vmem.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. /*
  2. * arch/s390/mm/vmem.c
  3. *
  4. * Copyright IBM Corp. 2006
  5. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  6. */
  7. #include <linux/bootmem.h>
  8. #include <linux/pfn.h>
  9. #include <linux/mm.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <asm/pgalloc.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/setup.h>
  15. #include <asm/tlbflush.h>
  16. static DEFINE_MUTEX(vmem_mutex);
  17. struct memory_segment {
  18. struct list_head list;
  19. unsigned long start;
  20. unsigned long size;
  21. };
  22. static LIST_HEAD(mem_segs);
  23. void __meminit memmap_init(unsigned long size, int nid, unsigned long zone,
  24. unsigned long start_pfn)
  25. {
  26. struct page *start, *end;
  27. struct page *map_start, *map_end;
  28. int i;
  29. start = pfn_to_page(start_pfn);
  30. end = start + size;
  31. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  32. unsigned long cstart, cend;
  33. cstart = PFN_DOWN(memory_chunk[i].addr);
  34. cend = cstart + PFN_DOWN(memory_chunk[i].size);
  35. map_start = mem_map + cstart;
  36. map_end = mem_map + cend;
  37. if (map_start < start)
  38. map_start = start;
  39. if (map_end > end)
  40. map_end = end;
  41. map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
  42. / sizeof(struct page);
  43. map_end += ((PFN_ALIGN((unsigned long) map_end)
  44. - (unsigned long) map_end)
  45. / sizeof(struct page));
  46. if (map_start < map_end)
  47. memmap_init_zone((unsigned long)(map_end - map_start),
  48. nid, zone, page_to_pfn(map_start),
  49. MEMMAP_EARLY);
  50. }
  51. }
  52. static void __ref *vmem_alloc_pages(unsigned int order)
  53. {
  54. if (slab_is_available())
  55. return (void *)__get_free_pages(GFP_KERNEL, order);
  56. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  57. }
  58. #define vmem_pud_alloc() ({ BUG(); ((pud_t *) NULL); })
  59. static inline pmd_t *vmem_pmd_alloc(void)
  60. {
  61. pmd_t *pmd = NULL;
  62. #ifdef CONFIG_64BIT
  63. pmd = vmem_alloc_pages(2);
  64. if (!pmd)
  65. return NULL;
  66. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE*4);
  67. #endif
  68. return pmd;
  69. }
  70. static inline pte_t *vmem_pte_alloc(void)
  71. {
  72. pte_t *pte = vmem_alloc_pages(0);
  73. if (!pte)
  74. return NULL;
  75. clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY, PAGE_SIZE);
  76. return pte;
  77. }
  78. /*
  79. * Add a physical memory range to the 1:1 mapping.
  80. */
  81. static int vmem_add_range(unsigned long start, unsigned long size)
  82. {
  83. unsigned long address;
  84. pgd_t *pg_dir;
  85. pud_t *pu_dir;
  86. pmd_t *pm_dir;
  87. pte_t *pt_dir;
  88. pte_t pte;
  89. int ret = -ENOMEM;
  90. for (address = start; address < start + size; address += PAGE_SIZE) {
  91. pg_dir = pgd_offset_k(address);
  92. if (pgd_none(*pg_dir)) {
  93. pu_dir = vmem_pud_alloc();
  94. if (!pu_dir)
  95. goto out;
  96. pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
  97. }
  98. pu_dir = pud_offset(pg_dir, address);
  99. if (pud_none(*pu_dir)) {
  100. pm_dir = vmem_pmd_alloc();
  101. if (!pm_dir)
  102. goto out;
  103. pud_populate_kernel(&init_mm, pu_dir, pm_dir);
  104. }
  105. pm_dir = pmd_offset(pu_dir, address);
  106. if (pmd_none(*pm_dir)) {
  107. pt_dir = vmem_pte_alloc();
  108. if (!pt_dir)
  109. goto out;
  110. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  111. }
  112. pt_dir = pte_offset_kernel(pm_dir, address);
  113. pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
  114. *pt_dir = pte;
  115. }
  116. ret = 0;
  117. out:
  118. flush_tlb_kernel_range(start, start + size);
  119. return ret;
  120. }
  121. /*
  122. * Remove a physical memory range from the 1:1 mapping.
