inode.c 98 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include <linux/fiemap.h>
  39. #include <linux/namei.h>
  40. #include "xattr.h"
  41. #include "acl.h"
  42. static int ext3_writepage_trans_blocks(struct inode *inode);
  43. /*
  44. * Test whether an inode is a fast symlink.
  45. */
  46. static int ext3_inode_is_fast_symlink(struct inode *inode)
  47. {
  48. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  49. (inode->i_sb->s_blocksize >> 9) : 0;
  50. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  51. }
  52. /*
  53. * The ext3 forget function must perform a revoke if we are freeing data
  54. * which has been journaled. Metadata (eg. indirect blocks) must be
  55. * revoked in all cases.
  56. *
  57. * "bh" may be NULL: a metadata block may have been freed from memory
  58. * but there may still be a record of it in the journal, and that record
  59. * still needs to be revoked.
  60. */
  61. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  62. struct buffer_head *bh, ext3_fsblk_t blocknr)
  63. {
  64. int err;
  65. might_sleep();
  66. BUFFER_TRACE(bh, "enter");
  67. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  68. "data mode %lx\n",
  69. bh, is_metadata, inode->i_mode,
  70. test_opt(inode->i_sb, DATA_FLAGS));
  71. /* Never use the revoke function if we are doing full data
  72. * journaling: there is no need to, and a V1 superblock won't
  73. * support it. Otherwise, only skip the revoke on un-journaled
  74. * data blocks. */
  75. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  76. (!is_metadata && !ext3_should_journal_data(inode))) {
  77. if (bh) {
  78. BUFFER_TRACE(bh, "call journal_forget");
  79. return ext3_journal_forget(handle, bh);
  80. }
  81. return 0;
  82. }
  83. /*
  84. * data!=journal && (is_metadata || should_journal_data(inode))
  85. */
  86. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  87. err = ext3_journal_revoke(handle, blocknr, bh);
  88. if (err)
  89. ext3_abort(inode->i_sb, __func__,
  90. "error %d when attempting revoke", err);
  91. BUFFER_TRACE(bh, "exit");
  92. return err;
  93. }
  94. /*
  95. * Work out how many blocks we need to proceed with the next chunk of a
  96. * truncate transaction.
  97. */
  98. static unsigned long blocks_for_truncate(struct inode *inode)
  99. {
  100. unsigned long needed;
  101. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  102. /* Give ourselves just enough room to cope with inodes in which
  103. * i_blocks is corrupt: we've seen disk corruptions in the past
  104. * which resulted in random data in an inode which looked enough
  105. * like a regular file for ext3 to try to delete it. Things
  106. * will go a bit crazy if that happens, but at least we should
  107. * try not to panic the whole kernel. */
  108. if (needed < 2)
  109. needed = 2;
  110. /* But we need to bound the transaction so we don't overflow the
  111. * journal. */
  112. if (needed > EXT3_MAX_TRANS_DATA)
  113. needed = EXT3_MAX_TRANS_DATA;
  114. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  115. }
  116. /*
  117. * Truncate transactions can be complex and absolutely huge. So we need to
  118. * be able to restart the transaction at a conventient checkpoint to make
  119. * sure we don't overflow the journal.
  120. *
  121. * start_transaction gets us a new handle for a truncate transaction,
  122. * and extend_transaction tries to extend the existing one a bit. If
  123. * extend fails, we need to propagate the failure up and restart the
  124. * transaction in the top-level truncate loop. --sct
  125. */
  126. static handle_t *start_transaction(struct inode *inode)
  127. {
  128. handle_t *result;
  129. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  130. if (!IS_ERR(result))
  131. return result;
  132. ext3_std_error(inode->i_sb, PTR_ERR(result));
  133. return result;
  134. }
  135. /*
  136. * Try to extend this transaction for the purposes of truncation.
  137. *
  138. * Returns 0 if we managed to create more room. If we can't create more
  139. * room, and the transaction must be restarted we return 1.
