTxZeroReXmt = 0x284,
  351. NvRegTxOneReXmt = 0x288,
  352. NvRegTxManyReXmt = 0x28c,
  353. NvRegTxLateCol = 0x290,
  354. NvRegTxUnderflow = 0x294,
  355. NvRegTxLossCarrier = 0x298,
  356. NvRegTxExcessDef = 0x29c,
  357. NvRegTxRetryErr = 0x2a0,
  358. NvRegRxFrameErr = 0x2a4,
  359. NvRegRxExtraByte = 0x2a8,
  360. NvRegRxLateCol = 0x2ac,
  361. NvRegRxRunt = 0x2b0,
  362. NvRegRxFrameTooLong = 0x2b4,
  363. NvRegRxOverflow = 0x2b8,
  364. NvRegRxFCSErr = 0x2bc,
  365. NvRegRxFrameAlignErr = 0x2c0,
  366. NvRegRxLenErr = 0x2c4,
  367. NvRegRxUnicast = 0x2c8,
  368. NvRegRxMulticast = 0x2cc,
  369. NvRegRxBroadcast = 0x2d0,
  370. NvRegTxDef = 0x2d4,
  371. NvRegTxFrame = 0x2d8,
  372. NvRegRxCnt = 0x2dc,
  373. NvRegTxPause = 0x2e0,
  374. NvRegRxPause = 0x2e4,
  375. NvRegRxDropFrame = 0x2e8,
  376. NvRegVlanControl = 0x300,
  377. #define NVREG_VLANCONTROL_ENABLE 0x2000
  378. NvRegMSIXMap0 = 0x3e0,
  379. NvRegMSIXMap1 = 0x3e4,
  380. NvRegMSIXIrqStatus = 0x3f0,
  381. NvRegPowerState2 = 0x600,
  382. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  383. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  384. };
  385. /* Big endian: should work, but is untested */
  386. struct ring_desc {
  387. __le32 buf;
  388. __le32 flaglen;
  389. };
  390. struct ring_desc_ex {
  391. __le32 bufhigh;
  392. __le32 buflow;
  393. __le32 txvlan;
  394. __le32 flaglen;
  395. };
  396. union ring_type {
  397. struct ring_desc* orig;
  398. struct ring_desc_ex* ex;
  399. };
  400. #define FLAG_MASK_V1 0xffff0000
  401. #define FLAG_MASK_V2 0xffffc000
  402. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  403. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  404. #define NV_TX_LASTPACKET (1<<16)
  405. #define NV_TX_RETRYERROR (1<<19)
  406. #define NV_TX_FORCED_INTERRUPT (1<<24)
  407. #define NV_TX_DEFERRED (1<<26)
  408. #define NV_TX_CARRIERLOST (1<<27)
  409. #define NV_TX_LATECOLLISION (1<<28)
  410. #define NV_TX_UNDERFLOW (1<<29)
  411. #define NV_TX_ERROR (1<<30)
  412. #define NV_TX_VALID (1<<31)
  413. #define NV_TX2_LASTPACKET (1<<29)
  414. #define NV_TX2_RETRYERROR (1<<18)
  415. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  416. #define NV_TX2_DEFERRED (1<<25)
  417. #define NV_TX2_CARRIERLOST (1<<26)
  418. #define NV_TX2_LATECOLLISION (1<<27)
  419. #define NV_TX2_UNDERFLOW (1<<28)
  420. /* error and valid are the same for both */
  421. #define NV_TX2_ERROR (1<<30)
  422. #define NV_TX2_VALID (1<<31)
  423. #define NV_TX2_TSO (1<<28)
  424. #define NV_TX2_TSO_SHIFT 14
  425. #define NV_TX2_TSO_MAX_SHIFT 14
  426. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  427. #define NV_TX2_CHECKSUM_L3 (1<<27)
  428. #define NV_TX2_CHECKSUM_L4 (1<<26)
  429. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  430. #define NV_RX_DESCRIPTORVALID (1<<16)
  431. #define NV_RX_MISSEDFRAME (1<<17)
  432. #define NV_RX_SUBSTRACT1 (1<<18)
  433. #define NV_RX_ERROR1 (1<<23)
  434. #define NV_RX_ERROR2 (1<<24)
  435. #define NV_RX_ERROR3 (1<<25)
  436. #define NV_RX_ERROR4 (1<<26)
  437. #define NV_RX_CRCERR (1<<27)
  438. #define NV_RX_OVERFLOW (1<<28)
  439. #define NV_RX_FRAMINGERR (1<<29)
  440. #define NV_RX_ERROR (1<<30)
  441. #define NV_RX_AVAIL (1<<31)
  442. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  443. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  444. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  445. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  446. #define NV_RX2_DESCRIPTORVALID (1<<29)
  447. #define NV_RX2_SUBSTRACT1 (1<<25)
  448. #define NV_RX2_ERROR1 (1<<18)
  449. #define NV_RX2_ERROR2 (1<<19)
  450. #define NV_RX2_ERROR3 (1<<20)
  451. #define NV_RX2_ERROR4 (1<<21)
  452. #define NV_RX2_CRCERR (1<<22)
  453. #define NV_RX2_OVERFLOW (1<<23)
  454. #define NV_RX2_FRAMINGERR (1<<24)
  455. /* error and avail are the same for both */
  456. #define NV_RX2_ERROR (1<<30)
  457. #define NV_RX2_AVAIL (1<<31)
  458. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  459. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  460. /* Miscelaneous hardware related defines: */
  461. #define NV_PCI_REGSZ_VER1 0x270
  462. #define NV_PCI_REGSZ_VER2 0x2d4
  463. #define NV_PCI_REGSZ_VER3 0x604
  464. /* various timeout delays: all in usec */
  465. #define NV_TXRX_RESET_DELAY 4
  466. #define NV_TXSTOP_DELAY1 10
  467. #define NV_TXSTOP_DELAY1MAX 500000
  468. #define NV_TXSTOP_DELAY2 100
  469. #define NV_RXSTOP_DELAY1 10
  470. #define NV_RXSTOP_DELAY1MAX 500000
  471. #define NV_RXSTOP_DELAY2 100
  472. #define NV_SETUP5_DELAY 5
  473. #define NV_SETUP5_DELAYMAX 50000
  474. #define NV_POWERUP_DELAY 5
  475. #define NV_POWERUP_DELAYMAX 5000
  476. #define NV_MIIBUSY_DELAY 50
  477. #define NV_MIIPHY_DELAY 10
  478. #define NV_MIIPHY_DELAYMAX 10000
  479. #define NV_MAC_RESET_DELAY 64
  480. #define NV_WAKEUPPATTERNS 5
  481. #define NV_WAKEUPMASKENTRIES 4
  482. /* General driver defaults */
  483. #define NV_WATCHDOG_TIMEO (5*HZ)
  484. #define RX_RING_DEFAULT 128
  485. #define TX_RING_DEFAULT 256
  486. #define RX_RING_MIN 128
  487. #define TX_RING_MIN 64
  488. #define RING_MAX_DESC_VER_1 1024
  489. #define RING_MAX_DESC_VER_2_3 16384
  490. /* rx/tx mac addr + type + vlan + align + slack*/
  491. #define NV_RX_HEADERS (64)
  492. /* even more slack. */
  493. #define NV_RX_ALLOC_PAD (64)
  494. /* maximum mtu size */
  495. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  496. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  497. #define OOM_REFILL (1+HZ/20)
  498. #define POLL_WAIT (1+HZ/100)
  499. #define LINK_TIMEOUT (3*HZ)
  500. #define STATS_INTERVAL (10*HZ)
  501. /*
  502. * desc_ver values:
  503. * The nic supports three different descriptor types:
  504. * - DESC_VER_1: Original
  505. * - DESC_VER_2: support for jumbo frames.
  506. * - DESC_VER_3: 64-bit format.
  507. */
  508. #define DESC_VER_1 1
  509. #define DESC_VER_2 2
  510. #define DESC_VER_3 3
  511. /* PHY defines */
  512. #define PHY_OUI_MARVELL 0x5043
  513. #define PHY_OUI_CICADA 0x03f1
  514. #define PHY_OUI_VITESSE 0x01c1
  515. #define PHY_OUI_REALTEK 0x0732
  516. #define PHYID1_OUI_MASK 0x03ff
  517. #define PHYID1_OUI_SHFT 6
  518. #define PHYID2_OUI_MASK 0xfc00
  519. #define PHYID2_OUI_SHFT 10
  520. #define PHYID2_MODEL_MASK 0x03f0
  521. #define PHY_MODEL_MARVELL_E3016 0x220
  522. #define PHY_MARVELL_E3016_INITMASK 0x0300
  523. #define PHY_CICADA_INIT1 0x0f000
  524. #define PHY_CICADA_INIT2 0x0e00
  525. #define PHY_CICADA_INIT3 0x01000
  526. #define PHY_CICADA_INIT4 0x0200
  527. #define PHY_CICADA_INIT5 0x0004
  528. #define PHY_CICADA_INIT6 0x02000
  529. #define PHY_VITESSE_INIT_REG1 0x1f
  530. #define PHY_VITESSE_INIT_REG2 0x10
  531. #define PHY_VITESSE_INIT_REG3 0x11
  532. #define PHY_VITESSE_INIT_REG4 0x12
  533. #define PHY_VITESSE_INIT_MSK1 0xc
  534. #define PHY_VITESSE_INIT_MSK2 0x0180
  535. #define PHY_VITESSE_INIT1 0x52b5
  536. #define PHY_VITESSE_INIT2 0xaf8a
  537. #define PHY_VITESSE_INIT3 0x8
  538. #define PHY_VITESSE_INIT4 0x8f8a
  539. #define PHY_VITESSE_INIT5 0xaf86
  540. #define PHY_VITESSE_INIT6 0x8f86
  541. #define PHY_VITESSE_INIT7 0xaf82
  542. #define PHY_VITESSE_INIT8 0x0100
  543. #define PHY_VITESSE_INIT9 0x8f82
  544. #define PHY_VITESSE_INIT10 0x0
  545. #define PHY_REALTEK_INIT_REG1 0x1f
  546. #define PHY_REALTEK_INIT_REG2 0x19
  547. #define PHY_REALTEK_INIT_REG3 0x13
  548. #define PHY_REALTEK_INIT1 0x0000
  549. #define PHY_REALTEK_INIT2 0x8e00
  550. #define PHY_REALTEK_INIT3 0x0001
  551. #define PHY_REALTEK_INIT4 0xad17
  552. #define PHY_GIGABIT 0x0100
  553. #define PHY_TIMEOUT 0x1
  554. #define PHY_ERROR 0x2
  555. #define PHY_100 0x1
  556. #define PHY_1000 0x2
  557. #define PHY_HALF 0x100
  558. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  559. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  560. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  561. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  562. #define NV_PAUSEFRAME_RX_REQ 0x0010
  563. #define NV_PAUSEFRAME_TX_REQ 0x0020
  564. #define NV_PAUSEFRAME_AUTONEG 0x0040
  565. /* MSI/MSI-X defines */
  566. #define NV_MSI_X_MAX_VECTORS 8
  567. #define NV_MSI_X_VECTORS_MASK 0x000f
  568. #define NV_MSI_CAPABLE 0x0010
  569. #define NV_MSI_X_CAPABLE 0x0020
  570. #define NV_MSI_ENABLED 0x0040
  571. #define NV_MSI_X_ENABLED 0x0080
  572. #define NV_MSI_X_VECTOR_ALL 0x0
  573. #define NV_MSI_X_VECTOR_RX 0x0
  574. #define NV_MSI_X_VECTOR_TX 0x1
  575. #define NV_MSI_X_VECTOR_OTHER 0x2
  576. /* statistics */
  577. struct nv_ethtool_str {
  578. char name[ETH_GSTRING_LEN];
  579. };
  580. static const struct nv_ethtool_str nv_estats_str[] = {
  581. { "tx_bytes" },
  582. { "tx_zero_rexmt" },
  583. { "tx_one_rexmt" },
  584. { "tx_many_rexmt" },
  585. { "tx_late_collision" },
  586. { "tx_fifo_errors" },
  587. { "tx_carrier_errors" },
  588. { "tx_excess_deferral" },
  589. { "tx_retry_error" },
  590. { "rx_frame_error" },
  591. { "rx_extra_byte" },
  592. { "rx_late_collision" },
  593. { "rx_runt" },
  594. { "rx_frame_too_long" },
  595. { "rx_over_errors" },
  596. { "rx_crc_errors" },
  597. { "rx_frame_align_error" },
  598. { "rx_length_error" },
  599. { "rx_unicast" },
  600. { "rx_multicast" },
  601. { "rx_broadcast" },
  602. { "rx_packets" },
  603. { "rx_errors_total" },
  604. { "tx_errors_total" },
  605. /* version 2 stats */
  606. { "tx_deferral" },
  607. { "tx_packets" },
  608. { "rx_bytes" },
  609. { "tx_pause" },
  610. { "rx_pause" },
  611. { "rx_drop_frame" }
  612. };
  613. struct nv_ethtool_stats {
  614. u64 tx_bytes;
  615. u64 tx_zero_rexmt;
  616. u64 tx_one_rexmt;
  617. u64 tx_many_rexmt;
  618. u64 tx_late_collision;
  619. u64 tx_fifo_errors;
  620. u64 tx_carrier_errors;
  621. u64 tx_excess_deferral;
  622. u64 tx_retry_error;
  623. u64 rx_frame_error;
  624. u64 rx_extra_byte;
  625. u64 rx_late_collision;
  626. u64 rx_runt;
  627. u64 rx_frame_too_long;
  628. u64 rx_over_errors;
  629. u64 rx_crc_errors;
  630. u64 rx_frame_align_error;
  631. u64 rx_length_error;
  632. u64 rx_unicast;
  633. u64 rx_multicast;
  634. u64 rx_broadcast;
  635. u64 rx_packets;
  636. u64 rx_errors_total;
  637. u64 tx_errors_total;
  638. /* version 2 stats */
  639. u64 tx_deferral;
  640. u64 tx_packets;
  641. u64 rx_bytes;
  642. u64 tx_pause;
  643. u64 rx_pause;
  644. u64 rx_drop_frame;
  645. };
  646. #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  647. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  648. /* diagnostics */
  649. #define NV_TEST_COUNT_BASE 3
  650. #define NV_TEST_COUNT_EXTENDED 4
  651. static const struct nv_ethtool_str nv_etests_str[] = {
  652. { "link (online/offline)" },
  653. { "register (offline) " },
  654. { "interrupt (offline) " },
  655. { "loopback (offline) " }
  656. };
  657. struct register_test {
  658. __le32 reg;
  659. __le32 mask;
  660. };
  661. static const struct register_test nv_registers_test[] = {
  662. { NvRegUnknownSetupReg6, 0x01 },
  663. { NvRegMisc1, 0x03c },
  664. { NvRegOffloadConfig, 0x03ff },
  665. { NvRegMulticastAddrA, 0xffffffff },
  666. { NvRegTxWatermark, 0x0ff },
  667. { NvRegWakeUpFlags, 0x07777 },
  668. { 0,0 }
  669. };
  670. struct nv_skb_map {
  671. struct sk_buff *skb;
  672. dma_addr_t dma;
  673. unsigned int dma_len;
  674. };
  675. /*
  676. * SMP locking:
  677. * All hardware access under dev->priv->lock, except the performance
  678. * critical parts:
  679. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  680. * by the arch code for interrupts.
  681. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  682. * needs dev->priv->lock :-(
  683. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  684. */
  685. /* in dev: base, irq */
  686. struct fe_priv {
  687. spinlock_t lock;
  688. /* General data:
  689. * Locking: spin_lock(&np->lock); */
  690. struct net_device_stats stats;
  691. struct nv_ethtool_stats estats;
  692. int in_shutdown;
  693. u32 linkspeed;
  694. int duplex;
  695. int autoneg;
  696. int fixed_mode;
  697. int phyaddr;
  698. int wolenabled;
  699. unsigned int phy_oui;
  700. unsigned int phy_model;
  701. u16 gigabit;
  702. int intr_test;
  703. int recover_error;
  704. /* General data: RO fields */
  705. dma_addr_t ring_addr;
  706. struct pci_dev *pci_dev;
  707. u32 orig_mac[2];
  708. u32 irqmask;
  709. u32 desc_ver;
  710. u32 txrxctl_bits;
  711. u32 vlanctl_bits;
  712. u32 driver_data;
  713. u32 register_size;
  714. int rx_csum;
  715. u32 mac_in_use;
  716. void __iomem *base;
  717. /* rx specific fields.
  718. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  719. */
  720. union ring_type get_rx, put_rx, first_rx, last_rx;
  721. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  722. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  723. struct nv_skb_map *rx_skb;
  724. union ring_type rx_ring;
  725. unsigned int rx_buf_sz;
  726. unsigned int pkt_limit;
  727. struct timer_list oom_kick;
  728. struct timer_list nic_poll;
  729. struct timer_list stats_poll;
  730. u32 nic_poll_irq;
  731. int rx_ring_size;
  732. /* media detection workaround.
  733. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  734. */
  735. int need_linktimer;
  736. unsigned long link_timeout;
  737. /*
  738. * tx specific fields.
  739. */
  740. union ring_type get_tx, put_tx, first_tx, last_tx;
  741. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  742. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  743. struct nv_skb_map *tx_skb;
  744. union ring_type tx_ring;
  745. u32 tx_flags;
  746. int tx_ring_size;
  747. int tx_stop;
  748. /* vlan fields */
  749. struct vlan_group *vlangrp;
  750. /* msi/msi-x fields */
  751. u32 msi_flags;
  752. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  753. /* flow control */
  754. u32 pause_flags;
  755. };
  756. /*
  757. * Maximum number of loops until we assume that a bit in the irq mask
  758. * is stuck. Overridable with module param.
  759. */
  760. static int max_interrupt_work = 5;
  761. /*
  762. * Optimization can be either throuput mode or cpu mode
  763. *
  764. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  765. * CPU Mode: Interrupts are controlled by a timer.
  766. */
  767. enum {
  768. NV_OPTIMIZATION_MODE_THROUGHPUT,
  769. NV_OPTIMIZATION_MODE_CPU
  770. };
  771. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  772. /*
  773. * Poll interval for timer irq
  774. *
  775. * This interval determines how frequent an interrupt is generated.
