i915_gem.c 111 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include <linux/swap.h>
  32. #include <linux/pci.h>
  33. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  34. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  35. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  37. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  38. int write);
  39. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  40. uint64_t offset,
  41. uint64_t size);
  42. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  44. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  45. unsigned alignment);
  46. static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
  47. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  48. static int i915_gem_evict_something(struct drm_device *dev);
  49. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  50. struct drm_i915_gem_pwrite *args,
  51. struct drm_file *file_priv);
  52. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  53. unsigned long end)
  54. {
  55. drm_i915_private_t *dev_priv = dev->dev_private;
  56. if (start >= end ||
  57. (start & (PAGE_SIZE - 1)) != 0 ||
  58. (end & (PAGE_SIZE - 1)) != 0) {
  59. return -EINVAL;
  60. }
  61. drm_mm_init(&dev_priv->mm.gtt_space, start,
  62. end - start);
  63. dev->gtt_total = (uint32_t) (end - start);
  64. return 0;
  65. }
  66. int
  67. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  68. struct drm_file *file_priv)
  69. {
  70. struct drm_i915_gem_init *args = data;
  71. int ret;
  72. mutex_lock(&dev->struct_mutex);
  73. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  74. mutex_unlock(&dev->struct_mutex);
  75. return ret;
  76. }
  77. int
  78. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  79. struct drm_file *file_priv)
  80. {
  81. struct drm_i915_gem_get_aperture *args = data;
  82. if (!(dev->driver->driver_features & DRIVER_GEM))
  83. return -ENODEV;
  84. args->aper_size = dev->gtt_total;
  85. args->aper_available_size = (args->aper_size -
  86. atomic_read(&dev->pin_memory));
  87. return 0;
  88. }
  89. /**
  90. * Creates a new mm object and returns a handle to it.
  91. */
  92. int
  93. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  94. struct drm_file *file_priv)
  95. {
  96. struct drm_i915_gem_create *args = data;
  97. struct drm_gem_object *obj;
  98. int handle, ret;
  99. args->size = roundup(args->size, PAGE_SIZE);
  100. /* Allocate the new object */
  101. obj = drm_gem_object_alloc(dev, args->size);
  102. if (obj == NULL)
  103. return -ENOMEM;
  104. ret = drm_gem_handle_create(file_priv, obj, &handle);
  105. mutex_lock(&dev->struct_mutex);
  106. drm_gem_object_handle_unreference(obj);
  107. mutex_unlock(&dev->struct_mutex);
  108. if (ret)
  109. return ret;
  110. args->handle = handle;
  111. return 0;
  112. }
  113. static inline int
  114. fast_shmem_read(struct page **pages,
  115. loff_t page_base, int page_offset,
  116. char __user *data,
  117. int length)
  118. {
  119. char __iomem *vaddr;
  120. int unwritten;
  121. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  122. if (vaddr == NULL)
  123. return -ENOMEM;
  124. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  125. kunmap_atomic(vaddr, KM_USER0);
  126. if (unwritten)
  127. return -EFAULT;
  128. return 0;
  129. }
  130. static inline int
  131. slow_shmem_copy(struct page *dst_page,
  132. int dst_offset,
  133. struct page *src_page,
  134. int src_offset,
  135. int length)
  136. {
  137. char *dst_vaddr, *src_vaddr;
  138. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  139. if (dst_vaddr == NULL)
  140. return -ENOMEM;
  141. src_vaddr = kmap_atomic(src_page, KM_USER1);
  142. if (src_vaddr == NULL) {
  143. kunmap_atomic(dst_vaddr, KM_USER0);
  144. return -ENOMEM;
  145. }
  146. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  147. kunmap_atomic(src_vaddr, KM_USER1);
  148. kunmap_atomic(dst_vaddr, KM_USER0);
  149. return 0;
  150. }
  151. /**
  152. * This is the fast shmem pread path, which attempts to copy_from_user directly
  153. * from the backing pages of the object to the user's address space. On a
  154. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  155. */
  156. static int
  157. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  158. struct drm_i915_gem_pread *args,
  159. struct drm_file *file_priv)
  160. {
  161. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  162. ssize_t remain;
  163. loff_t offset, page_base;
  164. char __user *user_data;
  165. int page_offset, page_length;
  166. int ret;
  167. user_data = (char __user *) (uintptr_t) args->data_ptr;
  168. remain = args->size;
  169. mutex_lock(&dev->struct_mutex);
  170. ret = i915_gem_object_get_pages(obj);
  171. if (ret != 0)
  172. goto fail_unlock;
  173. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  174. args->size);
  175. if (ret != 0)
  176. goto fail_put_pages;
  177. obj_priv = obj->driver_private;
  178. offset = args->offset;
  179. while (remain > 0) {
  180. /* Operation in this page
  181. *
  182. * page_base = page offset within aperture
  183. * page_offset = offset within page
  184. * page_length = bytes to copy for this page
  185. */
  186. page_base = (offset & ~(PAGE_SIZE-1));
  187. page_offset = offset & (PAGE_SIZE-1);
  188. page_length = remain;
  189. if ((page_offset + remain) > PAGE_SIZE)
  190. page_length = PAGE_SIZE - page_offset;
  191. ret = fast_shmem_read(obj_priv->pages,
  192. page_base, page_offset,
  193. user_data, page_length);
  194. if (ret)
  195. goto fail_put_pages;
  196. remain -= page_length;
  197. user_data += page_length;
  198. offset += page_length;
  199. }
  200. fail_put_pages:
  201. i915_gem_object_put_pages(obj);
  202. fail_unlock:
  203. mutex_unlock(&dev->struct_mutex);
  204. return ret;
  205. }
  206. /**
  207. * This is the fallback shmem pread path, which allocates temporary storage
  208. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  209. * can copy out of the object's backing pages while holding the struct mutex
  210. * and not take page faults.
  211. */
  212. static int
  213. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  214. struct drm_i915_gem_pread *args,
  215. struct drm_file *file_priv)
  216. {
  217. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  218. struct mm_struct *mm = current->mm;
  219. struct page **user_pages;
  220. ssize_t remain;
  221. loff_t offset, pinned_pages, i;
  222. loff_t first_data_page, last_data_page, num_pages;
  223. int shmem_page_index, shmem_page_offset;
  224. int data_page_index, data_page_offset;
  225. int page_length;
  226. int ret;
  227. uint64_t data_ptr = args->data_ptr;
  228. remain = args->size;
  229. /* Pin the user pages containing the data. We can't fault while
  230. * holding the struct mutex, yet we want to hold it while
  231. * dereferencing the user data.
  232. */
  233. first_data_page = data_ptr / PAGE_SIZE;
  234. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  235. num_pages = last_data_page - first_data_page + 1;
  236. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  237. if (user_pages == NULL)
  238. return -ENOMEM;
  239. down_read(&mm->mmap_sem);
  240. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  241. num_pages, 0, 0, user_pages, NULL);
  242. up_read(&mm->mmap_sem);
  243. if (pinned_pages < num_pages) {
  244. ret = -EFAULT;
  245. goto fail_put_user_pages;
  246. }
  247. mutex_lock(&dev->struct_mutex);
  248. ret = i915_gem_object_get_pages(obj);
  249. if (ret != 0)
  250. goto fail_unlock;
  251. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  252. args->size);
  253. if (ret != 0)
  254. goto fail_put_pages;
  255. obj_priv = obj->driver_private;
  256. offset = args->offset;
  257. while (remain > 0) {
  258. /* Operation in this page
  259. *
  260. * shmem_page_index = page number within shmem file
  261. * shmem_page_offset = offset within page in shmem file
  262. * data_page_index = page number in get_user_pages return
  263. * data_page_offset = offset with data_page_index page.
  264. * page_length = bytes to copy for this page
  265. */
  266. shmem_page_index = offset / PAGE_SIZE;
  267. shmem_page_offset = offset & ~PAGE_MASK;
  268. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  269. data_page_offset = data_ptr & ~PAGE_MASK;
  270. page_length = remain;
  271. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  272. page_length = PAGE_SIZE - shmem_page_offset;
  273. if ((data_page_offset + page_length) > PAGE_SIZE)
  274. page_length = PAGE_SIZE - data_page_offset;
  275. ret = slow_shmem_copy(user_pages[data_page_index],
  276. data_page_offset,
  277. obj_priv->pages[shmem_page_index],
  278. shmem_page_offset,
  279. page_length);
  280. if (ret)
  281. goto fail_put_pages;
  282. remain -= page_length;
  283. data_ptr += page_length;
  284. offset += page_length;
  285. }
  286. fail_put_pages:
  287. i915_gem_object_put_pages(obj);
  288. fail_unlock:
  289. mutex_unlock(&dev->struct_mutex);
  290. fail_put_user_pages:
  291. for (i = 0; i < pinned_pages; i++) {
  292. SetPageDirty(user_pages[i]);
  293. page_cache_release(user_pages[i]);
  294. }
  295. kfree(user_pages);
  296. return ret;
  297. }
  298. /**
  299. * Reads data from the object referenced by handle.
  300. *
  301. * On error, the contents of *data are undefined.
  302. */
  303. int
  304. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  305. struct drm_file *file_priv)
  306. {
  307. struct drm_i915_gem_pread *args = data;
  308. struct drm_gem_object *obj;
  309. struct drm_i915_gem_object *obj_priv;
  310. int ret;
  311. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  312. if (obj == NULL)
  313. return -EBADF;
  314. obj_priv = obj->driver_private;
  315. /* Bounds check source.
  316. *
  317. * XXX: This could use review for overflow issues...
  318. */
  319. if (args->offset > obj->size || args->size > obj->size ||
  320. args->offset + args->size > obj->size) {
  321. drm_gem_object_unreference(obj);
  322. return -EINVAL;
  323. }
  324. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  325. if (ret != 0)
  326. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  327. drm_gem_object_unreference(obj);
  328. return ret;
  329. }
  330. /* This is the fast write path which cannot handle
  331. * page faults in the source data
  332. */
  333. static inline int
  334. fast_user_write(struct io_mapping *mapping,
  335. loff_t page_base, int page_offset,
  336. char __user *user_data,
  337. int length)
  338. {
  339. char *vaddr_atomic;
  340. unsigned long unwritten;
  341. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  342. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  343. user_data, length);
  344. io_mapping_unmap_atomic(vaddr_atomic);
  345. if (unwritten)
  346. return -EFAULT;
  347. return 0;
  348. }
  349. /* Here's the write path which can sleep for
  350. * page faults
  351. */
  352. static inline int
  353. slow_kernel_write(struct io_mapping *mapping,
  354. loff_t gtt_base, int gtt_offset,
  355. struct page *user_page, int user_offset,
  356. int length)
  357. {
  358. char *src_vaddr, *dst_vaddr;
  359. unsigned long unwritten;
  360. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  361. src_vaddr = kmap_atomic(user_page, KM_USER1);
  362. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  363. src_vaddr + user_offset,
  364. length);
  365. kunmap_atomic(src_vaddr, KM_USER1);
  366. io_mapping_unmap_atomic(dst_vaddr);
  367. if (unwritten)
  368. return -EFAULT;
  369. return 0;
  370. }
  371. static inline int
  372. fast_shmem_write(struct page **pages,
  373. loff_t page_base, int page_offset,
  374. char __user *data,
  375. int length)
  376. {
  377. char __iomem *vaddr;
  378. unsigned long unwritten;
  379. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  380. if (vaddr == NULL)
  381. return -ENOMEM;
  382. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  383. kunmap_atomic(vaddr, KM_USER0);
  384. if (unwritten)
  385. return -EFAULT;
  386. return 0;
  387. }
  388. /**
  389. * This is the fast pwrite path, where we copy the data directly from the
  390. * user into the GTT, uncached.
  391. */
  392. static int
  393. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  394. struct drm_i915_gem_pwrite *args,
  395. struct drm_file *file_priv)
  396. {
  397. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  398. drm_i915_private_t *dev_priv = dev->dev_private;
  399. ssize_t remain;
  400. loff_t offset, page_base;
  401. char __user *user_data;
  402. int page_offset, page_length;
  403. int ret;
  404. user_data = (char __user *) (uintptr_t) args->data_ptr;
  405. remain = args->size;
  406. if (!access_ok(VERIFY_READ, user_data, remain))
  407. return -EFAULT;
  408. mutex_lock(&dev->struct_mutex);
  409. ret = i915_gem_object_pin(obj, 0);
  410. if (ret) {
  411. mutex_unlock(&dev->struct_mutex);
  412. return ret;
  413. }
  414. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  415. if (ret)
  416. goto fail;
  417. obj_priv = obj->driver_private;
  418. offset = obj_priv->gtt_offset + args->offset;
  419. while (remain > 0) {
  420. /* Operation in this page
  421. *
  422. * page_base = page offset within aperture
  423. * page_offset = offset within page
  424. * page_length = bytes to copy for this page
  425. */
  426. page_base = (offset & ~(PAGE_SIZE-1));
  427. page_offset = offset & (PAGE_SIZE-1);
  428. page_length = remain;
  429. if ((page_offset + remain) > PAGE_SIZE)
  430. page_length = PAGE_SIZE - page_offset;
  431. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  432. page_offset, user_data, page_length);
  433. /* If we get a fault while copying data, then (presumably) our
  434. * source page isn't available. Return the error and we'll
  435. * retry in the slow path.
  436. */
  437. if (ret)
  438. goto fail;
  439. remain -= page_length;
  440. user_data += page_length;
  441. offset += page_length;
  442. }
  443. fail:
  444. i915_gem_object_unpin(obj);
  445. mutex_unlock(&dev->struct_mutex);
  446. return ret;
  447. }
  448. /**
  449. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  450. * the memory and maps it using kmap_atomic for copying.
  451. *
  452. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  453. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  454. */
  455. static int
  456. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  457. struct drm_i915_gem_pwrite *args,
  458. struct drm_file *file_priv)
  459. {
  460. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  461. drm_i915_private_t *dev_priv = dev->dev_private;
  462. ssize_t remain;
  463. loff_t gtt_page_base, offset;
  464. loff_t first_data_page, last_data_page, num_pages;
  465. loff_t pinned_pages, i;
  466. struct page **user_pages;
  467. struct mm_struct *mm = current->mm;
  468. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  469. int ret;
  470. uint64_t data_ptr = args->data_ptr;
  471. remain = args->size;
  472. /* Pin the user pages containing the data. We can't fault while
  473. * holding the struct mutex, and all of the pwrite implementations
  474. * want to hold it while dereferencing the user data.
  475. */
  476. first_data_page = data_ptr / PAGE_SIZE;
  477. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  478. num_pages = last_data_page - first_data_page + 1;
  479. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  480. if (user_pages == NULL)
  481. return -ENOMEM;
  482. down_read(&mm->mmap_sem);
  483. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  484. num_pages, 0, 0, user_pages, NULL);
  485. up_read(&mm->mmap_sem);
  486. if (pinned_pages < num_pages) {
  487. ret = -EFAULT;
  488. goto out_unpin_pages;
  489. }
  490. mutex_lock(&dev->struct_mutex);
  491. ret = i915_gem_object_pin(obj, 0);
  492. if (ret)
  493. goto out_unlock;
  494. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  495. if (ret)
  496. goto out_unpin_object;
  497. obj_priv = obj->driver_private;
  498. offset = obj_priv->gtt_offset + args->offset;
  499. while (remain > 0) {
  500. /* Operation in this page
  501. *
  502. * gtt_page_base = page offset within aperture
  503. * gtt_page_offset = offset within page in aperture
  504. * data_page_index = page number in get_user_pages return
  505. * data_page_offset = offset with data_page_index page.
