memory.c 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <linux/memcontrol.h>
  49. #include <linux/mmu_notifier.h>
  50. #include <asm/pgalloc.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/tlb.h>
  53. #include <asm/tlbflush.h>
  54. #include <asm/pgtable.h>
  55. #include <linux/swapops.h>
  56. #include <linux/elf.h>
  57. #include "internal.h"
  58. #ifndef CONFIG_NEED_MULTIPLE_NODES
  59. /* use the per-pgdat data instead for discontigmem - mbligh */
  60. unsigned long max_mapnr;
  61. struct page *mem_map;
  62. EXPORT_SYMBOL(max_mapnr);
  63. EXPORT_SYMBOL(mem_map);
  64. #endif
  65. unsigned long num_physpages;
  66. /*
  67. * A number of key systems in x86 including ioremap() rely on the assumption
  68. * that high_memory defines the upper bound on direct map memory, then end
  69. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  70. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  71. * and ZONE_HIGHMEM.
  72. */
  73. void * high_memory;
  74. EXPORT_SYMBOL(num_physpages);
  75. EXPORT_SYMBOL(high_memory);
  76. /*
  77. * Randomize the address space (stacks, mmaps, brk, etc.).
  78. *
  79. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  80. * as ancient (libc5 based) binaries can segfault. )
  81. */
  82. int randomize_va_space __read_mostly =
  83. #ifdef CONFIG_COMPAT_BRK
  84. 1;
  85. #else
  86. 2;
  87. #endif
  88. static int __init disable_randmaps(char *s)
  89. {
  90. randomize_va_space = 0;
  91. return 1;
  92. }
  93. __setup("norandmaps", disable_randmaps);
  94. /*
  95. * If a p?d_bad entry is found while walking page tables, report
  96. * the error, before resetting entry to p?d_none. Usually (but
  97. * very seldom) called out from the p?d_none_or_clear_bad macros.
  98. */
  99. void pgd_clear_bad(pgd_t *pgd)
  100. {
  101. pgd_ERROR(*pgd);
  102. pgd_clear(pgd);
  103. }
  104. void pud_clear_bad(pud_t *pud)
  105. {
  106. pud_ERROR(*pud);
  107. pud_clear(pud);
  108. }
  109. void pmd_clear_bad(pmd_t *pmd)
  110. {
  111. pmd_ERROR(*pmd);
  112. pmd_clear(pmd);
  113. }
  114. /*
  115. * Note: this doesn't free the actual pages themselves. That
  116. * has been handled earlier when unmapping all the memory regions.
  117. */
  118. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  119. {
  120. pgtable_t token = pmd_pgtable(*pmd);
  121. pmd_clear(pmd);
  122. pte_free_tlb(tlb, token);
  123. tlb->mm->nr_ptes--;
  124. }
  125. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  126. unsigned long addr, unsigned long end,
  127. unsigned long floor, unsigned long ceiling)
  128. {
  129. pmd_t *pmd;
  130. unsigned long next;
  131. unsigned long start;
  132. start = addr;
  133. pmd = pmd_offset(pud, addr);
  134. do {
  135. next = pmd_addr_end(addr, end);
  136. if (pmd_none_or_clear_bad(pmd))
  137. continue;
  138. free_pte_range(tlb, pmd);
  139. } while (pmd++, addr = next, addr != end);
  140. start &= PUD_MASK;
  141. if (start < floor)
  142. return;
  143. if (ceiling) {
  144. ceiling &= PUD_MASK;
  145. if (!ceiling)
  146. return;
  147. }
  148. if (end - 1 > ceiling - 1)
  149. return;
  150. pmd = pmd_offset(pud, start);
  151. pud_clear(pud);
  152. pmd_free_tlb(tlb, pmd);
  153. }
  154. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  155. unsigned long addr, unsigned long end,
  156. unsigned long floor, unsigned long ceiling)
  157. {
  158. pud_t *pud;
  159. unsigned long next;
  160. unsigned long start;
  161. start = addr;
  162. pud = pud_offset(pgd, addr);
  163. do {
  164. next = pud_addr_end(addr, end);
  165. if (pud_none_or_clear_bad(pud))
  166. continue;
  167. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  168. } while (pud++, addr = next, addr != end);
  169. start &= PGDIR_MASK;
  170. if (start < floor)
  171. return;
  172. if (ceiling) {
  173. ceiling &= PGDIR_MASK;
  174. if (!ceiling)
  175. return;
  176. }
  177. if (end - 1 > ceiling - 1)
  178. return;
  179. pud = pud_offset(pgd, start);
  180. pgd_clear(pgd);
  181. pud_free_tlb(tlb, pud);
  182. }
  183. /*
  184. * This function frees user-level page tables of a process.
  185. *
  186. * Must be called with pagetable lock held.
  187. */
  188. void free_pgd_range(struct mmu_gather *tlb,
  189. unsigned long addr, unsigned long end,
  190. unsigned long floor, unsigned long ceiling)
  191. {
  192. pgd_t *pgd;
  193. unsigned long next;
  194. unsigned long start;
  195. /*
  196. * The next few lines have given us lots of grief...
  197. *
  198. * Why are we testing PMD* at this top level? Because often
  199. * there will be no work to do at all, and we'd prefer not to
  200. * go all the way down to the bottom just to discover that.
  201. *
  202. * Why all these "- 1"s? Because 0 represents both the bottom
  203. * of the address space and the top of it (using -1 for the
  204. * top wouldn't help much: the masks would do the wrong thing).
  205. * The rule is that addr 0 and floor 0 refer to the bottom of
  206. * the address space, but end 0 and ceiling 0 refer to the top
  207. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  208. * that end 0 case should be mythical).
  209. *
  210. * Wherever addr is brought up or ceiling brought down, we must
  211. * be careful to reject "the opposite 0" before it confuses the
  212. * subsequent tests. But what about where end is brought down
  213. * by PMD_SIZE below? no, end can't go down to 0 there.
  214. *
  215. * Whereas we round start (addr) and ceiling down, by different
  216. * masks at different levels, in order to test whether a table
  217. * now has no other vmas using it, so can be freed, we don't
  218. * bother to round floor or end up - the tests don't need that.
  219. */
  220. addr &= PMD_MASK;
  221. if (addr < floor) {
  222. addr += PMD_SIZE;
  223. if (!addr)
  224. return;
  225. }
  226. if (ceiling) {
  227. ceiling &= PMD_MASK;
  228. if (!ceiling)
  229. return;
  230. }
  231. if (end - 1 > ceiling - 1)
  232. end -= PMD_SIZE;
  233. if (addr > end - 1)
  234. return;
  235. start = addr;
  236. pgd = pgd_offset(tlb->mm, addr);
  237. do {
  238. next = pgd_addr_end(addr, end);
  239. if (pgd_none_or_clear_bad(pgd))
  240. continue;
  241. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  242. } while (pgd++, addr = next, addr != end);
  243. }
  244. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  245. unsigned long floor, unsigned long ceiling)
  246. {
  247. while (vma) {
  248. struct vm_area_struct *next = vma->vm_next;
  249. unsigned long addr = vma->vm_start;
  250. /*
  251. * Hide vma from rmap and vmtruncate before freeing pgtables
  252. */
  253. anon_vma_unlink(vma);
  254. unlink_file_vma(vma);
  255. if (is_vm_hugetlb_page(vma)) {
  256. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  257. floor, next? next->vm_start: ceiling);
  258. } else {
  259. /*
  260. * Optimization: gather nearby vmas into one call down
  261. */
  262. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  263. && !is_vm_hugetlb_page(next)) {
  264. vma = next;
  265. next = vma->vm_next;
  266. anon_vma_unlink(vma);
  267. unlink_file_vma(vma);
  268. }
  269. free_pgd_range(tlb, addr, vma->vm_end,
  270. floor, next? next->vm_start: ceiling);
  271. }
  272. vma = next;
  273. }
  274. }
  275. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  276. {
  277. pgtable_t new = pte_alloc_one(mm, address);
  278. if (!new)
  279. return -ENOMEM;
  280. /*
  281. * Ensure all pte setup (eg. pte page lock and page clearing) are
  282. * visible before the pte is made visible to other CPUs by being
  283. * put into page tables.
  284. *
  285. * The other side of the story is the pointer chasing in the page
  286. * table walking code (when walking the page table without locking;
  287. * ie. most of the time). Fortunately, these data accesses consist
  288. * of a chain of data-dependent loads, meaning most CPUs (alpha
  289. * being the notable exception) will already guarantee loads are
  290. * seen in-order. See the alpha page table accessors for the
  291. * smp_read_barrier_depends() barriers in page table walking code.
  292. */
  293. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  294. spin_lock(&mm->page_table_lock);
  295. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  296. mm->nr_ptes++;
  297. pmd_populate(mm, pmd, new);
  298. new = NULL;
  299. }
  300. spin_unlock(&mm->page_table_lock);
  301. if (new)
  302. pte_free(mm, new);
  303. return 0;
  304. }
  305. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  306. {
  307. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  308. if (!new)
  309. return -ENOMEM;
  310. smp_wmb(); /* See comment in __pte_alloc */
  311. spin_lock(&init_mm.page_table_lock);
  312. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  313. pmd_populate_kernel(&init_mm, pmd, new);
  314. new = NULL;
  315. }
  316. spin_unlock(&init_mm.page_table_lock);
  317. if (new)
  318. pte_free_kernel(&init_mm, new);
  319. return 0;
  320. }
  321. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  322. {
  323. if (file_rss)
  324. add_mm_counter(mm, file_rss, file_rss);
  325. if (anon_rss)
  326. add_mm_counter(mm, anon_rss, anon_rss);
  327. }
  328. /*
  329. * This function is called to print an error when a bad pte
  330. * is found. For example, we might have a PFN-mapped pte in
  331. * a region that doesn't allow it.
  332. *
  333. * The calling function must still handle the error.
  334. */
  335. static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
  336. unsigned long vaddr)
  337. {
  338. printk(KERN_ERR "Bad pte = %08llx, process = %s, "
  339. "vm_flags = %lx, vaddr = %lx\n",
  340. (long long)pte_val(pte),
  341. (vma->vm_mm == current->mm ? current->comm : "???"),
  342. vma->vm_flags, vaddr);
  343. dump_stack();
  344. }
  345. static inline int is_cow_mapping(unsigned int flags)
  346. {
  347. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  348. }
  349. /*
  350. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  351. *
  352. * "Special" mappings do not wish to be associated with a "struct page" (either
  353. * it doesn't exist, or it exists but they don't want to touch it). In this
  354. * case, NULL is returned here. "Normal" mappings do have a struct page.
  355. *
  356. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  357. * pte bit, in which case this function is trivial. Secondly, an architecture
  358. * may not have a spare pte bit, which requires a more complicated scheme,
  359. * described below.
  360. *
  361. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  362. * special mapping (even if there are underlying and valid "struct pages").
  363. * COWed pages of a VM_PFNMAP are always normal.
  364. *
  365. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  366. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  367. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  368. * mapping will always honor the rule
  369. *
  370. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  371. *
  372. * And for normal mappings this is false.
  373. *
  374. * This restricts such mappings to be a linear translation from virtual address
  375. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  376. * as the vma is not a COW mapping; in that case, we know that all ptes are
  377. * special (because none can have been COWed).
  378. *
  379. *
  380. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  381. *
  382. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  383. * page" backing, however the difference is that _all_ pages with a struct
  384. * page (that is, those where pfn_valid is true) are refcounted and considered
  385. * normal pages by the VM. The disadvantage is that pages are refcounted
  386. * (which can be slower and simply not an option for some PFNMAP users). The
  387. * advantage is that we don't have to follow the strict linearity rule of
  388. * PFNMAP mappings in order to support COWable mappings.
