dma-mapping.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670
  1. /*
  2. * linux/arch/arm/mm/dma-mapping.c
  3. *
  4. * Copyright (C) 2000-2004 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * DMA uncached mapping support.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/gfp.h>
  15. #include <linux/errno.h>
  16. #include <linux/list.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/dma-contiguous.h>
  21. #include <linux/highmem.h>
  22. #include <linux/memblock.h>
  23. #include <linux/slab.h>
  24. #include <linux/iommu.h>
  25. #include <linux/io.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/sizes.h>
  28. #include <asm/memory.h>
  29. #include <asm/highmem.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/tlbflush.h>
  32. #include <asm/mach/arch.h>
  33. #include <asm/dma-iommu.h>
  34. #include <asm/mach/map.h>
  35. #include <asm/system_info.h>
  36. #include <asm/dma-contiguous.h>
  37. #include "mm.h"
  38. /*
  39. * The DMA API is built upon the notion of "buffer ownership". A buffer
  40. * is either exclusively owned by the CPU (and therefore may be accessed
  41. * by it) or exclusively owned by the DMA device. These helper functions
  42. * represent the transitions between these two ownership states.
  43. *
  44. * Note, however, that on later ARMs, this notion does not work due to
  45. * speculative prefetches. We model our approach on the assumption that
  46. * the CPU does do speculative prefetches, which means we clean caches
  47. * before transfers and delay cache invalidation until transfer completion.
  48. *
  49. */
  50. static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  51. size_t, enum dma_data_direction);
  52. static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  53. size_t, enum dma_data_direction);
  54. /**
  55. * arm_dma_map_page - map a portion of a page for streaming DMA
  56. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  57. * @page: page that buffer resides in
  58. * @offset: offset into page for start of buffer
  59. * @size: size of buffer to map
  60. * @dir: DMA transfer direction
  61. *
  62. * Ensure that any data held in the cache is appropriately discarded
  63. * or written back.
  64. *
  65. * The device owns this memory once this call has completed. The CPU
  66. * can regain ownership by calling dma_unmap_page().
  67. */
  68. static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  69. unsigned long offset, size_t size, enum dma_data_direction dir,
  70. struct dma_attrs *attrs)
  71. {
  72. if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  73. __dma_page_cpu_to_dev(page, offset, size, dir);
  74. return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  75. }
  76. /**
  77. * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  78. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  79. * @handle: DMA address of buffer
  80. * @size: size of buffer (same as passed to dma_map_page)
  81. * @dir: DMA transfer direction (same as passed to dma_map_page)
  82. *
  83. * Unmap a page streaming mode DMA translation. The handle and size
  84. * must match what was provided in the previous dma_map_page() call.
  85. * All other usages are undefined.
  86. *
  87. * After this call, reads by the CPU to the buffer are guaranteed to see
  88. * whatever the device wrote there.
  89. */
  90. static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
  91. size_t size, enum dma_data_direction dir,
  92. struct dma_attrs *attrs)
  93. {
  94. if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  95. __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
  96. handle & ~PAGE_MASK, size, dir);
  97. }
  98. static void arm_dma_sync_single_for_cpu(struct device *dev,
  99. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  100. {
  101. unsigned int offset = handle & (PAGE_SIZE - 1);
  102. struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
  103. if (!arch_is_coherent())
  104. __dma_page_dev_to_cpu(page, offset, size, dir);
  105. }
  106. static void arm_dma_sync_single_for_device(struct device *dev,
  107. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  108. {
  109. unsigned int offset = handle & (PAGE_SIZE - 1);
  110. struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
  111. if (!arch_is_coherent())
  112. __dma_page_cpu_to_dev(page, offset, size, dir);
  113. }
  114. static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
  115. struct dma_map_ops arm_dma_ops = {
  116. .alloc = arm_dma_alloc,
  117. .free = arm_dma_free,
  118. .mmap = arm_dma_mmap,
  119. .get_sgtable = arm_dma_get_sgtable,
  120. .map_page = arm_dma_map_page,
  121. .unmap_page = arm_dma_unmap_page,
  122. .map_sg = arm_dma_map_sg,
  123. .unmap_sg = arm_dma_unmap_sg,
  124. .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
  125. .sync_single_for_device = arm_dma_sync_single_for_device,
  126. .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
  127. .sync_sg_for_device = arm_dma_sync_sg_for_device,
  128. .set_dma_mask = arm_dma_set_mask,
  129. };
  130. EXPORT_SYMBOL(arm_dma_ops);
  131. static u64 get_coherent_dma_mask(struct device *dev)
  132. {
  133. u64 mask = (u64)arm_dma_limit;
  134. if (dev) {
  135. mask = dev->coherent_dma_mask;
  136. /*
  137. * Sanity check the DMA mask - it must be non-zero, and
  138. * must be able to be satisfied by a DMA allocation.
  139. */
  140. if (mask == 0) {
  141. dev_warn(dev, "coherent DMA mask is unset\n");
  142. return 0;
  143. }
  144. if ((~mask) & (u64)arm_dma_limit) {
  145. dev_warn(dev, "coherent DMA mask %#llx is smaller "
  146. "than system GFP_DMA mask %#llx\n",
  147. mask, (u64)arm_dma_limit);
  148. return 0;
  149. }
  150. }
  151. return mask;
  152. }
  153. static void __dma_clear_buffer(struct page *page, size_t size)
  154. {
  155. void *ptr;
  156. /*
  157. * Ensure that the allocated pages are zeroed, and that any data
  158. * lurking in the kernel direct-mapped region is invalidated.
  159. */
  160. ptr = page_address(page);
  161. if (ptr) {
  162. memset(ptr, 0, size);
  163. dmac_flush_range(ptr, ptr + size);
  164. outer_flush_range(__pa(ptr), __pa(ptr) + size);
  165. }
  166. }
  167. /*
  168. * Allocate a DMA buffer for 'dev' of size 'size' using the
  169. * specified gfp mask. Note that 'size' must be page aligned.