  776. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  777. * Min = 0, and Max = 65535
  778. */
  779. static int poll_interval = -1;
  780. /*
  781. * MSI interrupts
  782. */
  783. enum {
  784. NV_MSI_INT_DISABLED,
  785. NV_MSI_INT_ENABLED
  786. };
  787. static int msi = NV_MSI_INT_ENABLED;
  788. /*
  789. * MSIX interrupts
  790. */
  791. enum {
  792. NV_MSIX_INT_DISABLED,
  793. NV_MSIX_INT_ENABLED
  794. };
  795. static int msix = NV_MSIX_INT_DISABLED;
  796. /*
  797. * DMA 64bit
  798. */
  799. enum {
  800. NV_DMA_64BIT_DISABLED,
  801. NV_DMA_64BIT_ENABLED
  802. };
  803. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  804. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  805. {
  806. return netdev_priv(dev);
  807. }
  808. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  809. {
  810. return ((struct fe_priv *)netdev_priv(dev))->base;
  811. }
  812. static inline void pci_push(u8 __iomem *base)
  813. {
  814. /* force out pending posted writes */
  815. readl(base);
  816. }
  817. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  818. {
  819. return le32_to_cpu(prd->flaglen)
  820. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  821. }
  822. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  823. {
  824. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  825. }
  826. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  827. int delay, int delaymax, const char *msg)
  828. {
  829. u8 __iomem *base = get_hwbase(dev);
  830. pci_push(base);
  831. do {
  832. udelay(delay);
  833. delaymax -= delay;
  834. if (delaymax < 0) {
  835. if (msg)
  836. printk(msg);
  837. return 1;
  838. }
  839. } while ((readl(base + offset) & mask) != target);
  840. return 0;
  841. }
  842. #define NV_SETUP_RX_RING 0x01
  843. #define NV_SETUP_TX_RING 0x02
  844. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  845. {
  846. struct fe_priv *np = get_nvpriv(dev);
  847. u8 __iomem *base = get_hwbase(dev);
  848. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  849. if (rxtx_flags & NV_SETUP_RX_RING) {
  850. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  851. }
  852. if (rxtx_flags & NV_SETUP_TX_RING) {
  853. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  854. }
  855. } else {
  856. if (rxtx_flags & NV_SETUP_RX_RING) {
  857. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  858. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  859. }
  860. if (rxtx_flags & NV_SETUP_TX_RING) {
  861. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  862. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  863. }
  864. }
  865. }
  866. static void free_rings(struct net_device *dev)
  867. {
  868. struct fe_priv *np = get_nvpriv(dev);
  869. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  870. if (np->rx_ring.orig)
  871. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  872. np->rx_ring.orig, np->ring_addr);
  873. } else {
  874. if (np->rx_ring.ex)
  875. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  876. np->rx_ring.ex, np->ring_addr);
  877. }
  878. if (np->rx_skb)
  879. kfree(np->rx_skb);
  880. if (np->tx_skb)
  881. kfree(np->tx_skb);
  882. }
  883. static int using_multi_irqs(struct net_device *dev)
  884. {
  885. struct fe_priv *np = get_nvpriv(dev);
  886. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  887. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  888. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  889. return 0;
  890. else
  891. return 1;
  892. }
  893. static void nv_enable_irq(struct net_device *dev)
  894. {
  895. struct fe_priv *np = get_nvpriv(dev);
  896. if (!using_multi_irqs(dev)) {
  897. if (np->msi_flags & NV_MSI_X_ENABLED)
  898. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  899. else
  900. enable_irq(dev->irq);
  901. } else {
  902. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  903. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  904. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  905. }
  906. }
  907. static void nv_disable_irq(struct net_device *dev)
  908. {
  909. struct fe_priv *np = get_nvpriv(dev);
  910. if (!using_multi_irqs(dev)) {
  911. if (np->msi_flags & NV_MSI_X_ENABLED)
  912. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  913. else
  914. disable_irq(dev->irq);
  915. } else {
  916. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  917. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  918. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  919. }
  920. }
  921. /* In MSIX mode, a write to irqmask behaves as XOR */
  922. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  923. {
  924. u8 __iomem *base = get_hwbase(dev);
  925. writel(mask, base + NvRegIrqMask);
  926. }
  927. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  928. {
  929. struct fe_priv *np = get_nvpriv(dev);
  930. u8 __iomem *base = get_hwbase(dev);
  931. if (np->msi_flags & NV_MSI_X_ENABLED) {
  932. writel(mask, base + NvRegIrqMask);
  933. } else {
  934. if (np->msi_flags & NV_MSI_ENABLED)
  935. writel(0, base + NvRegMSIIrqMask);
  936. writel(0, base + NvRegIrqMask);
  937. }
  938. }
  939. #define MII_READ (-1)
  940. /* mii_rw: read/write a register on the PHY.
  941. *
  942. * Caller must guarantee serialization
  943. */
  944. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  945. {
  946. u8 __iomem *base = get_hwbase(dev);
  947. u32 reg;
  948. int retval;
  949. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  950. reg = readl(base + NvRegMIIControl);
  951. if (reg & NVREG_MIICTL_INUSE) {
  952. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  953. udelay(NV_MIIBUSY_DELAY);
  954. }
  955. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  956. if (value != MII_READ) {
  957. writel(value, base + NvRegMIIData);
  958. reg |= NVREG_MIICTL_WRITE;
  959. }
  960. writel(reg, base + NvRegMIIControl);
  961. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  962. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  963. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  964. dev->name, miireg, addr);
  965. retval = -1;
  966. } else if (value != MII_READ) {
  967. /* it was a write operation - fewer failures are detectable */
  968. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  969. dev->name, value, miireg, addr);
  970. retval = 0;
  971. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  972. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  973. dev->name, miireg, addr);
  974. retval = -1;
  975. } else {
  976. retval = readl(base + NvRegMIIData);
  977. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  978. dev->name, miireg, addr, retval);
  979. }
  980. return retval;
  981. }
  982. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  983. {
  984. struct fe_priv *np = netdev_priv(dev);
  985. u32 miicontrol;
  986. unsigned int tries = 0;
  987. miicontrol = BMCR_RESET | bmcr_setup;
  988. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  989. return -1;
  990. }
  991. /* wait for 500ms */
  992. msleep(500);
  993. /* must wait till reset is deasserted */
  994. while (miicontrol & BMCR_RESET) {
  995. msleep(10);
  996. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  997. /* FIXME: 100 tries seem excessive */
  998. if (tries++ > 100)
  999. return -1;
  1000. }
  1001. return 0;
  1002. }
  1003. static int phy_init(struct net_device *dev)
  1004. {
  1005. struct fe_priv *np = get_nvpriv(dev);
  1006. u8 __iomem *base = get_hwbase(dev);
  1007. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1008. /* phy errata for E3016 phy */
  1009. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1010. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1011. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1012. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1013. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1014. return PHY_ERROR;
  1015. }
  1016. }
  1017. if (np->phy_oui == PHY_OUI_REALTEK) {
  1018. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1019. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1020. return PHY_ERROR;
  1021. }
  1022. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1023. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1024. return PHY_ERROR;
  1025. }
  1026. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1027. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1028. return PHY_ERROR;
  1029. }
  1030. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1031. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1032. return PHY_ERROR;
  1033. }
  1034. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1035. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1036. return PHY_ERROR;
  1037. }
  1038. }
  1039. /* set advertise register */
  1040. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1041. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1042. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1043. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1044. return PHY_ERROR;
  1045. }
  1046. /* get phy interface type */
  1047. phyinterface = readl(base + NvRegPhyInterface);
  1048. /* see if gigabit phy */
  1049. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1050. if (mii_status & PHY_GIGABIT) {
  1051. np->gigabit = PHY_GIGABIT;
  1052. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1053. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1054. if (phyinterface & PHY_RGMII)
  1055. mii_control_1000 |= ADVERTISE_1000FULL;
  1056. else
  1057. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1058. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1059. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1060. return PHY_ERROR;
  1061. }
  1062. }
  1063. else
  1064. np->gigabit = 0;
  1065. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1066. mii_control |= BMCR_ANENABLE;
  1067. /* reset the phy
  1068. * (certain phys need bmcr to be setup with reset)
  1069. */
  1070. if (phy_reset(dev, mii_control)) {
  1071. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1072. return PHY_ERROR;
  1073. }
  1074. /* phy vendor specific configuration */
  1075. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1076. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1077. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1078. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1079. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1080. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1081. return PHY_ERROR;
  1082. }
  1083. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1084. phy_reserved |= PHY_CICADA_INIT5;
  1085. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1086. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1087. return PHY_ERROR;
  1088. }
  1089. }
  1090. if (np->phy_oui == PHY_OUI_CICADA) {
  1091. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1092. phy_reserved |= PHY_CICADA_INIT6;
  1093. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1094. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1095. return PHY_ERROR;
  1096. }
  1097. }
  1098. if (np->phy_oui == PHY_OUI_VITESSE) {
  1099. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1100. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1101. return PHY_ERROR;
  1102. }
  1103. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1104. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1105. return PHY_ERROR;
  1106. }
  1107. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1108. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1109. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1110. return PHY_ERROR;
  1111. }
  1112. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1113. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1114. phy_reserved |= PHY_VITESSE_INIT3;
  1115. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1116. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1117. return PHY_ERROR;
  1118. }
  1119. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1120. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1121. return PHY_ERROR;
  1122. }
  1123. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1124. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1125. return PHY_ERROR;
  1126. }
  1127. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1128. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1129. phy_reserved |= PHY_VITESSE_INIT3;
  1130. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1131. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1132. return PHY_ERROR;
  1133. }
  1134. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1135. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1136. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1137. return PHY_ERROR;
  1138. }
  1139. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1140. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1141. return PHY_ERROR;
  1142. }
  1143. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1144. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1145. return PHY_ERROR;
  1146. }
  1147. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1148. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1149. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1150. return PHY_ERROR;
  1151. }
  1152. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1153. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1154. phy_reserved |= PHY_VITESSE_INIT8;
  1155. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1156. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1157. return PHY_ERROR;
  1158. }
  1159. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1160. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1161. return PHY_ERROR;
  1162. }
  1163. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1164. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1165. return PHY_ERROR;
  1166. }
  1167. }
  1168. if (np->phy_oui == PHY_OUI_REALTEK) {
  1169. /* reset could have cleared these out, set them back */
  1170. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1171. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1172. return PHY_ERROR;
  1173. }
  1174. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1175. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1176. return PHY_ERROR;
  1177. }
  1178. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1179. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1180. return PHY_ERROR;
  1181. }
  1182. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1183. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1184. return PHY_ERROR;
  1185. }
  1186. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1187. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1188. return PHY_ERROR;
  1189. }
  1190. }
  1191. /* some phys clear out pause advertisment on reset, set it back */
  1192. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1193. /* restart auto negotiation */
  1194. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1195. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1196. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1197. return PHY_ERROR;
  1198. }
  1199. return 0;
  1200. }
  1201. static void nv_start_rx(struct net_device *dev)
  1202. {
  1203. struct fe_priv *np = netdev_priv(dev);
  1204. u8 __iomem *base = get_hwbase(dev);
  1205. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1206. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1207. /* Already running? Stop it. */
  1208. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1209. rx_ctrl &= ~NVREG_RCVCTL_START;
  1210. writel(rx_ctrl, base + NvRegReceiverControl);
  1211. pci_push(base);
  1212. }
  1213. writel(np->linkspeed, base + NvRegLinkSpeed);
  1214. pci_push(base);
  1215. rx_ctrl |= NVREG_RCVCTL_START;
  1216. if (np->mac_in_use)
  1217. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1218. writel(rx_ctrl, base + NvRegReceiverControl);
  1219. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1220. dev->name, np->duplex, np->linkspeed);
  1221. pci_push(base);
  1222. }
  1223. static void nv_stop_rx(struct net_device *dev)
  1224. {
  1225. struct fe_priv *np = netdev_priv(dev);
  1226. u8 __iomem *base = get_hwbase(dev);
  1227. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1228. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1229. if (!np->mac_in_use)
  1230. rx_ctrl &= ~NVREG_RCVCTL_START;
  1231. else
  1232. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1233. writel(rx_ctrl, base + NvRegReceiverControl);
  1234. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1235. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1236. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1237. udelay(NV_RXSTOP_DELAY2);
  1238. if (!np->mac_in_use)
  1239. writel(0, base + NvRegLinkSpeed);
  1240. }
  1241. static void nv_start_tx(struct net_device *dev)
  1242. {
  1243. struct fe_priv *np = netdev_priv(dev);
  1244. u8 __iomem *base = get_hwbase(dev);
  1245. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1246. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1247. tx_ctrl |= NVREG_XMITCTL_START;
  1248. if (np->mac_in_use)
  1249. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1250. writel(tx_ctrl, base + NvRegTransmitterControl);
  1251. pci_push(base);
  1252. }
  1253. static void nv_stop_tx(struct net_device *dev)
  1254. {
  1255. struct fe_priv *np = netdev_priv(dev);
  1256. u8 __iomem *base = get_hwbase(dev);
  1257. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1258. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1259. if (!np->mac_in_use)
  1260. tx_ctrl &= ~NVREG_XMITCTL_START;
  1261. else
  1262. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1263. writel(tx_ctrl, base + NvRegTransmitterControl);
  1264. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1265. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1266. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1267. udelay(NV_TXSTOP_DELAY2);
  1268. if (!np->mac_in_use)
  1269. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1270. base + NvRegTransmitPoll);
  1271. }
  1272. static void nv_txrx_reset(struct net_device *dev)
  1273. {
  1274. struct fe_priv *np = netdev_priv(dev);
  1275. u8 __iomem *base = get_hwbase(dev);
  1276. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1277. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1278. pci_push(base);
  1279. udelay(NV_TXRX_RESET_DELAY);
  1280. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1281. pci_push(base);
  1282. }
  1283. static void nv_mac_reset(struct net_device *dev)
  1284. {
  1285. struct fe_priv *np = netdev_priv(dev);
  1286. u8 __iomem *base = get_hwbase(dev);
  1287. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1288. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1289. pci_push(base);
  1290. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1291. pci_push(base);
  1292. udelay(NV_MAC_RESET_DELAY);
  1293. writel(0, base + NvRegMacReset);
  1294. pci_push(base);
  1295. udelay(NV_MAC_RESET_DELAY);
  1296. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1297. pci_push(base);
  1298. }
  1299. static void nv_get_hw_stats(struct net_device *dev)
  1300. {
  1301. struct fe_priv *np = netdev_priv(dev);
  1302. u8 __iomem *base = get_hwbase(dev);
  1303. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1304. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1305. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1306. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1307. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1308. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1309. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1310. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1311. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1312. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1313. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1314. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1315. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1316. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1317. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1318. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1319. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1320. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1321. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1322. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1323. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1324. np->estats.rx_packets =
  1325. np->estats.rx_unicast +
  1326. np->estats.rx_multicast +
  1327. np->estats.rx_broadcast;
  1328. np->estats.rx_errors_total =
  1329. np->estats.rx_crc_errors +
  1330. np->estats.rx_over_errors +
  1331. np->estats.rx_frame_error +
  1332. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1333. np->estats.rx_late_collision +
  1334. np->estats.rx_runt +
  1335. np->estats.rx_frame_too_long;
  1336. np->estats.tx_errors_total =
  1337. np->estats.tx_late_collision +
  1338. np->estats.tx_fifo_errors +
  1339. np->estats.tx_carrier_errors +
  1340. np->estats.tx_excess_deferral +
  1341. np->estats.tx_retry_error;
  1342. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1343. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1344. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1345. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1346. np->estats.tx_pause += readl(base + NvRegTxPause);
  1347. np->estats.rx_pause += readl(base + NvRegRxPause);
  1348. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1349. }
  1350. }
  1351. /*
  1352. * nv_get_stats: dev->get_stats function
  1353. * Get latest stats value from the nic.
  1354. * Called with read_lock(&dev_base_lock) held for read -
  1355. * only synchronized against unregister_netdevice.
  1356. */
  1357. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1358. {
  1359. struct fe_priv *np = netdev_priv(dev);
  1360. /* If the nic supports hw counters then retrieve latest values */
  1361. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
  1362. nv_get_hw_stats(dev);
  1363. /* copy to net_device stats */
  1364. np->stats.tx_bytes = np->estats.tx_bytes;
  1365. np->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1366. np->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1367. np->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1368. np->stats.rx_over_errors = np->estats.rx_over_errors;
  1369. np->stats.rx_errors = np->estats.rx_errors_total;
  1370. np->stats.tx_errors = np->estats.tx_errors_total;
  1371. }
  1372. return &np->stats;
  1373. }
  1374. /*
  1375. * nv_alloc_rx: fill rx ring entries.