  506. * page_length = bytes to copy for this page
  507. */
  508. gtt_page_base = offset & PAGE_MASK;
  509. gtt_page_offset = offset & ~PAGE_MASK;
  510. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  511. data_page_offset = data_ptr & ~PAGE_MASK;
  512. page_length = remain;
  513. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  514. page_length = PAGE_SIZE - gtt_page_offset;
  515. if ((data_page_offset + page_length) > PAGE_SIZE)
  516. page_length = PAGE_SIZE - data_page_offset;
  517. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  518. gtt_page_base, gtt_page_offset,
  519. user_pages[data_page_index],
  520. data_page_offset,
  521. page_length);
  522. /* If we get a fault while copying data, then (presumably) our
  523. * source page isn't available. Return the error and we'll
  524. * retry in the slow path.
  525. */
  526. if (ret)
  527. goto out_unpin_object;
  528. remain -= page_length;
  529. offset += page_length;
  530. data_ptr += page_length;
  531. }
  532. out_unpin_object:
  533. i915_gem_object_unpin(obj);
  534. out_unlock:
  535. mutex_unlock(&dev->struct_mutex);
  536. out_unpin_pages:
  537. for (i = 0; i < pinned_pages; i++)
  538. page_cache_release(user_pages[i]);
  539. kfree(user_pages);
  540. return ret;
  541. }
  542. /**
  543. * This is the fast shmem pwrite path, which attempts to directly
  544. * copy_from_user into the kmapped pages backing the object.
  545. */
  546. static int
  547. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  548. struct drm_i915_gem_pwrite *args,
  549. struct drm_file *file_priv)
  550. {
  551. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  552. ssize_t remain;
  553. loff_t offset, page_base;
  554. char __user *user_data;
  555. int page_offset, page_length;
  556. int ret;
  557. user_data = (char __user *) (uintptr_t) args->data_ptr;
  558. remain = args->size;
  559. mutex_lock(&dev->struct_mutex);
  560. ret = i915_gem_object_get_pages(obj);
  561. if (ret != 0)
  562. goto fail_unlock;
  563. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  564. if (ret != 0)
  565. goto fail_put_pages;
  566. obj_priv = obj->driver_private;
  567. offset = args->offset;
  568. obj_priv->dirty = 1;
  569. while (remain > 0) {
  570. /* Operation in this page
  571. *
  572. * page_base = page offset within aperture
  573. * page_offset = offset within page
  574. * page_length = bytes to copy for this page
  575. */
  576. page_base = (offset & ~(PAGE_SIZE-1));
  577. page_offset = offset & (PAGE_SIZE-1);
  578. page_length = remain;
  579. if ((page_offset + remain) > PAGE_SIZE)
  580. page_length = PAGE_SIZE - page_offset;
  581. ret = fast_shmem_write(obj_priv->pages,
  582. page_base, page_offset,
  583. user_data, page_length);
  584. if (ret)
  585. goto fail_put_pages;
  586. remain -= page_length;
  587. user_data += page_length;
  588. offset += page_length;
  589. }
  590. fail_put_pages:
  591. i915_gem_object_put_pages(obj);
  592. fail_unlock:
  593. mutex_unlock(&dev->struct_mutex);
  594. return ret;
  595. }
  596. /**
  597. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  598. * the memory and maps it using kmap_atomic for copying.
  599. *
  600. * This avoids taking mmap_sem for faulting on the user's address while the
  601. * struct_mutex is held.
  602. */
  603. static int
  604. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  605. struct drm_i915_gem_pwrite *args,
  606. struct drm_file *file_priv)
  607. {
  608. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  609. struct mm_struct *mm = current->mm;
  610. struct page **user_pages;
  611. ssize_t remain;
  612. loff_t offset, pinned_pages, i;
  613. loff_t first_data_page, last_data_page, num_pages;
  614. int shmem_page_index, shmem_page_offset;
  615. int data_page_index, data_page_offset;
  616. int page_length;
  617. int ret;
  618. uint64_t data_ptr = args->data_ptr;
  619. remain = args->size;
  620. /* Pin the user pages containing the data. We can't fault while
  621. * holding the struct mutex, and all of the pwrite implementations
  622. * want to hold it while dereferencing the user data.
  623. */
  624. first_data_page = data_ptr / PAGE_SIZE;
  625. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  626. num_pages = last_data_page - first_data_page + 1;
  627. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  628. if (user_pages == NULL)
  629. return -ENOMEM;
  630. down_read(&mm->mmap_sem);
  631. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  632. num_pages, 0, 0, user_pages, NULL);
  633. up_read(&mm->mmap_sem);
  634. if (pinned_pages < num_pages) {
  635. ret = -EFAULT;
  636. goto fail_put_user_pages;
  637. }
  638. mutex_lock(&dev->struct_mutex);
  639. ret = i915_gem_object_get_pages(obj);
  640. if (ret != 0)
  641. goto fail_unlock;
  642. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  643. if (ret != 0)
  644. goto fail_put_pages;
  645. obj_priv = obj->driver_private;
  646. offset = args->offset;
  647. obj_priv->dirty = 1;
  648. while (remain > 0) {
  649. /* Operation in this page
  650. *
  651. * shmem_page_index = page number within shmem file
  652. * shmem_page_offset = offset within page in shmem file
  653. * data_page_index = page number in get_user_pages return
  654. * data_page_offset = offset with data_page_index page.
  655. * page_length = bytes to copy for this page
  656. */
  657. shmem_page_index = offset / PAGE_SIZE;
  658. shmem_page_offset = offset & ~PAGE_MASK;
  659. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  660. data_page_offset = data_ptr & ~PAGE_MASK;
  661. page_length = remain;
  662. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  663. page_length = PAGE_SIZE - shmem_page_offset;
  664. if ((data_page_offset + page_length) > PAGE_SIZE)
  665. page_length = PAGE_SIZE - data_page_offset;
  666. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  667. shmem_page_offset,
  668. user_pages[data_page_index],
  669. data_page_offset,
  670. page_length);
  671. if (ret)
  672. goto fail_put_pages;
  673. remain -= page_length;
  674. data_ptr += page_length;
  675. offset += page_length;
  676. }
  677. fail_put_pages:
  678. i915_gem_object_put_pages(obj);
  679. fail_unlock:
  680. mutex_unlock(&dev->struct_mutex);
  681. fail_put_user_pages:
  682. for (i = 0; i < pinned_pages; i++)
  683. page_cache_release(user_pages[i]);
  684. kfree(user_pages);
  685. return ret;
  686. }
  687. /**
  688. * Writes data to the object referenced by handle.
  689. *
  690. * On error, the contents of the buffer that were to be modified are undefined.
  691. */
  692. int
  693. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  694. struct drm_file *file_priv)
  695. {
  696. struct drm_i915_gem_pwrite *args = data;
  697. struct drm_gem_object *obj;
  698. struct drm_i915_gem_object *obj_priv;
  699. int ret = 0;
  700. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  701. if (obj == NULL)
  702. return -EBADF;
  703. obj_priv = obj->driver_private;
  704. /* Bounds check destination.
  705. *
  706. * XXX: This could use review for overflow issues...
  707. */
  708. if (args->offset > obj->size || args->size > obj->size ||
  709. args->offset + args->size > obj->size) {
  710. drm_gem_object_unreference(obj);
  711. return -EINVAL;
  712. }
  713. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  714. * it would end up going through the fenced access, and we'll get
  715. * different detiling behavior between reading and writing.
  716. * pread/pwrite currently are reading and writing from the CPU
  717. * perspective, requiring manual detiling by the client.
  718. */
  719. if (obj_priv->phys_obj)
  720. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  721. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  722. dev->gtt_total != 0) {
  723. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  724. if (ret == -EFAULT) {
  725. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  726. file_priv);
  727. }
  728. } else {
  729. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  730. if (ret == -EFAULT) {
  731. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  732. file_priv);
  733. }
  734. }
  735. #if WATCH_PWRITE
  736. if (ret)
  737. DRM_INFO("pwrite failed %d\n", ret);
  738. #endif
  739. drm_gem_object_unreference(obj);
  740. return ret;
  741. }
  742. /**
  743. * Called when user space prepares to use an object with the CPU, either
  744. * through the mmap ioctl's mapping or a GTT mapping.
  745. */
  746. int
  747. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  748. struct drm_file *file_priv)
  749. {
  750. struct drm_i915_gem_set_domain *args = data;
  751. struct drm_gem_object *obj;
  752. uint32_t read_domains = args->read_domains;
  753. uint32_t write_domain = args->write_domain;
  754. int ret;
  755. if (!(dev->driver->driver_features & DRIVER_GEM))
  756. return -ENODEV;
  757. /* Only handle setting domains to types used by the CPU. */
  758. if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  759. return -EINVAL;
  760. if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  761. return -EINVAL;
  762. /* Having something in the write domain implies it's in the read
  763. * domain, and only that read domain. Enforce that in the request.
  764. */
  765. if (write_domain != 0 && read_domains != write_domain)
  766. return -EINVAL;
  767. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  768. if (obj == NULL)
  769. return -EBADF;
  770. mutex_lock(&dev->struct_mutex);
  771. #if WATCH_BUF
  772. DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
  773. obj, obj->size, read_domains, write_domain);
  774. #endif
  775. if (read_domains & I915_GEM_DOMAIN_GTT) {
  776. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  777. /* Silently promote "you're not bound, there was nothing to do"
  778. * to success, since the client was just asking us to
  779. * make sure everything was done.
  780. */
  781. if (ret == -EINVAL)
  782. ret = 0;
  783. } else {
  784. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  785. }
  786. drm_gem_object_unreference(obj);
  787. mutex_unlock(&dev->struct_mutex);
  788. return ret;
  789. }
  790. /**
  791. * Called when user space has done writes to this buffer
  792. */
  793. int
  794. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  795. struct drm_file *file_priv)
  796. {
  797. struct drm_i915_gem_sw_finish *args = data;
  798. struct drm_gem_object *obj;
  799. struct drm_i915_gem_object *obj_priv;
  800. int ret = 0;
  801. if (!(dev->driver->driver_features & DRIVER_GEM))
  802. return -ENODEV;
  803. mutex_lock(&dev->struct_mutex);
  804. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  805. if (obj == NULL) {
  806. mutex_unlock(&dev->struct_mutex);
  807. return -EBADF;
  808. }
  809. #if WATCH_BUF
  810. DRM_INFO("%s: sw_finish %d (%p %d)\n",
  811. __func__, args->handle, obj, obj->size);
  812. #endif
  813. obj_priv = obj->driver_private;
  814. /* Pinned buffers may be scanout, so flush the cache */
  815. if (obj_priv->pin_count)
  816. i915_gem_object_flush_cpu_write_domain(obj);
  817. drm_gem_object_unreference(obj);
  818. mutex_unlock(&dev->struct_mutex);
  819. return ret;
  820. }
  821. /**
  822. * Maps the contents of an object, returning the address it is mapped
  823. * into.
  824. *
  825. * While the mapping holds a reference on the contents of the object, it doesn't
  826. * imply a ref on the object itself.
  827. */
  828. int
  829. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  830. struct drm_file *file_priv)
  831. {
  832. struct drm_i915_gem_mmap *args = data;
  833. struct drm_gem_object *obj;
  834. loff_t offset;
  835. unsigned long addr;
  836. if (!(dev->driver->driver_features & DRIVER_GEM))
  837. return -ENODEV;
  838. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  839. if (obj == NULL)
  840. return -EBADF;
  841. offset = args->offset;
  842. down_write(&current->mm->mmap_sem);
  843. addr = do_mmap(obj->filp, 0, args->size,
  844. PROT_READ | PROT_WRITE, MAP_SHARED,
  845. args->offset);
  846. up_write(&current->mm->mmap_sem);
  847. mutex_lock(&dev->struct_mutex);
  848. drm_gem_object_unreference(obj);
  849. mutex_unlock(&dev->struct_mutex);
  850. if (IS_ERR((void *)addr))
  851. return addr;
  852. args->addr_ptr = (uint64_t) addr;
  853. return 0;
  854. }
  855. /**
  856. * i915_gem_fault - fault a page into the GTT
  857. * vma: VMA in question
  858. * vmf: fault info
  859. *
  860. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  861. * from userspace. The fault handler takes care of binding the object to
  862. * the GTT (if needed), allocating and programming a fence register (again,
  863. * only if needed based on whether the old reg is still valid or the object
  864. * is tiled) and inserting a new PTE into the faulting process.
  865. *
  866. * Note that the faulting process may involve evicting existing objects
  867. * from the GTT and/or fence registers to make room. So performance may
  868. * suffer if the GTT working set is large or there are few fence registers
  869. * left.
  870. */
  871. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  872. {
  873. struct drm_gem_object *obj = vma->vm_private_data;
  874. struct drm_device *dev = obj->dev;
  875. struct drm_i915_private *dev_priv = dev->dev_private;
  876. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  877. pgoff_t page_offset;
  878. unsigned long pfn;
  879. int ret = 0;
  880. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  881. /* We don't use vmf->pgoff since that has the fake offset */
  882. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  883. PAGE_SHIFT;
  884. /* Now bind it into the GTT if needed */
  885. mutex_lock(&dev->struct_mutex);
  886. if (!obj_priv->gtt_space) {
  887. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  888. if (ret) {
  889. mutex_unlock(&dev->struct_mutex);
  890. return VM_FAULT_SIGBUS;
  891. }
  892. list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
  893. }
  894. /* Need a new fence register? */
  895. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  896. obj_priv->tiling_mode != I915_TILING_NONE) {
  897. ret = i915_gem_object_get_fence_reg(obj, write);
  898. if (ret) {
  899. mutex_unlock(&dev->struct_mutex);
  900. return VM_FAULT_SIGBUS;
  901. }
  902. }
  903. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  904. page_offset;
  905. /* Finally, remap it using the new GTT offset */
  906. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  907. mutex_unlock(&dev->struct_mutex);
  908. switch (ret) {
  909. case -ENOMEM:
  910. case -EAGAIN:
  911. return VM_FAULT_OOM;
  912. case -EFAULT:
  913. case -EINVAL:
  914. return VM_FAULT_SIGBUS;
  915. default:
  916. return VM_FAULT_NOPAGE;
  917. }
  918. }
  919. /**
  920. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  921. * @obj: obj in question
  922. *
  923. * GEM memory mapping works by handing back to userspace a fake mmap offset
  924. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  925. * up the object based on the offset and sets up the various memory mapping
  926. * structures.
  927. *
  928. * This routine allocates and attaches a fake offset for @obj.
  929. */
  930. static int
  931. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  932. {
  933. struct drm_device *dev = obj->dev;
  934. struct drm_gem_mm *mm = dev->mm_private;
  935. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  936. struct drm_map_list *list;
  937. struct drm_local_map *map;
  938. int ret = 0;
  939. /* Set the object up for mmap'ing */
  940. list = &obj->map_list;
  941. list->map = drm_calloc(1, sizeof(struct drm_map_list),
  942. DRM_MEM_DRIVER);
  943. if (!list->map)
  944. return -ENOMEM;
  945. map = list->map;
  946. map->type = _DRM_GEM;
  947. map->size = obj->size;
  948. map->handle = obj;
  949. /* Get a DRM GEM mmap offset allocated... */
  950. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  951. obj->size / PAGE_SIZE, 0, 0);
  952. if (!list->file_offset_node) {
  953. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  954. ret = -ENOMEM;
  955. goto out_free_list;
  956. }
  957. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  958. obj->size / PAGE_SIZE, 0);
  959. if (!list->file_offset_node) {
  960. ret = -ENOMEM;
  961. goto out_free_list;
  962. }
  963. list->hash.key = list->file_offset_node->start;
  964. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  965. DRM_ERROR("failed to add to map hash\n");
  966. goto out_free_mm;
  967. }
  968. /* By now we should be all set, any drm_mmap request on the offset
  969. * below will get to our mmap & fault handler */
  970. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  971. return 0;
  972. out_free_mm:
  973. drm_mm_put_block(list->file_offset_node);
  974. out_free_list:
  975. drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
  976. return ret;
  977. }
  978. static void
  979. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  980. {
  981. struct drm_device *dev = obj->dev;
  982. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  983. struct drm_gem_mm *mm = dev->mm_private;
  984. struct drm_map_list *list;
  985. list = &obj->map_list;
  986. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  987. if (list->file_offset_node) {
  988. drm_mm_put_block(list->file_offset_node);
  989. list->file_offset_node = NULL;
  990. }
  991. if (list->map) {
  992. drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
  993. list->map = NULL;
  994. }
  995. obj_priv->mmap_offset = 0;
  996. }
  997. /**
  998. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  999. * @obj: object to check
  1000. *
  1001. * Return the required GTT alignment for an object, taking into account
  1002. * potential fence register mapping if needed.