  140. */
  141. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  142. {
  143. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  144. return 0;
  145. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  146. return 0;
  147. return 1;
  148. }
  149. /*
  150. * Restart the transaction associated with *handle. This does a commit,
  151. * so before we call here everything must be consistently dirtied against
  152. * this transaction.
  153. */
  154. static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
  155. {
  156. jbd_debug(2, "restarting handle %p\n", handle);
  157. return ext3_journal_restart(handle, blocks_for_truncate(inode));
  158. }
  159. /*
  160. * Called at the last iput() if i_nlink is zero.
  161. */
  162. void ext3_delete_inode (struct inode * inode)
  163. {
  164. handle_t *handle;
  165. truncate_inode_pages(&inode->i_data, 0);
  166. if (is_bad_inode(inode))
  167. goto no_delete;
  168. handle = start_transaction(inode);
  169. if (IS_ERR(handle)) {
  170. /*
  171. * If we're going to skip the normal cleanup, we still need to
  172. * make sure that the in-core orphan linked list is properly
  173. * cleaned up.
  174. */
  175. ext3_orphan_del(NULL, inode);
  176. goto no_delete;
  177. }
  178. if (IS_SYNC(inode))
  179. handle->h_sync = 1;
  180. inode->i_size = 0;
  181. if (inode->i_blocks)
  182. ext3_truncate(inode);
  183. /*
  184. * Kill off the orphan record which ext3_truncate created.
  185. * AKPM: I think this can be inside the above `if'.
  186. * Note that ext3_orphan_del() has to be able to cope with the
  187. * deletion of a non-existent orphan - this is because we don't
  188. * know if ext3_truncate() actually created an orphan record.
  189. * (Well, we could do this if we need to, but heck - it works)
  190. */
  191. ext3_orphan_del(handle, inode);
  192. EXT3_I(inode)->i_dtime = get_seconds();
  193. /*
  194. * One subtle ordering requirement: if anything has gone wrong
  195. * (transaction abort, IO errors, whatever), then we can still
  196. * do these next steps (the fs will already have been marked as
  197. * having errors), but we can't free the inode if the mark_dirty
  198. * fails.
  199. */
  200. if (ext3_mark_inode_dirty(handle, inode))
  201. /* If that failed, just do the required in-core inode clear. */
  202. clear_inode(inode);
  203. else
  204. ext3_free_inode(handle, inode);
  205. ext3_journal_stop(handle);
  206. return;
  207. no_delete:
  208. clear_inode(inode); /* We must guarantee clearing of inode... */
  209. }
  210. typedef struct {
  211. __le32 *p;
  212. __le32 key;
  213. struct buffer_head *bh;
  214. } Indirect;
  215. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  216. {
  217. p->key = *(p->p = v);
  218. p->bh = bh;
  219. }
  220. static int verify_chain(Indirect *from, Indirect *to)
  221. {
  222. while (from <= to && from->key == *from->p)
  223. from++;
  224. return (from > to);
  225. }
  226. /**
  227. * ext3_block_to_path - parse the block number into array of offsets
  228. * @inode: inode in question (we are only interested in its superblock)
  229. * @i_block: block number to be parsed
  230. * @offsets: array to store the offsets in
  231. * @boundary: set this non-zero if the referred-to block is likely to be
  232. * followed (on disk) by an indirect block.
  233. *
  234. * To store the locations of file's data ext3 uses a data structure common
  235. * for UNIX filesystems - tree of pointers anchored in the inode, with
  236. * data blocks at leaves and indirect blocks in intermediate nodes.
  237. * This function translates the block number into path in that tree -
  238. * return value is the path length and @offsets[n] is the offset of
  239. * pointer to (n+1)th node in the nth one. If @block is out of range
  240. * (negative or too large) warning is printed and zero returned.
  241. *
  242. * Note: function doesn't find node addresses, so no IO is needed. All
  243. * we need to know is the capacity of indirect blocks (taken from the
  244. * inode->i_sb).
  245. */
  246. /*
  247. * Portability note: the last comparison (check that we fit into triple
  248. * indirect block) is spelled differently, because otherwise on an
  249. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  250. * if our filesystem had 8Kb blocks. We might use long long, but that would
  251. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  252. * i_block would have to be negative in the very beginning, so we would not
  253. * get there at all.