  1376. * Return 1 if the allocations for the skbs failed and the
  1377. * rx engine is without Available descriptors
  1378. */
  1379. static int nv_alloc_rx(struct net_device *dev)
  1380. {
  1381. struct fe_priv *np = netdev_priv(dev);
  1382. struct ring_desc* less_rx;
  1383. less_rx = np->get_rx.orig;
  1384. if (less_rx-- == np->first_rx.orig)
  1385. less_rx = np->last_rx.orig;
  1386. while (np->put_rx.orig != less_rx) {
  1387. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1388. if (skb) {
  1389. np->put_rx_ctx->skb = skb;
  1390. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1391. skb->data,
  1392. skb_tailroom(skb),
  1393. PCI_DMA_FROMDEVICE);
  1394. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1395. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1396. wmb();
  1397. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1398. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1399. np->put_rx.orig = np->first_rx.orig;
  1400. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1401. np->put_rx_ctx = np->first_rx_ctx;
  1402. } else {
  1403. return 1;
  1404. }
  1405. }
  1406. return 0;
  1407. }
  1408. static int nv_alloc_rx_optimized(struct net_device *dev)
  1409. {
  1410. struct fe_priv *np = netdev_priv(dev);
  1411. struct ring_desc_ex* less_rx;
  1412. less_rx = np->get_rx.ex;
  1413. if (less_rx-- == np->first_rx.ex)
  1414. less_rx = np->last_rx.ex;
  1415. while (np->put_rx.ex != less_rx) {
  1416. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1417. if (skb) {
  1418. np->put_rx_ctx->skb = skb;
  1419. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1420. skb->data,
  1421. skb_tailroom(skb),
  1422. PCI_DMA_FROMDEVICE);
  1423. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1424. np->put_rx.ex->bufhigh = cpu_to_le64(np->put_rx_ctx->dma) >> 32;
  1425. np->put_rx.ex->buflow = cpu_to_le64(np->put_rx_ctx->dma) & 0x0FFFFFFFF;
  1426. wmb();
  1427. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1428. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1429. np->put_rx.ex = np->first_rx.ex;
  1430. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1431. np->put_rx_ctx = np->first_rx_ctx;
  1432. } else {
  1433. return 1;
  1434. }
  1435. }
  1436. return 0;
  1437. }
  1438. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1439. #ifdef CONFIG_FORCEDETH_NAPI
  1440. static void nv_do_rx_refill(unsigned long data)
  1441. {
  1442. struct net_device *dev = (struct net_device *) data;
  1443. /* Just reschedule NAPI rx processing */
  1444. netif_rx_schedule(dev);
  1445. }
  1446. #else
  1447. static void nv_do_rx_refill(unsigned long data)
  1448. {
  1449. struct net_device *dev = (struct net_device *) data;
  1450. struct fe_priv *np = netdev_priv(dev);
  1451. int retcode;
  1452. if (!using_multi_irqs(dev)) {
  1453. if (np->msi_flags & NV_MSI_X_ENABLED)
  1454. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1455. else
  1456. disable_irq(dev->irq);
  1457. } else {
  1458. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1459. }
  1460. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1461. retcode = nv_alloc_rx(dev);
  1462. else
  1463. retcode = nv_alloc_rx_optimized(dev);
  1464. if (retcode) {
  1465. spin_lock_irq(&np->lock);
  1466. if (!np->in_shutdown)
  1467. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1468. spin_unlock_irq(&np->lock);
  1469. }
  1470. if (!using_multi_irqs(dev)) {
  1471. if (np->msi_flags & NV_MSI_X_ENABLED)
  1472. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1473. else
  1474. enable_irq(dev->irq);
  1475. } else {
  1476. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1477. }
  1478. }
  1479. #endif
  1480. static void nv_init_rx(struct net_device *dev)
  1481. {
  1482. struct fe_priv *np = netdev_priv(dev);
  1483. int i;
  1484. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1485. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1486. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1487. else
  1488. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1489. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1490. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1491. for (i = 0; i < np->rx_ring_size; i++) {
  1492. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1493. np->rx_ring.orig[i].flaglen = 0;
  1494. np->rx_ring.orig[i].buf = 0;
  1495. } else {
  1496. np->rx_ring.ex[i].flaglen = 0;
  1497. np->rx_ring.ex[i].txvlan = 0;
  1498. np->rx_ring.ex[i].bufhigh = 0;
  1499. np->rx_ring.ex[i].buflow = 0;
  1500. }
  1501. np->rx_skb[i].skb = NULL;
  1502. np->rx_skb[i].dma = 0;
  1503. }
  1504. }
  1505. static void nv_init_tx(struct net_device *dev)
  1506. {
  1507. struct fe_priv *np = netdev_priv(dev);
  1508. int i;
  1509. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1510. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1511. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1512. else
  1513. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1514. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1515. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1516. for (i = 0; i < np->tx_ring_size; i++) {
  1517. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1518. np->tx_ring.orig[i].flaglen = 0;
  1519. np->tx_ring.orig[i].buf = 0;
  1520. } else {
  1521. np->tx_ring.ex[i].flaglen = 0;
  1522. np->tx_ring.ex[i].txvlan = 0;
  1523. np->tx_ring.ex[i].bufhigh = 0;
  1524. np->tx_ring.ex[i].buflow = 0;
  1525. }
  1526. np->tx_skb[i].skb = NULL;
  1527. np->tx_skb[i].dma = 0;
  1528. }
  1529. }
  1530. static int nv_init_ring(struct net_device *dev)
  1531. {
  1532. struct fe_priv *np = netdev_priv(dev);
  1533. nv_init_tx(dev);
  1534. nv_init_rx(dev);
  1535. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1536. return nv_alloc_rx(dev);
  1537. else
  1538. return nv_alloc_rx_optimized(dev);
  1539. }
  1540. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1541. {
  1542. struct fe_priv *np = netdev_priv(dev);
  1543. if (tx_skb->dma) {
  1544. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1545. tx_skb->dma_len,
  1546. PCI_DMA_TODEVICE);
  1547. tx_skb->dma = 0;
  1548. }
  1549. if (tx_skb->skb) {
  1550. dev_kfree_skb_any(tx_skb->skb);
  1551. tx_skb->skb = NULL;
  1552. return 1;
  1553. } else {
  1554. return 0;
  1555. }
  1556. }
  1557. static void nv_drain_tx(struct net_device *dev)
  1558. {
  1559. struct fe_priv *np = netdev_priv(dev);
  1560. unsigned int i;
  1561. for (i = 0; i < np->tx_ring_size; i++) {
  1562. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1563. np->tx_ring.orig[i].flaglen = 0;
  1564. np->tx_ring.orig[i].buf = 0;
  1565. } else {
  1566. np->tx_ring.ex[i].flaglen = 0;
  1567. np->tx_ring.ex[i].txvlan = 0;
  1568. np->tx_ring.ex[i].bufhigh = 0;
  1569. np->tx_ring.ex[i].buflow = 0;
  1570. }
  1571. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1572. np->stats.tx_dropped++;
  1573. }
  1574. }
  1575. static void nv_drain_rx(struct net_device *dev)
  1576. {
  1577. struct fe_priv *np = netdev_priv(dev);
  1578. int i;
  1579. for (i = 0; i < np->rx_ring_size; i++) {
  1580. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1581. np->rx_ring.orig[i].flaglen = 0;
  1582. np->rx_ring.orig[i].buf = 0;
  1583. } else {
  1584. np->rx_ring.ex[i].flaglen = 0;
  1585. np->rx_ring.ex[i].txvlan = 0;
  1586. np->rx_ring.ex[i].bufhigh = 0;
  1587. np->rx_ring.ex[i].buflow = 0;
  1588. }
  1589. wmb();
  1590. if (np->rx_skb[i].skb) {
  1591. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1592. (skb_end_pointer(np->rx_skb[i].skb) -
  1593. np->rx_skb[i].skb->data),
  1594. PCI_DMA_FROMDEVICE);
  1595. dev_kfree_skb(np->rx_skb[i].skb);
  1596. np->rx_skb[i].skb = NULL;
  1597. }
  1598. }
  1599. }
  1600. static void drain_ring(struct net_device *dev)
  1601. {
  1602. nv_drain_tx(dev);
  1603. nv_drain_rx(dev);
  1604. }
  1605. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1606. {
  1607. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1608. }
  1609. /*
  1610. * nv_start_xmit: dev->hard_start_xmit function
  1611. * Called with netif_tx_lock held.
  1612. */
  1613. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1614. {
  1615. struct fe_priv *np = netdev_priv(dev);
  1616. u32 tx_flags = 0;
  1617. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1618. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1619. unsigned int i;
  1620. u32 offset = 0;
  1621. u32 bcnt;
  1622. u32 size = skb->len-skb->data_len;
  1623. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1624. u32 empty_slots;
  1625. struct ring_desc* put_tx;
  1626. struct ring_desc* start_tx;
  1627. struct ring_desc* prev_tx;
  1628. struct nv_skb_map* prev_tx_ctx;
  1629. /* add fragments to entries count */
  1630. for (i = 0; i < fragments; i++) {
  1631. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1632. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1633. }
  1634. empty_slots = nv_get_empty_tx_slots(np);
  1635. if (unlikely(empty_slots <= entries)) {
  1636. spin_lock_irq(&np->lock);
  1637. netif_stop_queue(dev);
  1638. np->tx_stop = 1;
  1639. spin_unlock_irq(&np->lock);
  1640. return NETDEV_TX_BUSY;
  1641. }
  1642. start_tx = put_tx = np->put_tx.orig;
  1643. /* setup the header buffer */
  1644. do {
  1645. prev_tx = put_tx;
  1646. prev_tx_ctx = np->put_tx_ctx;
  1647. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1648. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1649. PCI_DMA_TODEVICE);
  1650. np->put_tx_ctx->dma_len = bcnt;
  1651. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1652. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1653. tx_flags = np->tx_flags;
  1654. offset += bcnt;
  1655. size -= bcnt;
  1656. if (unlikely(put_tx++ == np->last_tx.orig))
  1657. put_tx = np->first_tx.orig;
  1658. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1659. np->put_tx_ctx = np->first_tx_ctx;
  1660. } while (size);
  1661. /* setup the fragments */
  1662. for (i = 0; i < fragments; i++) {
  1663. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1664. u32 size = frag->size;
  1665. offset = 0;
  1666. do {
  1667. prev_tx = put_tx;
  1668. prev_tx_ctx = np->put_tx_ctx;
  1669. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1670. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1671. PCI_DMA_TODEVICE);
  1672. np->put_tx_ctx->dma_len = bcnt;
  1673. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1674. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1675. offset += bcnt;
  1676. size -= bcnt;
  1677. if (unlikely(put_tx++ == np->last_tx.orig))
  1678. put_tx = np->first_tx.orig;
  1679. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1680. np->put_tx_ctx = np->first_tx_ctx;
  1681. } while (size);
  1682. }
  1683. /* set last fragment flag */
  1684. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1685. /* save skb in this slot's context area */
  1686. prev_tx_ctx->skb = skb;
  1687. if (skb_is_gso(skb))
  1688. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1689. else
  1690. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1691. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1692. spin_lock_irq(&np->lock);
  1693. /* set tx flags */
  1694. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1695. np->put_tx.orig = put_tx;
  1696. spin_unlock_irq(&np->lock);
  1697. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1698. dev->name, entries, tx_flags_extra);
  1699. {
  1700. int j;
  1701. for (j=0; j<64; j++) {
  1702. if ((j%16) == 0)
  1703. dprintk("\n%03x:", j);
  1704. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1705. }
  1706. dprintk("\n");
  1707. }
  1708. dev->trans_start = jiffies;
  1709. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1710. return NETDEV_TX_OK;
  1711. }
  1712. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1713. {
  1714. struct fe_priv *np = netdev_priv(dev);
  1715. u32 tx_flags = 0;
  1716. u32 tx_flags_extra;
  1717. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1718. unsigned int i;
  1719. u32 offset = 0;
  1720. u32 bcnt;
  1721. u32 size = skb->len-skb->data_len;
  1722. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1723. u32 empty_slots;
  1724. struct ring_desc_ex* put_tx;
  1725. struct ring_desc_ex* start_tx;
  1726. struct ring_desc_ex* prev_tx;
  1727. struct nv_skb_map* prev_tx_ctx;
  1728. /* add fragments to entries count */
  1729. for (i = 0; i < fragments; i++) {
  1730. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1731. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1732. }
  1733. empty_slots = nv_get_empty_tx_slots(np);
  1734. if (unlikely(empty_slots <= entries)) {
  1735. spin_lock_irq(&np->lock);
  1736. netif_stop_queue(dev);
  1737. np->tx_stop = 1;
  1738. spin_unlock_irq(&np->lock);
  1739. return NETDEV_TX_BUSY;
  1740. }
  1741. start_tx = put_tx = np->put_tx.ex;
  1742. /* setup the header buffer */
  1743. do {
  1744. prev_tx = put_tx;
  1745. prev_tx_ctx = np->put_tx_ctx;
  1746. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1747. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1748. PCI_DMA_TODEVICE);
  1749. np->put_tx_ctx->dma_len = bcnt;
  1750. put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
  1751. put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
  1752. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1753. tx_flags = NV_TX2_VALID;
  1754. offset += bcnt;
  1755. size -= bcnt;
  1756. if (unlikely(put_tx++ == np->last_tx.ex))
  1757. put_tx = np->first_tx.ex;
  1758. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1759. np->put_tx_ctx = np->first_tx_ctx;
  1760. } while (size);
  1761. /* setup the fragments */
  1762. for (i = 0; i < fragments; i++) {
  1763. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1764. u32 size = frag->size;
  1765. offset = 0;
  1766. do {
  1767. prev_tx = put_tx;
  1768. prev_tx_ctx = np->put_tx_ctx;
  1769. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1770. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1771. PCI_DMA_TODEVICE);
  1772. np->put_tx_ctx->dma_len = bcnt;
  1773. put_tx->bufhigh = cpu_to_le64(np->put_tx_ctx->dma) >> 32;
  1774. put_tx->buflow = cpu_to_le64(np->put_tx_ctx->dma) & 0x0FFFFFFFF;
  1775. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1776. offset += bcnt;
  1777. size -= bcnt;
  1778. if (unlikely(put_tx++ == np->last_tx.ex))
  1779. put_tx = np->first_tx.ex;
  1780. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1781. np->put_tx_ctx = np->first_tx_ctx;
  1782. } while (size);
  1783. }
  1784. /* set last fragment flag */
  1785. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  1786. /* save skb in this slot's context area */
  1787. prev_tx_ctx->skb = skb;
  1788. if (skb_is_gso(skb))
  1789. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1790. else
  1791. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1792. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1793. /* vlan tag */
  1794. if (likely(!np->vlangrp)) {
  1795. start_tx->txvlan = 0;
  1796. } else {
  1797. if (vlan_tx_tag_present(skb))
  1798. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  1799. else
  1800. start_tx->txvlan = 0;
  1801. }
  1802. spin_lock_irq(&np->lock);
  1803. /* set tx flags */
  1804. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1805. np->put_tx.ex = put_tx;
  1806. spin_unlock_irq(&np->lock);
  1807. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  1808. dev->name, entries, tx_flags_extra);
  1809. {
  1810. int j;
  1811. for (j=0; j<64; j++) {
  1812. if ((j%16) == 0)
  1813. dprintk("\n%03x:", j);
  1814. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1815. }
  1816. dprintk("\n");
  1817. }
  1818. dev->trans_start = jiffies;
  1819. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1820. return NETDEV_TX_OK;
  1821. }
  1822. /*
  1823. * nv_tx_done: check for completed packets, release the skbs.
  1824. *
  1825. * Caller must own np->lock.
  1826. */
  1827. static void nv_tx_done(struct net_device *dev)
  1828. {
  1829. struct fe_priv *np = netdev_priv(dev);
  1830. u32 flags;
  1831. struct ring_desc* orig_get_tx = np->get_tx.orig;
  1832. while ((np->get_tx.orig != np->put_tx.orig) &&
  1833. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  1834. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  1835. dev->name, flags);
  1836. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1837. np->get_tx_ctx->dma_len,
  1838. PCI_DMA_TODEVICE);
  1839. np->get_tx_ctx->dma = 0;
  1840. if (np->desc_ver == DESC_VER_1) {
  1841. if (flags & NV_TX_LASTPACKET) {
  1842. if (flags & NV_TX_ERROR) {
  1843. if (flags & NV_TX_UNDERFLOW)
  1844. np->stats.tx_fifo_errors++;
  1845. if (flags & NV_TX_CARRIERLOST)
  1846. np->stats.tx_carrier_errors++;
  1847. np->stats.tx_errors++;
  1848. } else {
  1849. np->stats.tx_packets++;
  1850. np->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1851. }
  1852. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1853. np->get_tx_ctx->skb = NULL;
  1854. }
  1855. } else {
  1856. if (flags & NV_TX2_LASTPACKET) {
  1857. if (flags & NV_TX2_ERROR) {
  1858. if (flags & NV_TX2_UNDERFLOW)
  1859. np->stats.tx_fifo_errors++;
  1860. if (flags & NV_TX2_CARRIERLOST)
  1861. np->stats.tx_carrier_errors++;
  1862. np->stats.tx_errors++;
  1863. } else {
  1864. np->stats.tx_packets++;
  1865. np->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1866. }
  1867. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1868. np->get_tx_ctx->skb = NULL;
  1869. }
  1870. }
  1871. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  1872. np->get_tx.orig = np->first_tx.orig;
  1873. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1874. np->get_tx_ctx = np->first_tx_ctx;
  1875. }
  1876. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  1877. np->tx_stop = 0;
  1878. netif_wake_queue(dev);
  1879. }
  1880. }
  1881. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  1882. {
  1883. struct fe_priv *np = netdev_priv(dev);
  1884. u32 flags;
  1885. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  1886. while ((np->get_tx.ex != np->put_tx.ex) &&
  1887. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  1888. (limit-- > 0)) {
  1889. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  1890. dev->name, flags);
  1891. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1892. np->get_tx_ctx->dma_len,
  1893. PCI_DMA_TODEVICE);
  1894. np->get_tx_ctx->dma = 0;
  1895. if (flags & NV_TX2_LASTPACKET) {
  1896. if (!(flags & NV_TX2_ERROR))
  1897. np->stats.tx_packets++;
  1898. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1899. np->get_tx_ctx->skb = NULL;
  1900. }
  1901. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  1902. np->get_tx.ex = np->first_tx.ex;
  1903. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1904. np->get_tx_ctx = np->first_tx_ctx;
  1905. }
  1906. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  1907. np->tx_stop = 0;
  1908. netif_wake_queue(dev);
  1909. }
  1910. }
  1911. /*
  1912. * nv_tx_timeout: dev->tx_timeout function
  1913. * Called with netif_tx_lock held.
  1914. */
  1915. static void nv_tx_timeout(struct net_device *dev)
  1916. {
  1917. struct fe_priv *np = netdev_priv(dev);
  1918. u8 __iomem *base = get_hwbase(dev);
  1919. u32 status;
  1920. if (np->msi_flags & NV_MSI_X_ENABLED)
  1921. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1922. else
  1923. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1924. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1925. {
  1926. int i;
  1927. printk(KERN_INFO "%s: Ring at %lx\n",
  1928. dev->name, (unsigned long)np->ring_addr);
  1929. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1930. for (i=0;i<=np->register_size;i+= 32) {
  1931. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1932. i,
  1933. readl(base + i + 0), readl(base + i + 4),
  1934. readl(base + i + 8), readl(base + i + 12),
  1935. readl(base + i + 16), readl(base + i + 20),
  1936. readl(base + i + 24), readl(base + i + 28));
  1937. }
  1938. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1939. for (i=0;i<np->tx_ring_size;i+= 4) {
  1940. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1941. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1942. i,
  1943. le32_to_cpu(np->tx_ring.orig[i].buf),
  1944. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1945. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1946. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1947. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1948. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1949. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1950. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1951. } else {
  1952. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1953. i,
  1954. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1955. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1956. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1957. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1958. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1959. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1960. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1961. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1962. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1963. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1964. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1965. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1966. }
  1967. }
  1968. }
  1969. spin_lock_irq(&np->lock);
  1970. /* 1) stop tx engine */
  1971. nv_stop_tx(dev);
  1972. /* 2) check that the packets were not sent already: */
  1973. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1974. nv_tx_done(dev);
  1975. else
  1976. nv_tx_done_optimized(dev, np->tx_ring_size);
  1977. /* 3) if there are dead entries: clear everything */
  1978. if (np->get_tx_ctx != np->put_tx_ctx) {
  1979. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1980. nv_drain_tx(dev);
  1981. nv_init_tx(dev);
  1982. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1983. }
  1984. netif_wake_queue(dev);
  1985. /* 4) restart tx engine */
  1986. nv_start_tx(dev);
  1987. spin_unlock_irq(&np->lock);
  1988. }
  1989. /*
  1990. * Called when the nic notices a mismatch between the actual data len on the
  1991. * wire and the len indicated in the 802 header
  1992. */
  1993. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1994. {
  1995. int hdrlen; /* length of the 802 header */
  1996. int protolen; /* length as stored in the proto field */
  1997. /* 1) calculate len according to header */
  1998. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  1999. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2000. hdrlen = VLAN_HLEN;
  2001. } else {
  2002. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2003. hdrlen = ETH_HLEN;
  2004. }
  2005. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2006. dev->name, datalen, protolen, hdrlen);
  2007. if (protolen > ETH_DATA_LEN)
  2008. return datalen; /* Value in proto field not a len, no checks possible */
  2009. protolen += hdrlen;
  2010. /* consistency checks: */
  2011. if (datalen > ETH_ZLEN) {
  2012. if (datalen >= protolen) {
  2013. /* more data on wire than in 802 header, trim of
  2014. * additional data.