  1003. */
  1004. static uint32_t
  1005. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1006. {
  1007. struct drm_device *dev = obj->dev;
  1008. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1009. int start, i;
  1010. /*
  1011. * Minimum alignment is 4k (GTT page size), but might be greater
  1012. * if a fence register is needed for the object.
  1013. */
  1014. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1015. return 4096;
  1016. /*
  1017. * Previous chips need to be aligned to the size of the smallest
  1018. * fence register that can contain the object.
  1019. */
  1020. if (IS_I9XX(dev))
  1021. start = 1024*1024;
  1022. else
  1023. start = 512*1024;
  1024. for (i = start; i < obj->size; i <<= 1)
  1025. ;
  1026. return i;
  1027. }
  1028. /**
  1029. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1030. * @dev: DRM device
  1031. * @data: GTT mapping ioctl data
  1032. * @file_priv: GEM object info
  1033. *
  1034. * Simply returns the fake offset to userspace so it can mmap it.
  1035. * The mmap call will end up in drm_gem_mmap(), which will set things
  1036. * up so we can get faults in the handler above.
  1037. *
  1038. * The fault handler will take care of binding the object into the GTT
  1039. * (since it may have been evicted to make room for something), allocating
  1040. * a fence register, and mapping the appropriate aperture address into
  1041. * userspace.
  1042. */
  1043. int
  1044. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1045. struct drm_file *file_priv)
  1046. {
  1047. struct drm_i915_gem_mmap_gtt *args = data;
  1048. struct drm_i915_private *dev_priv = dev->dev_private;
  1049. struct drm_gem_object *obj;
  1050. struct drm_i915_gem_object *obj_priv;
  1051. int ret;
  1052. if (!(dev->driver->driver_features & DRIVER_GEM))
  1053. return -ENODEV;
  1054. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1055. if (obj == NULL)
  1056. return -EBADF;
  1057. mutex_lock(&dev->struct_mutex);
  1058. obj_priv = obj->driver_private;
  1059. if (!obj_priv->mmap_offset) {
  1060. ret = i915_gem_create_mmap_offset(obj);
  1061. if (ret) {
  1062. drm_gem_object_unreference(obj);
  1063. mutex_unlock(&dev->struct_mutex);
  1064. return ret;
  1065. }
  1066. }
  1067. args->offset = obj_priv->mmap_offset;
  1068. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1069. /* Make sure the alignment is correct for fence regs etc */
  1070. if (obj_priv->agp_mem &&
  1071. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1072. drm_gem_object_unreference(obj);
  1073. mutex_unlock(&dev->struct_mutex);
  1074. return -EINVAL;
  1075. }
  1076. /*
  1077. * Pull it into the GTT so that we have a page list (makes the
  1078. * initial fault faster and any subsequent flushing possible).
  1079. */
  1080. if (!obj_priv->agp_mem) {
  1081. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1082. if (ret) {
  1083. drm_gem_object_unreference(obj);
  1084. mutex_unlock(&dev->struct_mutex);
  1085. return ret;
  1086. }
  1087. list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
  1088. }
  1089. drm_gem_object_unreference(obj);
  1090. mutex_unlock(&dev->struct_mutex);
  1091. return 0;
  1092. }
  1093. void
  1094. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1095. {
  1096. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1097. int page_count = obj->size / PAGE_SIZE;
  1098. int i;
  1099. BUG_ON(obj_priv->pages_refcount == 0);
  1100. if (--obj_priv->pages_refcount != 0)
  1101. return;
  1102. for (i = 0; i < page_count; i++)
  1103. if (obj_priv->pages[i] != NULL) {
  1104. if (obj_priv->dirty)
  1105. set_page_dirty(obj_priv->pages[i]);
  1106. mark_page_accessed(obj_priv->pages[i]);
  1107. page_cache_release(obj_priv->pages[i]);
  1108. }
  1109. obj_priv->dirty = 0;
  1110. drm_free(obj_priv->pages,
  1111. page_count * sizeof(struct page *),
  1112. DRM_MEM_DRIVER);
  1113. obj_priv->pages = NULL;
  1114. }
  1115. static void
  1116. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1117. {
  1118. struct drm_device *dev = obj->dev;
  1119. drm_i915_private_t *dev_priv = dev->dev_private;
  1120. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1121. /* Add a reference if we're newly entering the active list. */
  1122. if (!obj_priv->active) {
  1123. drm_gem_object_reference(obj);
  1124. obj_priv->active = 1;
  1125. }
  1126. /* Move from whatever list we were on to the tail of execution. */
  1127. spin_lock(&dev_priv->mm.active_list_lock);
  1128. list_move_tail(&obj_priv->list,
  1129. &dev_priv->mm.active_list);
  1130. spin_unlock(&dev_priv->mm.active_list_lock);
  1131. obj_priv->last_rendering_seqno = seqno;
  1132. }
  1133. static void
  1134. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1135. {
  1136. struct drm_device *dev = obj->dev;
  1137. drm_i915_private_t *dev_priv = dev->dev_private;
  1138. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1139. BUG_ON(!obj_priv->active);
  1140. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1141. obj_priv->last_rendering_seqno = 0;
  1142. }
  1143. static void
  1144. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1145. {
  1146. struct drm_device *dev = obj->dev;
  1147. drm_i915_private_t *dev_priv = dev->dev_private;
  1148. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1149. i915_verify_inactive(dev, __FILE__, __LINE__);
  1150. if (obj_priv->pin_count != 0)
  1151. list_del_init(&obj_priv->list);
  1152. else
  1153. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1154. obj_priv->last_rendering_seqno = 0;
  1155. if (obj_priv->active) {
  1156. obj_priv->active = 0;
  1157. drm_gem_object_unreference(obj);
  1158. }
  1159. i915_verify_inactive(dev, __FILE__, __LINE__);
  1160. }
  1161. /**
  1162. * Creates a new sequence number, emitting a write of it to the status page
  1163. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1164. *
  1165. * Must be called with struct_lock held.
  1166. *
  1167. * Returned sequence numbers are nonzero on success.
  1168. */
  1169. static uint32_t
  1170. i915_add_request(struct drm_device *dev, uint32_t flush_domains)
  1171. {
  1172. drm_i915_private_t *dev_priv = dev->dev_private;
  1173. struct drm_i915_gem_request *request;
  1174. uint32_t seqno;
  1175. int was_empty;
  1176. RING_LOCALS;
  1177. request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
  1178. if (request == NULL)
  1179. return 0;
  1180. /* Grab the seqno we're going to make this request be, and bump the
  1181. * next (skipping 0 so it can be the reserved no-seqno value).
  1182. */
  1183. seqno = dev_priv->mm.next_gem_seqno;
  1184. dev_priv->mm.next_gem_seqno++;
  1185. if (dev_priv->mm.next_gem_seqno == 0)
  1186. dev_priv->mm.next_gem_seqno++;
  1187. BEGIN_LP_RING(4);
  1188. OUT_RING(MI_STORE_DWORD_INDEX);
  1189. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1190. OUT_RING(seqno);
  1191. OUT_RING(MI_USER_INTERRUPT);
  1192. ADVANCE_LP_RING();
  1193. DRM_DEBUG("%d\n", seqno);
  1194. request->seqno = seqno;
  1195. request->emitted_jiffies = jiffies;
  1196. was_empty = list_empty(&dev_priv->mm.request_list);
  1197. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1198. /* Associate any objects on the flushing list matching the write
  1199. * domain we're flushing with our flush.
  1200. */
  1201. if (flush_domains != 0) {
  1202. struct drm_i915_gem_object *obj_priv, *next;
  1203. list_for_each_entry_safe(obj_priv, next,
  1204. &dev_priv->mm.flushing_list, list) {
  1205. struct drm_gem_object *obj = obj_priv->obj;
  1206. if ((obj->write_domain & flush_domains) ==
  1207. obj->write_domain) {
  1208. obj->write_domain = 0;
  1209. i915_gem_object_move_to_active(obj, seqno);
  1210. }
  1211. }
  1212. }
  1213. if (was_empty && !dev_priv->mm.suspended)
  1214. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1215. return seqno;
  1216. }
  1217. /**
  1218. * Command execution barrier
  1219. *
  1220. * Ensures that all commands in the ring are finished
  1221. * before signalling the CPU
  1222. */
  1223. static uint32_t
  1224. i915_retire_commands(struct drm_device *dev)
  1225. {
  1226. drm_i915_private_t *dev_priv = dev->dev_private;
  1227. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1228. uint32_t flush_domains = 0;
  1229. RING_LOCALS;
  1230. /* The sampler always gets flushed on i965 (sigh) */
  1231. if (IS_I965G(dev))
  1232. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1233. BEGIN_LP_RING(2);
  1234. OUT_RING(cmd);
  1235. OUT_RING(0); /* noop */
  1236. ADVANCE_LP_RING();
  1237. return flush_domains;
  1238. }
  1239. /**
  1240. * Moves buffers associated only with the given active seqno from the active
  1241. * to inactive list, potentially freeing them.
  1242. */
  1243. static void
  1244. i915_gem_retire_request(struct drm_device *dev,
  1245. struct drm_i915_gem_request *request)
  1246. {
  1247. drm_i915_private_t *dev_priv = dev->dev_private;
  1248. /* Move any buffers on the active list that are no longer referenced
  1249. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1250. */
  1251. spin_lock(&dev_priv->mm.active_list_lock);
  1252. while (!list_empty(&dev_priv->mm.active_list)) {
  1253. struct drm_gem_object *obj;
  1254. struct drm_i915_gem_object *obj_priv;
  1255. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1256. struct drm_i915_gem_object,
  1257. list);
  1258. obj = obj_priv->obj;
  1259. /* If the seqno being retired doesn't match the oldest in the
  1260. * list, then the oldest in the list must still be newer than
  1261. * this seqno.
  1262. */
  1263. if (obj_priv->last_rendering_seqno != request->seqno)
  1264. goto out;
  1265. #if WATCH_LRU
  1266. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1267. __func__, request->seqno, obj);
  1268. #endif
  1269. if (obj->write_domain != 0)
  1270. i915_gem_object_move_to_flushing(obj);
  1271. else
  1272. i915_gem_object_move_to_inactive(obj);
  1273. }
  1274. out:
  1275. spin_unlock(&dev_priv->mm.active_list_lock);
  1276. }
  1277. /**
  1278. * Returns true if seq1 is later than seq2.
  1279. */
  1280. static int
  1281. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1282. {
  1283. return (int32_t)(seq1 - seq2) >= 0;
  1284. }
  1285. uint32_t
  1286. i915_get_gem_seqno(struct drm_device *dev)
  1287. {
  1288. drm_i915_private_t *dev_priv = dev->dev_private;
  1289. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1290. }
  1291. /**
  1292. * This function clears the request list as sequence numbers are passed.
  1293. */
  1294. void
  1295. i915_gem_retire_requests(struct drm_device *dev)
  1296. {
  1297. drm_i915_private_t *dev_priv = dev->dev_private;
  1298. uint32_t seqno;
  1299. if (!dev_priv->hw_status_page)
  1300. return;
  1301. seqno = i915_get_gem_seqno(dev);
  1302. while (!list_empty(&dev_priv->mm.request_list)) {
  1303. struct drm_i915_gem_request *request;
  1304. uint32_t retiring_seqno;
  1305. request = list_first_entry(&dev_priv->mm.request_list,
  1306. struct drm_i915_gem_request,
  1307. list);
  1308. retiring_seqno = request->seqno;
  1309. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1310. dev_priv->mm.wedged) {
  1311. i915_gem_retire_request(dev, request);
  1312. list_del(&request->list);
  1313. drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
  1314. } else
  1315. break;
  1316. }
  1317. }
  1318. void
  1319. i915_gem_retire_work_handler(struct work_struct *work)
  1320. {
  1321. drm_i915_private_t *dev_priv;
  1322. struct drm_device *dev;
  1323. dev_priv = container_of(work, drm_i915_private_t,
  1324. mm.retire_work.work);
  1325. dev = dev_priv->dev;
  1326. mutex_lock(&dev->struct_mutex);
  1327. i915_gem_retire_requests(dev);
  1328. if (!dev_priv->mm.suspended &&
  1329. !list_empty(&dev_priv->mm.request_list))
  1330. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1331. mutex_unlock(&dev->struct_mutex);
  1332. }
  1333. /**
  1334. * Waits for a sequence number to be signaled, and cleans up the
  1335. * request and object lists appropriately for that event.
  1336. */
  1337. static int
  1338. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1339. {
  1340. drm_i915_private_t *dev_priv = dev->dev_private;
  1341. int ret = 0;
  1342. BUG_ON(seqno == 0);
  1343. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1344. dev_priv->mm.waiting_gem_seqno = seqno;
  1345. i915_user_irq_get(dev);
  1346. ret = wait_event_interruptible(dev_priv->irq_queue,
  1347. i915_seqno_passed(i915_get_gem_seqno(dev),
  1348. seqno) ||
  1349. dev_priv->mm.wedged);
  1350. i915_user_irq_put(dev);
  1351. dev_priv->mm.waiting_gem_seqno = 0;
  1352. }
  1353. if (dev_priv->mm.wedged)
  1354. ret = -EIO;
  1355. if (ret && ret != -ERESTARTSYS)
  1356. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1357. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1358. /* Directly dispatch request retiring. While we have the work queue
  1359. * to handle this, the waiter on a request often wants an associated
  1360. * buffer to have made it to the inactive list, and we would need
  1361. * a separate wait queue to handle that.
  1362. */
  1363. if (ret == 0)
  1364. i915_gem_retire_requests(dev);
  1365. return ret;
  1366. }
  1367. static void
  1368. i915_gem_flush(struct drm_device *dev,
  1369. uint32_t invalidate_domains,
  1370. uint32_t flush_domains)
  1371. {
  1372. drm_i915_private_t *dev_priv = dev->dev_private;
  1373. uint32_t cmd;
  1374. RING_LOCALS;
  1375. #if WATCH_EXEC
  1376. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1377. invalidate_domains, flush_domains);
  1378. #endif
  1379. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1380. drm_agp_chipset_flush(dev);
  1381. if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
  1382. I915_GEM_DOMAIN_GTT)) {
  1383. /*
  1384. * read/write caches:
  1385. *
  1386. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1387. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1388. * also flushed at 2d versus 3d pipeline switches.
  1389. *
  1390. * read-only caches:
  1391. *
  1392. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1393. * MI_READ_FLUSH is set, and is always flushed on 965.
  1394. *
  1395. * I915_GEM_DOMAIN_COMMAND may not exist?
  1396. *
  1397. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1398. * invalidated when MI_EXE_FLUSH is set.
  1399. *
  1400. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1401. * invalidated with every MI_FLUSH.
  1402. *
  1403. * TLBs:
  1404. *
  1405. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1406. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1407. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1408. * are flushed at any MI_FLUSH.
  1409. */
  1410. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1411. if ((invalidate_domains|flush_domains) &
  1412. I915_GEM_DOMAIN_RENDER)
  1413. cmd &= ~MI_NO_WRITE_FLUSH;
  1414. if (!IS_I965G(dev)) {
  1415. /*
  1416. * On the 965, the sampler cache always gets flushed
  1417. * and this bit is reserved.