  389. *
  390. */
  391. #ifdef __HAVE_ARCH_PTE_SPECIAL
  392. # define HAVE_PTE_SPECIAL 1
  393. #else
  394. # define HAVE_PTE_SPECIAL 0
  395. #endif
  396. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  397. pte_t pte)
  398. {
  399. unsigned long pfn;
  400. if (HAVE_PTE_SPECIAL) {
  401. if (likely(!pte_special(pte))) {
  402. VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
  403. return pte_page(pte);
  404. }
  405. VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
  406. return NULL;
  407. }
  408. /* !HAVE_PTE_SPECIAL case follows: */
  409. pfn = pte_pfn(pte);
  410. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  411. if (vma->vm_flags & VM_MIXEDMAP) {
  412. if (!pfn_valid(pfn))
  413. return NULL;
  414. goto out;
  415. } else {
  416. unsigned long off;
  417. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  418. if (pfn == vma->vm_pgoff + off)
  419. return NULL;
  420. if (!is_cow_mapping(vma->vm_flags))
  421. return NULL;
  422. }
  423. }
  424. VM_BUG_ON(!pfn_valid(pfn));
  425. /*
  426. * NOTE! We still have PageReserved() pages in the page tables.
  427. *
  428. * eg. VDSO mappings can cause them to exist.
  429. */
  430. out:
  431. return pfn_to_page(pfn);
  432. }
  433. /*
  434. * copy one vm_area from one task to the other. Assumes the page tables
  435. * already present in the new task to be cleared in the whole range
  436. * covered by this vma.
  437. */
  438. static inline void
  439. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  440. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  441. unsigned long addr, int *rss)
  442. {
  443. unsigned long vm_flags = vma->vm_flags;
  444. pte_t pte = *src_pte;
  445. struct page *page;
  446. /* pte contains position in swap or file, so copy. */
  447. if (unlikely(!pte_present(pte))) {
  448. if (!pte_file(pte)) {
  449. swp_entry_t entry = pte_to_swp_entry(pte);
  450. swap_duplicate(entry);
  451. /* make sure dst_mm is on swapoff's mmlist. */
  452. if (unlikely(list_empty(&dst_mm->mmlist))) {
  453. spin_lock(&mmlist_lock);
  454. if (list_empty(&dst_mm->mmlist))
  455. list_add(&dst_mm->mmlist,
  456. &src_mm->mmlist);
  457. spin_unlock(&mmlist_lock);
  458. }
  459. if (is_write_migration_entry(entry) &&
  460. is_cow_mapping(vm_flags)) {
  461. /*
  462. * COW mappings require pages in both parent
  463. * and child to be set to read.
  464. */
  465. make_migration_entry_read(&entry);
  466. pte = swp_entry_to_pte(entry);
  467. set_pte_at(src_mm, addr, src_pte, pte);
  468. }
  469. }
  470. goto out_set_pte;
  471. }
  472. /*
  473. * If it's a COW mapping, write protect it both
  474. * in the parent and the child
  475. */
  476. if (is_cow_mapping(vm_flags)) {
  477. ptep_set_wrprotect(src_mm, addr, src_pte);
  478. pte = pte_wrprotect(pte);
  479. }
  480. /*
  481. * If it's a shared mapping, mark it clean in
  482. * the child
  483. */
  484. if (vm_flags & VM_SHARED)
  485. pte = pte_mkclean(pte);
  486. pte = pte_mkold(pte);
  487. page = vm_normal_page(vma, addr, pte);
  488. if (page) {
  489. get_page(page);
  490. page_dup_rmap(page, vma, addr);
  491. rss[!!PageAnon(page)]++;
  492. }
  493. out_set_pte:
  494. set_pte_at(dst_mm, addr, dst_pte, pte);
  495. }
  496. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  497. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  498. unsigned long addr, unsigned long end)
  499. {
  500. pte_t *src_pte, *dst_pte;
  501. spinlock_t *src_ptl, *dst_ptl;
  502. int progress = 0;
  503. int rss[2];
  504. again:
  505. rss[1] = rss[0] = 0;
  506. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  507. if (!dst_pte)
  508. return -ENOMEM;
  509. src_pte = pte_offset_map_nested(src_pmd, addr);
  510. src_ptl = pte_lockptr(src_mm, src_pmd);
  511. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  512. arch_enter_lazy_mmu_mode();
  513. do {
  514. /*
  515. * We are holding two locks at this point - either of them
  516. * could generate latencies in another task on another CPU.
  517. */
  518. if (progress >= 32) {
  519. progress = 0;
  520. if (need_resched() ||
  521. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  522. break;
  523. }
  524. if (pte_none(*src_pte)) {
  525. progress++;
  526. continue;
  527. }
  528. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  529. progress += 8;
  530. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  531. arch_leave_lazy_mmu_mode();
  532. spin_unlock(src_ptl);
  533. pte_unmap_nested(src_pte - 1);
  534. add_mm_rss(dst_mm, rss[0], rss[1]);
  535. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  536. cond_resched();
  537. if (addr != end)
  538. goto again;
  539. return 0;
  540. }
  541. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  542. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  543. unsigned long addr, unsigned long end)
  544. {
  545. pmd_t *src_pmd, *dst_pmd;
  546. unsigned long next;
  547. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  548. if (!dst_pmd)
  549. return -ENOMEM;
  550. src_pmd = pmd_offset(src_pud, addr);
  551. do {
  552. next = pmd_addr_end(addr, end);
  553. if (pmd_none_or_clear_bad(src_pmd))
  554. continue;
  555. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  556. vma, addr, next))
  557. return -ENOMEM;
  558. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  559. return 0;
  560. }
  561. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  562. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  563. unsigned long addr, unsigned long end)
  564. {
  565. pud_t *src_pud, *dst_pud;
  566. unsigned long next;
  567. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  568. if (!dst_pud)
  569. return -ENOMEM;
  570. src_pud = pud_offset(src_pgd, addr);
  571. do {
  572. next = pud_addr_end(addr, end);
  573. if (pud_none_or_clear_bad(src_pud))
  574. continue;
  575. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  576. vma, addr, next))
  577. return -ENOMEM;
  578. } while (dst_pud++, src_pud++, addr = next, addr != end);
  579. return 0;
  580. }
  581. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  582. struct vm_area_struct *vma)
  583. {
  584. pgd_t *src_pgd, *dst_pgd;
  585. unsigned long next;
  586. unsigned long addr = vma->vm_start;
  587. unsigned long end = vma->vm_end;
  588. int ret;
  589. /*
  590. * Don't copy ptes where a page fault will fill them correctly.
  591. * Fork becomes much lighter when there are big shared or private
  592. * readonly mappings. The tradeoff is that copy_page_range is more
  593. * efficient than faulting.
  594. */
  595. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  596. if (!vma->anon_vma)
  597. return 0;
  598. }
  599. if (is_vm_hugetlb_page(vma))
  600. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  601. if (unlikely(is_pfn_mapping(vma))) {
  602. /*
  603. * We do not free on error cases below as remove_vma
  604. * gets called on error from higher level routine
  605. */
  606. ret = track_pfn_vma_copy(vma);
  607. if (ret)
  608. return ret;
  609. }
  610. /*
  611. * We need to invalidate the secondary MMU mappings only when
  612. * there could be a permission downgrade on the ptes of the
  613. * parent mm. And a permission downgrade will only happen if
  614. * is_cow_mapping() returns true.
  615. */
  616. if (is_cow_mapping(vma->vm_flags))
  617. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  618. ret = 0;
  619. dst_pgd = pgd_offset(dst_mm, addr);
  620. src_pgd = pgd_offset(src_mm, addr);
  621. do {
  622. next = pgd_addr_end(addr, end);
  623. if (pgd_none_or_clear_bad(src_pgd))
  624. continue;
  625. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  626. vma, addr, next))) {
  627. ret = -ENOMEM;
  628. break;
  629. }
  630. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  631. if (is_cow_mapping(vma->vm_flags))
  632. mmu_notifier_invalidate_range_end(src_mm,
  633. vma->vm_start, end);
  634. return ret;
  635. }
  636. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  637. struct vm_area_struct *vma, pmd_t *pmd,
  638. unsigned long addr, unsigned long end,
  639. long *zap_work, struct zap_details *details)
  640. {
  641. struct mm_struct *mm = tlb->mm;
  642. pte_t *pte;
  643. spinlock_t *ptl;
  644. int file_rss = 0;
  645. int anon_rss = 0;
  646. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  647. arch_enter_lazy_mmu_mode();
  648. do {
  649. pte_t ptent = *pte;
  650. if (pte_none(ptent)) {
  651. (*zap_work)--;
  652. continue;
  653. }
  654. (*zap_work) -= PAGE_SIZE;
  655. if (pte_present(ptent)) {
  656. struct page *page;
  657. page = vm_normal_page(vma, addr, ptent);
  658. if (unlikely(details) && page) {
  659. /*
  660. * unmap_shared_mapping_pages() wants to
  661. * invalidate cache without truncating:
  662. * unmap shared but keep private pages.
  663. */
  664. if (details->check_mapping &&
  665. details->check_mapping != page->mapping)
  666. continue;
  667. /*
  668. * Each page->index must be checked when
  669. * invalidating or truncating nonlinear.
  670. */
  671. if (details->nonlinear_vma &&
  672. (page->index < details->first_index ||
  673. page->index > details->last_index))
  674. continue;
  675. }
  676. ptent = ptep_get_and_clear_full(mm, addr, pte,
  677. tlb->fullmm);
  678. tlb_remove_tlb_entry(tlb, pte, addr);
  679. if (unlikely(!page))
  680. continue;
  681. if (unlikely(details) && details->nonlinear_vma
  682. && linear_page_index(details->nonlinear_vma,
  683. addr) != page->index)
  684. set_pte_at(mm, addr, pte,
  685. pgoff_to_pte(page->index));
  686. if (PageAnon(page))
  687. anon_rss--;
  688. else {
  689. if (pte_dirty(ptent))
  690. set_page_dirty(page);
  691. if (pte_young(ptent) &&
  692. likely(!VM_SequentialReadHint(vma)))
  693. mark_page_accessed(page);
  694. file_rss--;
  695. }
  696. page_remove_rmap(page, vma);
  697. tlb_remove_page(tlb, page);
  698. continue;
  699. }
  700. /*
  701. * If details->check_mapping, we leave swap entries;
  702. * if details->nonlinear_vma, we leave file entries.
  703. */
  704. if (unlikely(details))
  705. continue;
  706. if (!pte_file(ptent))
  707. free_swap_and_cache(pte_to_swp_entry(ptent));
  708. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  709. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  710. add_mm_rss(mm, file_rss, anon_rss);
  711. arch_leave_lazy_mmu_mode();
  712. pte_unmap_unlock(pte - 1, ptl);
  713. return addr;
  714. }
  715. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  716. struct vm_area_struct *vma, pud_t *pud,
  717. unsigned long addr, unsigned long end,
  718. long *zap_work, struct zap_details *details)
  719. {
  720. pmd_t *pmd;
  721. unsigned long next;
  722. pmd = pmd_offset(pud, addr);
  723. do {
  724. next = pmd_addr_end(addr, end);
  725. if (pmd_none_or_clear_bad(pmd)) {
  726. (*zap_work)--;
  727. continue;
  728. }
  729. next = zap_pte_range(tlb, vma, pmd, addr, next,
  730. zap_work, details);
  731. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  732. return addr;
  733. }
  734. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  735. struct vm_area_struct *vma, pgd_t *pgd,
  736. unsigned long addr, unsigned long end,
  737. long *zap_work, struct zap_details *details)
  738. {
  739. pud_t *pud;
  740. unsigned long next;
  741. pud = pud_offset(pgd, addr);
  742. do {
  743. next = pud_addr_end(addr, end);
  744. if (pud_none_or_clear_bad(pud)) {
  745. (*zap_work)--;
  746. continue;
  747. }
  748. next = zap_pmd_range(tlb, vma, pud, addr, next,
  749. zap_work, details);
  750. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  751. return addr;
  752. }
  753. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  754. struct vm_area_struct *vma,
  755. unsigned long addr, unsigned long end,
  756. long *zap_work, struct zap_details *details)
  757. {
  758. pgd_t *pgd;
  759. unsigned long next;
  760. if (details && !details->check_mapping && !details->nonlinear_vma)
  761. details = NULL;
  762. BUG_ON(addr >= end);
  763. tlb_start_vma(tlb, vma);
  764. pgd = pgd_offset(vma->vm_mm, addr);
  765. do {
  766. next = pgd_addr_end(addr, end);
  767. if (pgd_none_or_clear_bad(pgd)) {
  768. (*zap_work)--;
  769. continue;
  770. }
  771. next = zap_pud_range(tlb, vma, pgd, addr, next,
  772. zap_work, details);
  773. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  774. tlb_end_vma(tlb, vma);
  775. return addr;
  776. }
  777. #ifdef CONFIG_PREEMPT
  778. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  779. #else
  780. /* No preempt: go for improved straight-line efficiency */
  781. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  782. #endif
  783. /**
  784. * unmap_vmas - unmap a range of memory covered by a list of vma's
  785. * @tlbp: address of the caller's struct mmu_gather
  786. * @vma: the starting vma
  787. * @start_addr: virtual address at which to start unmapping
  788. * @end_addr: virtual address at which to end unmapping
  789. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  790. * @details: details of nonlinear truncation or shared cache invalidation
  791. *
  792. * Returns the end address of the unmapping (restart addr if interrupted).