  2015. */
  2016. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2017. dev->name, protolen);
  2018. return protolen;
  2019. } else {
  2020. /* less data on wire than mentioned in header.
  2021. * Discard the packet.
  2022. */
  2023. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2024. dev->name);
  2025. return -1;
  2026. }
  2027. } else {
  2028. /* short packet. Accept only if 802 values are also short */
  2029. if (protolen > ETH_ZLEN) {
  2030. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2031. dev->name);
  2032. return -1;
  2033. }
  2034. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2035. dev->name, datalen);
  2036. return datalen;
  2037. }
  2038. }
  2039. static int nv_rx_process(struct net_device *dev, int limit)
  2040. {
  2041. struct fe_priv *np = netdev_priv(dev);
  2042. u32 flags;
  2043. u32 rx_processed_cnt = 0;
  2044. struct sk_buff *skb;
  2045. int len;
  2046. while((np->get_rx.orig != np->put_rx.orig) &&
  2047. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2048. (rx_processed_cnt++ < limit)) {
  2049. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2050. dev->name, flags);
  2051. /*
  2052. * the packet is for us - immediately tear down the pci mapping.
  2053. * TODO: check if a prefetch of the first cacheline improves
  2054. * the performance.
  2055. */
  2056. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2057. np->get_rx_ctx->dma_len,
  2058. PCI_DMA_FROMDEVICE);
  2059. skb = np->get_rx_ctx->skb;
  2060. np->get_rx_ctx->skb = NULL;
  2061. {
  2062. int j;
  2063. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2064. for (j=0; j<64; j++) {
  2065. if ((j%16) == 0)
  2066. dprintk("\n%03x:", j);
  2067. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2068. }
  2069. dprintk("\n");
  2070. }
  2071. /* look at what we actually got: */
  2072. if (np->desc_ver == DESC_VER_1) {
  2073. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2074. len = flags & LEN_MASK_V1;
  2075. if (unlikely(flags & NV_RX_ERROR)) {
  2076. if (flags & NV_RX_ERROR4) {
  2077. len = nv_getlen(dev, skb->data, len);
  2078. if (len < 0) {
  2079. np->stats.rx_errors++;
  2080. dev_kfree_skb(skb);
  2081. goto next_pkt;
  2082. }
  2083. }
  2084. /* framing errors are soft errors */
  2085. else if (flags & NV_RX_FRAMINGERR) {
  2086. if (flags & NV_RX_SUBSTRACT1) {
  2087. len--;
  2088. }
  2089. }
  2090. /* the rest are hard errors */
  2091. else {
  2092. if (flags & NV_RX_MISSEDFRAME)
  2093. np->stats.rx_missed_errors++;
  2094. if (flags & NV_RX_CRCERR)
  2095. np->stats.rx_crc_errors++;
  2096. if (flags & NV_RX_OVERFLOW)
  2097. np->stats.rx_over_errors++;
  2098. np->stats.rx_errors++;
  2099. dev_kfree_skb(skb);
  2100. goto next_pkt;
  2101. }
  2102. }
  2103. } else {
  2104. dev_kfree_skb(skb);
  2105. goto next_pkt;
  2106. }
  2107. } else {
  2108. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2109. len = flags & LEN_MASK_V2;
  2110. if (unlikely(flags & NV_RX2_ERROR)) {
  2111. if (flags & NV_RX2_ERROR4) {
  2112. len = nv_getlen(dev, skb->data, len);
  2113. if (len < 0) {
  2114. np->stats.rx_errors++;
  2115. dev_kfree_skb(skb);
  2116. goto next_pkt;
  2117. }
  2118. }
  2119. /* framing errors are soft errors */
  2120. else if (flags & NV_RX2_FRAMINGERR) {
  2121. if (flags & NV_RX2_SUBSTRACT1) {
  2122. len--;
  2123. }
  2124. }
  2125. /* the rest are hard errors */
  2126. else {
  2127. if (flags & NV_RX2_CRCERR)
  2128. np->stats.rx_crc_errors++;
  2129. if (flags & NV_RX2_OVERFLOW)
  2130. np->stats.rx_over_errors++;
  2131. np->stats.rx_errors++;
  2132. dev_kfree_skb(skb);
  2133. goto next_pkt;
  2134. }
  2135. }
  2136. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
  2137. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2138. } else {
  2139. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
  2140. (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
  2141. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2142. }
  2143. }
  2144. } else {
  2145. dev_kfree_skb(skb);
  2146. goto next_pkt;
  2147. }
  2148. }
  2149. /* got a valid packet - forward it to the network core */
  2150. skb_put(skb, len);
  2151. skb->protocol = eth_type_trans(skb, dev);
  2152. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2153. dev->name, len, skb->protocol);
  2154. #ifdef CONFIG_FORCEDETH_NAPI
  2155. netif_receive_skb(skb);
  2156. #else
  2157. netif_rx(skb);
  2158. #endif
  2159. dev->last_rx = jiffies;
  2160. np->stats.rx_packets++;
  2161. np->stats.rx_bytes += len;
  2162. next_pkt:
  2163. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2164. np->get_rx.orig = np->first_rx.orig;
  2165. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2166. np->get_rx_ctx = np->first_rx_ctx;
  2167. }
  2168. return rx_processed_cnt;
  2169. }
  2170. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2171. {
  2172. struct fe_priv *np = netdev_priv(dev);
  2173. u32 flags;
  2174. u32 vlanflags = 0;
  2175. u32 rx_processed_cnt = 0;
  2176. struct sk_buff *skb;
  2177. int len;
  2178. while((np->get_rx.ex != np->put_rx.ex) &&
  2179. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2180. (rx_processed_cnt++ < limit)) {
  2181. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2182. dev->name, flags);
  2183. /*
  2184. * the packet is for us - immediately tear down the pci mapping.
  2185. * TODO: check if a prefetch of the first cacheline improves
  2186. * the performance.
  2187. */
  2188. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2189. np->get_rx_ctx->dma_len,
  2190. PCI_DMA_FROMDEVICE);
  2191. skb = np->get_rx_ctx->skb;
  2192. np->get_rx_ctx->skb = NULL;
  2193. {
  2194. int j;
  2195. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2196. for (j=0; j<64; j++) {
  2197. if ((j%16) == 0)
  2198. dprintk("\n%03x:", j);
  2199. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2200. }
  2201. dprintk("\n");
  2202. }
  2203. /* look at what we actually got: */
  2204. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2205. len = flags & LEN_MASK_V2;
  2206. if (unlikely(flags & NV_RX2_ERROR)) {
  2207. if (flags & NV_RX2_ERROR4) {
  2208. len = nv_getlen(dev, skb->data, len);
  2209. if (len < 0) {
  2210. dev_kfree_skb(skb);
  2211. goto next_pkt;
  2212. }
  2213. }
  2214. /* framing errors are soft errors */
  2215. else if (flags & NV_RX2_FRAMINGERR) {
  2216. if (flags & NV_RX2_SUBSTRACT1) {
  2217. len--;
  2218. }
  2219. }
  2220. /* the rest are hard errors */
  2221. else {
  2222. dev_kfree_skb(skb);
  2223. goto next_pkt;
  2224. }
  2225. }
  2226. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK2)/*ip and tcp */ {
  2227. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2228. } else {
  2229. if ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK1 ||
  2230. (flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUMOK3) {
  2231. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2232. }
  2233. }
  2234. /* got a valid packet - forward it to the network core */
  2235. skb_put(skb, len);
  2236. skb->protocol = eth_type_trans(skb, dev);
  2237. prefetch(skb->data);
  2238. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2239. dev->name, len, skb->protocol);
  2240. if (likely(!np->vlangrp)) {
  2241. #ifdef CONFIG_FORCEDETH_NAPI
  2242. netif_receive_skb(skb);
  2243. #else
  2244. netif_rx(skb);
  2245. #endif
  2246. } else {
  2247. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2248. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2249. #ifdef CONFIG_FORCEDETH_NAPI
  2250. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2251. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2252. #else
  2253. vlan_hwaccel_rx(skb, np->vlangrp,
  2254. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2255. #endif
  2256. } else {
  2257. #ifdef CONFIG_FORCEDETH_NAPI
  2258. netif_receive_skb(skb);
  2259. #else
  2260. netif_rx(skb);
  2261. #endif
  2262. }
  2263. }
  2264. dev->last_rx = jiffies;
  2265. np->stats.rx_packets++;
  2266. np->stats.rx_bytes += len;
  2267. } else {
  2268. dev_kfree_skb(skb);
  2269. }
  2270. next_pkt:
  2271. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2272. np->get_rx.ex = np->first_rx.ex;
  2273. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2274. np->get_rx_ctx = np->first_rx_ctx;
  2275. }
  2276. return rx_processed_cnt;
  2277. }
  2278. static void set_bufsize(struct net_device *dev)
  2279. {
  2280. struct fe_priv *np = netdev_priv(dev);
  2281. if (dev->mtu <= ETH_DATA_LEN)
  2282. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2283. else
  2284. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2285. }
  2286. /*
  2287. * nv_change_mtu: dev->change_mtu function
  2288. * Called with dev_base_lock held for read.
  2289. */
  2290. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2291. {
  2292. struct fe_priv *np = netdev_priv(dev);
  2293. int old_mtu;
  2294. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2295. return -EINVAL;
  2296. old_mtu = dev->mtu;
  2297. dev->mtu = new_mtu;
  2298. /* return early if the buffer sizes will not change */
  2299. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2300. return 0;
  2301. if (old_mtu == new_mtu)
  2302. return 0;
  2303. /* synchronized against open : rtnl_lock() held by caller */
  2304. if (netif_running(dev)) {
  2305. u8 __iomem *base = get_hwbase(dev);
  2306. /*
  2307. * It seems that the nic preloads valid ring entries into an
  2308. * internal buffer. The procedure for flushing everything is
  2309. * guessed, there is probably a simpler approach.
  2310. * Changing the MTU is a rare event, it shouldn't matter.
  2311. */
  2312. nv_disable_irq(dev);
  2313. netif_tx_lock_bh(dev);
  2314. spin_lock(&np->lock);
  2315. /* stop engines */
  2316. nv_stop_rx(dev);
  2317. nv_stop_tx(dev);
  2318. nv_txrx_reset(dev);
  2319. /* drain rx queue */
  2320. nv_drain_rx(dev);
  2321. nv_drain_tx(dev);
  2322. /* reinit driver view of the rx queue */
  2323. set_bufsize(dev);
  2324. if (nv_init_ring(dev)) {
  2325. if (!np->in_shutdown)
  2326. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2327. }
  2328. /* reinit nic view of the rx queue */
  2329. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2330. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2331. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2332. base + NvRegRingSizes);
  2333. pci_push(base);
  2334. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2335. pci_push(base);
  2336. /* restart rx engine */
  2337. nv_start_rx(dev);
  2338. nv_start_tx(dev);
  2339. spin_unlock(&np->lock);
  2340. netif_tx_unlock_bh(dev);
  2341. nv_enable_irq(dev);
  2342. }
  2343. return 0;
  2344. }
  2345. static void nv_copy_mac_to_hw(struct net_device *dev)
  2346. {
  2347. u8 __iomem *base = get_hwbase(dev);
  2348. u32 mac[2];
  2349. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2350. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2351. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2352. writel(mac[0], base + NvRegMacAddrA);
  2353. writel(mac[1], base + NvRegMacAddrB);
  2354. }
  2355. /*
  2356. * nv_set_mac_address: dev->set_mac_address function
  2357. * Called with rtnl_lock() held.
  2358. */
  2359. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2360. {
  2361. struct fe_priv *np = netdev_priv(dev);
  2362. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2363. if (!is_valid_ether_addr(macaddr->sa_data))
  2364. return -EADDRNOTAVAIL;
  2365. /* synchronized against open : rtnl_lock() held by caller */
  2366. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2367. if (netif_running(dev)) {
  2368. netif_tx_lock_bh(dev);
  2369. spin_lock_irq(&np->lock);
  2370. /* stop rx engine */
  2371. nv_stop_rx(dev);
  2372. /* set mac address */
  2373. nv_copy_mac_to_hw(dev);
  2374. /* restart rx engine */
  2375. nv_start_rx(dev);
  2376. spin_unlock_irq(&np->lock);
  2377. netif_tx_unlock_bh(dev);
  2378. } else {
  2379. nv_copy_mac_to_hw(dev);
  2380. }
  2381. return 0;
  2382. }
  2383. /*
  2384. * nv_set_multicast: dev->set_multicast function
  2385. * Called with netif_tx_lock held.
  2386. */
  2387. static void nv_set_multicast(struct net_device *dev)
  2388. {
  2389. struct fe_priv *np = netdev_priv(dev);
  2390. u8 __iomem *base = get_hwbase(dev);
  2391. u32 addr[2];
  2392. u32 mask[2];
  2393. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2394. memset(addr, 0, sizeof(addr));
  2395. memset(mask, 0, sizeof(mask));
  2396. if (dev->flags & IFF_PROMISC) {
  2397. pff |= NVREG_PFF_PROMISC;
  2398. } else {
  2399. pff |= NVREG_PFF_MYADDR;
  2400. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2401. u32 alwaysOff[2];
  2402. u32 alwaysOn[2];
  2403. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2404. if (dev->flags & IFF_ALLMULTI) {
  2405. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2406. } else {
  2407. struct dev_mc_list *walk;
  2408. walk = dev->mc_list;
  2409. while (walk != NULL) {
  2410. u32 a, b;
  2411. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  2412. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  2413. alwaysOn[0] &= a;
  2414. alwaysOff[0] &= ~a;
  2415. alwaysOn[1] &= b;
  2416. alwaysOff[1] &= ~b;
  2417. walk = walk->next;
  2418. }
  2419. }
  2420. addr[0] = alwaysOn[0];
  2421. addr[1] = alwaysOn[1];
  2422. mask[0] = alwaysOn[0] | alwaysOff[0];
  2423. mask[1] = alwaysOn[1] | alwaysOff[1];
  2424. }
  2425. }
  2426. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2427. pff |= NVREG_PFF_ALWAYS;
  2428. spin_lock_irq(&np->lock);
  2429. nv_stop_rx(dev);
  2430. writel(addr[0], base + NvRegMulticastAddrA);
  2431. writel(addr[1], base + NvRegMulticastAddrB);
  2432. writel(mask[0], base + NvRegMulticastMaskA);
  2433. writel(mask[1], base + NvRegMulticastMaskB);
  2434. writel(pff, base + NvRegPacketFilterFlags);
  2435. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2436. dev->name);
  2437. nv_start_rx(dev);
  2438. spin_unlock_irq(&np->lock);
  2439. }
  2440. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2441. {
  2442. struct fe_priv *np = netdev_priv(dev);
  2443. u8 __iomem *base = get_hwbase(dev);
  2444. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2445. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2446. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2447. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2448. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2449. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2450. } else {
  2451. writel(pff, base + NvRegPacketFilterFlags);
  2452. }
  2453. }
  2454. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2455. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2456. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2457. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  2458. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2459. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2460. } else {
  2461. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2462. writel(regmisc, base + NvRegMisc1);
  2463. }
  2464. }
  2465. }
  2466. /**
  2467. * nv_update_linkspeed: Setup the MAC according to the link partner
  2468. * @dev: Network device to be configured
  2469. *
  2470. * The function queries the PHY and checks if there is a link partner.
  2471. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2472. * set to 10 MBit HD.
  2473. *
  2474. * The function returns 0 if there is no link partner and 1 if there is
  2475. * a good link partner.
  2476. */
  2477. static int nv_update_linkspeed(struct net_device *dev)
  2478. {
  2479. struct fe_priv *np = netdev_priv(dev);
  2480. u8 __iomem *base = get_hwbase(dev);
  2481. int adv = 0;
  2482. int lpa = 0;
  2483. int adv_lpa, adv_pause, lpa_pause;
  2484. int newls = np->linkspeed;
  2485. int newdup = np->duplex;
  2486. int mii_status;
  2487. int retval = 0;
  2488. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2489. /* BMSR_LSTATUS is latched, read it twice:
  2490. * we want the current value.