  170. */
  171. static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  172. {
  173. unsigned long order = get_order(size);
  174. struct page *page, *p, *e;
  175. page = alloc_pages(gfp, order);
  176. if (!page)
  177. return NULL;
  178. /*
  179. * Now split the huge page and free the excess pages
  180. */
  181. split_page(page, order);
  182. for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
  183. __free_page(p);
  184. __dma_clear_buffer(page, size);
  185. return page;
  186. }
  187. /*
  188. * Free a DMA buffer. 'size' must be page aligned.
  189. */
  190. static void __dma_free_buffer(struct page *page, size_t size)
  191. {
  192. struct page *e = page + (size >> PAGE_SHIFT);
  193. while (page < e) {
  194. __free_page(page);
  195. page++;
  196. }
  197. }
  198. #ifdef CONFIG_MMU
  199. #ifdef CONFIG_HUGETLB_PAGE
  200. #error ARM Coherent DMA allocator does not (yet) support huge TLB
  201. #endif
  202. static void *__alloc_from_contiguous(struct device *dev, size_t size,
  203. pgprot_t prot, struct page **ret_page);
  204. static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
  205. pgprot_t prot, struct page **ret_page,
  206. const void *caller);
  207. static void *
  208. __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
  209. const void *caller)
  210. {
  211. struct vm_struct *area;
  212. unsigned long addr;
  213. /*
  214. * DMA allocation can be mapped to user space, so lets
  215. * set VM_USERMAP flags too.
  216. */
  217. area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
  218. caller);
  219. if (!area)
  220. return NULL;
  221. addr = (unsigned long)area->addr;
  222. area->phys_addr = __pfn_to_phys(page_to_pfn(page));
  223. if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
  224. vunmap((void *)addr);
  225. return NULL;
  226. }
  227. return (void *)addr;
  228. }
  229. static void __dma_free_remap(void *cpu_addr, size_t size)
  230. {
  231. unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
  232. struct vm_struct *area = find_vm_area(cpu_addr);
  233. if (!area || (area->flags & flags) != flags) {
  234. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  235. return;
  236. }
  237. unmap_kernel_range((unsigned long)cpu_addr, size);
  238. vunmap(cpu_addr);
  239. }
  240. #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
  241. struct dma_pool {
  242. size_t size;
  243. spinlock_t lock;
  244. unsigned long *bitmap;
  245. unsigned long nr_pages;
  246. void *vaddr;
  247. struct page **pages;
  248. };
  249. static struct dma_pool atomic_pool = {
  250. .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
  251. };
  252. static int __init early_coherent_pool(char *p)
  253. {
  254. atomic_pool.size = memparse(p, &p);
  255. return 0;
  256. }
  257. early_param("coherent_pool", early_coherent_pool);
  258. void __init init_dma_coherent_pool_size(unsigned long size)
  259. {
  260. /*
  261. * Catch any attempt to set the pool size too late.
  262. */
  263. BUG_ON(atomic_pool.vaddr);
  264. /*
  265. * Set architecture specific coherent pool size only if
  266. * it has not been changed by kernel command line parameter.
  267. */
  268. if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
  269. atomic_pool.size = size;
  270. }
  271. /*
  272. * Initialise the coherent pool for atomic allocations.
  273. */
  274. static int __init atomic_pool_init(void)
  275. {
  276. struct dma_pool *pool = &atomic_pool;
  277. pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
  278. unsigned long nr_pages = pool->size >> PAGE_SHIFT;
  279. unsigned long *bitmap;
  280. struct page *page;
  281. struct page **pages;
  282. void *ptr;
  283. int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
  284. bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  285. if (!bitmap)
  286. goto no_bitmap;
  287. pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
  288. if (!pages)
  289. goto no_pages;
  290. if (IS_ENABLED(CONFIG_CMA))
  291. ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page);
  292. else
  293. ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
  294. &page, NULL);
  295. if (ptr) {
  296. int i;
  297. for (i = 0; i < nr_pages; i++)
  298. pages[i] = page + i;
  299. spin_lock_init(&pool->lock);
  300. pool->vaddr = ptr;
  301. pool->pages = pages;
  302. pool->bitmap = bitmap;
  303. pool->nr_pages = nr_pages;
  304. pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
  305. (unsigned)pool->size / 1024);
  306. return 0;
  307. }
  308. no_pages:
  309. kfree(bitmap);
  310. no_bitmap:
  311. pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
  312. (unsigned)pool->size / 1024);
  313. return -ENOMEM;
  314. }
  315. /*
  316. * CMA is activated by core_initcall, so we must be called after it.
  317. */
  318. postcore_initcall(atomic_pool_init);
  319. struct dma_contig_early_reserve {
  320. phys_addr_t base;
  321. unsigned long size;
  322. };
  323. static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
  324. static int dma_mmu_remap_num __initdata;
  325. void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
  326. {
  327. dma_mmu_remap[dma_mmu_remap_num].base = base;
  328. dma_mmu_remap[dma_mmu_remap_num].size = size;
  329. dma_mmu_remap_num++;
  330. }
  331. void __init dma_contiguous_remap(void)
  332. {
  333. int i;
  334. for (i = 0; i < dma_mmu_remap_num; i++) {
  335. phys_addr_t start = dma_mmu_remap[i].base;
  336. phys_addr_t end = start + dma_mmu_remap[i].size;
  337. struct map_desc map;
  338. unsigned long addr;
  339. if (end > arm_lowmem_limit)
  340. end = arm_lowmem_limit;
  341. if (start >= end)
  342. continue;
  343. map.pfn = __phys_to_pfn(start);
  344. map.virtual = __phys_to_virt(start);
  345. map.length = end - start;
  346. map.type = MT_MEMORY_DMA_READY;
  347. /*
  348. * Clear previous low-memory mapping
  349. */
  350. for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
  351. addr += PMD_SIZE)
  352. pmd_clear(pmd_off_k(addr));
  353. iotable_init(&map, 1);
  354. }
  355. }
  356. static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
  357. void *data)
  358. {
  359. struct page *page = virt_to_page(addr);
  360. pgprot_t prot = *(pgprot_t *)data;
  361. set_pte_ext(pte, mk_pte(page, prot), 0);
  362. return 0;
  363. }
  364. static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
  365. {
  366. unsigned long start = (unsigned long) page_address(page);
  367. unsigned end = start + size;
  368. apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
  369. dsb();
  370. flush_tlb_kernel_range(start, end);
  371. }
  372. static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
  373. pgprot_t prot, struct page **ret_page,
  374. const void *caller)
  375. {
  376. struct page *page;
  377. void *ptr;
  378. page = __dma_alloc_buffer(dev, size, gfp);
  379. if (!page)
  380. return NULL;
  381. ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
  382. if (!ptr) {
  383. __dma_free_buffer(page, size);
  384. return NULL;
  385. }
  386. *ret_page = page;
  387. return ptr;
  388. }
  389. static void *__alloc_from_pool(size_t size, struct page **ret_page)
  390. {
  391. struct dma_pool *pool = &atomic_pool;
  392. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  393. unsigned int pageno;
  394. unsigned long flags;
  395. void *ptr = NULL;
  396. unsigned long align_mask;
  397. if (!pool->vaddr) {
  398. WARN(1, "coherent pool not initialised!\n");
  399. return NULL;
  400. }
  401. /*
  402. * Align the region allocation - allocations from pool are rather
  403. * small, so align them to their order in pages, minimum is a page
  404. * size. This helps reduce fragmentation of the DMA space.