  793. *
  794. * Unmap all pages in the vma list.
  795. *
  796. * We aim to not hold locks for too long (for scheduling latency reasons).
  797. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  798. * return the ending mmu_gather to the caller.
  799. *
  800. * Only addresses between `start' and `end' will be unmapped.
  801. *
  802. * The VMA list must be sorted in ascending virtual address order.
  803. *
  804. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  805. * range after unmap_vmas() returns. So the only responsibility here is to
  806. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  807. * drops the lock and schedules.
  808. */
  809. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  810. struct vm_area_struct *vma, unsigned long start_addr,
  811. unsigned long end_addr, unsigned long *nr_accounted,
  812. struct zap_details *details)
  813. {
  814. long zap_work = ZAP_BLOCK_SIZE;
  815. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  816. int tlb_start_valid = 0;
  817. unsigned long start = start_addr;
  818. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  819. int fullmm = (*tlbp)->fullmm;
  820. struct mm_struct *mm = vma->vm_mm;
  821. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  822. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  823. unsigned long end;
  824. start = max(vma->vm_start, start_addr);
  825. if (start >= vma->vm_end)
  826. continue;
  827. end = min(vma->vm_end, end_addr);
  828. if (end <= vma->vm_start)
  829. continue;
  830. if (vma->vm_flags & VM_ACCOUNT)
  831. *nr_accounted += (end - start) >> PAGE_SHIFT;
  832. if (unlikely(is_pfn_mapping(vma)))
  833. untrack_pfn_vma(vma, 0, 0);
  834. while (start != end) {
  835. if (!tlb_start_valid) {
  836. tlb_start = start;
  837. tlb_start_valid = 1;
  838. }
  839. if (unlikely(is_vm_hugetlb_page(vma))) {
  840. /*
  841. * It is undesirable to test vma->vm_file as it
  842. * should be non-null for valid hugetlb area.
  843. * However, vm_file will be NULL in the error
  844. * cleanup path of do_mmap_pgoff. When
  845. * hugetlbfs ->mmap method fails,
  846. * do_mmap_pgoff() nullifies vma->vm_file
  847. * before calling this function to clean up.
  848. * Since no pte has actually been setup, it is
  849. * safe to do nothing in this case.
  850. */
  851. if (vma->vm_file) {
  852. unmap_hugepage_range(vma, start, end, NULL);
  853. zap_work -= (end - start) /
  854. pages_per_huge_page(hstate_vma(vma));
  855. }
  856. start = end;
  857. } else
  858. start = unmap_page_range(*tlbp, vma,
  859. start, end, &zap_work, details);
  860. if (zap_work > 0) {
  861. BUG_ON(start != end);
  862. break;
  863. }
  864. tlb_finish_mmu(*tlbp, tlb_start, start);
  865. if (need_resched() ||
  866. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  867. if (i_mmap_lock) {
  868. *tlbp = NULL;
  869. goto out;
  870. }
  871. cond_resched();
  872. }
  873. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  874. tlb_start_valid = 0;
  875. zap_work = ZAP_BLOCK_SIZE;
  876. }
  877. }
  878. out:
  879. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  880. return start; /* which is now the end (or restart) address */
  881. }
  882. /**
  883. * zap_page_range - remove user pages in a given range
  884. * @vma: vm_area_struct holding the applicable pages
  885. * @address: starting address of pages to zap
  886. * @size: number of bytes to zap
  887. * @details: details of nonlinear truncation or shared cache invalidation
  888. */
  889. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  890. unsigned long size, struct zap_details *details)
  891. {
  892. struct mm_struct *mm = vma->vm_mm;
  893. struct mmu_gather *tlb;
  894. unsigned long end = address + size;
  895. unsigned long nr_accounted = 0;
  896. lru_add_drain();
  897. tlb = tlb_gather_mmu(mm, 0);
  898. update_hiwater_rss(mm);
  899. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  900. if (tlb)
  901. tlb_finish_mmu(tlb, address, end);
  902. return end;
  903. }
  904. /**
  905. * zap_vma_ptes - remove ptes mapping the vma
  906. * @vma: vm_area_struct holding ptes to be zapped
  907. * @address: starting address of pages to zap
  908. * @size: number of bytes to zap
  909. *
  910. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  911. *
  912. * The entire address range must be fully contained within the vma.
  913. *
  914. * Returns 0 if successful.
  915. */
  916. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  917. unsigned long size)
  918. {
  919. if (address < vma->vm_start || address + size > vma->vm_end ||
  920. !(vma->vm_flags & VM_PFNMAP))
  921. return -1;
  922. zap_page_range(vma, address, size, NULL);
  923. return 0;
  924. }
  925. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  926. /*
  927. * Do a quick page-table lookup for a single page.
  928. */
  929. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  930. unsigned int flags)
  931. {
  932. pgd_t *pgd;
  933. pud_t *pud;
  934. pmd_t *pmd;
  935. pte_t *ptep, pte;
  936. spinlock_t *ptl;
  937. struct page *page;
  938. struct mm_struct *mm = vma->vm_mm;
  939. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  940. if (!IS_ERR(page)) {
  941. BUG_ON(flags & FOLL_GET);
  942. goto out;
  943. }
  944. page = NULL;
  945. pgd = pgd_offset(mm, address);
  946. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  947. goto no_page_table;
  948. pud = pud_offset(pgd, address);
  949. if (pud_none(*pud))
  950. goto no_page_table;
  951. if (pud_huge(*pud)) {
  952. BUG_ON(flags & FOLL_GET);
  953. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  954. goto out;
  955. }
  956. if (unlikely(pud_bad(*pud)))
  957. goto no_page_table;
  958. pmd = pmd_offset(pud, address);
  959. if (pmd_none(*pmd))
  960. goto no_page_table;
  961. if (pmd_huge(*pmd)) {
  962. BUG_ON(flags & FOLL_GET);
  963. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  964. goto out;
  965. }
  966. if (unlikely(pmd_bad(*pmd)))
  967. goto no_page_table;
  968. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  969. pte = *ptep;
  970. if (!pte_present(pte))
  971. goto no_page;
  972. if ((flags & FOLL_WRITE) && !pte_write(pte))
  973. goto unlock;
  974. page = vm_normal_page(vma, address, pte);
  975. if (unlikely(!page))
  976. goto bad_page;
  977. if (flags & FOLL_GET)
  978. get_page(page);
  979. if (flags & FOLL_TOUCH) {
  980. if ((flags & FOLL_WRITE) &&
  981. !pte_dirty(pte) && !PageDirty(page))
  982. set_page_dirty(page);
  983. mark_page_accessed(page);
  984. }
  985. unlock:
  986. pte_unmap_unlock(ptep, ptl);
  987. out:
  988. return page;
  989. bad_page:
  990. pte_unmap_unlock(ptep, ptl);
  991. return ERR_PTR(-EFAULT);
  992. no_page:
  993. pte_unmap_unlock(ptep, ptl);
  994. if (!pte_none(pte))
  995. return page;
  996. /* Fall through to ZERO_PAGE handling */
  997. no_page_table:
  998. /*
  999. * When core dumping an enormous anonymous area that nobody
  1000. * has touched so far, we don't want to allocate page tables.
  1001. */
  1002. if (flags & FOLL_ANON) {
  1003. page = ZERO_PAGE(0);
  1004. if (flags & FOLL_GET)
  1005. get_page(page);
  1006. BUG_ON(flags & FOLL_WRITE);
  1007. }
  1008. return page;
  1009. }
  1010. /* Can we do the FOLL_ANON optimization? */
  1011. static inline int use_zero_page(struct vm_area_struct *vma)
  1012. {
  1013. /*
  1014. * We don't want to optimize FOLL_ANON for make_pages_present()
  1015. * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
  1016. * we want to get the page from the page tables to make sure
  1017. * that we serialize and update with any other user of that
  1018. * mapping.
  1019. */
  1020. if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
  1021. return 0;
  1022. /*
  1023. * And if we have a fault routine, it's not an anonymous region.
  1024. */
  1025. return !vma->vm_ops || !vma->vm_ops->fault;
  1026. }
  1027. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1028. unsigned long start, int len, int flags,
  1029. struct page **pages, struct vm_area_struct **vmas)
  1030. {
  1031. int i;
  1032. unsigned int vm_flags = 0;
  1033. int write = !!(flags & GUP_FLAGS_WRITE);
  1034. int force = !!(flags & GUP_FLAGS_FORCE);
  1035. int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
  1036. if (len <= 0)
  1037. return 0;
  1038. /*
  1039. * Require read or write permissions.
  1040. * If 'force' is set, we only require the "MAY" flags.
  1041. */
  1042. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1043. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1044. i = 0;
  1045. do {
  1046. struct vm_area_struct *vma;
  1047. unsigned int foll_flags;
  1048. vma = find_extend_vma(mm, start);
  1049. if (!vma && in_gate_area(tsk, start)) {
  1050. unsigned long pg = start & PAGE_MASK;
  1051. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1052. pgd_t *pgd;
  1053. pud_t *pud;
  1054. pmd_t *pmd;
  1055. pte_t *pte;
  1056. /* user gate pages are read-only */
  1057. if (!ignore && write)
  1058. return i ? : -EFAULT;
  1059. if (pg > TASK_SIZE)
  1060. pgd = pgd_offset_k(pg);
  1061. else
  1062. pgd = pgd_offset_gate(mm, pg);
  1063. BUG_ON(pgd_none(*pgd));
  1064. pud = pud_offset(pgd, pg);
  1065. BUG_ON(pud_none(*pud));
  1066. pmd = pmd_offset(pud, pg);
  1067. if (pmd_none(*pmd))
  1068. return i ? : -EFAULT;
  1069. pte = pte_offset_map(pmd, pg);
  1070. if (pte_none(*pte)) {
  1071. pte_unmap(pte);
  1072. return i ? : -EFAULT;
  1073. }
  1074. if (pages) {
  1075. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1076. pages[i] = page;
  1077. if (page)
  1078. get_page(page);
  1079. }
  1080. pte_unmap(pte);
  1081. if (vmas)
  1082. vmas[i] = gate_vma;
  1083. i++;
  1084. start += PAGE_SIZE;
  1085. len--;
  1086. continue;
  1087. }
  1088. if (!vma ||
  1089. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1090. (!ignore && !(vm_flags & vma->vm_flags)))
  1091. return i ? : -EFAULT;
  1092. if (is_vm_hugetlb_page(vma)) {
  1093. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1094. &start, &len, i, write);
  1095. continue;
  1096. }
  1097. foll_flags = FOLL_TOUCH;
  1098. if (pages)
  1099. foll_flags |= FOLL_GET;
  1100. if (!write && use_zero_page(vma))
  1101. foll_flags |= FOLL_ANON;
  1102. do {
  1103. struct page *page;
  1104. /*
  1105. * If tsk is ooming, cut off its access to large memory
  1106. * allocations. It has a pending SIGKILL, but it can't
  1107. * be processed until returning to user space.