  2491. */
  2492. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2493. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2494. if (!(mii_status & BMSR_LSTATUS)) {
  2495. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2496. dev->name);
  2497. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2498. newdup = 0;
  2499. retval = 0;
  2500. goto set_speed;
  2501. }
  2502. if (np->autoneg == 0) {
  2503. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2504. dev->name, np->fixed_mode);
  2505. if (np->fixed_mode & LPA_100FULL) {
  2506. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2507. newdup = 1;
  2508. } else if (np->fixed_mode & LPA_100HALF) {
  2509. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2510. newdup = 0;
  2511. } else if (np->fixed_mode & LPA_10FULL) {
  2512. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2513. newdup = 1;
  2514. } else {
  2515. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2516. newdup = 0;
  2517. }
  2518. retval = 1;
  2519. goto set_speed;
  2520. }
  2521. /* check auto negotiation is complete */
  2522. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2523. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2524. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2525. newdup = 0;
  2526. retval = 0;
  2527. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2528. goto set_speed;
  2529. }
  2530. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2531. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2532. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2533. dev->name, adv, lpa);
  2534. retval = 1;
  2535. if (np->gigabit == PHY_GIGABIT) {
  2536. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2537. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2538. if ((control_1000 & ADVERTISE_1000FULL) &&
  2539. (status_1000 & LPA_1000FULL)) {
  2540. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2541. dev->name);
  2542. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2543. newdup = 1;
  2544. goto set_speed;
  2545. }
  2546. }
  2547. /* FIXME: handle parallel detection properly */
  2548. adv_lpa = lpa & adv;
  2549. if (adv_lpa & LPA_100FULL) {
  2550. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2551. newdup = 1;
  2552. } else if (adv_lpa & LPA_100HALF) {
  2553. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2554. newdup = 0;
  2555. } else if (adv_lpa & LPA_10FULL) {
  2556. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2557. newdup = 1;
  2558. } else if (adv_lpa & LPA_10HALF) {
  2559. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2560. newdup = 0;
  2561. } else {
  2562. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2563. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2564. newdup = 0;
  2565. }
  2566. set_speed:
  2567. if (np->duplex == newdup && np->linkspeed == newls)
  2568. return retval;
  2569. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2570. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2571. np->duplex = newdup;
  2572. np->linkspeed = newls;
  2573. if (np->gigabit == PHY_GIGABIT) {
  2574. phyreg = readl(base + NvRegRandomSeed);
  2575. phyreg &= ~(0x3FF00);
  2576. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2577. phyreg |= NVREG_RNDSEED_FORCE3;
  2578. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2579. phyreg |= NVREG_RNDSEED_FORCE2;
  2580. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2581. phyreg |= NVREG_RNDSEED_FORCE;
  2582. writel(phyreg, base + NvRegRandomSeed);
  2583. }
  2584. phyreg = readl(base + NvRegPhyInterface);
  2585. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2586. if (np->duplex == 0)
  2587. phyreg |= PHY_HALF;
  2588. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2589. phyreg |= PHY_100;
  2590. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2591. phyreg |= PHY_1000;
  2592. writel(phyreg, base + NvRegPhyInterface);
  2593. if (phyreg & PHY_RGMII) {
  2594. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2595. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2596. else
  2597. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2598. } else {
  2599. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2600. }
  2601. writel(txreg, base + NvRegTxDeferral);
  2602. if (np->desc_ver == DESC_VER_1) {
  2603. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2604. } else {
  2605. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2606. txreg = NVREG_TX_WM_DESC2_3_1000;
  2607. else
  2608. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2609. }
  2610. writel(txreg, base + NvRegTxWatermark);
  2611. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2612. base + NvRegMisc1);
  2613. pci_push(base);
  2614. writel(np->linkspeed, base + NvRegLinkSpeed);
  2615. pci_push(base);
  2616. pause_flags = 0;
  2617. /* setup pause frame */
  2618. if (np->duplex != 0) {
  2619. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2620. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2621. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2622. switch (adv_pause) {
  2623. case ADVERTISE_PAUSE_CAP:
  2624. if (lpa_pause & LPA_PAUSE_CAP) {
  2625. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2626. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2627. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2628. }
  2629. break;
  2630. case ADVERTISE_PAUSE_ASYM:
  2631. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2632. {
  2633. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2634. }
  2635. break;
  2636. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2637. if (lpa_pause & LPA_PAUSE_CAP)
  2638. {
  2639. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2640. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2641. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2642. }
  2643. if (lpa_pause == LPA_PAUSE_ASYM)
  2644. {
  2645. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2646. }
  2647. break;
  2648. }
  2649. } else {
  2650. pause_flags = np->pause_flags;
  2651. }
  2652. }
  2653. nv_update_pause(dev, pause_flags);
  2654. return retval;
  2655. }
  2656. static void nv_linkchange(struct net_device *dev)
  2657. {
  2658. if (nv_update_linkspeed(dev)) {
  2659. if (!netif_carrier_ok(dev)) {
  2660. netif_carrier_on(dev);
  2661. printk(KERN_INFO "%s: link up.\n", dev->name);
  2662. nv_start_rx(dev);
  2663. }
  2664. } else {
  2665. if (netif_carrier_ok(dev)) {
  2666. netif_carrier_off(dev);
  2667. printk(KERN_INFO "%s: link down.\n", dev->name);
  2668. nv_stop_rx(dev);
  2669. }
  2670. }
  2671. }
  2672. static void nv_link_irq(struct net_device *dev)
  2673. {
  2674. u8 __iomem *base = get_hwbase(dev);
  2675. u32 miistat;
  2676. miistat = readl(base + NvRegMIIStatus);
  2677. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2678. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2679. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2680. nv_linkchange(dev);
  2681. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2682. }
  2683. static irqreturn_t nv_nic_irq(int foo, void *data)
  2684. {
  2685. struct net_device *dev = (struct net_device *) data;
  2686. struct fe_priv *np = netdev_priv(dev);
  2687. u8 __iomem *base = get_hwbase(dev);
  2688. u32 events;
  2689. int i;
  2690. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2691. for (i=0; ; i++) {
  2692. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2693. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2694. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2695. } else {
  2696. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2697. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2698. }
  2699. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2700. if (!(events & np->irqmask))
  2701. break;
  2702. spin_lock(&np->lock);
  2703. nv_tx_done(dev);
  2704. spin_unlock(&np->lock);
  2705. #ifdef CONFIG_FORCEDETH_NAPI
  2706. if (events & NVREG_IRQ_RX_ALL) {
  2707. netif_rx_schedule(dev);
  2708. /* Disable furthur receive irq's */
  2709. spin_lock(&np->lock);
  2710. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2711. if (np->msi_flags & NV_MSI_X_ENABLED)
  2712. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2713. else
  2714. writel(np->irqmask, base + NvRegIrqMask);
  2715. spin_unlock(&np->lock);
  2716. }
  2717. #else
  2718. if (nv_rx_process(dev, dev->weight)) {
  2719. if (unlikely(nv_alloc_rx(dev))) {
  2720. spin_lock(&np->lock);
  2721. if (!np->in_shutdown)
  2722. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2723. spin_unlock(&np->lock);
  2724. }
  2725. }
  2726. #endif
  2727. if (unlikely(events & NVREG_IRQ_LINK)) {
  2728. spin_lock(&np->lock);
  2729. nv_link_irq(dev);
  2730. spin_unlock(&np->lock);
  2731. }
  2732. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2733. spin_lock(&np->lock);
  2734. nv_linkchange(dev);
  2735. spin_unlock(&np->lock);
  2736. np->link_timeout = jiffies + LINK_TIMEOUT;
  2737. }
  2738. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2739. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2740. dev->name, events);
  2741. }
  2742. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2743. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2744. dev->name, events);
  2745. }
  2746. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2747. spin_lock(&np->lock);
  2748. /* disable interrupts on the nic */
  2749. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2750. writel(0, base + NvRegIrqMask);
  2751. else
  2752. writel(np->irqmask, base + NvRegIrqMask);
  2753. pci_push(base);
  2754. if (!np->in_shutdown) {
  2755. np->nic_poll_irq = np->irqmask;
  2756. np->recover_error = 1;
  2757. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2758. }
  2759. spin_unlock(&np->lock);
  2760. break;
  2761. }
  2762. if (unlikely(i > max_interrupt_work)) {
  2763. spin_lock(&np->lock);
  2764. /* disable interrupts on the nic */
  2765. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2766. writel(0, base + NvRegIrqMask);
  2767. else
  2768. writel(np->irqmask, base + NvRegIrqMask);
  2769. pci_push(base);
  2770. if (!np->in_shutdown) {
  2771. np->nic_poll_irq = np->irqmask;
  2772. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2773. }
  2774. spin_unlock(&np->lock);
  2775. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2776. break;
  2777. }
  2778. }
  2779. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2780. return IRQ_RETVAL(i);
  2781. }
  2782. #define TX_WORK_PER_LOOP 64
  2783. #define RX_WORK_PER_LOOP 64
  2784. /**
  2785. * All _optimized functions are used to help increase performance
  2786. * (reduce CPU and increase throughput). They use descripter version 3,
  2787. * compiler directives, and reduce memory accesses.
  2788. */
  2789. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  2790. {
  2791. struct net_device *dev = (struct net_device *) data;
  2792. struct fe_priv *np = netdev_priv(dev);
  2793. u8 __iomem *base = get_hwbase(dev);
  2794. u32 events;
  2795. int i;
  2796. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  2797. for (i=0; ; i++) {
  2798. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2799. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2800. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2801. } else {
  2802. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2803. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2804. }
  2805. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2806. if (!(events & np->irqmask))
  2807. break;
  2808. spin_lock(&np->lock);
  2809. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2810. spin_unlock(&np->lock);
  2811. #ifdef CONFIG_FORCEDETH_NAPI
  2812. if (events & NVREG_IRQ_RX_ALL) {
  2813. netif_rx_schedule(dev);
  2814. /* Disable furthur receive irq's */
  2815. spin_lock(&np->lock);
  2816. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2817. if (np->msi_flags & NV_MSI_X_ENABLED)
  2818. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2819. else
  2820. writel(np->irqmask, base + NvRegIrqMask);
  2821. spin_unlock(&np->lock);
  2822. }
  2823. #else
  2824. if (nv_rx_process_optimized(dev, dev->weight)) {
  2825. if (unlikely(nv_alloc_rx_optimized(dev))) {
  2826. spin_lock(&np->lock);
  2827. if (!np->in_shutdown)
  2828. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2829. spin_unlock(&np->lock);
  2830. }
  2831. }
  2832. #endif
  2833. if (unlikely(events & NVREG_IRQ_LINK)) {
  2834. spin_lock(&np->lock);
  2835. nv_link_irq(dev);
  2836. spin_unlock(&np->lock);
  2837. }
  2838. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2839. spin_lock(&np->lock);
  2840. nv_linkchange(dev);
  2841. spin_unlock(&np->lock);
  2842. np->link_timeout = jiffies + LINK_TIMEOUT;
  2843. }
  2844. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2845. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2846. dev->name, events);
  2847. }
  2848. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2849. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2850. dev->name, events);
  2851. }
  2852. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2853. spin_lock(&np->lock);
  2854. /* disable interrupts on the nic */
  2855. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2856. writel(0, base + NvRegIrqMask);
  2857. else
  2858. writel(np->irqmask, base + NvRegIrqMask);
  2859. pci_push(base);
  2860. if (!np->in_shutdown) {
  2861. np->nic_poll_irq = np->irqmask;
  2862. np->recover_error = 1;
  2863. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2864. }
  2865. spin_unlock(&np->lock);
  2866. break;
  2867. }
  2868. if (unlikely(i > max_interrupt_work)) {
  2869. spin_lock(&np->lock);
  2870. /* disable interrupts on the nic */
  2871. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2872. writel(0, base + NvRegIrqMask);
  2873. else
  2874. writel(np->irqmask, base + NvRegIrqMask);
  2875. pci_push(base);
  2876. if (!np->in_shutdown) {
  2877. np->nic_poll_irq = np->irqmask;
  2878. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2879. }
  2880. spin_unlock(&np->lock);
  2881. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2882. break;
  2883. }
  2884. }
  2885. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  2886. return IRQ_RETVAL(i);
  2887. }
  2888. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  2889. {
  2890. struct net_device *dev = (struct net_device *) data;
  2891. struct fe_priv *np = netdev_priv(dev);
  2892. u8 __iomem *base = get_hwbase(dev);
  2893. u32 events;
  2894. int i;
  2895. unsigned long flags;
  2896. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2897. for (i=0; ; i++) {
  2898. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2899. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2900. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2901. if (!(events & np->irqmask))
  2902. break;
  2903. spin_lock_irqsave(&np->lock, flags);
  2904. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2905. spin_unlock_irqrestore(&np->lock, flags);
  2906. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2907. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2908. dev->name, events);
  2909. }
  2910. if (unlikely(i > max_interrupt_work)) {
  2911. spin_lock_irqsave(&np->lock, flags);
  2912. /* disable interrupts on the nic */
  2913. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2914. pci_push(base);
  2915. if (!np->in_shutdown) {
  2916. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2917. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2918. }
  2919. spin_unlock_irqrestore(&np->lock, flags);
  2920. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2921. break;
  2922. }
  2923. }
  2924. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2925. return IRQ_RETVAL(i);
  2926. }
  2927. #ifdef CONFIG_FORCEDETH_NAPI
  2928. static int nv_napi_poll(struct net_device *dev, int *budget)
  2929. {
  2930. int pkts, limit = min(*budget, dev->quota);
  2931. struct fe_priv *np = netdev_priv(dev);
  2932. u8 __iomem *base = get_hwbase(dev);
  2933. unsigned long flags;
  2934. int retcode;
  2935. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2936. pkts = nv_rx_process(dev, limit);
  2937. retcode = nv_alloc_rx(dev);
  2938. } else {
  2939. pkts = nv_rx_process_optimized(dev, limit);
  2940. retcode = nv_alloc_rx_optimized(dev);
  2941. }
  2942. if (retcode) {
  2943. spin_lock_irqsave(&np->lock, flags);
  2944. if (!np->in_shutdown)
  2945. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2946. spin_unlock_irqrestore(&np->lock, flags);
  2947. }
  2948. if (pkts < limit) {
  2949. /* all done, no more packets present */
  2950. netif_rx_complete(dev);
  2951. /* re-enable receive interrupts */
  2952. spin_lock_irqsave(&np->lock, flags);
  2953. np->irqmask |= NVREG_IRQ_RX_ALL;
  2954. if (np->msi_flags & NV_MSI_X_ENABLED)
  2955. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2956. else
  2957. writel(np->irqmask, base + NvRegIrqMask);
  2958. spin_unlock_irqrestore(&np->lock, flags);
  2959. return 0;
  2960. } else {
  2961. /* used up our quantum, so reschedule */
  2962. dev->quota -= pkts;
  2963. *budget -= pkts;
  2964. return 1;
  2965. }
  2966. }
  2967. #endif
  2968. #ifdef CONFIG_FORCEDETH_NAPI
  2969. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2970. {
  2971. struct net_device *dev = (struct net_device *) data;
  2972. u8 __iomem *base = get_hwbase(dev);
  2973. u32 events;
  2974. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2975. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2976. if (events) {
  2977. netif_rx_schedule(dev);
  2978. /* disable receive interrupts on the nic */
  2979. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2980. pci_push(base);
  2981. }
  2982. return IRQ_HANDLED;
  2983. }
  2984. #else
  2985. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2986. {
  2987. struct net_device *dev = (struct net_device *) data;
  2988. struct fe_priv *np = netdev_priv(dev);
  2989. u8 __iomem *base = get_hwbase(dev);
  2990. u32 events;
  2991. int i;
  2992. unsigned long flags;
  2993. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2994. for (i=0; ; i++) {
  2995. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2996. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2997. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2998. if (!(events & np->irqmask))
  2999. break;
  3000. if (nv_rx_process_optimized(dev, dev->weight)) {
  3001. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3002. spin_lock_irqsave(&np->lock, flags);
  3003. if (!np->in_shutdown)
  3004. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3005. spin_unlock_irqrestore(&np->lock, flags);
  3006. }
  3007. }
  3008. if (unlikely(i > max_interrupt_work)) {
  3009. spin_lock_irqsave(&np->lock, flags);
  3010. /* disable interrupts on the nic */
  3011. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3012. pci_push(base);
  3013. if (!np->in_shutdown) {
  3014. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3015. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3016. }
  3017. spin_unlock_irqrestore(&np->lock, flags);
  3018. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3019. break;
  3020. }
  3021. }
  3022. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3023. return IRQ_RETVAL(i);
  3024. }
  3025. #endif
  3026. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3027. {
  3028. struct net_device *dev = (struct net_device *) data;
  3029. struct fe_priv *np = netdev_priv(dev);
  3030. u8 __iomem *base = get_hwbase(dev);
  3031. u32 events;
  3032. int i;
  3033. unsigned long flags;
  3034. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3035. for (i=0; ; i++) {
  3036. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3037. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3038. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3039. if (!(events & np->irqmask))
  3040. break;
  3041. /* check tx in case we reached max loop limit in tx isr */
  3042. spin_lock_irqsave(&np->lock, flags);
  3043. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3044. spin_unlock_irqrestore(&np->lock, flags);
  3045. if (events & NVREG_IRQ_LINK) {
  3046. spin_lock_irqsave(&np->lock, flags);
  3047. nv_link_irq(dev);
  3048. spin_unlock_irqrestore(&np->lock, flags);
  3049. }
  3050. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3051. spin_lock_irqsave(&np->lock, flags);
  3052. nv_linkchange(dev);
  3053. spin_unlock_irqrestore(&np->lock, flags);
  3054. np->link_timeout = jiffies + LINK_TIMEOUT;
  3055. }
  3056. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3057. spin_lock_irq(&np->lock);
  3058. /* disable interrupts on the nic */
  3059. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3060. pci_push(base);
  3061. if (!np->in_shutdown) {
  3062. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3063. np->recover_error = 1;
  3064. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3065. }
  3066. spin_unlock_irq(&np->lock);
  3067. break;
  3068. }
  3069. if (events & (NVREG_IRQ_UNKNOWN)) {
  3070. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3071. dev->name, events);
  3072. }
  3073. if (unlikely(i > max_interrupt_work)) {
  3074. spin_lock_irqsave(&np->lock, flags);
  3075. /* disable interrupts on the nic */
  3076. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3077. pci_push(base);
  3078. if (!np->in_shutdown) {
  3079. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3080. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3081. }
  3082. spin_unlock_irqrestore(&np->lock, flags);
  3083. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3084. break;
  3085. }
  3086. }
  3087. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3088. return IRQ_RETVAL(i);
  3089. }
  3090. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3091. {
  3092. struct net_device *dev = (struct net_device *) data;
  3093. struct fe_priv *np = netdev_priv(dev);
  3094. u8 __iomem *base = get_hwbase(dev);
  3095. u32 events;
  3096. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3097. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3098. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3099. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3100. } else {
  3101. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3102. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3103. }
  3104. pci_push(base);
  3105. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3106. if (!(events & NVREG_IRQ_TIMER))
  3107. return IRQ_RETVAL(0);
  3108. spin_lock(&np->lock);
  3109. np->intr_test = 1;
  3110. spin_unlock(&np->lock);
  3111. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3112. return IRQ_RETVAL(1);
  3113. }
  3114. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3115. {
  3116. u8 __iomem *base = get_hwbase(dev);
  3117. int i;
  3118. u32 msixmap = 0;
  3119. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3120. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3121. * the remaining 8 interrupts.