  254. */
  255. static int ext3_block_to_path(struct inode *inode,
  256. long i_block, int offsets[4], int *boundary)
  257. {
  258. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  259. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  260. const long direct_blocks = EXT3_NDIR_BLOCKS,
  261. indirect_blocks = ptrs,
  262. double_blocks = (1 << (ptrs_bits * 2));
  263. int n = 0;
  264. int final = 0;
  265. if (i_block < 0) {
  266. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  267. } else if (i_block < direct_blocks) {
  268. offsets[n++] = i_block;
  269. final = direct_blocks;
  270. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  271. offsets[n++] = EXT3_IND_BLOCK;
  272. offsets[n++] = i_block;
  273. final = ptrs;
  274. } else if ((i_block -= indirect_blocks) < double_blocks) {
  275. offsets[n++] = EXT3_DIND_BLOCK;
  276. offsets[n++] = i_block >> ptrs_bits;
  277. offsets[n++] = i_block & (ptrs - 1);
  278. final = ptrs;
  279. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  280. offsets[n++] = EXT3_TIND_BLOCK;
  281. offsets[n++] = i_block >> (ptrs_bits * 2);
  282. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  283. offsets[n++] = i_block & (ptrs - 1);
  284. final = ptrs;
  285. } else {
  286. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  287. }
  288. if (boundary)
  289. *boundary = final - 1 - (i_block & (ptrs - 1));
  290. return n;
  291. }
  292. /**
  293. * ext3_get_branch - read the chain of indirect blocks leading to data
  294. * @inode: inode in question
  295. * @depth: depth of the chain (1 - direct pointer, etc.)
  296. * @offsets: offsets of pointers in inode/indirect blocks
  297. * @chain: place to store the result
  298. * @err: here we store the error value
  299. *
  300. * Function fills the array of triples <key, p, bh> and returns %NULL
  301. * if everything went OK or the pointer to the last filled triple
  302. * (incomplete one) otherwise. Upon the return chain[i].key contains
  303. * the number of (i+1)-th block in the chain (as it is stored in memory,
  304. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  305. * number (it points into struct inode for i==0 and into the bh->b_data
  306. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  307. * block for i>0 and NULL for i==0. In other words, it holds the block
  308. * numbers of the chain, addresses they were taken from (and where we can
  309. * verify that chain did not change) and buffer_heads hosting these
  310. * numbers.
  311. *
  312. * Function stops when it stumbles upon zero pointer (absent block)
  313. * (pointer to last triple returned, *@err == 0)
  314. * or when it gets an IO error reading an indirect block
  315. * (ditto, *@err == -EIO)
  316. * or when it notices that chain had been changed while it was reading
  317. * (ditto, *@err == -EAGAIN)
  318. * or when it reads all @depth-1 indirect blocks successfully and finds
  319. * the whole chain, all way to the data (returns %NULL, *err == 0).
  320. */
  321. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  322. Indirect chain[4], int *err)
  323. {
  324. struct super_block *sb = inode->i_sb;
  325. Indirect *p = chain;
  326. struct buffer_head *bh;
  327. *err = 0;
  328. /* i_data is not going away, no lock needed */
  329. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  330. if (!p->key)
  331. goto no_block;
  332. while (--depth) {
  333. bh = sb_bread(sb, le32_to_cpu(p->key));
  334. if (!bh)
  335. goto failure;
  336. /* Reader: pointers */
  337. if (!verify_chain(chain, p))
  338. goto changed;
  339. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  340. /* Reader: end */
  341. if (!p->key)
  342. goto no_block;
  343. }
  344. return NULL;
  345. changed:
  346. brelse(bh);
  347. *err = -EAGAIN;
  348. goto no_block;
  349. failure:
  350. *err = -EIO;
  351. no_block:
  352. return p;
  353. }
  354. /**
  355. * ext3_find_near - find a place for allocation with sufficient locality
  356. * @inode: owner
  357. * @ind: descriptor of indirect block.
  358. *
  359. * This function returns the preferred place for block allocation.