  1418. */
  1419. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1420. cmd |= MI_READ_FLUSH;
  1421. }
  1422. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1423. cmd |= MI_EXE_FLUSH;
  1424. #if WATCH_EXEC
  1425. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1426. #endif
  1427. BEGIN_LP_RING(2);
  1428. OUT_RING(cmd);
  1429. OUT_RING(0); /* noop */
  1430. ADVANCE_LP_RING();
  1431. }
  1432. }
  1433. /**
  1434. * Ensures that all rendering to the object has completed and the object is
  1435. * safe to unbind from the GTT or access from the CPU.
  1436. */
  1437. static int
  1438. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1439. {
  1440. struct drm_device *dev = obj->dev;
  1441. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1442. int ret;
  1443. /* This function only exists to support waiting for existing rendering,
  1444. * not for emitting required flushes.
  1445. */
  1446. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1447. /* If there is rendering queued on the buffer being evicted, wait for
  1448. * it.
  1449. */
  1450. if (obj_priv->active) {
  1451. #if WATCH_BUF
  1452. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1453. __func__, obj, obj_priv->last_rendering_seqno);
  1454. #endif
  1455. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1456. if (ret != 0)
  1457. return ret;
  1458. }
  1459. return 0;
  1460. }
  1461. /**
  1462. * Unbinds an object from the GTT aperture.
  1463. */
  1464. int
  1465. i915_gem_object_unbind(struct drm_gem_object *obj)
  1466. {
  1467. struct drm_device *dev = obj->dev;
  1468. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1469. loff_t offset;
  1470. int ret = 0;
  1471. #if WATCH_BUF
  1472. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1473. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1474. #endif
  1475. if (obj_priv->gtt_space == NULL)
  1476. return 0;
  1477. if (obj_priv->pin_count != 0) {
  1478. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1479. return -EINVAL;
  1480. }
  1481. /* Move the object to the CPU domain to ensure that
  1482. * any possible CPU writes while it's not in the GTT
  1483. * are flushed when we go to remap it. This will
  1484. * also ensure that all pending GPU writes are finished
  1485. * before we unbind.
  1486. */
  1487. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1488. if (ret) {
  1489. if (ret != -ERESTARTSYS)
  1490. DRM_ERROR("set_domain failed: %d\n", ret);
  1491. return ret;
  1492. }
  1493. if (obj_priv->agp_mem != NULL) {
  1494. drm_unbind_agp(obj_priv->agp_mem);
  1495. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1496. obj_priv->agp_mem = NULL;
  1497. }
  1498. BUG_ON(obj_priv->active);
  1499. /* blow away mappings if mapped through GTT */
  1500. offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
  1501. if (dev->dev_mapping)
  1502. unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
  1503. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1504. i915_gem_clear_fence_reg(obj);
  1505. i915_gem_object_put_pages(obj);
  1506. if (obj_priv->gtt_space) {
  1507. atomic_dec(&dev->gtt_count);
  1508. atomic_sub(obj->size, &dev->gtt_memory);
  1509. drm_mm_put_block(obj_priv->gtt_space);
  1510. obj_priv->gtt_space = NULL;
  1511. }
  1512. /* Remove ourselves from the LRU list if present. */
  1513. if (!list_empty(&obj_priv->list))
  1514. list_del_init(&obj_priv->list);
  1515. return 0;
  1516. }
  1517. static int
  1518. i915_gem_evict_something(struct drm_device *dev)
  1519. {
  1520. drm_i915_private_t *dev_priv = dev->dev_private;
  1521. struct drm_gem_object *obj;
  1522. struct drm_i915_gem_object *obj_priv;
  1523. int ret = 0;
  1524. for (;;) {
  1525. /* If there's an inactive buffer available now, grab it
  1526. * and be done.
  1527. */
  1528. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1529. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1530. struct drm_i915_gem_object,
  1531. list);
  1532. obj = obj_priv->obj;
  1533. BUG_ON(obj_priv->pin_count != 0);
  1534. #if WATCH_LRU
  1535. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1536. #endif
  1537. BUG_ON(obj_priv->active);
  1538. /* Wait on the rendering and unbind the buffer. */
  1539. ret = i915_gem_object_unbind(obj);
  1540. break;
  1541. }
  1542. /* If we didn't get anything, but the ring is still processing
  1543. * things, wait for one of those things to finish and hopefully
  1544. * leave us a buffer to evict.
  1545. */
  1546. if (!list_empty(&dev_priv->mm.request_list)) {
  1547. struct drm_i915_gem_request *request;
  1548. request = list_first_entry(&dev_priv->mm.request_list,
  1549. struct drm_i915_gem_request,
  1550. list);
  1551. ret = i915_wait_request(dev, request->seqno);
  1552. if (ret)
  1553. break;
  1554. /* if waiting caused an object to become inactive,
  1555. * then loop around and wait for it. Otherwise, we
  1556. * assume that waiting freed and unbound something,
  1557. * so there should now be some space in the GTT
  1558. */
  1559. if (!list_empty(&dev_priv->mm.inactive_list))
  1560. continue;
  1561. break;
  1562. }
  1563. /* If we didn't have anything on the request list but there
  1564. * are buffers awaiting a flush, emit one and try again.
  1565. * When we wait on it, those buffers waiting for that flush
  1566. * will get moved to inactive.
  1567. */
  1568. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1569. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1570. struct drm_i915_gem_object,
  1571. list);
  1572. obj = obj_priv->obj;
  1573. i915_gem_flush(dev,
  1574. obj->write_domain,
  1575. obj->write_domain);
  1576. i915_add_request(dev, obj->write_domain);
  1577. obj = NULL;
  1578. continue;
  1579. }
  1580. DRM_ERROR("inactive empty %d request empty %d "
  1581. "flushing empty %d\n",
  1582. list_empty(&dev_priv->mm.inactive_list),
  1583. list_empty(&dev_priv->mm.request_list),
  1584. list_empty(&dev_priv->mm.flushing_list));
  1585. /* If we didn't do any of the above, there's nothing to be done
  1586. * and we just can't fit it in.
  1587. */
  1588. return -ENOMEM;
  1589. }
  1590. return ret;
  1591. }
  1592. static int
  1593. i915_gem_evict_everything(struct drm_device *dev)
  1594. {
  1595. int ret;
  1596. for (;;) {
  1597. ret = i915_gem_evict_something(dev);
  1598. if (ret != 0)
  1599. break;
  1600. }
  1601. if (ret == -ENOMEM)
  1602. return 0;
  1603. return ret;
  1604. }
  1605. int
  1606. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1607. {
  1608. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1609. int page_count, i;
  1610. struct address_space *mapping;
  1611. struct inode *inode;
  1612. struct page *page;
  1613. int ret;
  1614. if (obj_priv->pages_refcount++ != 0)
  1615. return 0;
  1616. /* Get the list of pages out of our struct file. They'll be pinned
  1617. * at this point until we release them.
  1618. */
  1619. page_count = obj->size / PAGE_SIZE;
  1620. BUG_ON(obj_priv->pages != NULL);
  1621. obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
  1622. DRM_MEM_DRIVER);
  1623. if (obj_priv->pages == NULL) {
  1624. DRM_ERROR("Faled to allocate page list\n");
  1625. obj_priv->pages_refcount--;
  1626. return -ENOMEM;
  1627. }
  1628. inode = obj->filp->f_path.dentry->d_inode;
  1629. mapping = inode->i_mapping;
  1630. for (i = 0; i < page_count; i++) {
  1631. page = read_mapping_page(mapping, i, NULL);
  1632. if (IS_ERR(page)) {
  1633. ret = PTR_ERR(page);
  1634. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1635. i915_gem_object_put_pages(obj);
  1636. return ret;
  1637. }
  1638. obj_priv->pages[i] = page;
  1639. }
  1640. return 0;
  1641. }
  1642. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1643. {
  1644. struct drm_gem_object *obj = reg->obj;
  1645. struct drm_device *dev = obj->dev;
  1646. drm_i915_private_t *dev_priv = dev->dev_private;
  1647. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1648. int regnum = obj_priv->fence_reg;
  1649. uint64_t val;
  1650. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1651. 0xfffff000) << 32;
  1652. val |= obj_priv->gtt_offset & 0xfffff000;
  1653. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1654. if (obj_priv->tiling_mode == I915_TILING_Y)
  1655. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1656. val |= I965_FENCE_REG_VALID;
  1657. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1658. }
  1659. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1660. {
  1661. struct drm_gem_object *obj = reg->obj;
  1662. struct drm_device *dev = obj->dev;
  1663. drm_i915_private_t *dev_priv = dev->dev_private;
  1664. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1665. int regnum = obj_priv->fence_reg;
  1666. int tile_width;
  1667. uint32_t fence_reg, val;
  1668. uint32_t pitch_val;
  1669. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1670. (obj_priv->gtt_offset & (obj->size - 1))) {
  1671. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1672. __func__, obj_priv->gtt_offset, obj->size);
  1673. return;
  1674. }
  1675. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1676. HAS_128_BYTE_Y_TILING(dev))
  1677. tile_width = 128;
  1678. else
  1679. tile_width = 512;
  1680. /* Note: pitch better be a power of two tile widths */
  1681. pitch_val = obj_priv->stride / tile_width;
  1682. pitch_val = ffs(pitch_val) - 1;
  1683. val = obj_priv->gtt_offset;
  1684. if (obj_priv->tiling_mode == I915_TILING_Y)
  1685. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1686. val |= I915_FENCE_SIZE_BITS(obj->size);
  1687. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1688. val |= I830_FENCE_REG_VALID;
  1689. if (regnum < 8)
  1690. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1691. else
  1692. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1693. I915_WRITE(fence_reg, val);
  1694. }
  1695. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1696. {
  1697. struct drm_gem_object *obj = reg->obj;
  1698. struct drm_device *dev = obj->dev;
  1699. drm_i915_private_t *dev_priv = dev->dev_private;
  1700. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1701. int regnum = obj_priv->fence_reg;
  1702. uint32_t val;
  1703. uint32_t pitch_val;
  1704. uint32_t fence_size_bits;
  1705. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1706. (obj_priv->gtt_offset & (obj->size - 1))) {
  1707. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1708. __func__, obj_priv->gtt_offset);
  1709. return;
  1710. }
  1711. pitch_val = (obj_priv->stride / 128) - 1;
  1712. WARN_ON(pitch_val & ~0x0000000f);
  1713. val = obj_priv->gtt_offset;
  1714. if (obj_priv->tiling_mode == I915_TILING_Y)
  1715. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1716. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1717. WARN_ON(fence_size_bits & ~0x00000f00);
  1718. val |= fence_size_bits;
  1719. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1720. val |= I830_FENCE_REG_VALID;
  1721. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1722. }
  1723. /**
  1724. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1725. * @obj: object to map through a fence reg
  1726. * @write: object is about to be written
  1727. *
  1728. * When mapping objects through the GTT, userspace wants to be able to write
  1729. * to them without having to worry about swizzling if the object is tiled.
  1730. *
  1731. * This function walks the fence regs looking for a free one for @obj,
  1732. * stealing one if it can't find any.
  1733. *
  1734. * It then sets up the reg based on the object's properties: address, pitch
  1735. * and tiling format.
  1736. */
  1737. static int
  1738. i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
  1739. {
  1740. struct drm_device *dev = obj->dev;
  1741. struct drm_i915_private *dev_priv = dev->dev_private;
  1742. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1743. struct drm_i915_fence_reg *reg = NULL;
  1744. struct drm_i915_gem_object *old_obj_priv = NULL;
  1745. int i, ret, avail;
  1746. switch (obj_priv->tiling_mode) {
  1747. case I915_TILING_NONE:
  1748. WARN(1, "allocating a fence for non-tiled object?\n");
  1749. break;
  1750. case I915_TILING_X:
  1751. if (!obj_priv->stride)
  1752. return -EINVAL;
  1753. WARN((obj_priv->stride & (512 - 1)),
  1754. "object 0x%08x is X tiled but has non-512B pitch\n",
  1755. obj_priv->gtt_offset);
  1756. break;
  1757. case I915_TILING_Y:
  1758. if (!obj_priv->stride)
  1759. return -EINVAL;
  1760. WARN((obj_priv->stride & (128 - 1)),
  1761. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1762. obj_priv->gtt_offset);
  1763. break;
  1764. }
  1765. /* First try to find a free reg */
  1766. try_again:
  1767. avail = 0;
  1768. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1769. reg = &dev_priv->fence_regs[i];
  1770. if (!reg->obj)
  1771. break;
  1772. old_obj_priv = reg->obj->driver_private;
  1773. if (!old_obj_priv->pin_count)
  1774. avail++;
  1775. }
  1776. /* None available, try to steal one or wait for a user to finish */
  1777. if (i == dev_priv->num_fence_regs) {
  1778. uint32_t seqno = dev_priv->mm.next_gem_seqno;
  1779. loff_t offset;
  1780. if (avail == 0)
  1781. return -ENOMEM;
  1782. for (i = dev_priv->fence_reg_start;
  1783. i < dev_priv->num_fence_regs; i++) {
  1784. uint32_t this_seqno;
  1785. reg = &dev_priv->fence_regs[i];
  1786. old_obj_priv = reg->obj->driver_private;
  1787. if (old_obj_priv->pin_count)
  1788. continue;
  1789. /* i915 uses fences for GPU access to tiled buffers */
  1790. if (IS_I965G(dev) || !old_obj_priv->active)
  1791. break;
  1792. /* find the seqno of the first available fence */
  1793. this_seqno = old_obj_priv->last_rendering_seqno;
  1794. if (this_seqno != 0 &&
  1795. reg->obj->write_domain == 0 &&
  1796. i915_seqno_passed(seqno, this_seqno))
  1797. seqno = this_seqno;
  1798. }
  1799. /*
  1800. * Now things get ugly... we have to wait for one of the
  1801. * objects to finish before trying again.
  1802. */
  1803. if (i == dev_priv->num_fence_regs) {
  1804. if (seqno == dev_priv->mm.next_gem_seqno) {
  1805. i915_gem_flush(dev,
  1806. I915_GEM_GPU_DOMAINS,
  1807. I915_GEM_GPU_DOMAINS);
  1808. seqno = i915_add_request(dev,
  1809. I915_GEM_GPU_DOMAINS);
  1810. if (seqno == 0)
  1811. return -ENOMEM;
  1812. }
  1813. ret = i915_wait_request(dev, seqno);
  1814. if (ret)
  1815. return ret;
  1816. goto try_again;
  1817. }
  1818. BUG_ON(old_obj_priv->active ||
  1819. (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
  1820. /*
  1821. * Zap this virtual mapping so we can set up a fence again
  1822. * for this object next time we need it.
  1823. */
  1824. offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
  1825. if (dev->dev_mapping)
  1826. unmap_mapping_range(dev->dev_mapping, offset,
  1827. reg->obj->size, 1);
  1828. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1829. }
  1830. obj_priv->fence_reg = i;
  1831. reg->obj = obj;
  1832. if (IS_I965G(dev))
  1833. i965_write_fence_reg(reg);
  1834. else if (IS_I9XX(dev))
  1835. i915_write_fence_reg(reg);
  1836. else
  1837. i830_write_fence_reg(reg);
  1838. return 0;
  1839. }
  1840. /**
  1841. * i915_gem_clear_fence_reg - clear out fence register info
  1842. * @obj: object to clear
  1843. *
  1844. * Zeroes out the fence register itself and clears out the associated
  1845. * data structures in dev_priv and obj_priv.
  1846. */
  1847. static void
  1848. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1849. {
  1850. struct drm_device *dev = obj->dev;
  1851. drm_i915_private_t *dev_priv = dev->dev_private;
  1852. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1853. if (IS_I965G(dev))
  1854. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  1855. else {
  1856. uint32_t fence_reg;
  1857. if (obj_priv->fence_reg < 8)
  1858. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  1859. else
  1860. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  1861. 8) * 4;
  1862. I915_WRITE(fence_reg, 0);
  1863. }
  1864. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  1865. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1866. }
  1867. /**
  1868. * Finds free space in the GTT aperture and binds the object there.