  1108. */
  1109. if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
  1110. return i ? i : -ENOMEM;
  1111. if (write)
  1112. foll_flags |= FOLL_WRITE;
  1113. cond_resched();
  1114. while (!(page = follow_page(vma, start, foll_flags))) {
  1115. int ret;
  1116. ret = handle_mm_fault(mm, vma, start,
  1117. foll_flags & FOLL_WRITE);
  1118. if (ret & VM_FAULT_ERROR) {
  1119. if (ret & VM_FAULT_OOM)
  1120. return i ? i : -ENOMEM;
  1121. else if (ret & VM_FAULT_SIGBUS)
  1122. return i ? i : -EFAULT;
  1123. BUG();
  1124. }
  1125. if (ret & VM_FAULT_MAJOR)
  1126. tsk->maj_flt++;
  1127. else
  1128. tsk->min_flt++;
  1129. /*
  1130. * The VM_FAULT_WRITE bit tells us that
  1131. * do_wp_page has broken COW when necessary,
  1132. * even if maybe_mkwrite decided not to set
  1133. * pte_write. We can thus safely do subsequent
  1134. * page lookups as if they were reads. But only
  1135. * do so when looping for pte_write is futile:
  1136. * in some cases userspace may also be wanting
  1137. * to write to the gotten user page, which a
  1138. * read fault here might prevent (a readonly
  1139. * page might get reCOWed by userspace write).
  1140. */
  1141. if ((ret & VM_FAULT_WRITE) &&
  1142. !(vma->vm_flags & VM_WRITE))
  1143. foll_flags &= ~FOLL_WRITE;
  1144. cond_resched();
  1145. }
  1146. if (IS_ERR(page))
  1147. return i ? i : PTR_ERR(page);
  1148. if (pages) {
  1149. pages[i] = page;
  1150. flush_anon_page(vma, page, start);
  1151. flush_dcache_page(page);
  1152. }
  1153. if (vmas)
  1154. vmas[i] = vma;
  1155. i++;
  1156. start += PAGE_SIZE;
  1157. len--;
  1158. } while (len && start < vma->vm_end);
  1159. } while (len);
  1160. return i;
  1161. }
  1162. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1163. unsigned long start, int len, int write, int force,
  1164. struct page **pages, struct vm_area_struct **vmas)
  1165. {
  1166. int flags = 0;
  1167. if (write)
  1168. flags |= GUP_FLAGS_WRITE;
  1169. if (force)
  1170. flags |= GUP_FLAGS_FORCE;
  1171. return __get_user_pages(tsk, mm,
  1172. start, len, flags,
  1173. pages, vmas);
  1174. }
  1175. EXPORT_SYMBOL(get_user_pages);
  1176. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1177. spinlock_t **ptl)
  1178. {
  1179. pgd_t * pgd = pgd_offset(mm, addr);
  1180. pud_t * pud = pud_alloc(mm, pgd, addr);
  1181. if (pud) {
  1182. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1183. if (pmd)
  1184. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1185. }
  1186. return NULL;
  1187. }
  1188. /*
  1189. * This is the old fallback for page remapping.
  1190. *
  1191. * For historical reasons, it only allows reserved pages. Only
  1192. * old drivers should use this, and they needed to mark their
  1193. * pages reserved for the old functions anyway.
  1194. */
  1195. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1196. struct page *page, pgprot_t prot)
  1197. {
  1198. struct mm_struct *mm = vma->vm_mm;
  1199. int retval;
  1200. pte_t *pte;
  1201. spinlock_t *ptl;
  1202. retval = -EINVAL;
  1203. if (PageAnon(page))
  1204. goto out;
  1205. retval = -ENOMEM;
  1206. flush_dcache_page(page);
  1207. pte = get_locked_pte(mm, addr, &ptl);
  1208. if (!pte)
  1209. goto out;
  1210. retval = -EBUSY;
  1211. if (!pte_none(*pte))
  1212. goto out_unlock;
  1213. /* Ok, finally just insert the thing.. */
  1214. get_page(page);
  1215. inc_mm_counter(mm, file_rss);
  1216. page_add_file_rmap(page);
  1217. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1218. retval = 0;
  1219. pte_unmap_unlock(pte, ptl);
  1220. return retval;
  1221. out_unlock:
  1222. pte_unmap_unlock(pte, ptl);
  1223. out:
  1224. return retval;
  1225. }
  1226. /**
  1227. * vm_insert_page - insert single page into user vma
  1228. * @vma: user vma to map to
  1229. * @addr: target user address of this page
  1230. * @page: source kernel page
  1231. *
  1232. * This allows drivers to insert individual pages they've allocated
  1233. * into a user vma.
  1234. *
  1235. * The page has to be a nice clean _individual_ kernel allocation.
  1236. * If you allocate a compound page, you need to have marked it as
  1237. * such (__GFP_COMP), or manually just split the page up yourself
  1238. * (see split_page()).
  1239. *
  1240. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1241. * took an arbitrary page protection parameter. This doesn't allow
  1242. * that. Your vma protection will have to be set up correctly, which
  1243. * means that if you want a shared writable mapping, you'd better
  1244. * ask for a shared writable mapping!
  1245. *
  1246. * The page does not need to be reserved.
  1247. */
  1248. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1249. struct page *page)
  1250. {
  1251. if (addr < vma->vm_start || addr >= vma->vm_end)
  1252. return -EFAULT;
  1253. if (!page_count(page))
  1254. return -EINVAL;
  1255. vma->vm_flags |= VM_INSERTPAGE;
  1256. return insert_page(vma, addr, page, vma->vm_page_prot);
  1257. }
  1258. EXPORT_SYMBOL(vm_insert_page);
  1259. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1260. unsigned long pfn, pgprot_t prot)
  1261. {
  1262. struct mm_struct *mm = vma->vm_mm;
  1263. int retval;
  1264. pte_t *pte, entry;
  1265. spinlock_t *ptl;
  1266. retval = -ENOMEM;
  1267. pte = get_locked_pte(mm, addr, &ptl);
  1268. if (!pte)
  1269. goto out;
  1270. retval = -EBUSY;
  1271. if (!pte_none(*pte))
  1272. goto out_unlock;
  1273. /* Ok, finally just insert the thing.. */
  1274. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1275. set_pte_at(mm, addr, pte, entry);
  1276. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1277. retval = 0;
  1278. out_unlock:
  1279. pte_unmap_unlock(pte, ptl);
  1280. out:
  1281. return retval;
  1282. }
  1283. /**
  1284. * vm_insert_pfn - insert single pfn into user vma
  1285. * @vma: user vma to map to
  1286. * @addr: target user address of this page
  1287. * @pfn: source kernel pfn
  1288. *
  1289. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1290. * they've allocated into a user vma. Same comments apply.
  1291. *
  1292. * This function should only be called from a vm_ops->fault handler, and
  1293. * in that case the handler should return NULL.
  1294. *
  1295. * vma cannot be a COW mapping.
  1296. *
  1297. * As this is called only for pages that do not currently exist, we
  1298. * do not need to flush old virtual caches or the TLB.
  1299. */
  1300. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1301. unsigned long pfn)
  1302. {
  1303. int ret;
  1304. /*
  1305. * Technically, architectures with pte_special can avoid all these
  1306. * restrictions (same for remap_pfn_range). However we would like
  1307. * consistency in testing and feature parity among all, so we should
  1308. * try to keep these invariants in place for everybody.
  1309. */
  1310. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1311. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1312. (VM_PFNMAP|VM_MIXEDMAP));
  1313. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1314. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1315. if (addr < vma->vm_start || addr >= vma->vm_end)
  1316. return -EFAULT;
  1317. if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
  1318. return -EINVAL;
  1319. ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1320. if (ret)
  1321. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1322. return ret;
  1323. }
  1324. EXPORT_SYMBOL(vm_insert_pfn);
  1325. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1326. unsigned long pfn)
  1327. {
  1328. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1329. if (addr < vma->vm_start || addr >= vma->vm_end)
  1330. return -EFAULT;
  1331. /*
  1332. * If we don't have pte special, then we have to use the pfn_valid()
  1333. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1334. * refcount the page if pfn_valid is true (hence insert_page rather
  1335. * than insert_pfn).
  1336. */
  1337. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1338. struct page *page;
  1339. page = pfn_to_page(pfn);
  1340. return insert_page(vma, addr, page, vma->vm_page_prot);
  1341. }
  1342. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1343. }
  1344. EXPORT_SYMBOL(vm_insert_mixed);
  1345. /*
  1346. * maps a range of physical memory into the requested pages. the old
  1347. * mappings are removed. any references to nonexistent pages results
  1348. * in null mappings (currently treated as "copy-on-access")
  1349. */
  1350. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1351. unsigned long addr, unsigned long end,
  1352. unsigned long pfn, pgprot_t prot)
  1353. {
  1354. pte_t *pte;
  1355. spinlock_t *ptl;
  1356. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1357. if (!pte)
  1358. return -ENOMEM;
  1359. arch_enter_lazy_mmu_mode();
  1360. do {
  1361. BUG_ON(!pte_none(*pte));
  1362. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1363. pfn++;
  1364. } while (pte++, addr += PAGE_SIZE, addr != end);
  1365. arch_leave_lazy_mmu_mode();
  1366. pte_unmap_unlock(pte - 1, ptl);
  1367. return 0;
  1368. }
  1369. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1370. unsigned long addr, unsigned long end,
  1371. unsigned long pfn, pgprot_t prot)
  1372. {
  1373. pmd_t *pmd;
  1374. unsigned long next;
  1375. pfn -= addr >> PAGE_SHIFT;
  1376. pmd = pmd_alloc(mm, pud, addr);
  1377. if (!pmd)
  1378. return -ENOMEM;
  1379. do {
  1380. next = pmd_addr_end(addr, end);
  1381. if (remap_pte_range(mm, pmd, addr, next,
  1382. pfn + (addr >> PAGE_SHIFT), prot))
  1383. return -ENOMEM;
  1384. } while (pmd++, addr = next, addr != end);
  1385. return 0;
  1386. }
  1387. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1388. unsigned long addr, unsigned long end,
  1389. unsigned long pfn, pgprot_t prot)
  1390. {
  1391. pud_t *pud;
  1392. unsigned long next;
  1393. pfn -= addr >> PAGE_SHIFT;
  1394. pud = pud_alloc(mm, pgd, addr);
  1395. if (!pud)
  1396. return -ENOMEM;
  1397. do {
  1398. next = pud_addr_end(addr, end);
  1399. if (remap_pmd_range(mm, pud, addr, next,
  1400. pfn + (addr >> PAGE_SHIFT), prot))
  1401. return -ENOMEM;
  1402. } while (pud++, addr = next, addr != end);
  1403. return 0;
  1404. }
  1405. /**
  1406. * remap_pfn_range - remap kernel memory to userspace
  1407. * @vma: user vma to map to
  1408. * @addr: target user address to start at
  1409. * @pfn: physical address of kernel memory
  1410. * @size: size of map area
  1411. * @prot: page protection flags for this mapping
  1412. *
  1413. * Note: this is only safe if the mm semaphore is held when called.
  1414. */
  1415. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1416. unsigned long pfn, unsigned long size, pgprot_t prot)
  1417. {
  1418. pgd_t *pgd;
  1419. unsigned long next;
  1420. unsigned long end = addr + PAGE_ALIGN(size);
  1421. struct mm_struct *mm = vma->vm_mm;
  1422. int err;
  1423. /*
  1424. * Physically remapped pages are special. Tell the
  1425. * rest of the world about it:
  1426. * VM_IO tells people not to look at these pages
  1427. * (accesses can have side effects).
  1428. * VM_RESERVED is specified all over the place, because
  1429. * in 2.4 it kept swapout's vma scan off this vma; but
  1430. * in 2.6 the LRU scan won't even find its pages, so this
  1431. * flag means no more than count its pages in reserved_vm,
  1432. * and omit it from core dump, even when VM_IO turned off.
  1433. * VM_PFNMAP tells the core MM that the base pages are just
  1434. * raw PFN mappings, and do not have a "struct page" associated
  1435. * with them.