  123. * Currently only invalidates page table entries.
  124. */
  125. static void vmem_remove_range(unsigned long start, unsigned long size)
  126. {
  127. unsigned long address;
  128. pgd_t *pg_dir;
  129. pud_t *pu_dir;
  130. pmd_t *pm_dir;
  131. pte_t *pt_dir;
  132. pte_t pte;
  133. pte_val(pte) = _PAGE_TYPE_EMPTY;
  134. for (address = start; address < start + size; address += PAGE_SIZE) {
  135. pg_dir = pgd_offset_k(address);
  136. pu_dir = pud_offset(pg_dir, address);
  137. if (pud_none(*pu_dir))
  138. continue;
  139. pm_dir = pmd_offset(pu_dir, address);
  140. if (pmd_none(*pm_dir))
  141. continue;
  142. pt_dir = pte_offset_kernel(pm_dir, address);
  143. *pt_dir = pte;
  144. }
  145. flush_tlb_kernel_range(start, start + size);
  146. }
  147. /*
  148. * Add a backed mem_map array to the virtual mem_map array.
  149. */
  150. static int vmem_add_mem_map(unsigned long start, unsigned long size)
  151. {
  152. unsigned long address, start_addr, end_addr;
  153. struct page *map_start, *map_end;
  154. pgd_t *pg_dir;
  155. pud_t *pu_dir;
  156. pmd_t *pm_dir;
  157. pte_t *pt_dir;
  158. pte_t pte;
  159. int ret = -ENOMEM;
  160. map_start = VMEM_MAP + PFN_DOWN(start);
  161. map_end = VMEM_MAP + PFN_DOWN(start + size);
  162. start_addr = (unsigned long) map_start & PAGE_MASK;
  163. end_addr = PFN_ALIGN((unsigned long) map_end);
  164. for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
  165. pg_dir = pgd_offset_k(address);
  166. if (pgd_none(*pg_dir)) {
  167. pu_dir = vmem_pud_alloc();
  168. if (!pu_dir)
  169. goto out;
  170. pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
  171. }
  172. pu_dir = pud_offset(pg_dir, address);
  173. if (pud_none(*pu_dir)) {
  174. pm_dir = vmem_pmd_alloc();
  175. if (!pm_dir)
  176. goto out;
  177. pud_populate_kernel(&init_mm, pu_dir, pm_dir);
  178. }
  179. pm_dir = pmd_offset(pu_dir, address);
  180. if (pmd_none(*pm_dir)) {
  181. pt_dir = vmem_pte_alloc();
  182. if (!pt_dir)
  183. goto out;
  184. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  185. }
  186. pt_dir = pte_offset_kernel(pm_dir, address);
  187. if (pte_none(*pt_dir)) {
  188. unsigned long new_page;
  189. new_page =__pa(vmem_alloc_pages(0));
  190. if (!new_page)
  191. goto out;
  192. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  193. *pt_dir = pte;
  194. }
  195. }
  196. ret = 0;
  197. out:
  198. flush_tlb_kernel_range(start_addr, end_addr);
  199. return ret;
  200. }
  201. static int vmem_add_mem(unsigned long start, unsigned long size)
  202. {
  203. int ret;
  204. ret = vmem_add_mem_map(start, size);
  205. if (ret)
  206. return ret;
  207. return vmem_add_range(start, size);
  208. }
  209. /*
  210. * Add memory segment to the segment list if it doesn't overlap with
  211. * an already present segment.
  212. */
  213. static int insert_memory_segment(struct memory_segment *seg)
  214. {
  215. struct memory_segment *tmp;
  216. if (seg->start + seg->size >= VMALLOC_START ||
  217. seg->start + seg->size < seg->start)
  218. return -ERANGE;
  219. list_for_each_entry(tmp, &mem_segs, list) {
  220. if (seg->start >= tmp->start + tmp->size)
  221. continue;
  222. if (seg->start + seg->size <= tmp->start)
  223. continue;
  224. return -ENOSPC;
  225. }
  226. list_add(&seg->list, &mem_segs);
  227. return 0;
  228. }
  229. /*
  230. * Remove memory segment from the segment list.