  360. * It is used when heuristic for sequential allocation fails.
  361. * Rules are:
  362. * + if there is a block to the left of our position - allocate near it.
  363. * + if pointer will live in indirect block - allocate near that block.
  364. * + if pointer will live in inode - allocate in the same
  365. * cylinder group.
  366. *
  367. * In the latter case we colour the starting block by the callers PID to
  368. * prevent it from clashing with concurrent allocations for a different inode
  369. * in the same block group. The PID is used here so that functionally related
  370. * files will be close-by on-disk.
  371. *
  372. * Caller must make sure that @ind is valid and will stay that way.
  373. */
  374. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  375. {
  376. struct ext3_inode_info *ei = EXT3_I(inode);
  377. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  378. __le32 *p;
  379. ext3_fsblk_t bg_start;
  380. ext3_grpblk_t colour;
  381. /* Try to find previous block */
  382. for (p = ind->p - 1; p >= start; p--) {
  383. if (*p)
  384. return le32_to_cpu(*p);
  385. }
  386. /* No such thing, so let's try location of indirect block */
  387. if (ind->bh)
  388. return ind->bh->b_blocknr;
  389. /*
  390. * It is going to be referred to from the inode itself? OK, just put it
  391. * into the same cylinder group then.
  392. */
  393. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  394. colour = (current->pid % 16) *
  395. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  396. return bg_start + colour;
  397. }
  398. /**
  399. * ext3_find_goal - find a preferred place for allocation.
  400. * @inode: owner
  401. * @block: block we want
  402. * @partial: pointer to the last triple within a chain
  403. *
  404. * Normally this function find the preferred place for block allocation,
  405. * returns it.
  406. */
  407. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  408. Indirect *partial)
  409. {
  410. struct ext3_block_alloc_info *block_i;
  411. block_i = EXT3_I(inode)->i_block_alloc_info;
  412. /*
  413. * try the heuristic for sequential allocation,
  414. * failing that at least try to get decent locality.
  415. */
  416. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  417. && (block_i->last_alloc_physical_block != 0)) {
  418. return block_i->last_alloc_physical_block + 1;
  419. }
  420. return ext3_find_near(inode, partial);
  421. }
  422. /**
  423. * ext3_blks_to_allocate: Look up the block map and count the number
  424. * of direct blocks need to be allocated for the given branch.
  425. *
  426. * @branch: chain of indirect blocks
  427. * @k: number of blocks need for indirect blocks
  428. * @blks: number of data blocks to be mapped.
  429. * @blocks_to_boundary: the offset in the indirect block
  430. *
  431. * return the total number of blocks to be allocate, including the
  432. * direct and indirect blocks.
  433. */
  434. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  435. int blocks_to_boundary)
  436. {
  437. unsigned long count = 0;
  438. /*
  439. * Simple case, [t,d]Indirect block(s) has not allocated yet
  440. * then it's clear blocks on that path have not allocated
  441. */
  442. if (k > 0) {
  443. /* right now we don't handle cross boundary allocation */
  444. if (blks < blocks_to_boundary + 1)
  445. count += blks;
  446. else
  447. count += blocks_to_boundary + 1;
  448. return count;
  449. }
  450. count++;
  451. while (count < blks && count <= blocks_to_boundary &&
  452. le32_to_cpu(*(branch[0].p + count)) == 0) {
  453. count++;
  454. }
  455. return count;
  456. }
  457. /**
  458. * ext3_alloc_blocks: multiple allocate blocks needed for a branch
  459. * @indirect_blks: the number of blocks need to allocate for indirect
  460. * blocks
  461. *
  462. * @new_blocks: on return it will store the new block numbers for
  463. * the indirect blocks(if needed) and the first direct block,
  464. * @blks: on return it will store the total number of allocated
  465. * direct blocks
  466. */
  467. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  468. ext3_fsblk_t goal, int indirect_blks, int blks,
  469. ext3_fsblk_t new_blocks[4], int *err)
  470. {
  471. int target, i;
  472. unsigned long count = 0;
  473. int index = 0;
  474. ext3_fsblk_t current_block = 0;
  475. int ret = 0;
  476. /*
  477. * Here we try to allocate the requested multiple blocks at once,
  478. * on a best-effort basis.