  1436. *
  1437. * There's a horrible special case to handle copy-on-write
  1438. * behaviour that some programs depend on. We mark the "original"
  1439. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1440. */
  1441. if (addr == vma->vm_start && end == vma->vm_end)
  1442. vma->vm_pgoff = pfn;
  1443. else if (is_cow_mapping(vma->vm_flags))
  1444. return -EINVAL;
  1445. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1446. err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
  1447. if (err)
  1448. return -EINVAL;
  1449. BUG_ON(addr >= end);
  1450. pfn -= addr >> PAGE_SHIFT;
  1451. pgd = pgd_offset(mm, addr);
  1452. flush_cache_range(vma, addr, end);
  1453. do {
  1454. next = pgd_addr_end(addr, end);
  1455. err = remap_pud_range(mm, pgd, addr, next,
  1456. pfn + (addr >> PAGE_SHIFT), prot);
  1457. if (err)
  1458. break;
  1459. } while (pgd++, addr = next, addr != end);
  1460. if (err)
  1461. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1462. return err;
  1463. }
  1464. EXPORT_SYMBOL(remap_pfn_range);
  1465. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1466. unsigned long addr, unsigned long end,
  1467. pte_fn_t fn, void *data)
  1468. {
  1469. pte_t *pte;
  1470. int err;
  1471. pgtable_t token;
  1472. spinlock_t *uninitialized_var(ptl);
  1473. pte = (mm == &init_mm) ?
  1474. pte_alloc_kernel(pmd, addr) :
  1475. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1476. if (!pte)
  1477. return -ENOMEM;
  1478. BUG_ON(pmd_huge(*pmd));
  1479. arch_enter_lazy_mmu_mode();
  1480. token = pmd_pgtable(*pmd);
  1481. do {
  1482. err = fn(pte, token, addr, data);
  1483. if (err)
  1484. break;
  1485. } while (pte++, addr += PAGE_SIZE, addr != end);
  1486. arch_leave_lazy_mmu_mode();
  1487. if (mm != &init_mm)
  1488. pte_unmap_unlock(pte-1, ptl);
  1489. return err;
  1490. }
  1491. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1492. unsigned long addr, unsigned long end,
  1493. pte_fn_t fn, void *data)
  1494. {
  1495. pmd_t *pmd;
  1496. unsigned long next;
  1497. int err;
  1498. BUG_ON(pud_huge(*pud));
  1499. pmd = pmd_alloc(mm, pud, addr);
  1500. if (!pmd)
  1501. return -ENOMEM;
  1502. do {
  1503. next = pmd_addr_end(addr, end);
  1504. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1505. if (err)
  1506. break;
  1507. } while (pmd++, addr = next, addr != end);
  1508. return err;
  1509. }
  1510. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1511. unsigned long addr, unsigned long end,
  1512. pte_fn_t fn, void *data)
  1513. {
  1514. pud_t *pud;
  1515. unsigned long next;
  1516. int err;
  1517. pud = pud_alloc(mm, pgd, addr);
  1518. if (!pud)
  1519. return -ENOMEM;
  1520. do {
  1521. next = pud_addr_end(addr, end);
  1522. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1523. if (err)
  1524. break;
  1525. } while (pud++, addr = next, addr != end);
  1526. return err;
  1527. }
  1528. /*
  1529. * Scan a region of virtual memory, filling in page tables as necessary
  1530. * and calling a provided function on each leaf page table.
  1531. */
  1532. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1533. unsigned long size, pte_fn_t fn, void *data)
  1534. {
  1535. pgd_t *pgd;
  1536. unsigned long next;
  1537. unsigned long start = addr, end = addr + size;
  1538. int err;
  1539. BUG_ON(addr >= end);
  1540. mmu_notifier_invalidate_range_start(mm, start, end);
  1541. pgd = pgd_offset(mm, addr);
  1542. do {
  1543. next = pgd_addr_end(addr, end);
  1544. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1545. if (err)
  1546. break;
  1547. } while (pgd++, addr = next, addr != end);
  1548. mmu_notifier_invalidate_range_end(mm, start, end);
  1549. return err;
  1550. }
  1551. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1552. /*
  1553. * handle_pte_fault chooses page fault handler according to an entry
  1554. * which was read non-atomically. Before making any commitment, on
  1555. * those architectures or configurations (e.g. i386 with PAE) which
  1556. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1557. * must check under lock before unmapping the pte and proceeding
  1558. * (but do_wp_page is only called after already making such a check;
  1559. * and do_anonymous_page and do_no_page can safely check later on).
  1560. */
  1561. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1562. pte_t *page_table, pte_t orig_pte)
  1563. {
  1564. int same = 1;
  1565. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1566. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1567. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1568. spin_lock(ptl);
  1569. same = pte_same(*page_table, orig_pte);
  1570. spin_unlock(ptl);
  1571. }
  1572. #endif
  1573. pte_unmap(page_table);
  1574. return same;
  1575. }
  1576. /*
  1577. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1578. * servicing faults for write access. In the normal case, do always want
  1579. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1580. * that do not have writing enabled, when used by access_process_vm.
  1581. */
  1582. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1583. {
  1584. if (likely(vma->vm_flags & VM_WRITE))
  1585. pte = pte_mkwrite(pte);
  1586. return pte;
  1587. }
  1588. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1589. {
  1590. /*
  1591. * If the source page was a PFN mapping, we don't have
  1592. * a "struct page" for it. We do a best-effort copy by
  1593. * just copying from the original user address. If that
  1594. * fails, we just zero-fill it. Live with it.
  1595. */
  1596. if (unlikely(!src)) {
  1597. void *kaddr = kmap_atomic(dst, KM_USER0);
  1598. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1599. /*
  1600. * This really shouldn't fail, because the page is there
  1601. * in the page tables. But it might just be unreadable,
  1602. * in which case we just give up and fill the result with
  1603. * zeroes.
  1604. */
  1605. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1606. memset(kaddr, 0, PAGE_SIZE);
  1607. kunmap_atomic(kaddr, KM_USER0);
  1608. flush_dcache_page(dst);
  1609. } else
  1610. copy_user_highpage(dst, src, va, vma);
  1611. }
  1612. /*
  1613. * This routine handles present pages, when users try to write
  1614. * to a shared page. It is done by copying the page to a new address
  1615. * and decrementing the shared-page counter for the old page.
  1616. *
  1617. * Note that this routine assumes that the protection checks have been
  1618. * done by the caller (the low-level page fault routine in most cases).
  1619. * Thus we can safely just mark it writable once we've done any necessary
  1620. * COW.
  1621. *
  1622. * We also mark the page dirty at this point even though the page will
  1623. * change only once the write actually happens. This avoids a few races,
  1624. * and potentially makes it more efficient.
  1625. *
  1626. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1627. * but allow concurrent faults), with pte both mapped and locked.
  1628. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1629. */
  1630. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1631. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1632. spinlock_t *ptl, pte_t orig_pte)
  1633. {
  1634. struct page *old_page, *new_page;
  1635. pte_t entry;
  1636. int reuse = 0, ret = 0;
  1637. int page_mkwrite = 0;
  1638. struct page *dirty_page = NULL;
  1639. old_page = vm_normal_page(vma, address, orig_pte);
  1640. if (!old_page) {
  1641. /*
  1642. * VM_MIXEDMAP !pfn_valid() case
  1643. *
  1644. * We should not cow pages in a shared writeable mapping.
  1645. * Just mark the pages writable as we can't do any dirty
  1646. * accounting on raw pfn maps.
  1647. */
  1648. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1649. (VM_WRITE|VM_SHARED))
  1650. goto reuse;
  1651. goto gotten;
  1652. }
  1653. /*
  1654. * Take out anonymous pages first, anonymous shared vmas are
  1655. * not dirty accountable.
  1656. */
  1657. if (PageAnon(old_page)) {
  1658. if (!trylock_page(old_page)) {
  1659. page_cache_get(old_page);
  1660. pte_unmap_unlock(page_table, ptl);
  1661. lock_page(old_page);
  1662. page_table = pte_offset_map_lock(mm, pmd, address,
  1663. &ptl);
  1664. if (!pte_same(*page_table, orig_pte)) {
  1665. unlock_page(old_page);
  1666. page_cache_release(old_page);
  1667. goto unlock;
  1668. }
  1669. page_cache_release(old_page);
  1670. }
  1671. reuse = reuse_swap_page(old_page);
  1672. unlock_page(old_page);
  1673. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1674. (VM_WRITE|VM_SHARED))) {
  1675. /*
  1676. * Only catch write-faults on shared writable pages,
  1677. * read-only shared pages can get COWed by
  1678. * get_user_pages(.write=1, .force=1).
  1679. */
  1680. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1681. /*
  1682. * Notify the address space that the page is about to
  1683. * become writable so that it can prohibit this or wait
  1684. * for the page to get into an appropriate state.
  1685. *
  1686. * We do this without the lock held, so that it can
  1687. * sleep if it needs to.
  1688. */
  1689. page_cache_get(old_page);
  1690. pte_unmap_unlock(page_table, ptl);
  1691. if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
  1692. goto unwritable_page;
  1693. /*
  1694. * Since we dropped the lock we need to revalidate
  1695. * the PTE as someone else may have changed it. If
  1696. * they did, we just return, as we can count on the
  1697. * MMU to tell us if they didn't also make it writable.
  1698. */
  1699. page_table = pte_offset_map_lock(mm, pmd, address,
  1700. &ptl);
  1701. page_cache_release(old_page);
  1702. if (!pte_same(*page_table, orig_pte))
  1703. goto unlock;
  1704. page_mkwrite = 1;
  1705. }
  1706. dirty_page = old_page;
  1707. get_page(dirty_page);
  1708. reuse = 1;
  1709. }
  1710. if (reuse) {
  1711. reuse:
  1712. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1713. entry = pte_mkyoung(orig_pte);
  1714. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1715. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1716. update_mmu_cache(vma, address, entry);
  1717. ret |= VM_FAULT_WRITE;
  1718. goto unlock;
  1719. }
  1720. /*
  1721. * Ok, we need to copy. Oh, well..
  1722. */
  1723. page_cache_get(old_page);
  1724. gotten:
  1725. pte_unmap_unlock(page_table, ptl);
  1726. if (unlikely(anon_vma_prepare(vma)))
  1727. goto oom;
  1728. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1729. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1730. if (!new_page)
  1731. goto oom;
  1732. /*
  1733. * Don't let another task, with possibly unlocked vma,
  1734. * keep the mlocked page.
  1735. */
  1736. if (vma->vm_flags & VM_LOCKED) {
  1737. lock_page(old_page); /* for LRU manipulation */
  1738. clear_page_mlock(old_page);
  1739. unlock_page(old_page);
  1740. }
  1741. cow_user_page(new_page, old_page, address, vma);
  1742. __SetPageUptodate(new_page);
  1743. if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
  1744. goto oom_free_new;
  1745. /*
  1746. * Re-check the pte - we dropped the lock
  1747. */
  1748. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1749. if (likely(pte_same(*page_table, orig_pte))) {
  1750. if (old_page) {
  1751. if (!PageAnon(old_page)) {
  1752. dec_mm_counter(mm, file_rss);
  1753. inc_mm_counter(mm, anon_rss);
  1754. }
  1755. } else
  1756. inc_mm_counter(mm, anon_rss);
  1757. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1758. entry = mk_pte(new_page, vma->vm_page_prot);
  1759. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1760. /*
  1761. * Clear the pte entry and flush it first, before updating the
  1762. * pte with the new entry. This will avoid a race condition
  1763. * seen in the presence of one thread doing SMC and another
  1764. * thread doing COW.
  1765. */
  1766. ptep_clear_flush_notify(vma, address, page_table);
  1767. page_add_new_anon_rmap(new_page, vma, address);
  1768. set_pte_at(mm, address, page_table, entry);
  1769. update_mmu_cache(vma, address, entry);
  1770. if (old_page) {
  1771. /*
  1772. * Only after switching the pte to the new page may
  1773. * we remove the mapcount here. Otherwise another
  1774. * process may come and find the rmap count decremented
  1775. * before the pte is switched to the new page, and
  1776. * "reuse" the old page writing into it while our pte
  1777. * here still points into it and can be read by other
  1778. * threads.
  1779. *
  1780. * The critical issue is to order this
  1781. * page_remove_rmap with the ptp_clear_flush above.
  1782. * Those stores are ordered by (if nothing else,)
  1783. * the barrier present in the atomic_add_negative
  1784. * in page_remove_rmap.