  231. */
  232. static void remove_memory_segment(struct memory_segment *seg)
  233. {
  234. list_del(&seg->list);
  235. }
  236. static void __remove_shared_memory(struct memory_segment *seg)
  237. {
  238. remove_memory_segment(seg);
  239. vmem_remove_range(seg->start, seg->size);
  240. }
  241. int remove_shared_memory(unsigned long start, unsigned long size)
  242. {
  243. struct memory_segment *seg;
  244. int ret;
  245. mutex_lock(&vmem_mutex);
  246. ret = -ENOENT;
  247. list_for_each_entry(seg, &mem_segs, list) {
  248. if (seg->start == start && seg->size == size)
  249. break;
  250. }
  251. if (seg->start != start || seg->size != size)
  252. goto out;
  253. ret = 0;
  254. __remove_shared_memory(seg);
  255. kfree(seg);
  256. out:
  257. mutex_unlock(&vmem_mutex);
  258. return ret;
  259. }
  260. int add_shared_memory(unsigned long start, unsigned long size)
  261. {
  262. struct memory_segment *seg;
  263. struct page *page;
  264. unsigned long pfn, num_pfn, end_pfn;
  265. int ret;
  266. mutex_lock(&vmem_mutex);
  267. ret = -ENOMEM;
  268. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  269. if (!seg)
  270. goto out;
  271. seg->start = start;
  272. seg->size = size;
  273. ret = insert_memory_segment(seg);
  274. if (ret)
  275. goto out_free;
  276. ret = vmem_add_mem(start, size);
  277. if (ret)
  278. goto out_remove;
  279. pfn = PFN_DOWN(start);
  280. num_pfn = PFN_DOWN(size);
  281. end_pfn = pfn + num_pfn;
  282. page = pfn_to_page(pfn);
  283. memset(page, 0, num_pfn * sizeof(struct page));
  284. for (; pfn < end_pfn; pfn++) {
  285. page = pfn_to_page(pfn);
  286. init_page_count(page);
  287. reset_page_mapcount(page);
  288. SetPageReserved(page);
  289. INIT_LIST_HEAD(&page->lru);
  290. }
  291. goto out;
  292. out_remove:
  293. __remove_shared_memory(seg);
  294. out_free:
  295. kfree(seg);
  296. out:
  297. mutex_unlock(&vmem_mutex);
  298. return ret;
  299. }
  300. /*
  301. * map whole physical memory to virtual memory (identity mapping)
  302. * we reserve enough space in the vmalloc area for vmemmap to hotplug
  303. * additional memory segments.
  304. */
  305. void __init vmem_map_init(void)
  306. {
  307. int i;
  308. BUILD_BUG_ON((unsigned long)VMEM_MAP + VMEM_MAP_SIZE > VMEM_MAP_MAX);
  309. NODE_DATA(0)->node_mem_map = VMEM_MAP;
  310. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
  311. vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
  312. }
  313. /*
  314. * Convert memory chunk array to a memory segment list so there is a single
  315. * list that contains both r/w memory and shared memory segments.
  316. */
  317. static int __init vmem_convert_memory_chunk(void)
  318. {
  319. struct memory_segment *seg;
  320. int i;
  321. mutex_lock(&vmem_mutex);
  322. for (i = 0; i < MEMORY_CHUNKS; i++) {
  323. if (!memory_chunk[i].size)
  324. continue;
  325. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  326. if (!seg)
  327. panic("Out of memory...\n");
  328. seg->start = memory_chunk[i].addr;
  329. seg->size = memory_chunk[i].size;
  330. insert_memory_segment(seg);
  331. }
  332. mutex_unlock(&vmem_mutex);
  333. return 0;
  334. }
  335. core_initcall(vmem_convert_memory_chunk);