  405. */
  406. align_mask = (1 << get_order(size)) - 1;
  407. spin_lock_irqsave(&pool->lock, flags);
  408. pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
  409. 0, count, align_mask);
  410. if (pageno < pool->nr_pages) {
  411. bitmap_set(pool->bitmap, pageno, count);
  412. ptr = pool->vaddr + PAGE_SIZE * pageno;
  413. *ret_page = pool->pages[pageno];
  414. } else {
  415. pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
  416. "Please increase it with coherent_pool= kernel parameter!\n",
  417. (unsigned)pool->size / 1024);
  418. }
  419. spin_unlock_irqrestore(&pool->lock, flags);
  420. return ptr;
  421. }
  422. static bool __in_atomic_pool(void *start, size_t size)
  423. {
  424. struct dma_pool *pool = &atomic_pool;
  425. void *end = start + size;
  426. void *pool_start = pool->vaddr;
  427. void *pool_end = pool->vaddr + pool->size;
  428. if (start < pool_start || start > pool_end)
  429. return false;
  430. if (end <= pool_end)
  431. return true;
  432. WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
  433. start, end - 1, pool_start, pool_end - 1);
  434. return false;
  435. }
  436. static int __free_from_pool(void *start, size_t size)
  437. {
  438. struct dma_pool *pool = &atomic_pool;
  439. unsigned long pageno, count;
  440. unsigned long flags;
  441. if (!__in_atomic_pool(start, size))
  442. return 0;
  443. pageno = (start - pool->vaddr) >> PAGE_SHIFT;
  444. count = size >> PAGE_SHIFT;
  445. spin_lock_irqsave(&pool->lock, flags);
  446. bitmap_clear(pool->bitmap, pageno, count);
  447. spin_unlock_irqrestore(&pool->lock, flags);
  448. return 1;
  449. }
  450. static void *__alloc_from_contiguous(struct device *dev, size_t size,
  451. pgprot_t prot, struct page **ret_page)
  452. {
  453. unsigned long order = get_order(size);
  454. size_t count = size >> PAGE_SHIFT;
  455. struct page *page;
  456. page = dma_alloc_from_contiguous(dev, count, order);
  457. if (!page)
  458. return NULL;
  459. __dma_clear_buffer(page, size);
  460. __dma_remap(page, size, prot);
  461. *ret_page = page;
  462. return page_address(page);
  463. }
  464. static void __free_from_contiguous(struct device *dev, struct page *page,
  465. size_t size)
  466. {
  467. __dma_remap(page, size, pgprot_kernel);
  468. dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
  469. }
  470. static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
  471. {
  472. prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
  473. pgprot_writecombine(prot) :
  474. pgprot_dmacoherent(prot);
  475. return prot;
  476. }
  477. #define nommu() 0
  478. #else /* !CONFIG_MMU */
  479. #define nommu() 1
  480. #define __get_dma_pgprot(attrs, prot) __pgprot(0)
  481. #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
  482. #define __alloc_from_pool(size, ret_page) NULL
  483. #define __alloc_from_contiguous(dev, size, prot, ret) NULL
  484. #define __free_from_pool(cpu_addr, size) 0
  485. #define __free_from_contiguous(dev, page, size) do { } while (0)
  486. #define __dma_free_remap(cpu_addr, size) do { } while (0)
  487. #endif /* CONFIG_MMU */
  488. static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
  489. struct page **ret_page)
  490. {
  491. struct page *page;
  492. page = __dma_alloc_buffer(dev, size, gfp);
  493. if (!page)
  494. return NULL;
  495. *ret_page = page;
  496. return page_address(page);
  497. }
  498. static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
  499. gfp_t gfp, pgprot_t prot, const void *caller)
  500. {
  501. u64 mask = get_coherent_dma_mask(dev);
  502. struct page *page;
  503. void *addr;
  504. #ifdef CONFIG_DMA_API_DEBUG
  505. u64 limit = (mask + 1) & ~mask;
  506. if (limit && size >= limit) {
  507. dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
  508. size, mask);
  509. return NULL;
  510. }
  511. #endif
  512. if (!mask)
  513. return NULL;
  514. if (mask < 0xffffffffULL)
  515. gfp |= GFP_DMA;
  516. /*
  517. * Following is a work-around (a.k.a. hack) to prevent pages
  518. * with __GFP_COMP being passed to split_page() which cannot
  519. * handle them. The real problem is that this flag probably
  520. * should be 0 on ARM as it is not supported on this
  521. * platform; see CONFIG_HUGETLBFS.
  522. */
  523. gfp &= ~(__GFP_COMP);
  524. *handle = DMA_ERROR_CODE;
  525. size = PAGE_ALIGN(size);
  526. if (arch_is_coherent() || nommu())
  527. addr = __alloc_simple_buffer(dev, size, gfp, &page);
  528. else if (gfp & GFP_ATOMIC)
  529. addr = __alloc_from_pool(size, &page);
  530. else if (!IS_ENABLED(CONFIG_CMA))
  531. addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
  532. else
  533. addr = __alloc_from_contiguous(dev, size, prot, &page);
  534. if (addr)
  535. *handle = pfn_to_dma(dev, page_to_pfn(page));
  536. return addr;
  537. }
  538. /*
  539. * Allocate DMA-coherent memory space and return both the kernel remapped
  540. * virtual and bus address for that space.