  3122. */
  3123. for (i = 0; i < 8; i++) {
  3124. if ((irqmask >> i) & 0x1) {
  3125. msixmap |= vector << (i << 2);
  3126. }
  3127. }
  3128. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3129. msixmap = 0;
  3130. for (i = 0; i < 8; i++) {
  3131. if ((irqmask >> (i + 8)) & 0x1) {
  3132. msixmap |= vector << (i << 2);
  3133. }
  3134. }
  3135. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3136. }
  3137. static int nv_request_irq(struct net_device *dev, int intr_test)
  3138. {
  3139. struct fe_priv *np = get_nvpriv(dev);
  3140. u8 __iomem *base = get_hwbase(dev);
  3141. int ret = 1;
  3142. int i;
  3143. irqreturn_t (*handler)(int foo, void *data);
  3144. if (intr_test) {
  3145. handler = nv_nic_irq_test;
  3146. } else {
  3147. if (np->desc_ver == DESC_VER_3)
  3148. handler = nv_nic_irq_optimized;
  3149. else
  3150. handler = nv_nic_irq;
  3151. }
  3152. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3153. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3154. np->msi_x_entry[i].entry = i;
  3155. }
  3156. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3157. np->msi_flags |= NV_MSI_X_ENABLED;
  3158. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3159. /* Request irq for rx handling */
  3160. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3161. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3162. pci_disable_msix(np->pci_dev);
  3163. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3164. goto out_err;
  3165. }
  3166. /* Request irq for tx handling */
  3167. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3168. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3169. pci_disable_msix(np->pci_dev);
  3170. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3171. goto out_free_rx;
  3172. }
  3173. /* Request irq for link and timer handling */
  3174. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3175. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3176. pci_disable_msix(np->pci_dev);
  3177. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3178. goto out_free_tx;
  3179. }
  3180. /* map interrupts to their respective vector */
  3181. writel(0, base + NvRegMSIXMap0);
  3182. writel(0, base + NvRegMSIXMap1);
  3183. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3184. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3185. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3186. } else {
  3187. /* Request irq for all interrupts */
  3188. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3189. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3190. pci_disable_msix(np->pci_dev);
  3191. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3192. goto out_err;
  3193. }
  3194. /* map interrupts to vector 0 */
  3195. writel(0, base + NvRegMSIXMap0);
  3196. writel(0, base + NvRegMSIXMap1);
  3197. }
  3198. }
  3199. }
  3200. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3201. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3202. np->msi_flags |= NV_MSI_ENABLED;
  3203. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3204. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3205. pci_disable_msi(np->pci_dev);
  3206. np->msi_flags &= ~NV_MSI_ENABLED;
  3207. goto out_err;
  3208. }
  3209. /* map interrupts to vector 0 */
  3210. writel(0, base + NvRegMSIMap0);
  3211. writel(0, base + NvRegMSIMap1);
  3212. /* enable msi vector 0 */
  3213. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3214. }
  3215. }
  3216. if (ret != 0) {
  3217. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3218. goto out_err;
  3219. }
  3220. return 0;
  3221. out_free_tx:
  3222. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3223. out_free_rx:
  3224. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3225. out_err:
  3226. return 1;
  3227. }
  3228. static void nv_free_irq(struct net_device *dev)
  3229. {
  3230. struct fe_priv *np = get_nvpriv(dev);
  3231. int i;
  3232. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3233. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3234. free_irq(np->msi_x_entry[i].vector, dev);
  3235. }
  3236. pci_disable_msix(np->pci_dev);
  3237. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3238. } else {
  3239. free_irq(np->pci_dev->irq, dev);
  3240. if (np->msi_flags & NV_MSI_ENABLED) {
  3241. pci_disable_msi(np->pci_dev);
  3242. np->msi_flags &= ~NV_MSI_ENABLED;
  3243. }
  3244. }
  3245. }
  3246. static void nv_do_nic_poll(unsigned long data)
  3247. {
  3248. struct net_device *dev = (struct net_device *) data;
  3249. struct fe_priv *np = netdev_priv(dev);
  3250. u8 __iomem *base = get_hwbase(dev);
  3251. u32 mask = 0;
  3252. /*
  3253. * First disable irq(s) and then
  3254. * reenable interrupts on the nic, we have to do this before calling
  3255. * nv_nic_irq because that may decide to do otherwise
  3256. */
  3257. if (!using_multi_irqs(dev)) {
  3258. if (np->msi_flags & NV_MSI_X_ENABLED)
  3259. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3260. else
  3261. disable_irq_lockdep(dev->irq);
  3262. mask = np->irqmask;
  3263. } else {
  3264. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3265. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3266. mask |= NVREG_IRQ_RX_ALL;
  3267. }
  3268. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3269. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3270. mask |= NVREG_IRQ_TX_ALL;
  3271. }
  3272. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3273. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3274. mask |= NVREG_IRQ_OTHER;
  3275. }
  3276. }
  3277. np->nic_poll_irq = 0;
  3278. if (np->recover_error) {
  3279. np->recover_error = 0;
  3280. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3281. if (netif_running(dev)) {
  3282. netif_tx_lock_bh(dev);
  3283. spin_lock(&np->lock);
  3284. /* stop engines */
  3285. nv_stop_rx(dev);
  3286. nv_stop_tx(dev);
  3287. nv_txrx_reset(dev);
  3288. /* drain rx queue */
  3289. nv_drain_rx(dev);
  3290. nv_drain_tx(dev);
  3291. /* reinit driver view of the rx queue */
  3292. set_bufsize(dev);
  3293. if (nv_init_ring(dev)) {
  3294. if (!np->in_shutdown)
  3295. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3296. }
  3297. /* reinit nic view of the rx queue */
  3298. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3299. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3300. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3301. base + NvRegRingSizes);
  3302. pci_push(base);
  3303. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3304. pci_push(base);
  3305. /* restart rx engine */
  3306. nv_start_rx(dev);
  3307. nv_start_tx(dev);
  3308. spin_unlock(&np->lock);
  3309. netif_tx_unlock_bh(dev);
  3310. }
  3311. }
  3312. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  3313. writel(mask, base + NvRegIrqMask);
  3314. pci_push(base);
  3315. if (!using_multi_irqs(dev)) {
  3316. if (np->desc_ver == DESC_VER_3)
  3317. nv_nic_irq_optimized(0, dev);
  3318. else
  3319. nv_nic_irq(0, dev);
  3320. if (np->msi_flags & NV_MSI_X_ENABLED)
  3321. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3322. else
  3323. enable_irq_lockdep(dev->irq);
  3324. } else {
  3325. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3326. nv_nic_irq_rx(0, dev);
  3327. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3328. }
  3329. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3330. nv_nic_irq_tx(0, dev);
  3331. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3332. }
  3333. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3334. nv_nic_irq_other(0, dev);
  3335. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3336. }
  3337. }
  3338. }
  3339. #ifdef CONFIG_NET_POLL_CONTROLLER
  3340. static void nv_poll_controller(struct net_device *dev)
  3341. {
  3342. nv_do_nic_poll((unsigned long) dev);
  3343. }
  3344. #endif
  3345. static void nv_do_stats_poll(unsigned long data)
  3346. {
  3347. struct net_device *dev = (struct net_device *) data;
  3348. struct fe_priv *np = netdev_priv(dev);
  3349. nv_get_hw_stats(dev);
  3350. if (!np->in_shutdown)
  3351. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3352. }
  3353. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3354. {
  3355. struct fe_priv *np = netdev_priv(dev);
  3356. strcpy(info->driver, "forcedeth");
  3357. strcpy(info->version, FORCEDETH_VERSION);
  3358. strcpy(info->bus_info, pci_name(np->pci_dev));
  3359. }
  3360. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3361. {
  3362. struct fe_priv *np = netdev_priv(dev);
  3363. wolinfo->supported = WAKE_MAGIC;
  3364. spin_lock_irq(&np->lock);
  3365. if (np->wolenabled)
  3366. wolinfo->wolopts = WAKE_MAGIC;
  3367. spin_unlock_irq(&np->lock);
  3368. }
  3369. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3370. {
  3371. struct fe_priv *np = netdev_priv(dev);
  3372. u8 __iomem *base = get_hwbase(dev);
  3373. u32 flags = 0;
  3374. if (wolinfo->wolopts == 0) {
  3375. np->wolenabled = 0;
  3376. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3377. np->wolenabled = 1;
  3378. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3379. }
  3380. if (netif_running(dev)) {
  3381. spin_lock_irq(&np->lock);
  3382. writel(flags, base + NvRegWakeUpFlags);
  3383. spin_unlock_irq(&np->lock);
  3384. }
  3385. return 0;
  3386. }
  3387. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3388. {
  3389. struct fe_priv *np = netdev_priv(dev);
  3390. int adv;
  3391. spin_lock_irq(&np->lock);
  3392. ecmd->port = PORT_MII;
  3393. if (!netif_running(dev)) {
  3394. /* We do not track link speed / duplex setting if the
  3395. * interface is disabled. Force a link check */
  3396. if (nv_update_linkspeed(dev)) {
  3397. if (!netif_carrier_ok(dev))
  3398. netif_carrier_on(dev);
  3399. } else {
  3400. if (netif_carrier_ok(dev))
  3401. netif_carrier_off(dev);
  3402. }
  3403. }
  3404. if (netif_carrier_ok(dev)) {
  3405. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3406. case NVREG_LINKSPEED_10:
  3407. ecmd->speed = SPEED_10;
  3408. break;
  3409. case NVREG_LINKSPEED_100:
  3410. ecmd->speed = SPEED_100;
  3411. break;
  3412. case NVREG_LINKSPEED_1000:
  3413. ecmd->speed = SPEED_1000;
  3414. break;
  3415. }
  3416. ecmd->duplex = DUPLEX_HALF;
  3417. if (np->duplex)
  3418. ecmd->duplex = DUPLEX_FULL;
  3419. } else {
  3420. ecmd->speed = -1;
  3421. ecmd->duplex = -1;
  3422. }
  3423. ecmd->autoneg = np->autoneg;
  3424. ecmd->advertising = ADVERTISED_MII;
  3425. if (np->autoneg) {
  3426. ecmd->advertising |= ADVERTISED_Autoneg;
  3427. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3428. if (adv & ADVERTISE_10HALF)
  3429. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3430. if (adv & ADVERTISE_10FULL)
  3431. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3432. if (adv & ADVERTISE_100HALF)
  3433. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3434. if (adv & ADVERTISE_100FULL)
  3435. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3436. if (np->gigabit == PHY_GIGABIT) {
  3437. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3438. if (adv & ADVERTISE_1000FULL)
  3439. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3440. }
  3441. }
  3442. ecmd->supported = (SUPPORTED_Autoneg |
  3443. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3444. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3445. SUPPORTED_MII);
  3446. if (np->gigabit == PHY_GIGABIT)
  3447. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3448. ecmd->phy_address = np->phyaddr;
  3449. ecmd->transceiver = XCVR_EXTERNAL;
  3450. /* ignore maxtxpkt, maxrxpkt for now */
  3451. spin_unlock_irq(&np->lock);
  3452. return 0;
  3453. }
  3454. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3455. {
  3456. struct fe_priv *np = netdev_priv(dev);
  3457. if (ecmd->port != PORT_MII)
  3458. return -EINVAL;
  3459. if (ecmd->transceiver != XCVR_EXTERNAL)
  3460. return -EINVAL;
  3461. if (ecmd->phy_address != np->phyaddr) {
  3462. /* TODO: support switching between multiple phys. Should be
  3463. * trivial, but not enabled due to lack of test hardware. */
  3464. return -EINVAL;
  3465. }
  3466. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3467. u32 mask;
  3468. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3469. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3470. if (np->gigabit == PHY_GIGABIT)
  3471. mask |= ADVERTISED_1000baseT_Full;
  3472. if ((ecmd->advertising & mask) == 0)
  3473. return -EINVAL;
  3474. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3475. /* Note: autonegotiation disable, speed 1000 intentionally
  3476. * forbidden - noone should need that. */
  3477. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3478. return -EINVAL;
  3479. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3480. return -EINVAL;
  3481. } else {
  3482. return -EINVAL;
  3483. }
  3484. netif_carrier_off(dev);
  3485. if (netif_running(dev)) {
  3486. nv_disable_irq(dev);
  3487. netif_tx_lock_bh(dev);
  3488. spin_lock(&np->lock);
  3489. /* stop engines */
  3490. nv_stop_rx(dev);
  3491. nv_stop_tx(dev);
  3492. spin_unlock(&np->lock);
  3493. netif_tx_unlock_bh(dev);
  3494. }
  3495. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3496. int adv, bmcr;
  3497. np->autoneg = 1;
  3498. /* advertise only what has been requested */
  3499. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3500. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3501. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3502. adv |= ADVERTISE_10HALF;
  3503. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3504. adv |= ADVERTISE_10FULL;
  3505. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3506. adv |= ADVERTISE_100HALF;
  3507. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3508. adv |= ADVERTISE_100FULL;
  3509. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3510. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3511. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3512. adv |= ADVERTISE_PAUSE_ASYM;
  3513. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3514. if (np->gigabit == PHY_GIGABIT) {
  3515. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3516. adv &= ~ADVERTISE_1000FULL;
  3517. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3518. adv |= ADVERTISE_1000FULL;
  3519. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3520. }
  3521. if (netif_running(dev))
  3522. printk(KERN_INFO "%s: link down.\n", dev->name);
  3523. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3524. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3525. bmcr |= BMCR_ANENABLE;
  3526. /* reset the phy in order for settings to stick,
  3527. * and cause autoneg to start */
  3528. if (phy_reset(dev, bmcr)) {
  3529. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3530. return -EINVAL;
  3531. }
  3532. } else {
  3533. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3534. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3535. }
  3536. } else {
  3537. int adv, bmcr;
  3538. np->autoneg = 0;
  3539. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3540. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3541. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3542. adv |= ADVERTISE_10HALF;
  3543. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3544. adv |= ADVERTISE_10FULL;
  3545. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3546. adv |= ADVERTISE_100HALF;
  3547. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3548. adv |= ADVERTISE_100FULL;
  3549. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3550. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3551. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3552. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3553. }
  3554. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3555. adv |= ADVERTISE_PAUSE_ASYM;
  3556. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3557. }
  3558. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3559. np->fixed_mode = adv;
  3560. if (np->gigabit == PHY_GIGABIT) {
  3561. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3562. adv &= ~ADVERTISE_1000FULL;
  3563. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3564. }
  3565. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3566. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3567. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3568. bmcr |= BMCR_FULLDPLX;
  3569. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3570. bmcr |= BMCR_SPEED100;
  3571. if (np->phy_oui == PHY_OUI_MARVELL) {
  3572. /* reset the phy in order for forced mode settings to stick */
  3573. if (phy_reset(dev, bmcr)) {
  3574. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3575. return -EINVAL;
  3576. }
  3577. } else {
  3578. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3579. if (netif_running(dev)) {
  3580. /* Wait a bit and then reconfigure the nic. */
  3581. udelay(10);
  3582. nv_linkchange(dev);
  3583. }
  3584. }
  3585. }
  3586. if (netif_running(dev)) {
  3587. nv_start_rx(dev);
  3588. nv_start_tx(dev);
  3589. nv_enable_irq(dev);
  3590. }
  3591. return 0;
  3592. }
  3593. #define FORCEDETH_REGS_VER 1
  3594. static int nv_get_regs_len(struct net_device *dev)
  3595. {
  3596. struct fe_priv *np = netdev_priv(dev);
  3597. return np->register_size;
  3598. }
  3599. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3600. {
  3601. struct fe_priv *np = netdev_priv(dev);
  3602. u8 __iomem *base = get_hwbase(dev);
  3603. u32 *rbuf = buf;
  3604. int i;
  3605. regs->version = FORCEDETH_REGS_VER;
  3606. spin_lock_irq(&np->lock);
  3607. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3608. rbuf[i] = readl(base + i*sizeof(u32));
  3609. spin_unlock_irq(&np->lock);
  3610. }
  3611. static int nv_nway_reset(struct net_device *dev)
  3612. {
  3613. struct fe_priv *np = netdev_priv(dev);
  3614. int ret;
  3615. if (np->autoneg) {
  3616. int bmcr;
  3617. netif_carrier_off(dev);
  3618. if (netif_running(dev)) {
  3619. nv_disable_irq(dev);
  3620. netif_tx_lock_bh(dev);
  3621. spin_lock(&np->lock);
  3622. /* stop engines */
  3623. nv_stop_rx(dev);
  3624. nv_stop_tx(dev);
  3625. spin_unlock(&np->lock);
  3626. netif_tx_unlock_bh(dev);
  3627. printk(KERN_INFO "%s: link down.\n", dev->name);
  3628. }
  3629. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3630. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3631. bmcr |= BMCR_ANENABLE;
  3632. /* reset the phy in order for settings to stick*/
  3633. if (phy_reset(dev, bmcr)) {
  3634. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3635. return -EINVAL;
  3636. }
  3637. } else {
  3638. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3639. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3640. }
  3641. if (netif_running(dev)) {
  3642. nv_start_rx(dev);
  3643. nv_start_tx(dev);
  3644. nv_enable_irq(dev);
  3645. }
  3646. ret = 0;
  3647. } else {
  3648. ret = -EINVAL;
  3649. }
  3650. return ret;
  3651. }
  3652. static int nv_set_tso(struct net_device *dev, u32 value)
  3653. {
  3654. struct fe_priv *np = netdev_priv(dev);
  3655. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3656. return ethtool_op_set_tso(dev, value);
  3657. else
  3658. return -EOPNOTSUPP;
  3659. }
  3660. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3661. {
  3662. struct fe_priv *np = netdev_priv(dev);
  3663. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3664. ring->rx_mini_max_pending = 0;
  3665. ring->rx_jumbo_max_pending = 0;
  3666. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3667. ring->rx_pending = np->rx_ring_size;
  3668. ring->rx_mini_pending = 0;
  3669. ring->rx_jumbo_pending = 0;
  3670. ring->tx_pending = np->tx_ring_size;
  3671. }
  3672. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3673. {
  3674. struct fe_priv *np = netdev_priv(dev);
  3675. u8 __iomem *base = get_hwbase(dev);
  3676. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3677. dma_addr_t ring_addr;
  3678. if (ring->rx_pending < RX_RING_MIN ||
  3679. ring->tx_pending < TX_RING_MIN ||
  3680. ring->rx_mini_pending != 0 ||
  3681. ring->rx_jumbo_pending != 0 ||
  3682. (np->desc_ver == DESC_VER_1 &&
  3683. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3684. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3685. (np->desc_ver != DESC_VER_1 &&
  3686. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3687. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3688. return -EINVAL;
  3689. }
  3690. /* allocate new rings */
  3691. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3692. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3693. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3694. &ring_addr);
  3695. } else {
  3696. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3697. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3698. &ring_addr);
  3699. }
  3700. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3701. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3702. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3703. /* fall back to old rings */
  3704. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3705. if (rxtx_ring)
  3706. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3707. rxtx_ring, ring_addr);
  3708. } else {
  3709. if (rxtx_ring)
  3710. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3711. rxtx_ring, ring_addr);
  3712. }
  3713. if (rx_skbuff)
  3714. kfree(rx_skbuff);
  3715. if (tx_skbuff)
  3716. kfree(tx_skbuff);
  3717. goto exit;
  3718. }
  3719. if (netif_running(dev)) {
  3720. nv_disable_irq(dev);
  3721. netif_tx_lock_bh(dev);
  3722. spin_lock(&np->lock);
  3723. /* stop engines */
  3724. nv_stop_rx(dev);
  3725. nv_stop_tx(dev);
  3726. nv_txrx_reset(dev);
  3727. /* drain queues */
  3728. nv_drain_rx(dev);
  3729. nv_drain_tx(dev);
  3730. /* delete queues */
  3731. free_rings(dev);
  3732. }
  3733. /* set new values */
  3734. np->rx_ring_size = ring->rx_pending;
  3735. np->tx_ring_size = ring->tx_pending;
  3736. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3737. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3738. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3739. } else {
  3740. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3741. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3742. }
  3743. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  3744. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  3745. np->ring_addr = ring_addr;