  1785. *
  1786. * Then the TLB flush in ptep_clear_flush ensures that
  1787. * no process can access the old page before the
  1788. * decremented mapcount is visible. And the old page
  1789. * cannot be reused until after the decremented
  1790. * mapcount is visible. So transitively, TLBs to
  1791. * old page will be flushed before it can be reused.
  1792. */
  1793. page_remove_rmap(old_page, vma);
  1794. }
  1795. /* Free the old page.. */
  1796. new_page = old_page;
  1797. ret |= VM_FAULT_WRITE;
  1798. } else
  1799. mem_cgroup_uncharge_page(new_page);
  1800. if (new_page)
  1801. page_cache_release(new_page);
  1802. if (old_page)
  1803. page_cache_release(old_page);
  1804. unlock:
  1805. pte_unmap_unlock(page_table, ptl);
  1806. if (dirty_page) {
  1807. if (vma->vm_file)
  1808. file_update_time(vma->vm_file);
  1809. /*
  1810. * Yes, Virginia, this is actually required to prevent a race
  1811. * with clear_page_dirty_for_io() from clearing the page dirty
  1812. * bit after it clear all dirty ptes, but before a racing
  1813. * do_wp_page installs a dirty pte.
  1814. *
  1815. * do_no_page is protected similarly.
  1816. */
  1817. wait_on_page_locked(dirty_page);
  1818. set_page_dirty_balance(dirty_page, page_mkwrite);
  1819. put_page(dirty_page);
  1820. }
  1821. return ret;
  1822. oom_free_new:
  1823. page_cache_release(new_page);
  1824. oom:
  1825. if (old_page)
  1826. page_cache_release(old_page);
  1827. return VM_FAULT_OOM;
  1828. unwritable_page:
  1829. page_cache_release(old_page);
  1830. return VM_FAULT_SIGBUS;
  1831. }
  1832. /*
  1833. * Helper functions for unmap_mapping_range().
  1834. *
  1835. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  1836. *
  1837. * We have to restart searching the prio_tree whenever we drop the lock,
  1838. * since the iterator is only valid while the lock is held, and anyway
  1839. * a later vma might be split and reinserted earlier while lock dropped.
  1840. *
  1841. * The list of nonlinear vmas could be handled more efficiently, using
  1842. * a placeholder, but handle it in the same way until a need is shown.
  1843. * It is important to search the prio_tree before nonlinear list: a vma
  1844. * may become nonlinear and be shifted from prio_tree to nonlinear list
  1845. * while the lock is dropped; but never shifted from list to prio_tree.
  1846. *
  1847. * In order to make forward progress despite restarting the search,
  1848. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  1849. * quickly skip it next time around. Since the prio_tree search only
  1850. * shows us those vmas affected by unmapping the range in question, we
  1851. * can't efficiently keep all vmas in step with mapping->truncate_count:
  1852. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  1853. * mapping->truncate_count and vma->vm_truncate_count are protected by
  1854. * i_mmap_lock.
  1855. *
  1856. * In order to make forward progress despite repeatedly restarting some
  1857. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  1858. * and restart from that address when we reach that vma again. It might
  1859. * have been split or merged, shrunk or extended, but never shifted: so
  1860. * restart_addr remains valid so long as it remains in the vma's range.
  1861. * unmap_mapping_range forces truncate_count to leap over page-aligned
  1862. * values so we can save vma's restart_addr in its truncate_count field.
  1863. */
  1864. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  1865. static void reset_vma_truncate_counts(struct address_space *mapping)
  1866. {
  1867. struct vm_area_struct *vma;
  1868. struct prio_tree_iter iter;
  1869. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  1870. vma->vm_truncate_count = 0;
  1871. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1872. vma->vm_truncate_count = 0;
  1873. }
  1874. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  1875. unsigned long start_addr, unsigned long end_addr,
  1876. struct zap_details *details)
  1877. {
  1878. unsigned long restart_addr;
  1879. int need_break;
  1880. /*
  1881. * files that support invalidating or truncating portions of the
  1882. * file from under mmaped areas must have their ->fault function
  1883. * return a locked page (and set VM_FAULT_LOCKED in the return).
  1884. * This provides synchronisation against concurrent unmapping here.
  1885. */
  1886. again:
  1887. restart_addr = vma->vm_truncate_count;
  1888. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  1889. start_addr = restart_addr;
  1890. if (start_addr >= end_addr) {
  1891. /* Top of vma has been split off since last time */
  1892. vma->vm_truncate_count = details->truncate_count;
  1893. return 0;
  1894. }
  1895. }
  1896. restart_addr = zap_page_range(vma, start_addr,
  1897. end_addr - start_addr, details);
  1898. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  1899. if (restart_addr >= end_addr) {
  1900. /* We have now completed this vma: mark it so */
  1901. vma->vm_truncate_count = details->truncate_count;
  1902. if (!need_break)
  1903. return 0;
  1904. } else {
  1905. /* Note restart_addr in vma's truncate_count field */
  1906. vma->vm_truncate_count = restart_addr;
  1907. if (!need_break)
  1908. goto again;
  1909. }
  1910. spin_unlock(details->i_mmap_lock);
  1911. cond_resched();
  1912. spin_lock(details->i_mmap_lock);
  1913. return -EINTR;
  1914. }
  1915. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  1916. struct zap_details *details)
  1917. {
  1918. struct vm_area_struct *vma;
  1919. struct prio_tree_iter iter;
  1920. pgoff_t vba, vea, zba, zea;
  1921. restart:
  1922. vma_prio_tree_foreach(vma, &iter, root,
  1923. details->first_index, details->last_index) {
  1924. /* Skip quickly over those we have already dealt with */
  1925. if (vma->vm_truncate_count == details->truncate_count)
  1926. continue;
  1927. vba = vma->vm_pgoff;
  1928. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  1929. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  1930. zba = details->first_index;
  1931. if (zba < vba)
  1932. zba = vba;
  1933. zea = details->last_index;
  1934. if (zea > vea)
  1935. zea = vea;
  1936. if (unmap_mapping_range_vma(vma,
  1937. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  1938. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  1939. details) < 0)
  1940. goto restart;
  1941. }
  1942. }
  1943. static inline void unmap_mapping_range_list(struct list_head *head,
  1944. struct zap_details *details)
  1945. {
  1946. struct vm_area_struct *vma;
  1947. /*
  1948. * In nonlinear VMAs there is no correspondence between virtual address
  1949. * offset and file offset. So we must perform an exhaustive search
  1950. * across *all* the pages in each nonlinear VMA, not just the pages
  1951. * whose virtual address lies outside the file truncation point.
  1952. */
  1953. restart:
  1954. list_for_each_entry(vma, head, shared.vm_set.list) {
  1955. /* Skip quickly over those we have already dealt with */
  1956. if (vma->vm_truncate_count == details->truncate_count)
  1957. continue;
  1958. details->nonlinear_vma = vma;
  1959. if (unmap_mapping_range_vma(vma, vma->vm_start,
  1960. vma->vm_end, details) < 0)
  1961. goto restart;
  1962. }
  1963. }
  1964. /**
  1965. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  1966. * @mapping: the address space containing mmaps to be unmapped.
  1967. * @holebegin: byte in first page to unmap, relative to the start of
  1968. * the underlying file. This will be rounded down to a PAGE_SIZE
  1969. * boundary. Note that this is different from vmtruncate(), which
  1970. * must keep the partial page. In contrast, we must get rid of
  1971. * partial pages.
  1972. * @holelen: size of prospective hole in bytes. This will be rounded
  1973. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  1974. * end of the file.
  1975. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  1976. * but 0 when invalidating pagecache, don't throw away private data.
  1977. */
  1978. void unmap_mapping_range(struct address_space *mapping,
  1979. loff_t const holebegin, loff_t const holelen, int even_cows)
  1980. {
  1981. struct zap_details details;
  1982. pgoff_t hba = holebegin >> PAGE_SHIFT;
  1983. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1984. /* Check for overflow. */
  1985. if (sizeof(holelen) > sizeof(hlen)) {
  1986. long long holeend =
  1987. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  1988. if (holeend & ~(long long)ULONG_MAX)
  1989. hlen = ULONG_MAX - hba + 1;
  1990. }
  1991. details.check_mapping = even_cows? NULL: mapping;
  1992. details.nonlinear_vma = NULL;
  1993. details.first_index = hba;
  1994. details.last_index = hba + hlen - 1;
  1995. if (details.last_index < details.first_index)
  1996. details.last_index = ULONG_MAX;
  1997. details.i_mmap_lock = &mapping->i_mmap_lock;
  1998. spin_lock(&mapping->i_mmap_lock);
  1999. /* Protect against endless unmapping loops */
  2000. mapping->truncate_count++;
  2001. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2002. if (mapping->truncate_count == 0)
  2003. reset_vma_truncate_counts(mapping);
  2004. mapping->truncate_count++;
  2005. }
  2006. details.truncate_count = mapping->truncate_count;
  2007. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2008. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2009. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2010. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2011. spin_unlock(&mapping->i_mmap_lock);
  2012. }
  2013. EXPORT_SYMBOL(unmap_mapping_range);
  2014. /**
  2015. * vmtruncate - unmap mappings "freed" by truncate() syscall
  2016. * @inode: inode of the file used
  2017. * @offset: file offset to start truncating
  2018. *
  2019. * NOTE! We have to be ready to update the memory sharing
  2020. * between the file and the memory map for a potential last
  2021. * incomplete page. Ugly, but necessary.
  2022. */
  2023. int vmtruncate(struct inode * inode, loff_t offset)
  2024. {
  2025. if (inode->i_size < offset) {
  2026. unsigned long limit;
  2027. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  2028. if (limit != RLIM_INFINITY && offset > limit)
  2029. goto out_sig;
  2030. if (offset > inode->i_sb->s_maxbytes)
  2031. goto out_big;
  2032. i_size_write(inode, offset);
  2033. } else {
  2034. struct address_space *mapping = inode->i_mapping;
  2035. /*
  2036. * truncation of in-use swapfiles is disallowed - it would
  2037. * cause subsequent swapout to scribble on the now-freed
  2038. * blocks.
  2039. */
  2040. if (IS_SWAPFILE(inode))
  2041. return -ETXTBSY;
  2042. i_size_write(inode, offset);
  2043. /*
  2044. * unmap_mapping_range is called twice, first simply for
  2045. * efficiency so that truncate_inode_pages does fewer
  2046. * single-page unmaps. However after this first call, and
  2047. * before truncate_inode_pages finishes, it is possible for
  2048. * private pages to be COWed, which remain after
  2049. * truncate_inode_pages finishes, hence the second
  2050. * unmap_mapping_range call must be made for correctness.
  2051. */
  2052. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2053. truncate_inode_pages(mapping, offset);
  2054. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2055. }
  2056. if (inode->i_op->truncate)
  2057. inode->i_op->truncate(inode);
  2058. return 0;
  2059. out_sig:
  2060. send_sig(SIGXFSZ, current, 0);
  2061. out_big:
  2062. return -EFBIG;
  2063. }
  2064. EXPORT_SYMBOL(vmtruncate);
  2065. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2066. {
  2067. struct address_space *mapping = inode->i_mapping;
  2068. /*
  2069. * If the underlying filesystem is not going to provide
  2070. * a way to truncate a range of blocks (punch a hole) -
  2071. * we should return failure right now.
  2072. */
  2073. if (!inode->i_op->truncate_range)
  2074. return -ENOSYS;
  2075. mutex_lock(&inode->i_mutex);
  2076. down_write(&inode->i_alloc_sem);
  2077. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2078. truncate_inode_pages_range(mapping, offset, end);
  2079. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2080. inode->i_op->truncate_range(inode, offset, end);
  2081. up_write(&inode->i_alloc_sem);
  2082. mutex_unlock(&inode->i_mutex);
  2083. return 0;
  2084. }
  2085. /*
  2086. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2087. * but allow concurrent faults), and pte mapped but not yet locked.