  541. */
  542. void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
  543. gfp_t gfp, struct dma_attrs *attrs)
  544. {
  545. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  546. void *memory;
  547. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  548. return memory;
  549. return __dma_alloc(dev, size, handle, gfp, prot,
  550. __builtin_return_address(0));
  551. }
  552. /*
  553. * Create userspace mapping for the DMA-coherent memory.
  554. */
  555. int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
  556. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  557. struct dma_attrs *attrs)
  558. {
  559. int ret = -ENXIO;
  560. #ifdef CONFIG_MMU
  561. unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  562. unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  563. unsigned long pfn = dma_to_pfn(dev, dma_addr);
  564. unsigned long off = vma->vm_pgoff;
  565. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
  566. if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
  567. return ret;
  568. if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
  569. ret = remap_pfn_range(vma, vma->vm_start,
  570. pfn + off,
  571. vma->vm_end - vma->vm_start,
  572. vma->vm_page_prot);
  573. }
  574. #endif /* CONFIG_MMU */
  575. return ret;
  576. }
  577. /*
  578. * Free a buffer as defined by the above mapping.
  579. */
  580. void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
  581. dma_addr_t handle, struct dma_attrs *attrs)
  582. {
  583. struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
  584. if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
  585. return;
  586. size = PAGE_ALIGN(size);
  587. if (arch_is_coherent() || nommu()) {
  588. __dma_free_buffer(page, size);
  589. } else if (__free_from_pool(cpu_addr, size)) {
  590. return;
  591. } else if (!IS_ENABLED(CONFIG_CMA)) {
  592. __dma_free_remap(cpu_addr, size);
  593. __dma_free_buffer(page, size);
  594. } else {
  595. /*
  596. * Non-atomic allocations cannot be freed with IRQs disabled
  597. */
  598. WARN_ON(irqs_disabled());
  599. __free_from_contiguous(dev, page, size);
  600. }
  601. }
  602. int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
  603. void *cpu_addr, dma_addr_t handle, size_t size,
  604. struct dma_attrs *attrs)
  605. {
  606. struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
  607. int ret;
  608. ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
  609. if (unlikely(ret))
  610. return ret;
  611. sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
  612. return 0;
  613. }
  614. static void dma_cache_maint_page(struct page *page, unsigned long offset,
  615. size_t size, enum dma_data_direction dir,
  616. void (*op)(const void *, size_t, int))
  617. {
  618. /*
  619. * A single sg entry may refer to multiple physically contiguous
  620. * pages. But we still need to process highmem pages individually.
  621. * If highmem is not configured then the bulk of this loop gets
  622. * optimized out.
  623. */
  624. size_t left = size;
  625. do {
  626. size_t len = left;
  627. void *vaddr;
  628. if (PageHighMem(page)) {
  629. if (len + offset > PAGE_SIZE) {
  630. if (offset >= PAGE_SIZE) {
  631. page += offset / PAGE_SIZE;
  632. offset %= PAGE_SIZE;
  633. }
  634. len = PAGE_SIZE - offset;
  635. }
  636. vaddr = kmap_high_get(page);
  637. if (vaddr) {
  638. vaddr += offset;
  639. op(vaddr, len, dir);
  640. kunmap_high(page);
  641. } else if (cache_is_vipt()) {
  642. /* unmapped pages might still be cached */
  643. vaddr = kmap_atomic(page);
  644. op(vaddr + offset, len, dir);
  645. kunmap_atomic(vaddr);
  646. }
  647. } else {
  648. vaddr = page_address(page) + offset;
  649. op(vaddr, len, dir);
  650. }
  651. offset = 0;
  652. page++;
  653. left -= len;
  654. } while (left);
  655. }
  656. /*
  657. * Make an area consistent for devices.
  658. * Note: Drivers should NOT use this function directly, as it will break
  659. * platforms with CONFIG_DMABOUNCE.
  660. * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
  661. */
  662. static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
  663. size_t size, enum dma_data_direction dir)
  664. {
  665. unsigned long paddr;
  666. dma_cache_maint_page(page, off, size, dir, dmac_map_area);
  667. paddr = page_to_phys(page) + off;
  668. if (dir == DMA_FROM_DEVICE) {
  669. outer_inv_range(paddr, paddr + size);
  670. } else {
  671. outer_clean_range(paddr, paddr + size);
  672. }
  673. /* FIXME: non-speculating: flush on bidirectional mappings? */
  674. }
  675. static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
  676. size_t size, enum dma_data_direction dir)
  677. {
  678. unsigned long paddr = page_to_phys(page) + off;
  679. /* FIXME: non-speculating: not required */
  680. /* don't bother invalidating if DMA to device */
  681. if (dir != DMA_TO_DEVICE)
  682. outer_inv_range(paddr, paddr + size);
  683. dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
  684. /*
  685. * Mark the D-cache clean for this page to avoid extra flushing.
  686. */
  687. if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
  688. set_bit(PG_dcache_clean, &page->flags);
  689. }
  690. /**
  691. * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
  692. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  693. * @sg: list of buffers
  694. * @nents: number of buffers to map
  695. * @dir: DMA transfer direction
  696. *
  697. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  698. * This is the scatter-gather version of the dma_map_single interface.
  699. * Here the scatter gather list elements are each tagged with the
  700. * appropriate dma address and length. They are obtained via
  701. * sg_dma_{address,length}.
  702. *
  703. * Device ownership issues as mentioned for dma_map_single are the same
  704. * here.