  1869. */
  1870. static int
  1871. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  1872. {
  1873. struct drm_device *dev = obj->dev;
  1874. drm_i915_private_t *dev_priv = dev->dev_private;
  1875. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1876. struct drm_mm_node *free_space;
  1877. int page_count, ret;
  1878. if (dev_priv->mm.suspended)
  1879. return -EBUSY;
  1880. if (alignment == 0)
  1881. alignment = i915_gem_get_gtt_alignment(obj);
  1882. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  1883. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  1884. return -EINVAL;
  1885. }
  1886. search_free:
  1887. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  1888. obj->size, alignment, 0);
  1889. if (free_space != NULL) {
  1890. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  1891. alignment);
  1892. if (obj_priv->gtt_space != NULL) {
  1893. obj_priv->gtt_space->private = obj;
  1894. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  1895. }
  1896. }
  1897. if (obj_priv->gtt_space == NULL) {
  1898. bool lists_empty;
  1899. /* If the gtt is empty and we're still having trouble
  1900. * fitting our object in, we're out of memory.
  1901. */
  1902. #if WATCH_LRU
  1903. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  1904. #endif
  1905. spin_lock(&dev_priv->mm.active_list_lock);
  1906. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  1907. list_empty(&dev_priv->mm.flushing_list) &&
  1908. list_empty(&dev_priv->mm.active_list));
  1909. spin_unlock(&dev_priv->mm.active_list_lock);
  1910. if (lists_empty) {
  1911. DRM_ERROR("GTT full, but LRU list empty\n");
  1912. return -ENOMEM;
  1913. }
  1914. ret = i915_gem_evict_something(dev);
  1915. if (ret != 0) {
  1916. if (ret != -ERESTARTSYS)
  1917. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  1918. return ret;
  1919. }
  1920. goto search_free;
  1921. }
  1922. #if WATCH_BUF
  1923. DRM_INFO("Binding object of size %d at 0x%08x\n",
  1924. obj->size, obj_priv->gtt_offset);
  1925. #endif
  1926. ret = i915_gem_object_get_pages(obj);
  1927. if (ret) {
  1928. drm_mm_put_block(obj_priv->gtt_space);
  1929. obj_priv->gtt_space = NULL;
  1930. return ret;
  1931. }
  1932. page_count = obj->size / PAGE_SIZE;
  1933. /* Create an AGP memory structure pointing at our pages, and bind it
  1934. * into the GTT.
  1935. */
  1936. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  1937. obj_priv->pages,
  1938. page_count,
  1939. obj_priv->gtt_offset,
  1940. obj_priv->agp_type);
  1941. if (obj_priv->agp_mem == NULL) {
  1942. i915_gem_object_put_pages(obj);
  1943. drm_mm_put_block(obj_priv->gtt_space);
  1944. obj_priv->gtt_space = NULL;
  1945. return -ENOMEM;
  1946. }
  1947. atomic_inc(&dev->gtt_count);
  1948. atomic_add(obj->size, &dev->gtt_memory);
  1949. /* Assert that the object is not currently in any GPU domain. As it
  1950. * wasn't in the GTT, there shouldn't be any way it could have been in
  1951. * a GPU cache
  1952. */
  1953. BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  1954. BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  1955. return 0;
  1956. }
  1957. void
  1958. i915_gem_clflush_object(struct drm_gem_object *obj)
  1959. {
  1960. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1961. /* If we don't have a page list set up, then we're not pinned
  1962. * to GPU, and we can ignore the cache flush because it'll happen
  1963. * again at bind time.
  1964. */
  1965. if (obj_priv->pages == NULL)
  1966. return;
  1967. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  1968. }
  1969. /** Flushes any GPU write domain for the object if it's dirty. */
  1970. static void
  1971. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  1972. {
  1973. struct drm_device *dev = obj->dev;
  1974. uint32_t seqno;
  1975. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  1976. return;
  1977. /* Queue the GPU write cache flushing we need. */
  1978. i915_gem_flush(dev, 0, obj->write_domain);
  1979. seqno = i915_add_request(dev, obj->write_domain);
  1980. obj->write_domain = 0;
  1981. i915_gem_object_move_to_active(obj, seqno);
  1982. }
  1983. /** Flushes the GTT write domain for the object if it's dirty. */
  1984. static void
  1985. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  1986. {
  1987. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  1988. return;
  1989. /* No actual flushing is required for the GTT write domain. Writes
  1990. * to it immediately go to main memory as far as we know, so there's
  1991. * no chipset flush. It also doesn't land in render cache.
  1992. */
  1993. obj->write_domain = 0;
  1994. }
  1995. /** Flushes the CPU write domain for the object if it's dirty. */
  1996. static void
  1997. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  1998. {
  1999. struct drm_device *dev = obj->dev;
  2000. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2001. return;
  2002. i915_gem_clflush_object(obj);
  2003. drm_agp_chipset_flush(dev);
  2004. obj->write_domain = 0;
  2005. }
  2006. /**
  2007. * Moves a single object to the GTT read, and possibly write domain.
  2008. *
  2009. * This function returns when the move is complete, including waiting on
  2010. * flushes to occur.
  2011. */
  2012. int
  2013. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2014. {
  2015. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2016. int ret;
  2017. /* Not valid to be called on unbound objects. */
  2018. if (obj_priv->gtt_space == NULL)
  2019. return -EINVAL;
  2020. i915_gem_object_flush_gpu_write_domain(obj);
  2021. /* Wait on any GPU rendering and flushing to occur. */
  2022. ret = i915_gem_object_wait_rendering(obj);
  2023. if (ret != 0)
  2024. return ret;
  2025. /* If we're writing through the GTT domain, then CPU and GPU caches
  2026. * will need to be invalidated at next use.
  2027. */
  2028. if (write)
  2029. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2030. i915_gem_object_flush_cpu_write_domain(obj);
  2031. /* It should now be out of any other write domains, and we can update
  2032. * the domain values for our changes.
  2033. */
  2034. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2035. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2036. if (write) {
  2037. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2038. obj_priv->dirty = 1;
  2039. }
  2040. return 0;
  2041. }
  2042. /**
  2043. * Moves a single object to the CPU read, and possibly write domain.
  2044. *
  2045. * This function returns when the move is complete, including waiting on
  2046. * flushes to occur.
  2047. */
  2048. static int
  2049. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2050. {
  2051. int ret;
  2052. i915_gem_object_flush_gpu_write_domain(obj);
  2053. /* Wait on any GPU rendering and flushing to occur. */
  2054. ret = i915_gem_object_wait_rendering(obj);
  2055. if (ret != 0)
  2056. return ret;
  2057. i915_gem_object_flush_gtt_write_domain(obj);
  2058. /* If we have a partially-valid cache of the object in the CPU,
  2059. * finish invalidating it and free the per-page flags.
  2060. */
  2061. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2062. /* Flush the CPU cache if it's still invalid. */
  2063. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2064. i915_gem_clflush_object(obj);
  2065. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2066. }
  2067. /* It should now be out of any other write domains, and we can update
  2068. * the domain values for our changes.
  2069. */
  2070. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2071. /* If we're writing through the CPU, then the GPU read domains will
  2072. * need to be invalidated at next use.
  2073. */
  2074. if (write) {
  2075. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2076. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2077. }
  2078. return 0;
  2079. }
  2080. /*
  2081. * Set the next domain for the specified object. This
  2082. * may not actually perform the necessary flushing/invaliding though,
  2083. * as that may want to be batched with other set_domain operations
  2084. *
  2085. * This is (we hope) the only really tricky part of gem. The goal
  2086. * is fairly simple -- track which caches hold bits of the object
  2087. * and make sure they remain coherent. A few concrete examples may
  2088. * help to explain how it works. For shorthand, we use the notation
  2089. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2090. * a pair of read and write domain masks.
  2091. *
  2092. * Case 1: the batch buffer
  2093. *
  2094. * 1. Allocated
  2095. * 2. Written by CPU
  2096. * 3. Mapped to GTT
  2097. * 4. Read by GPU
  2098. * 5. Unmapped from GTT
  2099. * 6. Freed
  2100. *
  2101. * Let's take these a step at a time
  2102. *
  2103. * 1. Allocated
  2104. * Pages allocated from the kernel may still have
  2105. * cache contents, so we set them to (CPU, CPU) always.
  2106. * 2. Written by CPU (using pwrite)
  2107. * The pwrite function calls set_domain (CPU, CPU) and
  2108. * this function does nothing (as nothing changes)
  2109. * 3. Mapped by GTT
  2110. * This function asserts that the object is not
  2111. * currently in any GPU-based read or write domains
  2112. * 4. Read by GPU
  2113. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2114. * As write_domain is zero, this function adds in the
  2115. * current read domains (CPU+COMMAND, 0).
  2116. * flush_domains is set to CPU.
  2117. * invalidate_domains is set to COMMAND
  2118. * clflush is run to get data out of the CPU caches
  2119. * then i915_dev_set_domain calls i915_gem_flush to
  2120. * emit an MI_FLUSH and drm_agp_chipset_flush
  2121. * 5. Unmapped from GTT
  2122. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2123. * flush_domains and invalidate_domains end up both zero
  2124. * so no flushing/invalidating happens
  2125. * 6. Freed
  2126. * yay, done
  2127. *
  2128. * Case 2: The shared render buffer
  2129. *
  2130. * 1. Allocated
  2131. * 2. Mapped to GTT
  2132. * 3. Read/written by GPU
  2133. * 4. set_domain to (CPU,CPU)
  2134. * 5. Read/written by CPU
  2135. * 6. Read/written by GPU
  2136. *
  2137. * 1. Allocated
  2138. * Same as last example, (CPU, CPU)
  2139. * 2. Mapped to GTT
  2140. * Nothing changes (assertions find that it is not in the GPU)
  2141. * 3. Read/written by GPU
  2142. * execbuffer calls set_domain (RENDER, RENDER)
  2143. * flush_domains gets CPU
  2144. * invalidate_domains gets GPU
  2145. * clflush (obj)
  2146. * MI_FLUSH and drm_agp_chipset_flush
  2147. * 4. set_domain (CPU, CPU)
  2148. * flush_domains gets GPU
  2149. * invalidate_domains gets CPU
  2150. * wait_rendering (obj) to make sure all drawing is complete.
  2151. * This will include an MI_FLUSH to get the data from GPU
  2152. * to memory
  2153. * clflush (obj) to invalidate the CPU cache
  2154. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2155. * 5. Read/written by CPU
  2156. * cache lines are loaded and dirtied
  2157. * 6. Read written by GPU
  2158. * Same as last GPU access
  2159. *
  2160. * Case 3: The constant buffer
  2161. *
  2162. * 1. Allocated
  2163. * 2. Written by CPU
  2164. * 3. Read by GPU
  2165. * 4. Updated (written) by CPU again
  2166. * 5. Read by GPU
  2167. *
  2168. * 1. Allocated
  2169. * (CPU, CPU)
  2170. * 2. Written by CPU
  2171. * (CPU, CPU)
  2172. * 3. Read by GPU
  2173. * (CPU+RENDER, 0)
  2174. * flush_domains = CPU
  2175. * invalidate_domains = RENDER
  2176. * clflush (obj)
  2177. * MI_FLUSH
  2178. * drm_agp_chipset_flush
  2179. * 4. Updated (written) by CPU again
  2180. * (CPU, CPU)
  2181. * flush_domains = 0 (no previous write domain)
  2182. * invalidate_domains = 0 (no new read domains)
  2183. * 5. Read by GPU
  2184. * (CPU+RENDER, 0)
  2185. * flush_domains = CPU
  2186. * invalidate_domains = RENDER
  2187. * clflush (obj)
  2188. * MI_FLUSH
  2189. * drm_agp_chipset_flush
  2190. */
  2191. static void
  2192. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2193. {
  2194. struct drm_device *dev = obj->dev;
  2195. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2196. uint32_t invalidate_domains = 0;
  2197. uint32_t flush_domains = 0;
  2198. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2199. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2200. #if WATCH_BUF
  2201. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2202. __func__, obj,
  2203. obj->read_domains, obj->pending_read_domains,
  2204. obj->write_domain, obj->pending_write_domain);
  2205. #endif
  2206. /*
  2207. * If the object isn't moving to a new write domain,
  2208. * let the object stay in multiple read domains
  2209. */
  2210. if (obj->pending_write_domain == 0)
  2211. obj->pending_read_domains |= obj->read_domains;
  2212. else
  2213. obj_priv->dirty = 1;
  2214. /*
  2215. * Flush the current write domain if
  2216. * the new read domains don't match. Invalidate
  2217. * any read domains which differ from the old
  2218. * write domain
  2219. */
  2220. if (obj->write_domain &&
  2221. obj->write_domain != obj->pending_read_domains) {
  2222. flush_domains |= obj->write_domain;
  2223. invalidate_domains |=
  2224. obj->pending_read_domains & ~obj->write_domain;
  2225. }
  2226. /*
  2227. * Invalidate any read caches which may have
  2228. * stale data. That is, any new read domains.
  2229. */
  2230. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2231. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2232. #if WATCH_BUF
  2233. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2234. __func__, flush_domains, invalidate_domains);
  2235. #endif
  2236. i915_gem_clflush_object(obj);
  2237. }
  2238. /* The actual obj->write_domain will be updated with
  2239. * pending_write_domain after we emit the accumulated flush for all
  2240. * of our domain changes in execbuffers (which clears objects'
  2241. * write_domains). So if we have a current write domain that we
  2242. * aren't changing, set pending_write_domain to that.
  2243. */
  2244. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2245. obj->pending_write_domain = obj->write_domain;
  2246. obj->read_domains = obj->pending_read_domains;
  2247. dev->invalidate_domains |= invalidate_domains;
  2248. dev->flush_domains |= flush_domains;
  2249. #if WATCH_BUF
  2250. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2251. __func__,
  2252. obj->read_domains, obj->write_domain,
  2253. dev->invalidate_domains, dev->flush_domains);
  2254. #endif
  2255. }
  2256. /**
  2257. * Moves the object from a partially CPU read to a full one.
  2258. *
  2259. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2260. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2261. */
  2262. static void
  2263. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2264. {
  2265. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2266. if (!obj_priv->page_cpu_valid)
  2267. return;
  2268. /* If we're partially in the CPU read domain, finish moving it in.
  2269. */
  2270. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2271. int i;
  2272. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2273. if (obj_priv->page_cpu_valid[i])
  2274. continue;
  2275. drm_clflush_pages(obj_priv->pages + i, 1);
  2276. }
  2277. }
  2278. /* Free the page_cpu_valid mappings which are now stale, whether
  2279. * or not we've got I915_GEM_DOMAIN_CPU.
  2280. */
  2281. drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
  2282. DRM_MEM_DRIVER);
  2283. obj_priv->page_cpu_valid = NULL;
  2284. }
  2285. /**
  2286. * Set the CPU read domain on a range of the object.
  2287. *
  2288. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2289. * not entirely valid. The page_cpu_valid member of the object flags which
  2290. * pages have been flushed, and will be respected by
  2291. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2292. * of the whole object.
  2293. *
  2294. * This function returns when the move is complete, including waiting on
  2295. * flushes to occur.
  2296. */
  2297. static int
  2298. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2299. uint64_t offset, uint64_t size)
  2300. {
  2301. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2302. int i, ret;
  2303. if (offset == 0 && size == obj->size)
  2304. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2305. i915_gem_object_flush_gpu_write_domain(obj);
  2306. /* Wait on any GPU rendering and flushing to occur. */
  2307. ret = i915_gem_object_wait_rendering(obj);
  2308. if (ret != 0)
  2309. return ret;
  2310. i915_gem_object_flush_gtt_write_domain(obj);
  2311. /* If we're already fully in the CPU read domain, we're done. */
  2312. if (obj_priv->page_cpu_valid == NULL &&
  2313. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2314. return 0;
  2315. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2316. * newly adding I915_GEM_DOMAIN_CPU
  2317. */
  2318. if (obj_priv->page_cpu_valid == NULL) {
  2319. obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
  2320. DRM_MEM_DRIVER);
  2321. if (obj_priv->page_cpu_valid == NULL)
  2322. return -ENOMEM;
  2323. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2324. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2325. /* Flush the cache on any pages that are still invalid from the CPU's
  2326. * perspective.