  3746. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3747. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3748. if (netif_running(dev)) {
  3749. /* reinit driver view of the queues */
  3750. set_bufsize(dev);
  3751. if (nv_init_ring(dev)) {
  3752. if (!np->in_shutdown)
  3753. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3754. }
  3755. /* reinit nic view of the queues */
  3756. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3757. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3758. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3759. base + NvRegRingSizes);
  3760. pci_push(base);
  3761. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3762. pci_push(base);
  3763. /* restart engines */
  3764. nv_start_rx(dev);
  3765. nv_start_tx(dev);
  3766. spin_unlock(&np->lock);
  3767. netif_tx_unlock_bh(dev);
  3768. nv_enable_irq(dev);
  3769. }
  3770. return 0;
  3771. exit:
  3772. return -ENOMEM;
  3773. }
  3774. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3775. {
  3776. struct fe_priv *np = netdev_priv(dev);
  3777. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3778. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3779. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3780. }
  3781. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3782. {
  3783. struct fe_priv *np = netdev_priv(dev);
  3784. int adv, bmcr;
  3785. if ((!np->autoneg && np->duplex == 0) ||
  3786. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3787. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3788. dev->name);
  3789. return -EINVAL;
  3790. }
  3791. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3792. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3793. return -EINVAL;
  3794. }
  3795. netif_carrier_off(dev);
  3796. if (netif_running(dev)) {
  3797. nv_disable_irq(dev);
  3798. netif_tx_lock_bh(dev);
  3799. spin_lock(&np->lock);
  3800. /* stop engines */
  3801. nv_stop_rx(dev);
  3802. nv_stop_tx(dev);
  3803. spin_unlock(&np->lock);
  3804. netif_tx_unlock_bh(dev);
  3805. }
  3806. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3807. if (pause->rx_pause)
  3808. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3809. if (pause->tx_pause)
  3810. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3811. if (np->autoneg && pause->autoneg) {
  3812. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3813. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3814. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3815. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3816. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3817. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3818. adv |= ADVERTISE_PAUSE_ASYM;
  3819. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3820. if (netif_running(dev))
  3821. printk(KERN_INFO "%s: link down.\n", dev->name);
  3822. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3823. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3824. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3825. } else {
  3826. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3827. if (pause->rx_pause)
  3828. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3829. if (pause->tx_pause)
  3830. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3831. if (!netif_running(dev))
  3832. nv_update_linkspeed(dev);
  3833. else
  3834. nv_update_pause(dev, np->pause_flags);
  3835. }
  3836. if (netif_running(dev)) {
  3837. nv_start_rx(dev);
  3838. nv_start_tx(dev);
  3839. nv_enable_irq(dev);
  3840. }
  3841. return 0;
  3842. }
  3843. static u32 nv_get_rx_csum(struct net_device *dev)
  3844. {
  3845. struct fe_priv *np = netdev_priv(dev);
  3846. return (np->rx_csum) != 0;
  3847. }
  3848. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3849. {
  3850. struct fe_priv *np = netdev_priv(dev);
  3851. u8 __iomem *base = get_hwbase(dev);
  3852. int retcode = 0;
  3853. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3854. if (data) {
  3855. np->rx_csum = 1;
  3856. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3857. } else {
  3858. np->rx_csum = 0;
  3859. /* vlan is dependent on rx checksum offload */
  3860. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3861. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3862. }
  3863. if (netif_running(dev)) {
  3864. spin_lock_irq(&np->lock);
  3865. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3866. spin_unlock_irq(&np->lock);
  3867. }
  3868. } else {
  3869. return -EINVAL;
  3870. }
  3871. return retcode;
  3872. }
  3873. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3874. {
  3875. struct fe_priv *np = netdev_priv(dev);
  3876. if (np->driver_data & DEV_HAS_CHECKSUM)
  3877. return ethtool_op_set_tx_hw_csum(dev, data);
  3878. else
  3879. return -EOPNOTSUPP;
  3880. }
  3881. static int nv_set_sg(struct net_device *dev, u32 data)
  3882. {
  3883. struct fe_priv *np = netdev_priv(dev);
  3884. if (np->driver_data & DEV_HAS_CHECKSUM)
  3885. return ethtool_op_set_sg(dev, data);
  3886. else
  3887. return -EOPNOTSUPP;
  3888. }
  3889. static int nv_get_stats_count(struct net_device *dev)
  3890. {
  3891. struct fe_priv *np = netdev_priv(dev);
  3892. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  3893. return NV_DEV_STATISTICS_V1_COUNT;
  3894. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  3895. return NV_DEV_STATISTICS_V2_COUNT;
  3896. else
  3897. return 0;
  3898. }
  3899. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3900. {
  3901. struct fe_priv *np = netdev_priv(dev);
  3902. /* update stats */
  3903. nv_do_stats_poll((unsigned long)dev);
  3904. memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
  3905. }
  3906. static int nv_self_test_count(struct net_device *dev)
  3907. {
  3908. struct fe_priv *np = netdev_priv(dev);
  3909. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3910. return NV_TEST_COUNT_EXTENDED;
  3911. else
  3912. return NV_TEST_COUNT_BASE;
  3913. }
  3914. static int nv_link_test(struct net_device *dev)
  3915. {
  3916. struct fe_priv *np = netdev_priv(dev);
  3917. int mii_status;
  3918. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3919. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3920. /* check phy link status */
  3921. if (!(mii_status & BMSR_LSTATUS))
  3922. return 0;
  3923. else
  3924. return 1;
  3925. }
  3926. static int nv_register_test(struct net_device *dev)
  3927. {
  3928. u8 __iomem *base = get_hwbase(dev);
  3929. int i = 0;
  3930. u32 orig_read, new_read;
  3931. do {
  3932. orig_read = readl(base + nv_registers_test[i].reg);
  3933. /* xor with mask to toggle bits */
  3934. orig_read ^= nv_registers_test[i].mask;
  3935. writel(orig_read, base + nv_registers_test[i].reg);
  3936. new_read = readl(base + nv_registers_test[i].reg);
  3937. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3938. return 0;
  3939. /* restore original value */
  3940. orig_read ^= nv_registers_test[i].mask;
  3941. writel(orig_read, base + nv_registers_test[i].reg);
  3942. } while (nv_registers_test[++i].reg != 0);
  3943. return 1;
  3944. }
  3945. static int nv_interrupt_test(struct net_device *dev)
  3946. {
  3947. struct fe_priv *np = netdev_priv(dev);
  3948. u8 __iomem *base = get_hwbase(dev);
  3949. int ret = 1;
  3950. int testcnt;
  3951. u32 save_msi_flags, save_poll_interval = 0;
  3952. if (netif_running(dev)) {
  3953. /* free current irq */
  3954. nv_free_irq(dev);
  3955. save_poll_interval = readl(base+NvRegPollingInterval);
  3956. }
  3957. /* flag to test interrupt handler */
  3958. np->intr_test = 0;
  3959. /* setup test irq */
  3960. save_msi_flags = np->msi_flags;
  3961. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3962. np->msi_flags |= 0x001; /* setup 1 vector */
  3963. if (nv_request_irq(dev, 1))
  3964. return 0;
  3965. /* setup timer interrupt */
  3966. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3967. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3968. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3969. /* wait for at least one interrupt */
  3970. msleep(100);
  3971. spin_lock_irq(&np->lock);
  3972. /* flag should be set within ISR */
  3973. testcnt = np->intr_test;
  3974. if (!testcnt)
  3975. ret = 2;
  3976. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3977. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3978. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3979. else
  3980. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3981. spin_unlock_irq(&np->lock);
  3982. nv_free_irq(dev);
  3983. np->msi_flags = save_msi_flags;
  3984. if (netif_running(dev)) {
  3985. writel(save_poll_interval, base + NvRegPollingInterval);
  3986. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3987. /* restore original irq */
  3988. if (nv_request_irq(dev, 0))
  3989. return 0;
  3990. }
  3991. return ret;
  3992. }
  3993. static int nv_loopback_test(struct net_device *dev)
  3994. {
  3995. struct fe_priv *np = netdev_priv(dev);
  3996. u8 __iomem *base = get_hwbase(dev);
  3997. struct sk_buff *tx_skb, *rx_skb;
  3998. dma_addr_t test_dma_addr;
  3999. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4000. u32 flags;
  4001. int len, i, pkt_len;
  4002. u8 *pkt_data;
  4003. u32 filter_flags = 0;
  4004. u32 misc1_flags = 0;
  4005. int ret = 1;
  4006. if (netif_running(dev)) {
  4007. nv_disable_irq(dev);
  4008. filter_flags = readl(base + NvRegPacketFilterFlags);
  4009. misc1_flags = readl(base + NvRegMisc1);
  4010. } else {
  4011. nv_txrx_reset(dev);
  4012. }
  4013. /* reinit driver view of the rx queue */
  4014. set_bufsize(dev);
  4015. nv_init_ring(dev);
  4016. /* setup hardware for loopback */
  4017. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4018. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4019. /* reinit nic view of the rx queue */
  4020. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4021. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4022. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4023. base + NvRegRingSizes);
  4024. pci_push(base);
  4025. /* restart rx engine */
  4026. nv_start_rx(dev);
  4027. nv_start_tx(dev);
  4028. /* setup packet for tx */
  4029. pkt_len = ETH_DATA_LEN;
  4030. tx_skb = dev_alloc_skb(pkt_len);
  4031. if (!tx_skb) {
  4032. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4033. " of %s\n", dev->name);
  4034. ret = 0;
  4035. goto out;
  4036. }
  4037. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4038. skb_tailroom(tx_skb),
  4039. PCI_DMA_FROMDEVICE);
  4040. pkt_data = skb_put(tx_skb, pkt_len);
  4041. for (i = 0; i < pkt_len; i++)
  4042. pkt_data[i] = (u8)(i & 0xff);
  4043. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4044. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4045. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4046. } else {
  4047. np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
  4048. np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
  4049. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4050. }
  4051. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4052. pci_push(get_hwbase(dev));
  4053. msleep(500);
  4054. /* check for rx of the packet */
  4055. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4056. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4057. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4058. } else {
  4059. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4060. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4061. }
  4062. if (flags & NV_RX_AVAIL) {
  4063. ret = 0;
  4064. } else if (np->desc_ver == DESC_VER_1) {
  4065. if (flags & NV_RX_ERROR)
  4066. ret = 0;
  4067. } else {
  4068. if (flags & NV_RX2_ERROR) {
  4069. ret = 0;
  4070. }
  4071. }
  4072. if (ret) {
  4073. if (len != pkt_len) {
  4074. ret = 0;
  4075. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4076. dev->name, len, pkt_len);
  4077. } else {
  4078. rx_skb = np->rx_skb[0].skb;
  4079. for (i = 0; i < pkt_len; i++) {
  4080. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4081. ret = 0;
  4082. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4083. dev->name, i);
  4084. break;
  4085. }
  4086. }
  4087. }
  4088. } else {
  4089. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4090. }
  4091. pci_unmap_page(np->pci_dev, test_dma_addr,
  4092. (skb_end_pointer(tx_skb) - tx_skb->data),
  4093. PCI_DMA_TODEVICE);
  4094. dev_kfree_skb_any(tx_skb);
  4095. out:
  4096. /* stop engines */
  4097. nv_stop_rx(dev);
  4098. nv_stop_tx(dev);
  4099. nv_txrx_reset(dev);
  4100. /* drain rx queue */
  4101. nv_drain_rx(dev);
  4102. nv_drain_tx(dev);
  4103. if (netif_running(dev)) {
  4104. writel(misc1_flags, base + NvRegMisc1);
  4105. writel(filter_flags, base + NvRegPacketFilterFlags);
  4106. nv_enable_irq(dev);
  4107. }
  4108. return ret;
  4109. }
  4110. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4111. {
  4112. struct fe_priv *np = netdev_priv(dev);
  4113. u8 __iomem *base = get_hwbase(dev);
  4114. int result;
  4115. memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
  4116. if (!nv_link_test(dev)) {
  4117. test->flags |= ETH_TEST_FL_FAILED;
  4118. buffer[0] = 1;
  4119. }
  4120. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4121. if (netif_running(dev)) {
  4122. netif_stop_queue(dev);
  4123. netif_poll_disable(dev);
  4124. netif_tx_lock_bh(dev);
  4125. spin_lock_irq(&np->lock);
  4126. nv_disable_hw_interrupts(dev, np->irqmask);
  4127. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4128. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4129. } else {
  4130. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4131. }
  4132. /* stop engines */
  4133. nv_stop_rx(dev);
  4134. nv_stop_tx(dev);
  4135. nv_txrx_reset(dev);
  4136. /* drain rx queue */
  4137. nv_drain_rx(dev);
  4138. nv_drain_tx(dev);
  4139. spin_unlock_irq(&np->lock);
  4140. netif_tx_unlock_bh(dev);
  4141. }
  4142. if (!nv_register_test(dev)) {
  4143. test->flags |= ETH_TEST_FL_FAILED;
  4144. buffer[1] = 1;
  4145. }
  4146. result = nv_interrupt_test(dev);
  4147. if (result != 1) {
  4148. test->flags |= ETH_TEST_FL_FAILED;
  4149. buffer[2] = 1;
  4150. }
  4151. if (result == 0) {
  4152. /* bail out */
  4153. return;
  4154. }
  4155. if (!nv_loopback_test(dev)) {
  4156. test->flags |= ETH_TEST_FL_FAILED;
  4157. buffer[3] = 1;
  4158. }
  4159. if (netif_running(dev)) {
  4160. /* reinit driver view of the rx queue */
  4161. set_bufsize(dev);
  4162. if (nv_init_ring(dev)) {
  4163. if (!np->in_shutdown)
  4164. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4165. }
  4166. /* reinit nic view of the rx queue */
  4167. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4168. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4169. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4170. base + NvRegRingSizes);
  4171. pci_push(base);
  4172. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4173. pci_push(base);
  4174. /* restart rx engine */
  4175. nv_start_rx(dev);
  4176. nv_start_tx(dev);
  4177. netif_start_queue(dev);
  4178. netif_poll_enable(dev);
  4179. nv_enable_hw_interrupts(dev, np->irqmask);
  4180. }
  4181. }
  4182. }
  4183. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4184. {
  4185. switch (stringset) {
  4186. case ETH_SS_STATS:
  4187. memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
  4188. break;
  4189. case ETH_SS_TEST:
  4190. memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
  4191. break;
  4192. }
  4193. }
  4194. static const struct ethtool_ops ops = {
  4195. .get_drvinfo = nv_get_drvinfo,
  4196. .get_link = ethtool_op_get_link,
  4197. .get_wol = nv_get_wol,
  4198. .set_wol = nv_set_wol,
  4199. .get_settings = nv_get_settings,
  4200. .set_settings = nv_set_settings,
  4201. .get_regs_len = nv_get_regs_len,
  4202. .get_regs = nv_get_regs,
  4203. .nway_reset = nv_nway_reset,
  4204. .get_tso = ethtool_op_get_tso,
  4205. .set_tso = nv_set_tso,
  4206. .get_ringparam = nv_get_ringparam,
  4207. .set_ringparam = nv_set_ringparam,
  4208. .get_pauseparam = nv_get_pauseparam,
  4209. .set_pauseparam = nv_set_pauseparam,
  4210. .get_rx_csum = nv_get_rx_csum,
  4211. .set_rx_csum = nv_set_rx_csum,
  4212. .get_tx_csum = ethtool_op_get_tx_csum,
  4213. .set_tx_csum = nv_set_tx_csum,
  4214. .get_sg = ethtool_op_get_sg,
  4215. .set_sg = nv_set_sg,
  4216. .get_strings = nv_get_strings,
  4217. .get_stats_count = nv_get_stats_count,
  4218. .get_ethtool_stats = nv_get_ethtool_stats,
  4219. .self_test_count = nv_self_test_count,
  4220. .self_test = nv_self_test,
  4221. };
  4222. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4223. {
  4224. struct fe_priv *np = get_nvpriv(dev);
  4225. spin_lock_irq(&np->lock);
  4226. /* save vlan group */
  4227. np->vlangrp = grp;
  4228. if (grp) {
  4229. /* enable vlan on MAC */
  4230. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4231. } else {
  4232. /* disable vlan on MAC */
  4233. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4234. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4235. }
  4236. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4237. spin_unlock_irq(&np->lock);
  4238. }
  4239. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4240. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4241. {
  4242. u8 __iomem *base = get_hwbase(dev);
  4243. int i;
  4244. u32 tx_ctrl, mgmt_sema;
  4245. for (i = 0; i < 10; i++) {
  4246. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4247. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4248. break;
  4249. msleep(500);
  4250. }
  4251. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4252. return 0;
  4253. for (i = 0; i < 2; i++) {
  4254. tx_ctrl = readl(base + NvRegTransmitterControl);
  4255. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4256. writel(tx_ctrl, base + NvRegTransmitterControl);
  4257. /* verify that semaphore was acquired */
  4258. tx_ctrl = readl(base + NvRegTransmitterControl);
  4259. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4260. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4261. return 1;
  4262. else
  4263. udelay(50);
  4264. }
  4265. return 0;
  4266. }
  4267. static int nv_open(struct net_device *dev)
  4268. {
  4269. struct fe_priv *np = netdev_priv(dev);
  4270. u8 __iomem *base = get_hwbase(dev);
  4271. int ret = 1;
  4272. int oom, i;
  4273. dprintk(KERN_DEBUG "nv_open: begin\n");
  4274. /* erase previous misconfiguration */
  4275. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4276. nv_mac_reset(dev);
  4277. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4278. writel(0, base + NvRegMulticastAddrB);
  4279. writel(0, base + NvRegMulticastMaskA);
  4280. writel(0, base + NvRegMulticastMaskB);
  4281. writel(0, base + NvRegPacketFilterFlags);
  4282. writel(0, base + NvRegTransmitterControl);
  4283. writel(0, base + NvRegReceiverControl);
  4284. writel(0, base + NvRegAdapterControl);
  4285. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4286. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4287. /* initialize descriptor rings */
  4288. set_bufsize(dev);
  4289. oom = nv_init_ring(dev);
  4290. writel(0, base + NvRegLinkSpeed);
  4291. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4292. nv_txrx_reset(dev);
  4293. writel(0, base + NvRegUnknownSetupReg6);
  4294. np->in_shutdown = 0;
  4295. /* give hw rings */
  4296. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4297. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4298. base + NvRegRingSizes);
  4299. writel(np->linkspeed, base + NvRegLinkSpeed);
  4300. if (np->desc_ver == DESC_VER_1)
  4301. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4302. else
  4303. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4304. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4305. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4306. pci_push(base);
  4307. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4308. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4309. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4310. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4311. writel(0, base + NvRegMIIMask);
  4312. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4313. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  4314. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4315. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4316. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4317. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4318. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4319. get_random_bytes(&i, sizeof(i));
  4320. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  4321. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4322. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4323. if (poll_interval == -1) {
  4324. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4325. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4326. else
  4327. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4328. }
  4329. else
  4330. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4331. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4332. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4333. base + NvRegAdapterControl);
  4334. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4335. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4336. if (np->wolenabled)
  4337. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4338. i = readl(base + NvRegPowerState);
  4339. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4340. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4341. pci_push(base);
  4342. udelay(10);
  4343. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4344. nv_disable_hw_interrupts(dev, np->irqmask);
  4345. pci_push(base);
  4346. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  4347. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4348. pci_push(base);
  4349. if (nv_request_irq(dev, 0)) {
  4350. goto out_drain;
  4351. }
  4352. /* ask for interrupts */
  4353. nv_enable_hw_interrupts(dev, np->irqmask);
  4354. spin_lock_irq(&np->lock);
  4355. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4356. writel(0, base + NvRegMulticastAddrB);
  4357. writel(0, base + NvRegMulticastMaskA);
  4358. writel(0, base + NvRegMulticastMaskB);
  4359. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4360. /* One manual link speed update: Interrupts are enabled, future link
  4361. * speed changes cause interrupts and are handled by nv_link_irq().