  705. */
  706. int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  707. enum dma_data_direction dir, struct dma_attrs *attrs)
  708. {
  709. struct dma_map_ops *ops = get_dma_ops(dev);
  710. struct scatterlist *s;
  711. int i, j;
  712. for_each_sg(sg, s, nents, i) {
  713. #ifdef CONFIG_NEED_SG_DMA_LENGTH
  714. s->dma_length = s->length;
  715. #endif
  716. s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
  717. s->length, dir, attrs);
  718. if (dma_mapping_error(dev, s->dma_address))
  719. goto bad_mapping;
  720. }
  721. return nents;
  722. bad_mapping:
  723. for_each_sg(sg, s, i, j)
  724. ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
  725. return 0;
  726. }
  727. /**
  728. * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  729. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  730. * @sg: list of buffers
  731. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  732. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  733. *
  734. * Unmap a set of streaming mode DMA translations. Again, CPU access
  735. * rules concerning calls here are the same as for dma_unmap_single().
  736. */
  737. void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  738. enum dma_data_direction dir, struct dma_attrs *attrs)
  739. {
  740. struct dma_map_ops *ops = get_dma_ops(dev);
  741. struct scatterlist *s;
  742. int i;
  743. for_each_sg(sg, s, nents, i)
  744. ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
  745. }
  746. /**
  747. * arm_dma_sync_sg_for_cpu
  748. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  749. * @sg: list of buffers
  750. * @nents: number of buffers to map (returned from dma_map_sg)
  751. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  752. */
  753. void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  754. int nents, enum dma_data_direction dir)
  755. {
  756. struct dma_map_ops *ops = get_dma_ops(dev);
  757. struct scatterlist *s;
  758. int i;
  759. for_each_sg(sg, s, nents, i)
  760. ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
  761. dir);
  762. }
  763. /**
  764. * arm_dma_sync_sg_for_device
  765. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  766. * @sg: list of buffers
  767. * @nents: number of buffers to map (returned from dma_map_sg)
  768. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  769. */
  770. void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  771. int nents, enum dma_data_direction dir)
  772. {
  773. struct dma_map_ops *ops = get_dma_ops(dev);
  774. struct scatterlist *s;
  775. int i;
  776. for_each_sg(sg, s, nents, i)
  777. ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
  778. dir);
  779. }
  780. /*
  781. * Return whether the given device DMA address mask can be supported
  782. * properly. For example, if your device can only drive the low 24-bits
  783. * during bus mastering, then you would pass 0x00ffffff as the mask
  784. * to this function.
  785. */
  786. int dma_supported(struct device *dev, u64 mask)
  787. {
  788. if (mask < (u64)arm_dma_limit)
  789. return 0;
  790. return 1;
  791. }
  792. EXPORT_SYMBOL(dma_supported);
  793. static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
  794. {
  795. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  796. return -EIO;
  797. *dev->dma_mask = dma_mask;
  798. return 0;
  799. }
  800. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  801. static int __init dma_debug_do_init(void)
  802. {
  803. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  804. return 0;
  805. }
  806. fs_initcall(dma_debug_do_init);
  807. #ifdef CONFIG_ARM_DMA_USE_IOMMU
  808. /* IOMMU */
  809. static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
  810. size_t size)
  811. {
  812. unsigned int order = get_order(size);
  813. unsigned int align = 0;
  814. unsigned int count, start;
  815. unsigned long flags;
  816. count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
  817. (1 << mapping->order) - 1) >> mapping->order;
  818. if (order > mapping->order)
  819. align = (1 << (order - mapping->order)) - 1;
  820. spin_lock_irqsave(&mapping->lock, flags);
  821. start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
  822. count, align);
  823. if (start > mapping->bits) {
  824. spin_unlock_irqrestore(&mapping->lock, flags);
  825. return DMA_ERROR_CODE;
  826. }
  827. bitmap_set(mapping->bitmap, start, count);
  828. spin_unlock_irqrestore(&mapping->lock, flags);
  829. return mapping->base + (start << (mapping->order + PAGE_SHIFT));
  830. }
  831. static inline void __free_iova(struct dma_iommu_mapping *mapping,
  832. dma_addr_t addr, size_t size)
  833. {
  834. unsigned int start = (addr - mapping->base) >>
  835. (mapping->order + PAGE_SHIFT);
  836. unsigned int count = ((size >> PAGE_SHIFT) +
  837. (1 << mapping->order) - 1) >> mapping->order;
  838. unsigned long flags;
  839. spin_lock_irqsave(&mapping->lock, flags);
  840. bitmap_clear(mapping->bitmap, start, count);
  841. spin_unlock_irqrestore(&mapping->lock, flags);
  842. }
  843. static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  844. {
  845. struct page **pages;
  846. int count = size >> PAGE_SHIFT;
  847. int array_size = count * sizeof(struct page *);
  848. int i = 0;
  849. if (array_size <= PAGE_SIZE)
  850. pages = kzalloc(array_size, gfp);
  851. else
  852. pages = vzalloc(array_size);
  853. if (!pages)
  854. return NULL;
  855. while (count) {
  856. int j, order = __fls(count);
  857. pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
  858. while (!pages[i] && order)
  859. pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
  860. if (!pages[i])
  861. goto error;
  862. if (order)
  863. split_page(pages[i], order);
  864. j = 1 << order;
  865. while (--j)
  866. pages[i + j] = pages[i] + j;
  867. __dma_clear_buffer(pages[i], PAGE_SIZE << order);
  868. i += 1 << order;
  869. count -= 1 << order;
  870. }
  871. return pages;
  872. error:
  873. while (i--)
  874. if (pages[i])
  875. __free_pages(pages[i], 0);
  876. if (array_size <= PAGE_SIZE)
  877. kfree(pages);
  878. else
  879. vfree(pages);
  880. return NULL;
  881. }