  479. * To build a branch, we should allocate blocks for
  480. * the indirect blocks(if not allocated yet), and at least
  481. * the first direct block of this branch. That's the
  482. * minimum number of blocks need to allocate(required)
  483. */
  484. target = blks + indirect_blks;
  485. while (1) {
  486. count = target;
  487. /* allocating blocks for indirect blocks and direct blocks */
  488. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  489. if (*err)
  490. goto failed_out;
  491. target -= count;
  492. /* allocate blocks for indirect blocks */
  493. while (index < indirect_blks && count) {
  494. new_blocks[index++] = current_block++;
  495. count--;
  496. }
  497. if (count > 0)
  498. break;
  499. }
  500. /* save the new block number for the first direct block */
  501. new_blocks[index] = current_block;
  502. /* total number of blocks allocated for direct blocks */
  503. ret = count;
  504. *err = 0;
  505. return ret;
  506. failed_out:
  507. for (i = 0; i <index; i++)
  508. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  509. return ret;
  510. }
  511. /**
  512. * ext3_alloc_branch - allocate and set up a chain of blocks.
  513. * @inode: owner
  514. * @indirect_blks: number of allocated indirect blocks
  515. * @blks: number of allocated direct blocks
  516. * @offsets: offsets (in the blocks) to store the pointers to next.
  517. * @branch: place to store the chain in.
  518. *
  519. * This function allocates blocks, zeroes out all but the last one,
  520. * links them into chain and (if we are synchronous) writes them to disk.
  521. * In other words, it prepares a branch that can be spliced onto the
  522. * inode. It stores the information about that chain in the branch[], in
  523. * the same format as ext3_get_branch() would do. We are calling it after
  524. * we had read the existing part of chain and partial points to the last
  525. * triple of that (one with zero ->key). Upon the exit we have the same
  526. * picture as after the successful ext3_get_block(), except that in one
  527. * place chain is disconnected - *branch->p is still zero (we did not
  528. * set the last link), but branch->key contains the number that should
  529. * be placed into *branch->p to fill that gap.
  530. *
  531. * If allocation fails we free all blocks we've allocated (and forget
  532. * their buffer_heads) and return the error value the from failed
  533. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  534. * as described above and return 0.
  535. */
  536. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  537. int indirect_blks, int *blks, ext3_fsblk_t goal,
  538. int *offsets, Indirect *branch)
  539. {
  540. int blocksize = inode->i_sb->s_blocksize;
  541. int i, n = 0;
  542. int err = 0;
  543. struct buffer_head *bh;
  544. int num;
  545. ext3_fsblk_t new_blocks[4];
  546. ext3_fsblk_t current_block;
  547. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  548. *blks, new_blocks, &err);
  549. if (err)
  550. return err;
  551. branch[0].key = cpu_to_le32(new_blocks[0]);
  552. /*
  553. * metadata blocks and data blocks are allocated.
  554. */
  555. for (n = 1; n <= indirect_blks; n++) {
  556. /*
  557. * Get buffer_head for parent block, zero it out
  558. * and set the pointer to new one, then send
  559. * parent to disk.