  2327. */
  2328. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2329. i++) {
  2330. if (obj_priv->page_cpu_valid[i])
  2331. continue;
  2332. drm_clflush_pages(obj_priv->pages + i, 1);
  2333. obj_priv->page_cpu_valid[i] = 1;
  2334. }
  2335. /* It should now be out of any other write domains, and we can update
  2336. * the domain values for our changes.
  2337. */
  2338. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2339. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2340. return 0;
  2341. }
  2342. /**
  2343. * Pin an object to the GTT and evaluate the relocations landing in it.
  2344. */
  2345. static int
  2346. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2347. struct drm_file *file_priv,
  2348. struct drm_i915_gem_exec_object *entry,
  2349. struct drm_i915_gem_relocation_entry *relocs)
  2350. {
  2351. struct drm_device *dev = obj->dev;
  2352. drm_i915_private_t *dev_priv = dev->dev_private;
  2353. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2354. int i, ret;
  2355. void __iomem *reloc_page;
  2356. /* Choose the GTT offset for our buffer and put it there. */
  2357. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2358. if (ret)
  2359. return ret;
  2360. entry->offset = obj_priv->gtt_offset;
  2361. /* Apply the relocations, using the GTT aperture to avoid cache
  2362. * flushing requirements.
  2363. */
  2364. for (i = 0; i < entry->relocation_count; i++) {
  2365. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2366. struct drm_gem_object *target_obj;
  2367. struct drm_i915_gem_object *target_obj_priv;
  2368. uint32_t reloc_val, reloc_offset;
  2369. uint32_t __iomem *reloc_entry;
  2370. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2371. reloc->target_handle);
  2372. if (target_obj == NULL) {
  2373. i915_gem_object_unpin(obj);
  2374. return -EBADF;
  2375. }
  2376. target_obj_priv = target_obj->driver_private;
  2377. /* The target buffer should have appeared before us in the
  2378. * exec_object list, so it should have a GTT space bound by now.
  2379. */
  2380. if (target_obj_priv->gtt_space == NULL) {
  2381. DRM_ERROR("No GTT space found for object %d\n",
  2382. reloc->target_handle);
  2383. drm_gem_object_unreference(target_obj);
  2384. i915_gem_object_unpin(obj);
  2385. return -EINVAL;
  2386. }
  2387. if (reloc->offset > obj->size - 4) {
  2388. DRM_ERROR("Relocation beyond object bounds: "
  2389. "obj %p target %d offset %d size %d.\n",
  2390. obj, reloc->target_handle,
  2391. (int) reloc->offset, (int) obj->size);
  2392. drm_gem_object_unreference(target_obj);
  2393. i915_gem_object_unpin(obj);
  2394. return -EINVAL;
  2395. }
  2396. if (reloc->offset & 3) {
  2397. DRM_ERROR("Relocation not 4-byte aligned: "
  2398. "obj %p target %d offset %d.\n",
  2399. obj, reloc->target_handle,
  2400. (int) reloc->offset);
  2401. drm_gem_object_unreference(target_obj);
  2402. i915_gem_object_unpin(obj);
  2403. return -EINVAL;
  2404. }
  2405. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2406. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2407. DRM_ERROR("reloc with read/write CPU domains: "
  2408. "obj %p target %d offset %d "
  2409. "read %08x write %08x",
  2410. obj, reloc->target_handle,
  2411. (int) reloc->offset,
  2412. reloc->read_domains,
  2413. reloc->write_domain);
  2414. drm_gem_object_unreference(target_obj);
  2415. i915_gem_object_unpin(obj);
  2416. return -EINVAL;
  2417. }
  2418. if (reloc->write_domain && target_obj->pending_write_domain &&
  2419. reloc->write_domain != target_obj->pending_write_domain) {
  2420. DRM_ERROR("Write domain conflict: "
  2421. "obj %p target %d offset %d "
  2422. "new %08x old %08x\n",
  2423. obj, reloc->target_handle,
  2424. (int) reloc->offset,
  2425. reloc->write_domain,
  2426. target_obj->pending_write_domain);
  2427. drm_gem_object_unreference(target_obj);
  2428. i915_gem_object_unpin(obj);
  2429. return -EINVAL;
  2430. }
  2431. #if WATCH_RELOC
  2432. DRM_INFO("%s: obj %p offset %08x target %d "
  2433. "read %08x write %08x gtt %08x "
  2434. "presumed %08x delta %08x\n",
  2435. __func__,
  2436. obj,
  2437. (int) reloc->offset,
  2438. (int) reloc->target_handle,
  2439. (int) reloc->read_domains,
  2440. (int) reloc->write_domain,
  2441. (int) target_obj_priv->gtt_offset,
  2442. (int) reloc->presumed_offset,
  2443. reloc->delta);
  2444. #endif
  2445. target_obj->pending_read_domains |= reloc->read_domains;
  2446. target_obj->pending_write_domain |= reloc->write_domain;
  2447. /* If the relocation already has the right value in it, no
  2448. * more work needs to be done.
  2449. */
  2450. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2451. drm_gem_object_unreference(target_obj);
  2452. continue;
  2453. }
  2454. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2455. if (ret != 0) {
  2456. drm_gem_object_unreference(target_obj);
  2457. i915_gem_object_unpin(obj);
  2458. return -EINVAL;
  2459. }
  2460. /* Map the page containing the relocation we're going to
  2461. * perform.
  2462. */
  2463. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2464. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2465. (reloc_offset &
  2466. ~(PAGE_SIZE - 1)));
  2467. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2468. (reloc_offset & (PAGE_SIZE - 1)));
  2469. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2470. #if WATCH_BUF
  2471. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2472. obj, (unsigned int) reloc->offset,
  2473. readl(reloc_entry), reloc_val);
  2474. #endif
  2475. writel(reloc_val, reloc_entry);
  2476. io_mapping_unmap_atomic(reloc_page);
  2477. /* The updated presumed offset for this entry will be
  2478. * copied back out to the user.
  2479. */
  2480. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2481. drm_gem_object_unreference(target_obj);
  2482. }
  2483. #if WATCH_BUF
  2484. if (0)
  2485. i915_gem_dump_object(obj, 128, __func__, ~0);
  2486. #endif
  2487. return 0;
  2488. }
  2489. /** Dispatch a batchbuffer to the ring
  2490. */
  2491. static int
  2492. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2493. struct drm_i915_gem_execbuffer *exec,
  2494. struct drm_clip_rect *cliprects,
  2495. uint64_t exec_offset)
  2496. {
  2497. drm_i915_private_t *dev_priv = dev->dev_private;
  2498. int nbox = exec->num_cliprects;
  2499. int i = 0, count;
  2500. uint32_t exec_start, exec_len;
  2501. RING_LOCALS;
  2502. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2503. exec_len = (uint32_t) exec->batch_len;
  2504. if ((exec_start | exec_len) & 0x7) {
  2505. DRM_ERROR("alignment\n");
  2506. return -EINVAL;
  2507. }
  2508. if (!exec_start)
  2509. return -EINVAL;
  2510. count = nbox ? nbox : 1;
  2511. for (i = 0; i < count; i++) {
  2512. if (i < nbox) {
  2513. int ret = i915_emit_box(dev, cliprects, i,
  2514. exec->DR1, exec->DR4);
  2515. if (ret)
  2516. return ret;
  2517. }
  2518. if (IS_I830(dev) || IS_845G(dev)) {
  2519. BEGIN_LP_RING(4);
  2520. OUT_RING(MI_BATCH_BUFFER);
  2521. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2522. OUT_RING(exec_start + exec_len - 4);
  2523. OUT_RING(0);
  2524. ADVANCE_LP_RING();
  2525. } else {
  2526. BEGIN_LP_RING(2);
  2527. if (IS_I965G(dev)) {
  2528. OUT_RING(MI_BATCH_BUFFER_START |
  2529. (2 << 6) |
  2530. MI_BATCH_NON_SECURE_I965);
  2531. OUT_RING(exec_start);
  2532. } else {
  2533. OUT_RING(MI_BATCH_BUFFER_START |
  2534. (2 << 6));
  2535. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2536. }
  2537. ADVANCE_LP_RING();
  2538. }
  2539. }
  2540. /* XXX breadcrumb */
  2541. return 0;
  2542. }
  2543. /* Throttle our rendering by waiting until the ring has completed our requests
  2544. * emitted over 20 msec ago.
  2545. *
  2546. * This should get us reasonable parallelism between CPU and GPU but also
  2547. * relatively low latency when blocking on a particular request to finish.
  2548. */
  2549. static int
  2550. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2551. {
  2552. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2553. int ret = 0;
  2554. uint32_t seqno;
  2555. mutex_lock(&dev->struct_mutex);
  2556. seqno = i915_file_priv->mm.last_gem_throttle_seqno;
  2557. i915_file_priv->mm.last_gem_throttle_seqno =
  2558. i915_file_priv->mm.last_gem_seqno;
  2559. if (seqno)
  2560. ret = i915_wait_request(dev, seqno);
  2561. mutex_unlock(&dev->struct_mutex);
  2562. return ret;
  2563. }
  2564. static int
  2565. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2566. uint32_t buffer_count,
  2567. struct drm_i915_gem_relocation_entry **relocs)
  2568. {
  2569. uint32_t reloc_count = 0, reloc_index = 0, i;
  2570. int ret;
  2571. *relocs = NULL;
  2572. for (i = 0; i < buffer_count; i++) {
  2573. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2574. return -EINVAL;
  2575. reloc_count += exec_list[i].relocation_count;
  2576. }
  2577. *relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
  2578. if (*relocs == NULL)
  2579. return -ENOMEM;
  2580. for (i = 0; i < buffer_count; i++) {
  2581. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2582. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2583. ret = copy_from_user(&(*relocs)[reloc_index],
  2584. user_relocs,
  2585. exec_list[i].relocation_count *
  2586. sizeof(**relocs));
  2587. if (ret != 0) {
  2588. drm_free(*relocs, reloc_count * sizeof(**relocs),
  2589. DRM_MEM_DRIVER);
  2590. *relocs = NULL;
  2591. return -EFAULT;
  2592. }
  2593. reloc_index += exec_list[i].relocation_count;
  2594. }
  2595. return 0;
  2596. }
  2597. static int
  2598. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2599. uint32_t buffer_count,
  2600. struct drm_i915_gem_relocation_entry *relocs)
  2601. {
  2602. uint32_t reloc_count = 0, i;
  2603. int ret = 0;
  2604. for (i = 0; i < buffer_count; i++) {
  2605. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2606. int unwritten;
  2607. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2608. unwritten = copy_to_user(user_relocs,
  2609. &relocs[reloc_count],
  2610. exec_list[i].relocation_count *
  2611. sizeof(*relocs));
  2612. if (unwritten) {
  2613. ret = -EFAULT;
  2614. goto err;
  2615. }
  2616. reloc_count += exec_list[i].relocation_count;
  2617. }
  2618. err:
  2619. drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
  2620. return ret;
  2621. }
  2622. int
  2623. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2624. struct drm_file *file_priv)
  2625. {
  2626. drm_i915_private_t *dev_priv = dev->dev_private;
  2627. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2628. struct drm_i915_gem_execbuffer *args = data;
  2629. struct drm_i915_gem_exec_object *exec_list = NULL;
  2630. struct drm_gem_object **object_list = NULL;
  2631. struct drm_gem_object *batch_obj;
  2632. struct drm_i915_gem_object *obj_priv;
  2633. struct drm_clip_rect *cliprects = NULL;
  2634. struct drm_i915_gem_relocation_entry *relocs;
  2635. int ret, ret2, i, pinned = 0;
  2636. uint64_t exec_offset;
  2637. uint32_t seqno, flush_domains, reloc_index;
  2638. int pin_tries;
  2639. #if WATCH_EXEC
  2640. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2641. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2642. #endif
  2643. if (args->buffer_count < 1) {
  2644. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2645. return -EINVAL;
  2646. }
  2647. /* Copy in the exec list from userland */
  2648. exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
  2649. DRM_MEM_DRIVER);
  2650. object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
  2651. DRM_MEM_DRIVER);
  2652. if (exec_list == NULL || object_list == NULL) {
  2653. DRM_ERROR("Failed to allocate exec or object list "
  2654. "for %d buffers\n",
  2655. args->buffer_count);
  2656. ret = -ENOMEM;
  2657. goto pre_mutex_err;
  2658. }
  2659. ret = copy_from_user(exec_list,
  2660. (struct drm_i915_relocation_entry __user *)
  2661. (uintptr_t) args->buffers_ptr,
  2662. sizeof(*exec_list) * args->buffer_count);
  2663. if (ret != 0) {
  2664. DRM_ERROR("copy %d exec entries failed %d\n",
  2665. args->buffer_count, ret);
  2666. goto pre_mutex_err;
  2667. }
  2668. if (args->num_cliprects != 0) {
  2669. cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
  2670. DRM_MEM_DRIVER);
  2671. if (cliprects == NULL)
  2672. goto pre_mutex_err;
  2673. ret = copy_from_user(cliprects,
  2674. (struct drm_clip_rect __user *)
  2675. (uintptr_t) args->cliprects_ptr,
  2676. sizeof(*cliprects) * args->num_cliprects);
  2677. if (ret != 0) {
  2678. DRM_ERROR("copy %d cliprects failed: %d\n",
  2679. args->num_cliprects, ret);
  2680. goto pre_mutex_err;
  2681. }
  2682. }
  2683. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2684. &relocs);
  2685. if (ret != 0)
  2686. goto pre_mutex_err;
  2687. mutex_lock(&dev->struct_mutex);
  2688. i915_verify_inactive(dev, __FILE__, __LINE__);
  2689. if (dev_priv->mm.wedged) {
  2690. DRM_ERROR("Execbuf while wedged\n");
  2691. mutex_unlock(&dev->struct_mutex);
  2692. ret = -EIO;
  2693. goto pre_mutex_err;
  2694. }
  2695. if (dev_priv->mm.suspended) {
  2696. DRM_ERROR("Execbuf while VT-switched.\n");
  2697. mutex_unlock(&dev->struct_mutex);
  2698. ret = -EBUSY;
  2699. goto pre_mutex_err;
  2700. }
  2701. /* Look up object handles */
  2702. for (i = 0; i < args->buffer_count; i++) {
  2703. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2704. exec_list[i].handle);
  2705. if (object_list[i] == NULL) {
  2706. DRM_ERROR("Invalid object handle %d at index %d\n",
  2707. exec_list[i].handle, i);
  2708. ret = -EBADF;
  2709. goto err;
  2710. }
  2711. obj_priv = object_list[i]->driver_private;
  2712. if (obj_priv->in_execbuffer) {
  2713. DRM_ERROR("Object %p appears more than once in object list\n",
  2714. object_list[i]);
  2715. ret = -EBADF;
  2716. goto err;
  2717. }
  2718. obj_priv->in_execbuffer = true;
  2719. }
  2720. /* Pin and relocate */
  2721. for (pin_tries = 0; ; pin_tries++) {
  2722. ret = 0;
  2723. reloc_index = 0;
  2724. for (i = 0; i < args->buffer_count; i++) {
  2725. object_list[i]->pending_read_domains = 0;
  2726. object_list[i]->pending_write_domain = 0;
  2727. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2728. file_priv,
  2729. &exec_list[i],
  2730. &relocs[reloc_index]);
  2731. if (ret)
  2732. break;
  2733. pinned = i + 1;
  2734. reloc_index += exec_list[i].relocation_count;
  2735. }
  2736. /* success */
  2737. if (ret == 0)
  2738. break;
  2739. /* error other than GTT full, or we've already tried again */
  2740. if (ret != -ENOMEM || pin_tries >= 1) {
  2741. if (ret != -ERESTARTSYS)
  2742. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2743. goto err;
  2744. }
  2745. /* unpin all of our buffers */
  2746. for (i = 0; i < pinned; i++)
  2747. i915_gem_object_unpin(object_list[i]);
  2748. pinned = 0;
  2749. /* evict everyone we can from the aperture */
  2750. ret = i915_gem_evict_everything(dev);
  2751. if (ret)
  2752. goto err;
  2753. }
  2754. /* Set the pending read domains for the batch buffer to COMMAND */
  2755. batch_obj = object_list[args->buffer_count-1];
  2756. batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
  2757. batch_obj->pending_write_domain = 0;
  2758. i915_verify_inactive(dev, __FILE__, __LINE__);
  2759. /* Zero the global flush/invalidate flags. These
  2760. * will be modified as new domains are computed
  2761. * for each object
  2762. */
  2763. dev->invalidate_domains = 0;
  2764. dev->flush_domains = 0;
  2765. for (i = 0; i < args->buffer_count; i++) {
  2766. struct drm_gem_object *obj = object_list[i];
  2767. /* Compute new gpu domains and update invalidate/flush */
  2768. i915_gem_object_set_to_gpu_domain(obj);
  2769. }
  2770. i915_verify_inactive(dev, __FILE__, __LINE__);
  2771. if (dev->invalidate_domains | dev->flush_domains) {
  2772. #if WATCH_EXEC
  2773. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2774. __func__,
  2775. dev->invalidate_domains,
  2776. dev->flush_domains);
  2777. #endif
  2778. i915_gem_flush(dev,
  2779. dev->invalidate_domains,
  2780. dev->flush_domains);
  2781. if (dev->flush_domains)
  2782. (void)i915_add_request(dev, dev->flush_domains);
  2783. }
  2784. for (i = 0; i < args->buffer_count; i++) {
  2785. struct drm_gem_object *obj = object_list[i];
  2786. obj->write_domain = obj->pending_write_domain;
  2787. }
  2788. i915_verify_inactive(dev, __FILE__, __LINE__);
  2789. #if WATCH_COHERENCY
  2790. for (i = 0; i < args->buffer_count; i++) {
  2791. i915_gem_object_check_coherency(object_list[i],
  2792. exec_list[i].handle);
  2793. }
  2794. #endif
  2795. exec_offset = exec_list[args->buffer_count - 1].offset;
  2796. #if WATCH_EXEC
  2797. i915_gem_dump_object(batch_obj,
  2798. args->batch_len,
  2799. __func__,
  2800. ~0);
  2801. #endif
  2802. /* Exec the batchbuffer */
  2803. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  2804. if (ret) {
  2805. DRM_ERROR("dispatch failed %d\n", ret);
  2806. goto err;
  2807. }
  2808. /*
  2809. * Ensure that the commands in the batch buffer are
  2810. * finished before the interrupt fires
  2811. */
  2812. flush_domains = i915_retire_commands(dev);
  2813. i915_verify_inactive(dev, __FILE__, __LINE__);
  2814. /*
  2815. * Get a seqno representing the execution of the current buffer,
  2816. * which we can wait on. We would like to mitigate these interrupts,
  2817. * likely by only creating seqnos occasionally (so that we have
  2818. * *some* interrupts representing completion of buffers that we can
  2819. * wait on when trying to clear up gtt space).