  882. static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
  883. {
  884. int count = size >> PAGE_SHIFT;
  885. int array_size = count * sizeof(struct page *);
  886. int i;
  887. for (i = 0; i < count; i++)
  888. if (pages[i])
  889. __free_pages(pages[i], 0);
  890. if (array_size <= PAGE_SIZE)
  891. kfree(pages);
  892. else
  893. vfree(pages);
  894. return 0;
  895. }
  896. /*
  897. * Create a CPU mapping for a specified pages
  898. */
  899. static void *
  900. __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
  901. const void *caller)
  902. {
  903. unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  904. struct vm_struct *area;
  905. unsigned long p;
  906. area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
  907. caller);
  908. if (!area)
  909. return NULL;
  910. area->pages = pages;
  911. area->nr_pages = nr_pages;
  912. p = (unsigned long)area->addr;
  913. for (i = 0; i < nr_pages; i++) {
  914. phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
  915. if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
  916. goto err;
  917. p += PAGE_SIZE;
  918. }
  919. return area->addr;
  920. err:
  921. unmap_kernel_range((unsigned long)area->addr, size);
  922. vunmap(area->addr);
  923. return NULL;
  924. }
  925. /*
  926. * Create a mapping in device IO address space for specified pages
  927. */
  928. static dma_addr_t
  929. __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
  930. {
  931. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  932. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  933. dma_addr_t dma_addr, iova;
  934. int i, ret = DMA_ERROR_CODE;
  935. dma_addr = __alloc_iova(mapping, size);
  936. if (dma_addr == DMA_ERROR_CODE)
  937. return dma_addr;
  938. iova = dma_addr;
  939. for (i = 0; i < count; ) {
  940. unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
  941. phys_addr_t phys = page_to_phys(pages[i]);
  942. unsigned int len, j;
  943. for (j = i + 1; j < count; j++, next_pfn++)
  944. if (page_to_pfn(pages[j]) != next_pfn)
  945. break;
  946. len = (j - i) << PAGE_SHIFT;
  947. ret = iommu_map(mapping->domain, iova, phys, len, 0);
  948. if (ret < 0)
  949. goto fail;
  950. iova += len;
  951. i = j;
  952. }
  953. return dma_addr;
  954. fail:
  955. iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
  956. __free_iova(mapping, dma_addr, size);
  957. return DMA_ERROR_CODE;
  958. }
  959. static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
  960. {
  961. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  962. /*
  963. * add optional in-page offset from iova to size and align
  964. * result to page size
  965. */
  966. size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
  967. iova &= PAGE_MASK;
  968. iommu_unmap(mapping->domain, iova, size);
  969. __free_iova(mapping, iova, size);
  970. return 0;
  971. }
  972. static struct page **__atomic_get_pages(void *addr)
  973. {
  974. struct dma_pool *pool = &atomic_pool;
  975. struct page **pages = pool->pages;
  976. int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
  977. return pages + offs;
  978. }
  979. static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
  980. {
  981. struct vm_struct *area;
  982. if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
  983. return __atomic_get_pages(cpu_addr);
  984. if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
  985. return cpu_addr;
  986. area = find_vm_area(cpu_addr);
  987. if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
  988. return area->pages;
  989. return NULL;
  990. }
  991. static void *__iommu_alloc_atomic(struct device *dev, size_t size,
  992. dma_addr_t *handle)
  993. {
  994. struct page *page;
  995. void *addr;
  996. addr = __alloc_from_pool(size, &page);
  997. if (!addr)
  998. return NULL;
  999. *handle = __iommu_create_mapping(dev, &page, size);
  1000. if (*handle == DMA_ERROR_CODE)
  1001. goto err_mapping;
  1002. return addr;
  1003. err_mapping:
  1004. __free_from_pool(addr, size);
  1005. return NULL;
  1006. }
  1007. static void __iommu_free_atomic(struct device *dev, struct page **pages,
  1008. dma_addr_t handle, size_t size)
  1009. {
  1010. __iommu_remove_mapping(dev, handle, size);
  1011. __free_from_pool(page_address(pages[0]), size);
  1012. }
  1013. static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
  1014. dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
  1015. {
  1016. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  1017. struct page **pages;
  1018. void *addr = NULL;
  1019. *handle = DMA_ERROR_CODE;
  1020. size = PAGE_ALIGN(size);
  1021. if (gfp & GFP_ATOMIC)
  1022. return __iommu_alloc_atomic(dev, size, handle);
  1023. pages = __iommu_alloc_buffer(dev, size, gfp);
  1024. if (!pages)
  1025. return NULL;
  1026. *handle = __iommu_create_mapping(dev, pages, size);
  1027. if (*handle == DMA_ERROR_CODE)
  1028. goto err_buffer;
  1029. if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
  1030. return pages;
  1031. addr = __iommu_alloc_remap(pages, size, gfp, prot,
  1032. __builtin_return_address(0));
  1033. if (!addr)
  1034. goto err_mapping;
  1035. return addr;
  1036. err_mapping:
  1037. __iommu_remove_mapping(dev, *handle, size);
  1038. err_buffer:
  1039. __iommu_free_buffer(dev, pages, size);
  1040. return NULL;
  1041. }
  1042. static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
  1043. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  1044. struct dma_attrs *attrs)
  1045. {
  1046. unsigned long uaddr = vma->vm_start;
  1047. unsigned long usize = vma->vm_end - vma->vm_start;
  1048. struct page **pages = __iommu_get_pages(cpu_addr, attrs);
  1049. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
  1050. if (!pages)
  1051. return -ENXIO;
  1052. do {
  1053. int ret = vm_insert_page(vma, uaddr, *pages++);
  1054. if (ret) {
  1055. pr_err("Remapping memory failed: %d\n", ret);
  1056. return ret;
  1057. }
  1058. uaddr += PAGE_SIZE;
  1059. usize -= PAGE_SIZE;
  1060. } while (usize > 0);
  1061. return 0;
  1062. }
  1063. /*
  1064. * free a page as defined by the above mapping.
  1065. * Must not be called with IRQs disabled.