  560. */
  561. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  562. branch[n].bh = bh;
  563. lock_buffer(bh);
  564. BUFFER_TRACE(bh, "call get_create_access");
  565. err = ext3_journal_get_create_access(handle, bh);
  566. if (err) {
  567. unlock_buffer(bh);
  568. brelse(bh);
  569. goto failed;
  570. }
  571. memset(bh->b_data, 0, blocksize);
  572. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  573. branch[n].key = cpu_to_le32(new_blocks[n]);
  574. *branch[n].p = branch[n].key;
  575. if ( n == indirect_blks) {
  576. current_block = new_blocks[n];
  577. /*
  578. * End of chain, update the last new metablock of
  579. * the chain to point to the new allocated
  580. * data blocks numbers
  581. */
  582. for (i=1; i < num; i++)
  583. *(branch[n].p + i) = cpu_to_le32(++current_block);
  584. }
  585. BUFFER_TRACE(bh, "marking uptodate");
  586. set_buffer_uptodate(bh);
  587. unlock_buffer(bh);
  588. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  589. err = ext3_journal_dirty_metadata(handle, bh);
  590. if (err)
  591. goto failed;
  592. }
  593. *blks = num;
  594. return err;
  595. failed:
  596. /* Allocation failed, free what we already allocated */
  597. for (i = 1; i <= n ; i++) {
  598. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  599. ext3_journal_forget(handle, branch[i].bh);
  600. }
  601. for (i = 0; i <indirect_blks; i++)
  602. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  603. ext3_free_blocks(handle, inode, new_blocks[i], num);
  604. return err;
  605. }
  606. /**
  607. * ext3_splice_branch - splice the allocated branch onto inode.
  608. * @inode: owner
  609. * @block: (logical) number of block we are adding
  610. * @chain: chain of indirect blocks (with a missing link - see
  611. * ext3_alloc_branch)
  612. * @where: location of missing link
  613. * @num: number of indirect blocks we are adding
  614. * @blks: number of direct blocks we are adding
  615. *
  616. * This function fills the missing link and does all housekeeping needed in
  617. * inode (->i_blocks, etc.). In case of success we end up with the full
  618. * chain to new block and return 0.
  619. */
  620. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  621. long block, Indirect *where, int num, int blks)
  622. {
  623. int i;
  624. int err = 0;
  625. struct ext3_block_alloc_info *block_i;
  626. ext3_fsblk_t current_block;
  627. block_i = EXT3_I(inode)->i_block_alloc_info;
  628. /*
  629. * If we're splicing into a [td]indirect block (as opposed to the
  630. * inode) then we need to get write access to the [td]indirect block
  631. * before the splice.
  632. */
  633. if (where->bh) {
  634. BUFFER_TRACE(where->bh, "get_write_access");
  635. err = ext3_journal_get_write_access(handle, where->bh);
  636. if (err)
  637. goto err_out;
  638. }
  639. /* That's it */
  640. *where->p = where->key;
  641. /*
  642. * Update the host buffer_head or inode to point to more just allocated
  643. * direct blocks blocks
  644. */
  645. if (num == 0 && blks > 1) {
  646. current_block = le32_to_cpu(where->key) + 1;
  647. for (i = 1; i < blks; i++)
  648. *(where->p + i ) = cpu_to_le32(current_block++);
  649. }
  650. /*
  651. * update the most recently allocated logical & physical block
  652. * in i_block_alloc_info, to assist find the proper goal block for next
  653. * allocation
  654. */
  655. if (block_i) {
  656. block_i->last_alloc_logical_block = block + blks - 1;
  657. block_i->last_alloc_physical_block =
  658. le32_to_cpu(where[num].key) + blks - 1;
  659. }
  660. /* We are done with atomic stuff, now do the rest of housekeeping */
  661. inode->i_ctime = CURRENT_TIME_SEC;
  662. ext3_mark_inode_dirty(handle, inode);
  663. /* had we spliced it onto indirect block? */
  664. if (where->bh) {
  665. /*
  666. * If we spliced it onto an indirect block, we haven't
  667. * altered the inode. Note however that if it is being spliced
  668. * onto an indirect block at the very end of the file (the
  669. * file is growing) then we *will* alter the inode to reflect
  670. * the new i_size. But that is not done here - it is done in
  671. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  672. */
  673. jbd_debug(5, "splicing indirect only\n");
  674. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  675. err = ext3_journal_dirty_metadata(handle, where->bh);
  676. if (err)
  677. goto err_out;
  678. } else {
  679. /*
  680. * OK, we spliced it into the inode itself on a direct block.
  681. * Inode was dirtied above.