  2820. */
  2821. seqno = i915_add_request(dev, flush_domains);
  2822. BUG_ON(seqno == 0);
  2823. i915_file_priv->mm.last_gem_seqno = seqno;
  2824. for (i = 0; i < args->buffer_count; i++) {
  2825. struct drm_gem_object *obj = object_list[i];
  2826. i915_gem_object_move_to_active(obj, seqno);
  2827. #if WATCH_LRU
  2828. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  2829. #endif
  2830. }
  2831. #if WATCH_LRU
  2832. i915_dump_lru(dev, __func__);
  2833. #endif
  2834. i915_verify_inactive(dev, __FILE__, __LINE__);
  2835. err:
  2836. for (i = 0; i < pinned; i++)
  2837. i915_gem_object_unpin(object_list[i]);
  2838. for (i = 0; i < args->buffer_count; i++) {
  2839. if (object_list[i]) {
  2840. obj_priv = object_list[i]->driver_private;
  2841. obj_priv->in_execbuffer = false;
  2842. }
  2843. drm_gem_object_unreference(object_list[i]);
  2844. }
  2845. mutex_unlock(&dev->struct_mutex);
  2846. if (!ret) {
  2847. /* Copy the new buffer offsets back to the user's exec list. */
  2848. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  2849. (uintptr_t) args->buffers_ptr,
  2850. exec_list,
  2851. sizeof(*exec_list) * args->buffer_count);
  2852. if (ret) {
  2853. ret = -EFAULT;
  2854. DRM_ERROR("failed to copy %d exec entries "
  2855. "back to user (%d)\n",
  2856. args->buffer_count, ret);
  2857. }
  2858. }
  2859. /* Copy the updated relocations out regardless of current error
  2860. * state. Failure to update the relocs would mean that the next
  2861. * time userland calls execbuf, it would do so with presumed offset
  2862. * state that didn't match the actual object state.
  2863. */
  2864. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  2865. relocs);
  2866. if (ret2 != 0) {
  2867. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  2868. if (ret == 0)
  2869. ret = ret2;
  2870. }
  2871. pre_mutex_err:
  2872. drm_free(object_list, sizeof(*object_list) * args->buffer_count,
  2873. DRM_MEM_DRIVER);
  2874. drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
  2875. DRM_MEM_DRIVER);
  2876. drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
  2877. DRM_MEM_DRIVER);
  2878. return ret;
  2879. }
  2880. int
  2881. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  2882. {
  2883. struct drm_device *dev = obj->dev;
  2884. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2885. int ret;
  2886. i915_verify_inactive(dev, __FILE__, __LINE__);
  2887. if (obj_priv->gtt_space == NULL) {
  2888. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  2889. if (ret != 0) {
  2890. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2891. DRM_ERROR("Failure to bind: %d\n", ret);
  2892. return ret;
  2893. }
  2894. }
  2895. /*
  2896. * Pre-965 chips need a fence register set up in order to
  2897. * properly handle tiled surfaces.
  2898. */
  2899. if (!IS_I965G(dev) &&
  2900. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  2901. obj_priv->tiling_mode != I915_TILING_NONE) {
  2902. ret = i915_gem_object_get_fence_reg(obj, true);
  2903. if (ret != 0) {
  2904. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2905. DRM_ERROR("Failure to install fence: %d\n",
  2906. ret);
  2907. return ret;
  2908. }
  2909. }
  2910. obj_priv->pin_count++;
  2911. /* If the object is not active and not pending a flush,
  2912. * remove it from the inactive list
  2913. */
  2914. if (obj_priv->pin_count == 1) {
  2915. atomic_inc(&dev->pin_count);
  2916. atomic_add(obj->size, &dev->pin_memory);
  2917. if (!obj_priv->active &&
  2918. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  2919. I915_GEM_DOMAIN_GTT)) == 0 &&
  2920. !list_empty(&obj_priv->list))
  2921. list_del_init(&obj_priv->list);
  2922. }
  2923. i915_verify_inactive(dev, __FILE__, __LINE__);
  2924. return 0;
  2925. }
  2926. void
  2927. i915_gem_object_unpin(struct drm_gem_object *obj)
  2928. {
  2929. struct drm_device *dev = obj->dev;
  2930. drm_i915_private_t *dev_priv = dev->dev_private;
  2931. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2932. i915_verify_inactive(dev, __FILE__, __LINE__);
  2933. obj_priv->pin_count--;
  2934. BUG_ON(obj_priv->pin_count < 0);
  2935. BUG_ON(obj_priv->gtt_space == NULL);
  2936. /* If the object is no longer pinned, and is
  2937. * neither active nor being flushed, then stick it on
  2938. * the inactive list
  2939. */
  2940. if (obj_priv->pin_count == 0) {
  2941. if (!obj_priv->active &&
  2942. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  2943. I915_GEM_DOMAIN_GTT)) == 0)
  2944. list_move_tail(&obj_priv->list,
  2945. &dev_priv->mm.inactive_list);
  2946. atomic_dec(&dev->pin_count);
  2947. atomic_sub(obj->size, &dev->pin_memory);
  2948. }
  2949. i915_verify_inactive(dev, __FILE__, __LINE__);
  2950. }
  2951. int
  2952. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2953. struct drm_file *file_priv)
  2954. {
  2955. struct drm_i915_gem_pin *args = data;
  2956. struct drm_gem_object *obj;
  2957. struct drm_i915_gem_object *obj_priv;
  2958. int ret;
  2959. mutex_lock(&dev->struct_mutex);
  2960. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  2961. if (obj == NULL) {
  2962. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  2963. args->handle);
  2964. mutex_unlock(&dev->struct_mutex);
  2965. return -EBADF;
  2966. }
  2967. obj_priv = obj->driver_private;
  2968. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  2969. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2970. args->handle);
  2971. drm_gem_object_unreference(obj);
  2972. mutex_unlock(&dev->struct_mutex);
  2973. return -EINVAL;
  2974. }
  2975. obj_priv->user_pin_count++;
  2976. obj_priv->pin_filp = file_priv;
  2977. if (obj_priv->user_pin_count == 1) {
  2978. ret = i915_gem_object_pin(obj, args->alignment);
  2979. if (ret != 0) {
  2980. drm_gem_object_unreference(obj);
  2981. mutex_unlock(&dev->struct_mutex);
  2982. return ret;
  2983. }
  2984. }
  2985. /* XXX - flush the CPU caches for pinned objects
  2986. * as the X server doesn't manage domains yet
  2987. */
  2988. i915_gem_object_flush_cpu_write_domain(obj);
  2989. args->offset = obj_priv->gtt_offset;
  2990. drm_gem_object_unreference(obj);
  2991. mutex_unlock(&dev->struct_mutex);
  2992. return 0;
  2993. }
  2994. int
  2995. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2996. struct drm_file *file_priv)
  2997. {
  2998. struct drm_i915_gem_pin *args = data;
  2999. struct drm_gem_object *obj;
  3000. struct drm_i915_gem_object *obj_priv;
  3001. mutex_lock(&dev->struct_mutex);
  3002. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3003. if (obj == NULL) {
  3004. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3005. args->handle);
  3006. mutex_unlock(&dev->struct_mutex);
  3007. return -EBADF;
  3008. }
  3009. obj_priv = obj->driver_private;
  3010. if (obj_priv->pin_filp != file_priv) {
  3011. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3012. args->handle);
  3013. drm_gem_object_unreference(obj);
  3014. mutex_unlock(&dev->struct_mutex);
  3015. return -EINVAL;
  3016. }
  3017. obj_priv->user_pin_count--;
  3018. if (obj_priv->user_pin_count == 0) {
  3019. obj_priv->pin_filp = NULL;
  3020. i915_gem_object_unpin(obj);
  3021. }
  3022. drm_gem_object_unreference(obj);
  3023. mutex_unlock(&dev->struct_mutex);
  3024. return 0;
  3025. }
  3026. int
  3027. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3028. struct drm_file *file_priv)
  3029. {
  3030. struct drm_i915_gem_busy *args = data;
  3031. struct drm_gem_object *obj;
  3032. struct drm_i915_gem_object *obj_priv;
  3033. mutex_lock(&dev->struct_mutex);
  3034. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3035. if (obj == NULL) {
  3036. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3037. args->handle);
  3038. mutex_unlock(&dev->struct_mutex);
  3039. return -EBADF;
  3040. }
  3041. /* Update the active list for the hardware's current position.
  3042. * Otherwise this only updates on a delayed timer or when irqs are
  3043. * actually unmasked, and our working set ends up being larger than
  3044. * required.
  3045. */
  3046. i915_gem_retire_requests(dev);
  3047. obj_priv = obj->driver_private;
  3048. /* Don't count being on the flushing list against the object being
  3049. * done. Otherwise, a buffer left on the flushing list but not getting
  3050. * flushed (because nobody's flushing that domain) won't ever return
  3051. * unbusy and get reused by libdrm's bo cache. The other expected
  3052. * consumer of this interface, OpenGL's occlusion queries, also specs
  3053. * that the objects get unbusy "eventually" without any interference.
  3054. */
  3055. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3056. drm_gem_object_unreference(obj);
  3057. mutex_unlock(&dev->struct_mutex);
  3058. return 0;
  3059. }
  3060. int
  3061. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3062. struct drm_file *file_priv)
  3063. {
  3064. return i915_gem_ring_throttle(dev, file_priv);
  3065. }
  3066. int i915_gem_init_object(struct drm_gem_object *obj)
  3067. {
  3068. struct drm_i915_gem_object *obj_priv;
  3069. obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
  3070. if (obj_priv == NULL)
  3071. return -ENOMEM;
  3072. /*
  3073. * We've just allocated pages from the kernel,
  3074. * so they've just been written by the CPU with
  3075. * zeros. They'll need to be clflushed before we
  3076. * use them with the GPU.
  3077. */
  3078. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3079. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3080. obj_priv->agp_type = AGP_USER_MEMORY;
  3081. obj->driver_private = obj_priv;
  3082. obj_priv->obj = obj;
  3083. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3084. INIT_LIST_HEAD(&obj_priv->list);
  3085. return 0;
  3086. }
  3087. void i915_gem_free_object(struct drm_gem_object *obj)
  3088. {
  3089. struct drm_device *dev = obj->dev;
  3090. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3091. while (obj_priv->pin_count > 0)
  3092. i915_gem_object_unpin(obj);
  3093. if (obj_priv->phys_obj)
  3094. i915_gem_detach_phys_object(dev, obj);
  3095. i915_gem_object_unbind(obj);
  3096. i915_gem_free_mmap_offset(obj);
  3097. drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
  3098. drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
  3099. }
  3100. /** Unbinds all objects that are on the given buffer list. */
  3101. static int
  3102. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3103. {
  3104. struct drm_gem_object *obj;
  3105. struct drm_i915_gem_object *obj_priv;
  3106. int ret;
  3107. while (!list_empty(head)) {
  3108. obj_priv = list_first_entry(head,
  3109. struct drm_i915_gem_object,
  3110. list);
  3111. obj = obj_priv->obj;
  3112. if (obj_priv->pin_count != 0) {
  3113. DRM_ERROR("Pinned object in unbind list\n");
  3114. mutex_unlock(&dev->struct_mutex);
  3115. return -EINVAL;
  3116. }
  3117. ret = i915_gem_object_unbind(obj);
  3118. if (ret != 0) {
  3119. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3120. ret);
  3121. mutex_unlock(&dev->struct_mutex);
  3122. return ret;
  3123. }
  3124. }
  3125. return 0;
  3126. }
  3127. int
  3128. i915_gem_idle(struct drm_device *dev)
  3129. {
  3130. drm_i915_private_t *dev_priv = dev->dev_private;
  3131. uint32_t seqno, cur_seqno, last_seqno;
  3132. int stuck, ret;
  3133. mutex_lock(&dev->struct_mutex);
  3134. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3135. mutex_unlock(&dev->struct_mutex);
  3136. return 0;
  3137. }
  3138. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3139. * We need to replace this with a semaphore, or something.