  1066. */
  1067. void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
  1068. dma_addr_t handle, struct dma_attrs *attrs)
  1069. {
  1070. struct page **pages = __iommu_get_pages(cpu_addr, attrs);
  1071. size = PAGE_ALIGN(size);
  1072. if (!pages) {
  1073. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  1074. return;
  1075. }
  1076. if (__in_atomic_pool(cpu_addr, size)) {
  1077. __iommu_free_atomic(dev, pages, handle, size);
  1078. return;
  1079. }
  1080. if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
  1081. unmap_kernel_range((unsigned long)cpu_addr, size);
  1082. vunmap(cpu_addr);
  1083. }
  1084. __iommu_remove_mapping(dev, handle, size);
  1085. __iommu_free_buffer(dev, pages, size);
  1086. }
  1087. static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
  1088. void *cpu_addr, dma_addr_t dma_addr,
  1089. size_t size, struct dma_attrs *attrs)
  1090. {
  1091. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  1092. struct page **pages = __iommu_get_pages(cpu_addr, attrs);
  1093. if (!pages)
  1094. return -ENXIO;
  1095. return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
  1096. GFP_KERNEL);
  1097. }
  1098. /*
  1099. * Map a part of the scatter-gather list into contiguous io address space
  1100. */
  1101. static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
  1102. size_t size, dma_addr_t *handle,
  1103. enum dma_data_direction dir, struct dma_attrs *attrs)
  1104. {
  1105. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1106. dma_addr_t iova, iova_base;
  1107. int ret = 0;
  1108. unsigned int count;
  1109. struct scatterlist *s;
  1110. size = PAGE_ALIGN(size);
  1111. *handle = DMA_ERROR_CODE;
  1112. iova_base = iova = __alloc_iova(mapping, size);
  1113. if (iova == DMA_ERROR_CODE)
  1114. return -ENOMEM;
  1115. for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
  1116. phys_addr_t phys = page_to_phys(sg_page(s));
  1117. unsigned int len = PAGE_ALIGN(s->offset + s->length);
  1118. if (!arch_is_coherent() &&
  1119. !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1120. __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
  1121. ret = iommu_map(mapping->domain, iova, phys, len, 0);
  1122. if (ret < 0)
  1123. goto fail;
  1124. count += len >> PAGE_SHIFT;
  1125. iova += len;
  1126. }
  1127. *handle = iova_base;
  1128. return 0;
  1129. fail:
  1130. iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
  1131. __free_iova(mapping, iova_base, size);
  1132. return ret;
  1133. }
  1134. /**
  1135. * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
  1136. * @dev: valid struct device pointer
  1137. * @sg: list of buffers
  1138. * @nents: number of buffers to map
  1139. * @dir: DMA transfer direction
  1140. *
  1141. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  1142. * The scatter gather list elements are merged together (if possible) and
  1143. * tagged with the appropriate dma address and length. They are obtained via
  1144. * sg_dma_{address,length}.
  1145. */
  1146. int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  1147. enum dma_data_direction dir, struct dma_attrs *attrs)
  1148. {
  1149. struct scatterlist *s = sg, *dma = sg, *start = sg;
  1150. int i, count = 0;
  1151. unsigned int offset = s->offset;
  1152. unsigned int size = s->offset + s->length;
  1153. unsigned int max = dma_get_max_seg_size(dev);
  1154. for (i = 1; i < nents; i++) {
  1155. s = sg_next(s);
  1156. s->dma_address = DMA_ERROR_CODE;
  1157. s->dma_length = 0;
  1158. if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
  1159. if (__map_sg_chunk(dev, start, size, &dma->dma_address,
  1160. dir, attrs) < 0)
  1161. goto bad_mapping;
  1162. dma->dma_address += offset;
  1163. dma->dma_length = size - offset;
  1164. size = offset = s->offset;
  1165. start = s;
  1166. dma = sg_next(dma);
  1167. count += 1;
  1168. }
  1169. size += s->length;
  1170. }
  1171. if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs) < 0)
  1172. goto bad_mapping;
  1173. dma->dma_address += offset;
  1174. dma->dma_length = size - offset;
  1175. return count+1;
  1176. bad_mapping:
  1177. for_each_sg(sg, s, count, i)
  1178. __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
  1179. return 0;
  1180. }
  1181. /**
  1182. * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  1183. * @dev: valid struct device pointer
  1184. * @sg: list of buffers
  1185. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  1186. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1187. *
  1188. * Unmap a set of streaming mode DMA translations. Again, CPU access
  1189. * rules concerning calls here are the same as for dma_unmap_single().
  1190. */
  1191. void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  1192. enum dma_data_direction dir, struct dma_attrs *attrs)
  1193. {
  1194. struct scatterlist *s;
  1195. int i;
  1196. for_each_sg(sg, s, nents, i) {
  1197. if (sg_dma_len(s))
  1198. __iommu_remove_mapping(dev, sg_dma_address(s),
  1199. sg_dma_len(s));
  1200. if (!arch_is_coherent() &&
  1201. !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1202. __dma_page_dev_to_cpu(sg_page(s), s->offset,
  1203. s->length, dir);
  1204. }
  1205. }
  1206. /**
  1207. * arm_iommu_sync_sg_for_cpu
  1208. * @dev: valid struct device pointer
  1209. * @sg: list of buffers
  1210. * @nents: number of buffers to map (returned from dma_map_sg)
  1211. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1212. */
  1213. void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  1214. int nents, enum dma_data_direction dir)
  1215. {
  1216. struct scatterlist *s;
  1217. int i;
  1218. for_each_sg(sg, s, nents, i)
  1219. if (!arch_is_coherent())
  1220. __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
  1221. }
  1222. /**
  1223. * arm_iommu_sync_sg_for_device
  1224. * @dev: valid struct device pointer
  1225. * @sg: list of buffers
  1226. * @nents: number of buffers to map (returned from dma_map_sg)
  1227. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1228. */
  1229. void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  1230. int nents, enum dma_data_direction dir)
  1231. {
  1232. struct scatterlist *s;
  1233. int i;
  1234. for_each_sg(sg, s, nents, i)
  1235. if (!arch_is_coherent())
  1236. __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
  1237. }
  1238. /**
  1239. * arm_iommu_map_page
  1240. * @dev: valid struct device pointer
  1241. * @page: page that buffer resides in
  1242. * @offset: offset into page for start of buffer