  682. */
  683. jbd_debug(5, "splicing direct\n");
  684. }
  685. return err;
  686. err_out:
  687. for (i = 1; i <= num; i++) {
  688. BUFFER_TRACE(where[i].bh, "call journal_forget");
  689. ext3_journal_forget(handle, where[i].bh);
  690. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  691. }
  692. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  693. return err;
  694. }
  695. /*
  696. * Allocation strategy is simple: if we have to allocate something, we will
  697. * have to go the whole way to leaf. So let's do it before attaching anything
  698. * to tree, set linkage between the newborn blocks, write them if sync is
  699. * required, recheck the path, free and repeat if check fails, otherwise
  700. * set the last missing link (that will protect us from any truncate-generated
  701. * removals - all blocks on the path are immune now) and possibly force the
  702. * write on the parent block.
  703. * That has a nice additional property: no special recovery from the failed
  704. * allocations is needed - we simply release blocks and do not touch anything
  705. * reachable from inode.
  706. *
  707. * `handle' can be NULL if create == 0.
  708. *
  709. * The BKL may not be held on entry here. Be sure to take it early.
  710. * return > 0, # of blocks mapped or allocated.
  711. * return = 0, if plain lookup failed.
  712. * return < 0, error case.
  713. */
  714. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  715. sector_t iblock, unsigned long maxblocks,
  716. struct buffer_head *bh_result,
  717. int create)
  718. {
  719. int err = -EIO;
  720. int offsets[4];
  721. Indirect chain[4];
  722. Indirect *partial;
  723. ext3_fsblk_t goal;
  724. int indirect_blks;
  725. int blocks_to_boundary = 0;
  726. int depth;
  727. struct ext3_inode_info *ei = EXT3_I(inode);
  728. int count = 0;
  729. ext3_fsblk_t first_block = 0;
  730. J_ASSERT(handle != NULL || create == 0);
  731. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  732. if (depth == 0)
  733. goto out;
  734. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  735. /* Simplest case - block found, no allocation needed */
  736. if (!partial) {
  737. first_block = le32_to_cpu(chain[depth - 1].key);
  738. clear_buffer_new(bh_result);
  739. count++;
  740. /*map more blocks*/
  741. while (count < maxblocks && count <= blocks_to_boundary) {
  742. ext3_fsblk_t blk;
  743. if (!verify_chain(chain, chain + depth - 1)) {
  744. /*
  745. * Indirect block might be removed by
  746. * truncate while we were reading it.
  747. * Handling of that case: forget what we've
  748. * got now. Flag the err as EAGAIN, so it
  749. * will reread.
  750. */
  751. err = -EAGAIN;
  752. count = 0;
  753. break;
  754. }
  755. blk = le32_to_cpu(*(chain[depth-1].p + count));
  756. if (blk == first_block + count)
  757. count++;
  758. else
  759. break;
  760. }
  761. if (err != -EAGAIN)
  762. goto got_it;
  763. }
  764. /* Next simple case - plain lookup or failed read of indirect block */
  765. if (!create || err == -EIO)
  766. goto cleanup;
  767. mutex_lock(&ei->truncate_mutex);
  768. /*
  769. * If the indirect block is missing while we are reading
  770. * the chain(ext3_get_branch() returns -EAGAIN err), or
  771. * if the chain has been changed after we grab the semaphore,
  772. * (either because another process truncated this branch, or
  773. * another get_block allocated this branch) re-grab the chain to see if
  774. * the request block has been allocated or not.
  775. *
  776. * Since we already block the truncate/other get_block
  777. * at this point, we will have the current copy of the chain when we
  778. * splice the branch into the tree.
  779. */
  780. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  781. while (partial > chain) {
  782. brelse(partial->bh);
  783. partial--;
  784. }
  785. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  786. if (!partial) {
  787. count++;
  788. mutex_unlock(&ei->truncate_mutex);
  789. if (err)
  790. goto cleanup;
  791. clear_buffer_new(bh_result);
  792. goto got_it;
  793. }
  794. }
  795. /*
  796. * Okay, we need to do block allocation. Lazily initialize the block
  797. * allocation info here if necessary
  798. */
  799. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  800. ext3_init_block_alloc_info(inode);
  801. goal = ext3_find_goal(inode, iblock, partial);
  802. /* the number of blocks need to allocate for [d,t]indirect blocks */
  803. indirect_blks = (chain + depth) - partial - 1;
  804. /*
  805. * Next look up the indirect map to count the totoal number of
  806. * direct blocks to allocate for this branch.