  3140. */
  3141. dev_priv->mm.suspended = 1;
  3142. /* Cancel the retire work handler, wait for it to finish if running
  3143. */
  3144. mutex_unlock(&dev->struct_mutex);
  3145. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3146. mutex_lock(&dev->struct_mutex);
  3147. i915_kernel_lost_context(dev);
  3148. /* Flush the GPU along with all non-CPU write domains
  3149. */
  3150. i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
  3151. ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  3152. seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
  3153. if (seqno == 0) {
  3154. mutex_unlock(&dev->struct_mutex);
  3155. return -ENOMEM;
  3156. }
  3157. dev_priv->mm.waiting_gem_seqno = seqno;
  3158. last_seqno = 0;
  3159. stuck = 0;
  3160. for (;;) {
  3161. cur_seqno = i915_get_gem_seqno(dev);
  3162. if (i915_seqno_passed(cur_seqno, seqno))
  3163. break;
  3164. if (last_seqno == cur_seqno) {
  3165. if (stuck++ > 100) {
  3166. DRM_ERROR("hardware wedged\n");
  3167. dev_priv->mm.wedged = 1;
  3168. DRM_WAKEUP(&dev_priv->irq_queue);
  3169. break;
  3170. }
  3171. }
  3172. msleep(10);
  3173. last_seqno = cur_seqno;
  3174. }
  3175. dev_priv->mm.waiting_gem_seqno = 0;
  3176. i915_gem_retire_requests(dev);
  3177. spin_lock(&dev_priv->mm.active_list_lock);
  3178. if (!dev_priv->mm.wedged) {
  3179. /* Active and flushing should now be empty as we've
  3180. * waited for a sequence higher than any pending execbuffer
  3181. */
  3182. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3183. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3184. /* Request should now be empty as we've also waited
  3185. * for the last request in the list
  3186. */
  3187. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3188. }
  3189. /* Empty the active and flushing lists to inactive. If there's
  3190. * anything left at this point, it means that we're wedged and
  3191. * nothing good's going to happen by leaving them there. So strip
  3192. * the GPU domains and just stuff them onto inactive.
  3193. */
  3194. while (!list_empty(&dev_priv->mm.active_list)) {
  3195. struct drm_i915_gem_object *obj_priv;
  3196. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3197. struct drm_i915_gem_object,
  3198. list);
  3199. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3200. i915_gem_object_move_to_inactive(obj_priv->obj);
  3201. }
  3202. spin_unlock(&dev_priv->mm.active_list_lock);
  3203. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3204. struct drm_i915_gem_object *obj_priv;
  3205. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3206. struct drm_i915_gem_object,
  3207. list);
  3208. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3209. i915_gem_object_move_to_inactive(obj_priv->obj);
  3210. }
  3211. /* Move all inactive buffers out of the GTT. */
  3212. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3213. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3214. if (ret) {
  3215. mutex_unlock(&dev->struct_mutex);
  3216. return ret;
  3217. }
  3218. i915_gem_cleanup_ringbuffer(dev);
  3219. mutex_unlock(&dev->struct_mutex);
  3220. return 0;
  3221. }
  3222. static int
  3223. i915_gem_init_hws(struct drm_device *dev)
  3224. {
  3225. drm_i915_private_t *dev_priv = dev->dev_private;
  3226. struct drm_gem_object *obj;
  3227. struct drm_i915_gem_object *obj_priv;
  3228. int ret;
  3229. /* If we need a physical address for the status page, it's already
  3230. * initialized at driver load time.
  3231. */
  3232. if (!I915_NEED_GFX_HWS(dev))
  3233. return 0;
  3234. obj = drm_gem_object_alloc(dev, 4096);
  3235. if (obj == NULL) {
  3236. DRM_ERROR("Failed to allocate status page\n");
  3237. return -ENOMEM;
  3238. }
  3239. obj_priv = obj->driver_private;
  3240. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3241. ret = i915_gem_object_pin(obj, 4096);
  3242. if (ret != 0) {
  3243. drm_gem_object_unreference(obj);
  3244. return ret;
  3245. }
  3246. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3247. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3248. if (dev_priv->hw_status_page == NULL) {
  3249. DRM_ERROR("Failed to map status page.\n");
  3250. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3251. i915_gem_object_unpin(obj);
  3252. drm_gem_object_unreference(obj);
  3253. return -EINVAL;
  3254. }
  3255. dev_priv->hws_obj = obj;
  3256. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3257. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3258. I915_READ(HWS_PGA); /* posting read */
  3259. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3260. return 0;
  3261. }
  3262. static void
  3263. i915_gem_cleanup_hws(struct drm_device *dev)
  3264. {
  3265. drm_i915_private_t *dev_priv = dev->dev_private;
  3266. struct drm_gem_object *obj;
  3267. struct drm_i915_gem_object *obj_priv;
  3268. if (dev_priv->hws_obj == NULL)
  3269. return;
  3270. obj = dev_priv->hws_obj;
  3271. obj_priv = obj->driver_private;
  3272. kunmap(obj_priv->pages[0]);
  3273. i915_gem_object_unpin(obj);
  3274. drm_gem_object_unreference(obj);
  3275. dev_priv->hws_obj = NULL;
  3276. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3277. dev_priv->hw_status_page = NULL;
  3278. /* Write high address into HWS_PGA when disabling. */
  3279. I915_WRITE(HWS_PGA, 0x1ffff000);
  3280. }
  3281. int
  3282. i915_gem_init_ringbuffer(struct drm_device *dev)
  3283. {
  3284. drm_i915_private_t *dev_priv = dev->dev_private;
  3285. struct drm_gem_object *obj;
  3286. struct drm_i915_gem_object *obj_priv;
  3287. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3288. int ret;
  3289. u32 head;
  3290. ret = i915_gem_init_hws(dev);
  3291. if (ret != 0)
  3292. return ret;
  3293. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3294. if (obj == NULL) {
  3295. DRM_ERROR("Failed to allocate ringbuffer\n");
  3296. i915_gem_cleanup_hws(dev);
  3297. return -ENOMEM;
  3298. }
  3299. obj_priv = obj->driver_private;
  3300. ret = i915_gem_object_pin(obj, 4096);
  3301. if (ret != 0) {
  3302. drm_gem_object_unreference(obj);
  3303. i915_gem_cleanup_hws(dev);
  3304. return ret;
  3305. }
  3306. /* Set up the kernel mapping for the ring. */
  3307. ring->Size = obj->size;
  3308. ring->tail_mask = obj->size - 1;
  3309. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3310. ring->map.size = obj->size;
  3311. ring->map.type = 0;
  3312. ring->map.flags = 0;
  3313. ring->map.mtrr = 0;
  3314. drm_core_ioremap_wc(&ring->map, dev);
  3315. if (ring->map.handle == NULL) {
  3316. DRM_ERROR("Failed to map ringbuffer.\n");
  3317. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3318. i915_gem_object_unpin(obj);
  3319. drm_gem_object_unreference(obj);
  3320. i915_gem_cleanup_hws(dev);
  3321. return -EINVAL;
  3322. }
  3323. ring->ring_obj = obj;
  3324. ring->virtual_start = ring->map.handle;
  3325. /* Stop the ring if it's running. */
  3326. I915_WRITE(PRB0_CTL, 0);
  3327. I915_WRITE(PRB0_TAIL, 0);
  3328. I915_WRITE(PRB0_HEAD, 0);
  3329. /* Initialize the ring. */
  3330. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3331. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3332. /* G45 ring initialization fails to reset head to zero */
  3333. if (head != 0) {
  3334. DRM_ERROR("Ring head not reset to zero "
  3335. "ctl %08x head %08x tail %08x start %08x\n",
  3336. I915_READ(PRB0_CTL),
  3337. I915_READ(PRB0_HEAD),
  3338. I915_READ(PRB0_TAIL),
  3339. I915_READ(PRB0_START));
  3340. I915_WRITE(PRB0_HEAD, 0);
  3341. DRM_ERROR("Ring head forced to zero "
  3342. "ctl %08x head %08x tail %08x start %08x\n",
  3343. I915_READ(PRB0_CTL),
  3344. I915_READ(PRB0_HEAD),
  3345. I915_READ(PRB0_TAIL),
  3346. I915_READ(PRB0_START));
  3347. }
  3348. I915_WRITE(PRB0_CTL,
  3349. ((obj->size - 4096) & RING_NR_PAGES) |
  3350. RING_NO_REPORT |
  3351. RING_VALID);
  3352. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3353. /* If the head is still not zero, the ring is dead */
  3354. if (head != 0) {
  3355. DRM_ERROR("Ring initialization failed "
  3356. "ctl %08x head %08x tail %08x start %08x\n",
  3357. I915_READ(PRB0_CTL),
  3358. I915_READ(PRB0_HEAD),
  3359. I915_READ(PRB0_TAIL),
  3360. I915_READ(PRB0_START));
  3361. return -EIO;
  3362. }
  3363. /* Update our cache of the ring state */
  3364. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3365. i915_kernel_lost_context(dev);
  3366. else {
  3367. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3368. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3369. ring->space = ring->head - (ring->tail + 8);
  3370. if (ring->space < 0)
  3371. ring->space += ring->Size;
  3372. }
  3373. return 0;
  3374. }
  3375. void
  3376. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3377. {
  3378. drm_i915_private_t *dev_priv = dev->dev_private;
  3379. if (dev_priv->ring.ring_obj == NULL)
  3380. return;
  3381. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3382. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3383. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3384. dev_priv->ring.ring_obj = NULL;
  3385. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3386. i915_gem_cleanup_hws(dev);
  3387. }
  3388. int
  3389. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3390. struct drm_file *file_priv)
  3391. {
  3392. drm_i915_private_t *dev_priv = dev->dev_private;
  3393. int ret;
  3394. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3395. return 0;
  3396. if (dev_priv->mm.wedged) {
  3397. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3398. dev_priv->mm.wedged = 0;
  3399. }
  3400. mutex_lock(&dev->struct_mutex);
  3401. dev_priv->mm.suspended = 0;
  3402. ret = i915_gem_init_ringbuffer(dev);
  3403. if (ret != 0)
  3404. return ret;
  3405. spin_lock(&dev_priv->mm.active_list_lock);
  3406. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3407. spin_unlock(&dev_priv->mm.active_list_lock);
  3408. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3409. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3410. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3411. mutex_unlock(&dev->struct_mutex);
  3412. drm_irq_install(dev);
  3413. return 0;
  3414. }
  3415. int
  3416. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3417. struct drm_file *file_priv)
  3418. {
  3419. int ret;
  3420. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3421. return 0;
  3422. ret = i915_gem_idle(dev);
  3423. drm_irq_uninstall(dev);
  3424. return ret;
  3425. }
  3426. void
  3427. i915_gem_lastclose(struct drm_device *dev)
  3428. {
  3429. int ret;
  3430. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3431. return;
  3432. ret = i915_gem_idle(dev);
  3433. if (ret)
  3434. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3435. }
  3436. void
  3437. i915_gem_load(struct drm_device *dev)
  3438. {
  3439. drm_i915_private_t *dev_priv = dev->dev_private;
  3440. spin_lock_init(&dev_priv->mm.active_list_lock);
  3441. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3442. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3443. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3444. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3445. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3446. i915_gem_retire_work_handler);
  3447. dev_priv->mm.next_gem_seqno = 1;
  3448. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3449. dev_priv->fence_reg_start = 3;
  3450. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3451. dev_priv->num_fence_regs = 16;
  3452. else
  3453. dev_priv->num_fence_regs = 8;
  3454. i915_gem_detect_bit_6_swizzle(dev);
  3455. }
  3456. /*
  3457. * Create a physically contiguous memory object for this object
  3458. * e.g. for cursor + overlay regs
  3459. */
  3460. int i915_gem_init_phys_object(struct drm_device *dev,
  3461. int id, int size)
  3462. {
  3463. drm_i915_private_t *dev_priv = dev->dev_private;
  3464. struct drm_i915_gem_phys_object *phys_obj;
  3465. int ret;
  3466. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3467. return 0;
  3468. phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3469. if (!phys_obj)
  3470. return -ENOMEM;
  3471. phys_obj->id = id;
  3472. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3473. if (!phys_obj->handle) {
  3474. ret = -ENOMEM;
  3475. goto kfree_obj;
  3476. }
  3477. #ifdef CONFIG_X86
  3478. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3479. #endif
  3480. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3481. return 0;
  3482. kfree_obj:
  3483. drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3484. return ret;
  3485. }
  3486. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3487. {
  3488. drm_i915_private_t *dev_priv = dev->dev_private;
  3489. struct drm_i915_gem_phys_object *phys_obj;
  3490. if (!dev_priv->mm.phys_objs[id - 1])
  3491. return;
  3492. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3493. if (phys_obj->cur_obj) {
  3494. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3495. }
  3496. #ifdef CONFIG_X86
  3497. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3498. #endif
  3499. drm_pci_free(dev, phys_obj->handle);
  3500. kfree(phys_obj);
  3501. dev_priv->mm.phys_objs[id - 1] = NULL;
  3502. }
  3503. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3504. {
  3505. int i;
  3506. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3507. i915_gem_free_phys_object(dev, i);
  3508. }
  3509. void i915_gem_detach_phys_object(struct drm_device *dev,
  3510. struct drm_gem_object *obj)
  3511. {
  3512. struct drm_i915_gem_object *obj_priv;
  3513. int i;
  3514. int ret;
  3515. int page_count;
  3516. obj_priv = obj->driver_private;
  3517. if (!obj_priv->phys_obj)
  3518. return;
  3519. ret = i915_gem_object_get_pages(obj);
  3520. if (ret)
  3521. goto out;
  3522. page_count = obj->size / PAGE_SIZE;
  3523. for (i = 0; i < page_count; i++) {
  3524. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3525. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3526. memcpy(dst, src, PAGE_SIZE);
  3527. kunmap_atomic(dst, KM_USER0);
  3528. }
  3529. drm_clflush_pages(obj_priv->pages, page_count);
  3530. drm_agp_chipset_flush(dev);
  3531. out:
  3532. obj_priv->phys_obj->cur_obj = NULL;
  3533. obj_priv->phys_obj = NULL;
  3534. }
  3535. int
  3536. i915_gem_attach_phys_object(struct drm_device *dev,
  3537. struct drm_gem_object *obj, int id)
  3538. {
  3539. drm_i915_private_t *dev_priv = dev->dev_private;
  3540. struct drm_i915_gem_object *obj_priv;
  3541. int ret = 0;
  3542. int page_count;
  3543. int i;
  3544. if (id > I915_MAX_PHYS_OBJECT)
  3545. return -EINVAL;
  3546. obj_priv = obj->driver_private;
  3547. if (obj_priv->phys_obj) {
  3548. if (obj_priv->phys_obj->id == id)
  3549. return 0;
  3550. i915_gem_detach_phys_object(dev, obj);
  3551. }
  3552. /* create a new object */
  3553. if (!dev_priv->mm.phys_objs[id - 1]) {
  3554. ret = i915_gem_init_phys_object(dev, id,
  3555. obj->size);
  3556. if (ret) {
  3557. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3558. goto out;
  3559. }
  3560. }
  3561. /* bind to the object */
  3562. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3563. obj_priv->phys_obj->cur_obj = obj;
  3564. ret = i915_gem_object_get_pages(obj);
  3565. if (ret) {
  3566. DRM_ERROR("failed to get page list\n");
  3567. goto out;
  3568. }
  3569. page_count = obj->size / PAGE_SIZE;
  3570. for (i = 0; i < page_count; i++) {
  3571. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3572. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3573. memcpy(dst, src, PAGE_SIZE);
  3574. kunmap_atomic(src, KM_USER0);
  3575. }
  3576. return 0;
  3577. out:
  3578. return ret;
  3579. }
  3580. static int
  3581. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3582. struct drm_i915_gem_pwrite *args,
  3583. struct drm_file *file_priv)
  3584. {
  3585. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3586. void *obj_addr;
  3587. int ret;
  3588. char __user *user_data;
  3589. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3590. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3591. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3592. ret = copy_from_user(obj_addr, user_data, args->size);
  3593. if (ret)
  3594. return -EFAULT;
  3595. drm_agp_chipset_flush(dev);
  3596. return 0;
  3597. }