  1243. * @size: size of buffer to map
  1244. * @dir: DMA transfer direction
  1245. *
  1246. * IOMMU aware version of arm_dma_map_page()
  1247. */
  1248. static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
  1249. unsigned long offset, size_t size, enum dma_data_direction dir,
  1250. struct dma_attrs *attrs)
  1251. {
  1252. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1253. dma_addr_t dma_addr;
  1254. int ret, len = PAGE_ALIGN(size + offset);
  1255. if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1256. __dma_page_cpu_to_dev(page, offset, size, dir);
  1257. dma_addr = __alloc_iova(mapping, len);
  1258. if (dma_addr == DMA_ERROR_CODE)
  1259. return dma_addr;
  1260. ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
  1261. if (ret < 0)
  1262. goto fail;
  1263. return dma_addr + offset;
  1264. fail:
  1265. __free_iova(mapping, dma_addr, len);
  1266. return DMA_ERROR_CODE;
  1267. }
  1268. /**
  1269. * arm_iommu_unmap_page
  1270. * @dev: valid struct device pointer
  1271. * @handle: DMA address of buffer
  1272. * @size: size of buffer (same as passed to dma_map_page)
  1273. * @dir: DMA transfer direction (same as passed to dma_map_page)
  1274. *
  1275. * IOMMU aware version of arm_dma_unmap_page()
  1276. */
  1277. static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
  1278. size_t size, enum dma_data_direction dir,
  1279. struct dma_attrs *attrs)
  1280. {
  1281. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1282. dma_addr_t iova = handle & PAGE_MASK;
  1283. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1284. int offset = handle & ~PAGE_MASK;
  1285. int len = PAGE_ALIGN(size + offset);
  1286. if (!iova)
  1287. return;
  1288. if (!arch_is_coherent() && !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1289. __dma_page_dev_to_cpu(page, offset, size, dir);
  1290. iommu_unmap(mapping->domain, iova, len);
  1291. __free_iova(mapping, iova, len);
  1292. }
  1293. static void arm_iommu_sync_single_for_cpu(struct device *dev,
  1294. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  1295. {
  1296. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1297. dma_addr_t iova = handle & PAGE_MASK;
  1298. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1299. unsigned int offset = handle & ~PAGE_MASK;
  1300. if (!iova)
  1301. return;
  1302. if (!arch_is_coherent())
  1303. __dma_page_dev_to_cpu(page, offset, size, dir);
  1304. }
  1305. static void arm_iommu_sync_single_for_device(struct device *dev,
  1306. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  1307. {
  1308. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1309. dma_addr_t iova = handle & PAGE_MASK;
  1310. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1311. unsigned int offset = handle & ~PAGE_MASK;
  1312. if (!iova)
  1313. return;
  1314. __dma_page_cpu_to_dev(page, offset, size, dir);
  1315. }
  1316. struct dma_map_ops iommu_ops = {
  1317. .alloc = arm_iommu_alloc_attrs,
  1318. .free = arm_iommu_free_attrs,
  1319. .mmap = arm_iommu_mmap_attrs,
  1320. .get_sgtable = arm_iommu_get_sgtable,
  1321. .map_page = arm_iommu_map_page,
  1322. .unmap_page = arm_iommu_unmap_page,
  1323. .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
  1324. .sync_single_for_device = arm_iommu_sync_single_for_device,
  1325. .map_sg = arm_iommu_map_sg,
  1326. .unmap_sg = arm_iommu_unmap_sg,
  1327. .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
  1328. .sync_sg_for_device = arm_iommu_sync_sg_for_device,
  1329. };
  1330. /**
  1331. * arm_iommu_create_mapping
  1332. * @bus: pointer to the bus holding the client device (for IOMMU calls)
  1333. * @base: start address of the valid IO address space
  1334. * @size: size of the valid IO address space
  1335. * @order: accuracy of the IO addresses allocations
  1336. *
  1337. * Creates a mapping structure which holds information about used/unused
  1338. * IO address ranges, which is required to perform memory allocation and
  1339. * mapping with IOMMU aware functions.
  1340. *
  1341. * The client device need to be attached to the mapping with
  1342. * arm_iommu_attach_device function.
  1343. */
  1344. struct dma_iommu_mapping *
  1345. arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
  1346. int order)
  1347. {
  1348. unsigned int count = size >> (PAGE_SHIFT + order);
  1349. unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
  1350. struct dma_iommu_mapping *mapping;
  1351. int err = -ENOMEM;
  1352. if (!count)
  1353. return ERR_PTR(-EINVAL);
  1354. mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
  1355. if (!mapping)
  1356. goto err;
  1357. mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  1358. if (!mapping->bitmap)
  1359. goto err2;
  1360. mapping->base = base;
  1361. mapping->bits = BITS_PER_BYTE * bitmap_size;
  1362. mapping->order = order;
  1363. spin_lock_init(&mapping->lock);
  1364. mapping->domain = iommu_domain_alloc(bus);
  1365. if (!mapping->domain)
  1366. goto err3;
  1367. kref_init(&mapping->kref);
  1368. return mapping;
  1369. err3:
  1370. kfree(mapping->bitmap);
  1371. err2:
  1372. kfree(mapping);
  1373. err:
  1374. return ERR_PTR(err);
  1375. }
  1376. static void release_iommu_mapping(struct kref *kref)
  1377. {
  1378. struct dma_iommu_mapping *mapping =
  1379. container_of(kref, struct dma_iommu_mapping, kref);
  1380. iommu_domain_free(mapping->domain);
  1381. kfree(mapping->bitmap);
  1382. kfree(mapping);
  1383. }
  1384. void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
  1385. {
  1386. if (mapping)
  1387. kref_put(&mapping->kref, release_iommu_mapping);
  1388. }
  1389. /**
  1390. * arm_iommu_attach_device
  1391. * @dev: valid struct device pointer
  1392. * @mapping: io address space mapping structure (returned from
  1393. * arm_iommu_create_mapping)
  1394. *
  1395. * Attaches specified io address space mapping to the provided device,
  1396. * this replaces the dma operations (dma_map_ops pointer) with the
  1397. * IOMMU aware version. More than one client might be attached to
  1398. * the same io address space mapping.
  1399. */
  1400. int arm_iommu_attach_device(struct device *dev,
  1401. struct dma_iommu_mapping *mapping)
  1402. {
  1403. int err;
  1404. err = iommu_attach_device(mapping->domain, dev);
  1405. if (err)
  1406. return err;
  1407. kref_get(&mapping->kref);
  1408. dev->archdata.mapping = mapping;
  1409. set_dma_ops(dev, &iommu_ops);
  1410. pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
  1411. return 0;
  1412. }
  1413. #endif