  2088. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2089. */
  2090. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2091. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2092. int write_access, pte_t orig_pte)
  2093. {
  2094. spinlock_t *ptl;
  2095. struct page *page;
  2096. swp_entry_t entry;
  2097. pte_t pte;
  2098. int ret = 0;
  2099. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2100. goto out;
  2101. entry = pte_to_swp_entry(orig_pte);
  2102. if (is_migration_entry(entry)) {
  2103. migration_entry_wait(mm, pmd, address);
  2104. goto out;
  2105. }
  2106. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2107. page = lookup_swap_cache(entry);
  2108. if (!page) {
  2109. grab_swap_token(); /* Contend for token _before_ read-in */
  2110. page = swapin_readahead(entry,
  2111. GFP_HIGHUSER_MOVABLE, vma, address);
  2112. if (!page) {
  2113. /*
  2114. * Back out if somebody else faulted in this pte
  2115. * while we released the pte lock.
  2116. */
  2117. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2118. if (likely(pte_same(*page_table, orig_pte)))
  2119. ret = VM_FAULT_OOM;
  2120. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2121. goto unlock;
  2122. }
  2123. /* Had to read the page from swap area: Major fault */
  2124. ret = VM_FAULT_MAJOR;
  2125. count_vm_event(PGMAJFAULT);
  2126. }
  2127. mark_page_accessed(page);
  2128. lock_page(page);
  2129. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2130. if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
  2131. ret = VM_FAULT_OOM;
  2132. unlock_page(page);
  2133. goto out;
  2134. }
  2135. /*
  2136. * Back out if somebody else already faulted in this pte.
  2137. */
  2138. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2139. if (unlikely(!pte_same(*page_table, orig_pte)))
  2140. goto out_nomap;
  2141. if (unlikely(!PageUptodate(page))) {
  2142. ret = VM_FAULT_SIGBUS;
  2143. goto out_nomap;
  2144. }
  2145. /* The page isn't present yet, go ahead with the fault. */
  2146. inc_mm_counter(mm, anon_rss);
  2147. pte = mk_pte(page, vma->vm_page_prot);
  2148. if (write_access && reuse_swap_page(page)) {
  2149. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2150. write_access = 0;
  2151. }
  2152. flush_icache_page(vma, page);
  2153. set_pte_at(mm, address, page_table, pte);
  2154. page_add_anon_rmap(page, vma, address);
  2155. swap_free(entry);
  2156. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2157. try_to_free_swap(page);
  2158. unlock_page(page);
  2159. if (write_access) {
  2160. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2161. if (ret & VM_FAULT_ERROR)
  2162. ret &= VM_FAULT_ERROR;
  2163. goto out;
  2164. }
  2165. /* No need to invalidate - it was non-present before */
  2166. update_mmu_cache(vma, address, pte);
  2167. unlock:
  2168. pte_unmap_unlock(page_table, ptl);
  2169. out:
  2170. return ret;
  2171. out_nomap:
  2172. mem_cgroup_uncharge_page(page);
  2173. pte_unmap_unlock(page_table, ptl);
  2174. unlock_page(page);
  2175. page_cache_release(page);
  2176. return ret;
  2177. }
  2178. /*
  2179. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2180. * but allow concurrent faults), and pte mapped but not yet locked.
  2181. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2182. */
  2183. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2184. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2185. int write_access)
  2186. {
  2187. struct page *page;
  2188. spinlock_t *ptl;
  2189. pte_t entry;
  2190. /* Allocate our own private page. */
  2191. pte_unmap(page_table);
  2192. if (unlikely(anon_vma_prepare(vma)))
  2193. goto oom;
  2194. page = alloc_zeroed_user_highpage_movable(vma, address);
  2195. if (!page)
  2196. goto oom;
  2197. __SetPageUptodate(page);
  2198. if (mem_cgroup_charge(page, mm, GFP_KERNEL))
  2199. goto oom_free_page;
  2200. entry = mk_pte(page, vma->vm_page_prot);
  2201. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2202. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2203. if (!pte_none(*page_table))
  2204. goto release;
  2205. inc_mm_counter(mm, anon_rss);
  2206. page_add_new_anon_rmap(page, vma, address);
  2207. set_pte_at(mm, address, page_table, entry);
  2208. /* No need to invalidate - it was non-present before */
  2209. update_mmu_cache(vma, address, entry);
  2210. unlock:
  2211. pte_unmap_unlock(page_table, ptl);
  2212. return 0;
  2213. release:
  2214. mem_cgroup_uncharge_page(page);
  2215. page_cache_release(page);
  2216. goto unlock;
  2217. oom_free_page:
  2218. page_cache_release(page);
  2219. oom:
  2220. return VM_FAULT_OOM;
  2221. }
  2222. /*
  2223. * __do_fault() tries to create a new page mapping. It aggressively
  2224. * tries to share with existing pages, but makes a separate copy if
  2225. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2226. * the next page fault.
  2227. *
  2228. * As this is called only for pages that do not currently exist, we
  2229. * do not need to flush old virtual caches or the TLB.
  2230. *
  2231. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2232. * but allow concurrent faults), and pte neither mapped nor locked.
  2233. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2234. */
  2235. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2236. unsigned long address, pmd_t *pmd,
  2237. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2238. {
  2239. pte_t *page_table;
  2240. spinlock_t *ptl;
  2241. struct page *page;
  2242. pte_t entry;
  2243. int anon = 0;
  2244. int charged = 0;
  2245. struct page *dirty_page = NULL;
  2246. struct vm_fault vmf;
  2247. int ret;
  2248. int page_mkwrite = 0;
  2249. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2250. vmf.pgoff = pgoff;
  2251. vmf.flags = flags;
  2252. vmf.page = NULL;
  2253. ret = vma->vm_ops->fault(vma, &vmf);
  2254. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2255. return ret;
  2256. /*
  2257. * For consistency in subsequent calls, make the faulted page always
  2258. * locked.
  2259. */
  2260. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2261. lock_page(vmf.page);
  2262. else
  2263. VM_BUG_ON(!PageLocked(vmf.page));
  2264. /*
  2265. * Should we do an early C-O-W break?
  2266. */
  2267. page = vmf.page;
  2268. if (flags & FAULT_FLAG_WRITE) {
  2269. if (!(vma->vm_flags & VM_SHARED)) {
  2270. anon = 1;
  2271. if (unlikely(anon_vma_prepare(vma))) {
  2272. ret = VM_FAULT_OOM;
  2273. goto out;
  2274. }
  2275. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2276. vma, address);
  2277. if (!page) {
  2278. ret = VM_FAULT_OOM;
  2279. goto out;
  2280. }
  2281. if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
  2282. ret = VM_FAULT_OOM;
  2283. page_cache_release(page);
  2284. goto out;
  2285. }
  2286. charged = 1;
  2287. /*
  2288. * Don't let another task, with possibly unlocked vma,
  2289. * keep the mlocked page.
  2290. */
  2291. if (vma->vm_flags & VM_LOCKED)
  2292. clear_page_mlock(vmf.page);
  2293. copy_user_highpage(page, vmf.page, address, vma);
  2294. __SetPageUptodate(page);
  2295. } else {
  2296. /*
  2297. * If the page will be shareable, see if the backing
  2298. * address space wants to know that the page is about
  2299. * to become writable
  2300. */
  2301. if (vma->vm_ops->page_mkwrite) {
  2302. unlock_page(page);
  2303. if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
  2304. ret = VM_FAULT_SIGBUS;
  2305. anon = 1; /* no anon but release vmf.page */
  2306. goto out_unlocked;
  2307. }
  2308. lock_page(page);
  2309. /*
  2310. * XXX: this is not quite right (racy vs
  2311. * invalidate) to unlock and relock the page
  2312. * like this, however a better fix requires
  2313. * reworking page_mkwrite locking API, which
  2314. * is better done later.
  2315. */
  2316. if (!page->mapping) {
  2317. ret = 0;
  2318. anon = 1; /* no anon but release vmf.page */
  2319. goto out;
  2320. }
  2321. page_mkwrite = 1;
  2322. }
  2323. }
  2324. }
  2325. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2326. /*
  2327. * This silly early PAGE_DIRTY setting removes a race
  2328. * due to the bad i386 page protection. But it's valid
  2329. * for other architectures too.
  2330. *
  2331. * Note that if write_access is true, we either now have
  2332. * an exclusive copy of the page, or this is a shared mapping,
  2333. * so we can make it writable and dirty to avoid having to
  2334. * handle that later.
  2335. */
  2336. /* Only go through if we didn't race with anybody else... */
  2337. if (likely(pte_same(*page_table, orig_pte))) {
  2338. flush_icache_page(vma, page);
  2339. entry = mk_pte(page, vma->vm_page_prot);
  2340. if (flags & FAULT_FLAG_WRITE)
  2341. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2342. if (anon) {
  2343. inc_mm_counter(mm, anon_rss);
  2344. page_add_new_anon_rmap(page, vma, address);
  2345. } else {
  2346. inc_mm_counter(mm, file_rss);
  2347. page_add_file_rmap(page);
  2348. if (flags & FAULT_FLAG_WRITE) {
  2349. dirty_page = page;
  2350. get_page(dirty_page);
  2351. }
  2352. }
  2353. set_pte_at(mm, address, page_table, entry);
  2354. /* no need to invalidate: a not-present page won't be cached */
  2355. update_mmu_cache(vma, address, entry);
  2356. } else {
  2357. if (charged)
  2358. mem_cgroup_uncharge_page(page);
  2359. if (anon)
  2360. page_cache_release(page);
  2361. else
  2362. anon = 1; /* no anon but release faulted_page */
  2363. }
  2364. pte_unmap_unlock(page_table, ptl);
  2365. out:
  2366. unlock_page(vmf.page);
  2367. out_unlocked:
  2368. if (anon)
  2369. page_cache_release(vmf.page);
  2370. else if (dirty_page) {
  2371. if (vma->vm_file)
  2372. file_update_time(vma->vm_file);
  2373. set_page_dirty_balance(dirty_page, page_mkwrite);
  2374. put_page(dirty_page);
  2375. }
  2376. return ret;
  2377. }
  2378. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2379. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2380. int write_access, pte_t orig_pte)
  2381. {
  2382. pgoff_t pgoff = (((address & PAGE_MASK)
  2383. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2384. unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
  2385. pte_unmap(page_table);
  2386. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2387. }
  2388. /*
  2389. * Fault of a previously existing named mapping. Repopulate the pte
  2390. * from the encoded file_pte if possible. This enables swappable
  2391. * nonlinear vmas.
  2392. *
  2393. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2394. * but allow concurrent faults), and pte mapped but not yet locked.
  2395. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2396. */
  2397. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2398. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2399. int write_access, pte_t orig_pte)
  2400. {
  2401. unsigned int flags = FAULT_FLAG_NONLINEAR |
  2402. (write_access ? FAULT_FLAG_WRITE : 0);
  2403. pgoff_t pgoff;
  2404. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2405. return 0;
  2406. if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
  2407. !(vma->vm_flags & VM_CAN_NONLINEAR))) {
  2408. /*
  2409. * Page table corrupted: show pte and kill process.
  2410. */
  2411. print_bad_pte(vma, orig_pte, address);
  2412. return VM_FAULT_OOM;
  2413. }
  2414. pgoff = pte_to_pgoff(orig_pte);
  2415. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2416. }
  2417. /*
  2418. * These routines also need to handle stuff like marking pages dirty
  2419. * and/or accessed for architectures that don't do it in hardware (most
  2420. * RISC architectures). The early dirtying is also good on the i386.
  2421. *
  2422. * There is also a hook called "update_mmu_cache()" that architectures
  2423. * with external mmu caches can use to update those (ie the Sparc or
  2424. * PowerPC hashed page tables that act as extended TLBs).
  2425. *
  2426. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2427. * but allow concurrent faults), and pte mapped but not yet locked.