  4362. */
  4363. {
  4364. u32 miistat;
  4365. miistat = readl(base + NvRegMIIStatus);
  4366. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4367. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4368. }
  4369. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4370. * to init hw */
  4371. np->linkspeed = 0;
  4372. ret = nv_update_linkspeed(dev);
  4373. nv_start_rx(dev);
  4374. nv_start_tx(dev);
  4375. netif_start_queue(dev);
  4376. netif_poll_enable(dev);
  4377. if (ret) {
  4378. netif_carrier_on(dev);
  4379. } else {
  4380. printk("%s: no link during initialization.\n", dev->name);
  4381. netif_carrier_off(dev);
  4382. }
  4383. if (oom)
  4384. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4385. /* start statistics timer */
  4386. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
  4387. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  4388. spin_unlock_irq(&np->lock);
  4389. return 0;
  4390. out_drain:
  4391. drain_ring(dev);
  4392. return ret;
  4393. }
  4394. static int nv_close(struct net_device *dev)
  4395. {
  4396. struct fe_priv *np = netdev_priv(dev);
  4397. u8 __iomem *base;
  4398. spin_lock_irq(&np->lock);
  4399. np->in_shutdown = 1;
  4400. spin_unlock_irq(&np->lock);
  4401. netif_poll_disable(dev);
  4402. synchronize_irq(dev->irq);
  4403. del_timer_sync(&np->oom_kick);
  4404. del_timer_sync(&np->nic_poll);
  4405. del_timer_sync(&np->stats_poll);
  4406. netif_stop_queue(dev);
  4407. spin_lock_irq(&np->lock);
  4408. nv_stop_tx(dev);
  4409. nv_stop_rx(dev);
  4410. nv_txrx_reset(dev);
  4411. /* disable interrupts on the nic or we will lock up */
  4412. base = get_hwbase(dev);
  4413. nv_disable_hw_interrupts(dev, np->irqmask);
  4414. pci_push(base);
  4415. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4416. spin_unlock_irq(&np->lock);
  4417. nv_free_irq(dev);
  4418. drain_ring(dev);
  4419. if (np->wolenabled) {
  4420. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4421. nv_start_rx(dev);
  4422. }
  4423. /* FIXME: power down nic */
  4424. return 0;
  4425. }
  4426. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4427. {
  4428. struct net_device *dev;
  4429. struct fe_priv *np;
  4430. unsigned long addr;
  4431. u8 __iomem *base;
  4432. int err, i;
  4433. u32 powerstate, txreg;
  4434. u32 phystate_orig = 0, phystate;
  4435. int phyinitialized = 0;
  4436. dev = alloc_etherdev(sizeof(struct fe_priv));
  4437. err = -ENOMEM;
  4438. if (!dev)
  4439. goto out;
  4440. np = netdev_priv(dev);
  4441. np->pci_dev = pci_dev;
  4442. spin_lock_init(&np->lock);
  4443. SET_MODULE_OWNER(dev);
  4444. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4445. init_timer(&np->oom_kick);
  4446. np->oom_kick.data = (unsigned long) dev;
  4447. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4448. init_timer(&np->nic_poll);
  4449. np->nic_poll.data = (unsigned long) dev;
  4450. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4451. init_timer(&np->stats_poll);
  4452. np->stats_poll.data = (unsigned long) dev;
  4453. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4454. err = pci_enable_device(pci_dev);
  4455. if (err) {
  4456. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  4457. err, pci_name(pci_dev));
  4458. goto out_free;
  4459. }
  4460. pci_set_master(pci_dev);
  4461. err = pci_request_regions(pci_dev, DRV_NAME);
  4462. if (err < 0)
  4463. goto out_disable;
  4464. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
  4465. np->register_size = NV_PCI_REGSZ_VER3;
  4466. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4467. np->register_size = NV_PCI_REGSZ_VER2;
  4468. else
  4469. np->register_size = NV_PCI_REGSZ_VER1;
  4470. err = -EINVAL;
  4471. addr = 0;
  4472. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4473. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4474. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4475. pci_resource_len(pci_dev, i),
  4476. pci_resource_flags(pci_dev, i));
  4477. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4478. pci_resource_len(pci_dev, i) >= np->register_size) {
  4479. addr = pci_resource_start(pci_dev, i);
  4480. break;
  4481. }
  4482. }
  4483. if (i == DEVICE_COUNT_RESOURCE) {
  4484. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  4485. pci_name(pci_dev));
  4486. goto out_relreg;
  4487. }
  4488. /* copy of driver data */
  4489. np->driver_data = id->driver_data;
  4490. /* handle different descriptor versions */
  4491. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4492. /* packet format 3: supports 40-bit addressing */
  4493. np->desc_ver = DESC_VER_3;
  4494. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4495. if (dma_64bit) {
  4496. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4497. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  4498. pci_name(pci_dev));
  4499. } else {
  4500. dev->features |= NETIF_F_HIGHDMA;
  4501. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  4502. }
  4503. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4504. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
  4505. pci_name(pci_dev));
  4506. }
  4507. }
  4508. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4509. /* packet format 2: supports jumbo frames */
  4510. np->desc_ver = DESC_VER_2;
  4511. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4512. } else {
  4513. /* original packet format */
  4514. np->desc_ver = DESC_VER_1;
  4515. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4516. }
  4517. np->pkt_limit = NV_PKTLIMIT_1;
  4518. if (id->driver_data & DEV_HAS_LARGEDESC)
  4519. np->pkt_limit = NV_PKTLIMIT_2;
  4520. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4521. np->rx_csum = 1;
  4522. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4523. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4524. dev->features |= NETIF_F_TSO;
  4525. }
  4526. np->vlanctl_bits = 0;
  4527. if (id->driver_data & DEV_HAS_VLAN) {
  4528. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4529. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4530. dev->vlan_rx_register = nv_vlan_rx_register;
  4531. }
  4532. np->msi_flags = 0;
  4533. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4534. np->msi_flags |= NV_MSI_CAPABLE;
  4535. }
  4536. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4537. np->msi_flags |= NV_MSI_X_CAPABLE;
  4538. }
  4539. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4540. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  4541. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4542. }
  4543. err = -ENOMEM;
  4544. np->base = ioremap(addr, np->register_size);
  4545. if (!np->base)
  4546. goto out_relreg;
  4547. dev->base_addr = (unsigned long)np->base;
  4548. dev->irq = pci_dev->irq;
  4549. np->rx_ring_size = RX_RING_DEFAULT;
  4550. np->tx_ring_size = TX_RING_DEFAULT;
  4551. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4552. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4553. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4554. &np->ring_addr);
  4555. if (!np->rx_ring.orig)
  4556. goto out_unmap;
  4557. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4558. } else {
  4559. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4560. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4561. &np->ring_addr);
  4562. if (!np->rx_ring.ex)
  4563. goto out_unmap;
  4564. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4565. }
  4566. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4567. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4568. if (!np->rx_skb || !np->tx_skb)
  4569. goto out_freering;
  4570. dev->open = nv_open;
  4571. dev->stop = nv_close;
  4572. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  4573. dev->hard_start_xmit = nv_start_xmit;
  4574. else
  4575. dev->hard_start_xmit = nv_start_xmit_optimized;
  4576. dev->get_stats = nv_get_stats;
  4577. dev->change_mtu = nv_change_mtu;
  4578. dev->set_mac_address = nv_set_mac_address;
  4579. dev->set_multicast_list = nv_set_multicast;
  4580. #ifdef CONFIG_NET_POLL_CONTROLLER
  4581. dev->poll_controller = nv_poll_controller;
  4582. #endif
  4583. dev->weight = RX_WORK_PER_LOOP;
  4584. #ifdef CONFIG_FORCEDETH_NAPI
  4585. dev->poll = nv_napi_poll;
  4586. #endif
  4587. SET_ETHTOOL_OPS(dev, &ops);
  4588. dev->tx_timeout = nv_tx_timeout;
  4589. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4590. pci_set_drvdata(pci_dev, dev);
  4591. /* read the mac address */
  4592. base = get_hwbase(dev);
  4593. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4594. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4595. /* check the workaround bit for correct mac address order */
  4596. txreg = readl(base + NvRegTransmitPoll);
  4597. if ((txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) ||
  4598. (id->driver_data & DEV_HAS_CORRECT_MACADDR)) {
  4599. /* mac address is already in correct order */
  4600. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4601. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4602. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4603. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4604. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4605. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4606. } else {
  4607. /* need to reverse mac address to correct order */
  4608. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4609. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4610. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4611. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4612. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4613. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4614. /* set permanent address to be correct aswell */
  4615. np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  4616. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  4617. np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  4618. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4619. }
  4620. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4621. if (!is_valid_ether_addr(dev->perm_addr)) {
  4622. /*
  4623. * Bad mac address. At least one bios sets the mac address
  4624. * to 01:23:45:67:89:ab
  4625. */
  4626. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  4627. pci_name(pci_dev),
  4628. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  4629. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  4630. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4631. dev->dev_addr[0] = 0x00;
  4632. dev->dev_addr[1] = 0x00;
  4633. dev->dev_addr[2] = 0x6c;
  4634. get_random_bytes(&dev->dev_addr[3], 3);
  4635. }
  4636. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  4637. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  4638. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  4639. /* set mac address */
  4640. nv_copy_mac_to_hw(dev);
  4641. /* disable WOL */
  4642. writel(0, base + NvRegWakeUpFlags);
  4643. np->wolenabled = 0;
  4644. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4645. /* take phy and nic out of low power mode */
  4646. powerstate = readl(base + NvRegPowerState2);
  4647. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4648. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4649. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4650. pci_dev->revision >= 0xA3)
  4651. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4652. writel(powerstate, base + NvRegPowerState2);
  4653. }
  4654. if (np->desc_ver == DESC_VER_1) {
  4655. np->tx_flags = NV_TX_VALID;
  4656. } else {
  4657. np->tx_flags = NV_TX2_VALID;
  4658. }
  4659. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4660. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4661. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4662. np->msi_flags |= 0x0003;
  4663. } else {
  4664. np->irqmask = NVREG_IRQMASK_CPU;
  4665. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4666. np->msi_flags |= 0x0001;
  4667. }
  4668. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4669. np->irqmask |= NVREG_IRQ_TIMER;
  4670. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4671. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4672. np->need_linktimer = 1;
  4673. np->link_timeout = jiffies + LINK_TIMEOUT;
  4674. } else {
  4675. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4676. np->need_linktimer = 0;
  4677. }
  4678. /* clear phy state and temporarily halt phy interrupts */
  4679. writel(0, base + NvRegMIIMask);
  4680. phystate = readl(base + NvRegAdapterControl);
  4681. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4682. phystate_orig = 1;
  4683. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4684. writel(phystate, base + NvRegAdapterControl);
  4685. }
  4686. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4687. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4688. /* management unit running on the mac? */
  4689. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4690. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4691. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4692. for (i = 0; i < 5000; i++) {
  4693. msleep(1);
  4694. if (nv_mgmt_acquire_sema(dev)) {
  4695. /* management unit setup the phy already? */
  4696. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4697. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4698. /* phy is inited by mgmt unit */
  4699. phyinitialized = 1;
  4700. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4701. } else {
  4702. /* we need to init the phy */
  4703. }
  4704. break;
  4705. }
  4706. }
  4707. }
  4708. }
  4709. /* find a suitable phy */
  4710. for (i = 1; i <= 32; i++) {
  4711. int id1, id2;
  4712. int phyaddr = i & 0x1F;
  4713. spin_lock_irq(&np->lock);
  4714. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4715. spin_unlock_irq(&np->lock);
  4716. if (id1 < 0 || id1 == 0xffff)
  4717. continue;
  4718. spin_lock_irq(&np->lock);
  4719. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4720. spin_unlock_irq(&np->lock);
  4721. if (id2 < 0 || id2 == 0xffff)
  4722. continue;
  4723. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4724. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4725. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4726. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4727. pci_name(pci_dev), id1, id2, phyaddr);
  4728. np->phyaddr = phyaddr;
  4729. np->phy_oui = id1 | id2;
  4730. break;
  4731. }
  4732. if (i == 33) {
  4733. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  4734. pci_name(pci_dev));
  4735. goto out_error;
  4736. }
  4737. if (!phyinitialized) {
  4738. /* reset it */
  4739. phy_init(dev);
  4740. } else {
  4741. /* see if it is a gigabit phy */
  4742. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4743. if (mii_status & PHY_GIGABIT) {
  4744. np->gigabit = PHY_GIGABIT;
  4745. }
  4746. }
  4747. /* set default link speed settings */
  4748. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4749. np->duplex = 0;
  4750. np->autoneg = 1;
  4751. err = register_netdev(dev);
  4752. if (err) {
  4753. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  4754. goto out_error;
  4755. }
  4756. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  4757. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  4758. pci_name(pci_dev));
  4759. return 0;
  4760. out_error:
  4761. if (phystate_orig)
  4762. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4763. pci_set_drvdata(pci_dev, NULL);
  4764. out_freering:
  4765. free_rings(dev);
  4766. out_unmap:
  4767. iounmap(get_hwbase(dev));
  4768. out_relreg:
  4769. pci_release_regions(pci_dev);
  4770. out_disable:
  4771. pci_disable_device(pci_dev);
  4772. out_free:
  4773. free_netdev(dev);
  4774. out:
  4775. return err;
  4776. }
  4777. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4778. {
  4779. struct net_device *dev = pci_get_drvdata(pci_dev);
  4780. struct fe_priv *np = netdev_priv(dev);
  4781. u8 __iomem *base = get_hwbase(dev);
  4782. unregister_netdev(dev);
  4783. /* special op: write back the misordered MAC address - otherwise
  4784. * the next nv_probe would see a wrong address.
  4785. */
  4786. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4787. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4788. /* free all structures */
  4789. free_rings(dev);
  4790. iounmap(get_hwbase(dev));
  4791. pci_release_regions(pci_dev);
  4792. pci_disable_device(pci_dev);
  4793. free_netdev(dev);
  4794. pci_set_drvdata(pci_dev, NULL);
  4795. }
  4796. #ifdef CONFIG_PM
  4797. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4798. {
  4799. struct net_device *dev = pci_get_drvdata(pdev);
  4800. struct fe_priv *np = netdev_priv(dev);
  4801. if (!netif_running(dev))
  4802. goto out;
  4803. netif_device_detach(dev);
  4804. // Gross.
  4805. nv_close(dev);
  4806. pci_save_state(pdev);
  4807. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4808. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4809. out:
  4810. return 0;
  4811. }
  4812. static int nv_resume(struct pci_dev *pdev)
  4813. {
  4814. struct net_device *dev = pci_get_drvdata(pdev);
  4815. int rc = 0;
  4816. if (!netif_running(dev))
  4817. goto out;
  4818. netif_device_attach(dev);
  4819. pci_set_power_state(pdev, PCI_D0);
  4820. pci_restore_state(pdev);
  4821. pci_enable_wake(pdev, PCI_D0, 0);
  4822. rc = nv_open(dev);
  4823. out:
  4824. return rc;
  4825. }
  4826. #else
  4827. #define nv_suspend NULL
  4828. #define nv_resume NULL
  4829. #endif /* CONFIG_PM */
  4830. static struct pci_device_id pci_tbl[] = {
  4831. { /* nForce Ethernet Controller */
  4832. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4833. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4834. },
  4835. { /* nForce2 Ethernet Controller */
  4836. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4837. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4838. },
  4839. { /* nForce3 Ethernet Controller */
  4840. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4841. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4842. },
  4843. { /* nForce3 Ethernet Controller */
  4844. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4845. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4846. },
  4847. { /* nForce3 Ethernet Controller */
  4848. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4849. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4850. },
  4851. { /* nForce3 Ethernet Controller */
  4852. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4853. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4854. },
  4855. { /* nForce3 Ethernet Controller */
  4856. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4857. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4858. },
  4859. { /* CK804 Ethernet Controller */
  4860. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4861. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4862. },
  4863. { /* CK804 Ethernet Controller */
  4864. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4865. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4866. },
  4867. { /* MCP04 Ethernet Controller */
  4868. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4869. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4870. },
  4871. { /* MCP04 Ethernet Controller */
  4872. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4873. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4874. },
  4875. { /* MCP51 Ethernet Controller */
  4876. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4877. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4878. },
  4879. { /* MCP51 Ethernet Controller */
  4880. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4881. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4882. },
  4883. { /* MCP55 Ethernet Controller */
  4884. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4885. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4886. },
  4887. { /* MCP55 Ethernet Controller */
  4888. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4889. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4890. },
  4891. { /* MCP61 Ethernet Controller */
  4892. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4893. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4894. },
  4895. { /* MCP61 Ethernet Controller */
  4896. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4897. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4898. },
  4899. { /* MCP61 Ethernet Controller */
  4900. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4901. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4902. },
  4903. { /* MCP61 Ethernet Controller */
  4904. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4905. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4906. },
  4907. { /* MCP65 Ethernet Controller */
  4908. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4909. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4910. },
  4911. { /* MCP65 Ethernet Controller */
  4912. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4913. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4914. },
  4915. { /* MCP65 Ethernet Controller */
  4916. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4917. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4918. },
  4919. { /* MCP65 Ethernet Controller */
  4920. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4921. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4922. },
  4923. { /* MCP67 Ethernet Controller */
  4924. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  4925. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4926. },
  4927. { /* MCP67 Ethernet Controller */
  4928. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  4929. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4930. },
  4931. { /* MCP67 Ethernet Controller */
  4932. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  4933. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4934. },
  4935. { /* MCP67 Ethernet Controller */
  4936. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  4937. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4938. },
  4939. { /* MCP73 Ethernet Controller */
  4940. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  4941. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4942. },
  4943. { /* MCP73 Ethernet Controller */
  4944. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  4945. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4946. },
  4947. { /* MCP73 Ethernet Controller */
  4948. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  4949. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4950. },
  4951. { /* MCP73 Ethernet Controller */
  4952. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  4953. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4954. },
  4955. {0,},
  4956. };
  4957. static struct pci_driver driver = {
  4958. .name = "forcedeth",
  4959. .id_table = pci_tbl,
  4960. .probe = nv_probe,
  4961. .remove = __devexit_p(nv_remove),
  4962. .suspend = nv_suspend,
  4963. .resume = nv_resume,
  4964. };
  4965. static int __init init_nic(void)
  4966. {
  4967. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  4968. return pci_register_driver(&driver);
  4969. }
  4970. static void __exit exit_nic(void)
  4971. {
  4972. pci_unregister_driver(&driver);
  4973. }
  4974. module_param(max_interrupt_work, int, 0);
  4975. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  4976. module_param(optimization_mode, int, 0);
  4977. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  4978. module_param(poll_interval, int, 0);
  4979. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  4980. module_param(msi, int, 0);
  4981. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4982. module_param(msix, int, 0);
  4983. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4984. module_param(dma_64bit, int, 0);
  4985. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  4986. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  4987. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  4988. MODULE_LICENSE("GPL");
  4989. MODULE_DEVICE_TABLE(pci, pci_tbl);
  4990. module_init(init_nic);
  4991. module_exit(exit_nic);