  2428. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2429. */
  2430. static inline int handle_pte_fault(struct mm_struct *mm,
  2431. struct vm_area_struct *vma, unsigned long address,
  2432. pte_t *pte, pmd_t *pmd, int write_access)
  2433. {
  2434. pte_t entry;
  2435. spinlock_t *ptl;
  2436. entry = *pte;
  2437. if (!pte_present(entry)) {
  2438. if (pte_none(entry)) {
  2439. if (vma->vm_ops) {
  2440. if (likely(vma->vm_ops->fault))
  2441. return do_linear_fault(mm, vma, address,
  2442. pte, pmd, write_access, entry);
  2443. }
  2444. return do_anonymous_page(mm, vma, address,
  2445. pte, pmd, write_access);
  2446. }
  2447. if (pte_file(entry))
  2448. return do_nonlinear_fault(mm, vma, address,
  2449. pte, pmd, write_access, entry);
  2450. return do_swap_page(mm, vma, address,
  2451. pte, pmd, write_access, entry);
  2452. }
  2453. ptl = pte_lockptr(mm, pmd);
  2454. spin_lock(ptl);
  2455. if (unlikely(!pte_same(*pte, entry)))
  2456. goto unlock;
  2457. if (write_access) {
  2458. if (!pte_write(entry))
  2459. return do_wp_page(mm, vma, address,
  2460. pte, pmd, ptl, entry);
  2461. entry = pte_mkdirty(entry);
  2462. }
  2463. entry = pte_mkyoung(entry);
  2464. if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
  2465. update_mmu_cache(vma, address, entry);
  2466. } else {
  2467. /*
  2468. * This is needed only for protection faults but the arch code
  2469. * is not yet telling us if this is a protection fault or not.
  2470. * This still avoids useless tlb flushes for .text page faults
  2471. * with threads.
  2472. */
  2473. if (write_access)
  2474. flush_tlb_page(vma, address);
  2475. }
  2476. unlock:
  2477. pte_unmap_unlock(pte, ptl);
  2478. return 0;
  2479. }
  2480. /*
  2481. * By the time we get here, we already hold the mm semaphore
  2482. */
  2483. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2484. unsigned long address, int write_access)
  2485. {
  2486. pgd_t *pgd;
  2487. pud_t *pud;
  2488. pmd_t *pmd;
  2489. pte_t *pte;
  2490. __set_current_state(TASK_RUNNING);
  2491. count_vm_event(PGFAULT);
  2492. if (unlikely(is_vm_hugetlb_page(vma)))
  2493. return hugetlb_fault(mm, vma, address, write_access);
  2494. pgd = pgd_offset(mm, address);
  2495. pud = pud_alloc(mm, pgd, address);
  2496. if (!pud)
  2497. return VM_FAULT_OOM;
  2498. pmd = pmd_alloc(mm, pud, address);
  2499. if (!pmd)
  2500. return VM_FAULT_OOM;
  2501. pte = pte_alloc_map(mm, pmd, address);
  2502. if (!pte)
  2503. return VM_FAULT_OOM;
  2504. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2505. }
  2506. #ifndef __PAGETABLE_PUD_FOLDED
  2507. /*
  2508. * Allocate page upper directory.
  2509. * We've already handled the fast-path in-line.
  2510. */
  2511. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2512. {
  2513. pud_t *new = pud_alloc_one(mm, address);
  2514. if (!new)
  2515. return -ENOMEM;
  2516. smp_wmb(); /* See comment in __pte_alloc */
  2517. spin_lock(&mm->page_table_lock);
  2518. if (pgd_present(*pgd)) /* Another has populated it */
  2519. pud_free(mm, new);
  2520. else
  2521. pgd_populate(mm, pgd, new);
  2522. spin_unlock(&mm->page_table_lock);
  2523. return 0;
  2524. }
  2525. #endif /* __PAGETABLE_PUD_FOLDED */
  2526. #ifndef __PAGETABLE_PMD_FOLDED
  2527. /*
  2528. * Allocate page middle directory.
  2529. * We've already handled the fast-path in-line.
  2530. */
  2531. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2532. {
  2533. pmd_t *new = pmd_alloc_one(mm, address);
  2534. if (!new)
  2535. return -ENOMEM;
  2536. smp_wmb(); /* See comment in __pte_alloc */
  2537. spin_lock(&mm->page_table_lock);
  2538. #ifndef __ARCH_HAS_4LEVEL_HACK
  2539. if (pud_present(*pud)) /* Another has populated it */
  2540. pmd_free(mm, new);
  2541. else
  2542. pud_populate(mm, pud, new);
  2543. #else
  2544. if (pgd_present(*pud)) /* Another has populated it */
  2545. pmd_free(mm, new);
  2546. else
  2547. pgd_populate(mm, pud, new);
  2548. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2549. spin_unlock(&mm->page_table_lock);
  2550. return 0;
  2551. }
  2552. #endif /* __PAGETABLE_PMD_FOLDED */
  2553. int make_pages_present(unsigned long addr, unsigned long end)
  2554. {
  2555. int ret, len, write;
  2556. struct vm_area_struct * vma;
  2557. vma = find_vma(current->mm, addr);
  2558. if (!vma)
  2559. return -ENOMEM;
  2560. write = (vma->vm_flags & VM_WRITE) != 0;
  2561. BUG_ON(addr >= end);
  2562. BUG_ON(end > vma->vm_end);
  2563. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2564. ret = get_user_pages(current, current->mm, addr,
  2565. len, write, 0, NULL, NULL);
  2566. if (ret < 0)
  2567. return ret;
  2568. return ret == len ? 0 : -EFAULT;
  2569. }
  2570. #if !defined(__HAVE_ARCH_GATE_AREA)
  2571. #if defined(AT_SYSINFO_EHDR)
  2572. static struct vm_area_struct gate_vma;
  2573. static int __init gate_vma_init(void)
  2574. {
  2575. gate_vma.vm_mm = NULL;
  2576. gate_vma.vm_start = FIXADDR_USER_START;
  2577. gate_vma.vm_end = FIXADDR_USER_END;
  2578. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2579. gate_vma.vm_page_prot = __P101;
  2580. /*
  2581. * Make sure the vDSO gets into every core dump.
  2582. * Dumping its contents makes post-mortem fully interpretable later
  2583. * without matching up the same kernel and hardware config to see
  2584. * what PC values meant.
  2585. */
  2586. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2587. return 0;
  2588. }
  2589. __initcall(gate_vma_init);
  2590. #endif
  2591. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2592. {
  2593. #ifdef AT_SYSINFO_EHDR
  2594. return &gate_vma;
  2595. #else
  2596. return NULL;
  2597. #endif
  2598. }
  2599. int in_gate_area_no_task(unsigned long addr)
  2600. {
  2601. #ifdef AT_SYSINFO_EHDR
  2602. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2603. return 1;
  2604. #endif
  2605. return 0;
  2606. }
  2607. #endif /* __HAVE_ARCH_GATE_AREA */
  2608. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2609. int follow_phys(struct vm_area_struct *vma,
  2610. unsigned long address, unsigned int flags,
  2611. unsigned long *prot, resource_size_t *phys)
  2612. {
  2613. pgd_t *pgd;
  2614. pud_t *pud;
  2615. pmd_t *pmd;
  2616. pte_t *ptep, pte;
  2617. spinlock_t *ptl;
  2618. resource_size_t phys_addr = 0;
  2619. struct mm_struct *mm = vma->vm_mm;
  2620. int ret = -EINVAL;
  2621. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2622. goto out;
  2623. pgd = pgd_offset(mm, address);
  2624. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2625. goto out;
  2626. pud = pud_offset(pgd, address);
  2627. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2628. goto out;
  2629. pmd = pmd_offset(pud, address);
  2630. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2631. goto out;
  2632. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2633. if (pmd_huge(*pmd))
  2634. goto out;
  2635. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  2636. if (!ptep)
  2637. goto out;
  2638. pte = *ptep;
  2639. if (!pte_present(pte))
  2640. goto unlock;
  2641. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2642. goto unlock;
  2643. phys_addr = pte_pfn(pte);
  2644. phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
  2645. *prot = pgprot_val(pte_pgprot(pte));
  2646. *phys = phys_addr;
  2647. ret = 0;
  2648. unlock:
  2649. pte_unmap_unlock(ptep, ptl);
  2650. out:
  2651. return ret;
  2652. }
  2653. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2654. void *buf, int len, int write)
  2655. {
  2656. resource_size_t phys_addr;
  2657. unsigned long prot = 0;
  2658. void __iomem *maddr;
  2659. int offset = addr & (PAGE_SIZE-1);
  2660. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2661. return -EINVAL;
  2662. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2663. if (write)
  2664. memcpy_toio(maddr + offset, buf, len);
  2665. else
  2666. memcpy_fromio(buf, maddr + offset, len);
  2667. iounmap(maddr);
  2668. return len;
  2669. }
  2670. #endif
  2671. /*
  2672. * Access another process' address space.
  2673. * Source/target buffer must be kernel space,
  2674. * Do not walk the page table directly, use get_user_pages
  2675. */
  2676. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2677. {
  2678. struct mm_struct *mm;
  2679. struct vm_area_struct *vma;
  2680. void *old_buf = buf;
  2681. mm = get_task_mm(tsk);
  2682. if (!mm)
  2683. return 0;
  2684. down_read(&mm->mmap_sem);
  2685. /* ignore errors, just check how much was successfully transferred */
  2686. while (len) {
  2687. int bytes, ret, offset;
  2688. void *maddr;
  2689. struct page *page = NULL;
  2690. ret = get_user_pages(tsk, mm, addr, 1,
  2691. write, 1, &page, &vma);
  2692. if (ret <= 0) {
  2693. /*
  2694. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2695. * we can access using slightly different code.
  2696. */
  2697. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2698. vma = find_vma(mm, addr);
  2699. if (!vma)
  2700. break;
  2701. if (vma->vm_ops && vma->vm_ops->access)
  2702. ret = vma->vm_ops->access(vma, addr, buf,
  2703. len, write);
  2704. if (ret <= 0)
  2705. #endif
  2706. break;
  2707. bytes = ret;
  2708. } else {
  2709. bytes = len;
  2710. offset = addr & (PAGE_SIZE-1);
  2711. if (bytes > PAGE_SIZE-offset)
  2712. bytes = PAGE_SIZE-offset;
  2713. maddr = kmap(page);
  2714. if (write) {
  2715. copy_to_user_page(vma, page, addr,
  2716. maddr + offset, buf, bytes);
  2717. set_page_dirty_lock(page);
  2718. } else {
  2719. copy_from_user_page(vma, page, addr,
  2720. buf, maddr + offset, bytes);
  2721. }
  2722. kunmap(page);
  2723. page_cache_release(page);
  2724. }
  2725. len -= bytes;
  2726. buf += bytes;
  2727. addr += bytes;
  2728. }
  2729. up_read(&mm->mmap_sem);
  2730. mmput(mm);
  2731. return buf - old_buf;
  2732. }
  2733. /*
  2734. * Print the name of a VMA.
  2735. */
  2736. void print_vma_addr(char *prefix, unsigned long ip)
  2737. {
  2738. struct mm_struct *mm = current->mm;
  2739. struct vm_area_struct *vma;
  2740. /*
  2741. * Do not print if we are in atomic
  2742. * contexts (in exception stacks, etc.):
  2743. */
  2744. if (preempt_count())
  2745. return;
  2746. down_read(&mm->mmap_sem);
  2747. vma = find_vma(mm, ip);
  2748. if (vma && vma->vm_file) {
  2749. struct file *f = vma->vm_file;
  2750. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2751. if (buf) {
  2752. char *p, *s;
  2753. p = d_path(&f->f_path, buf, PAGE_SIZE);
  2754. if (IS_ERR(p))
  2755. p = "?";
  2756. s = strrchr(p, '/');
  2757. if (s)
  2758. p = s+1;
  2759. printk("%s%s[%lx+%lx]", prefix, p,
  2760. vma->vm_start,
  2761. vma->vm_end - vma->vm_start);
  2762. free_page((unsigned long)buf);
  2763. }
  2764. }
  2765. up_read(&current->mm->mmap_sem);
  2766. }
  2767. #ifdef CONFIG_PROVE_LOCKING
  2768. void might_fault(void)
  2769. {
  2770. might_sleep();
  2771. /*
  2772. * it would be nicer only to annotate paths which are not under
  2773. * pagefault_disable, however that requires a larger audit and
  2774. * providing helpers like get_user_atomic.
  2775. */
  2776. if (!in_atomic() && current->mm)
  2777. might_lock_read(&current->mm->mmap_sem);
  2778. }
  2779. EXPORT_SYMBOL(might_fault);
  2780. #endif