  807. */
  808. count = ext3_blks_to_allocate(partial, indirect_blks,
  809. maxblocks, blocks_to_boundary);
  810. /*
  811. * Block out ext3_truncate while we alter the tree
  812. */
  813. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  814. offsets + (partial - chain), partial);
  815. /*
  816. * The ext3_splice_branch call will free and forget any buffers
  817. * on the new chain if there is a failure, but that risks using
  818. * up transaction credits, especially for bitmaps where the
  819. * credits cannot be returned. Can we handle this somehow? We
  820. * may need to return -EAGAIN upwards in the worst case. --sct
  821. */
  822. if (!err)
  823. err = ext3_splice_branch(handle, inode, iblock,
  824. partial, indirect_blks, count);
  825. mutex_unlock(&ei->truncate_mutex);
  826. if (err)
  827. goto cleanup;
  828. set_buffer_new(bh_result);
  829. got_it:
  830. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  831. if (count > blocks_to_boundary)
  832. set_buffer_boundary(bh_result);
  833. err = count;
  834. /* Clean up and exit */
  835. partial = chain + depth - 1; /* the whole chain */
  836. cleanup:
  837. while (partial > chain) {
  838. BUFFER_TRACE(partial->bh, "call brelse");
  839. brelse(partial->bh);
  840. partial--;
  841. }
  842. BUFFER_TRACE(bh_result, "returned");
  843. out:
  844. return err;
  845. }
  846. /* Maximum number of blocks we map for direct IO at once. */
  847. #define DIO_MAX_BLOCKS 4096
  848. /*
  849. * Number of credits we need for writing DIO_MAX_BLOCKS:
  850. * We need sb + group descriptor + bitmap + inode -> 4
  851. * For B blocks with A block pointers per block we need:
  852. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  853. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  854. */
  855. #define DIO_CREDITS 25
  856. static int ext3_get_block(struct inode *inode, sector_t iblock,
  857. struct buffer_head *bh_result, int create)
  858. {
  859. handle_t *handle = ext3_journal_current_handle();
  860. int ret = 0, started = 0;
  861. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  862. if (create && !handle) { /* Direct IO write... */
  863. if (max_blocks > DIO_MAX_BLOCKS)
  864. max_blocks = DIO_MAX_BLOCKS;
  865. handle = ext3_journal_start(inode, DIO_CREDITS +
  866. 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
  867. if (IS_ERR(handle)) {
  868. ret = PTR_ERR(handle);
  869. goto out;
  870. }
  871. started = 1;
  872. }
  873. ret = ext3_get_blocks_handle(handle, inode, iblock,
  874. max_blocks, bh_result, create);
  875. if (ret > 0) {
  876. bh_result->b_size = (ret << inode->i_blkbits);
  877. ret = 0;
  878. }
  879. if (started)
  880. ext3_journal_stop(handle);
  881. out:
  882. return ret;
  883. }
  884. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  885. u64 start, u64 len)
  886. {
  887. return generic_block_fiemap(inode, fieinfo, start, len,
  888. ext3_get_block);
  889. }
  890. /*
  891. * `handle' can be NULL if create is zero
  892. */
  893. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  894. long block, int create, int *errp)
  895. {
  896. struct buffer_head dummy;
  897. int fatal = 0, err;
  898. J_ASSERT(handle != NULL || create == 0);
  899. dummy.b_state = 0;
  900. dummy.b_blocknr = -1000;
  901. buffer_trace_init(&dummy.b_history);
  902. err = ext3_get_blocks_handle(handle, inode, block, 1,
  903. &dummy, create);
  904. /*
  905. * ext3_get_blocks_handle() returns number of blocks
  906. * mapped. 0 in case of a HOLE.
  907. */
  908. if (err > 0) {
  909. if (err > 1)
  910. WARN_ON(1);
  911. err = 0;
  912. }
  913. *errp = err;
  914. if (!err && buffer_mapped(&dummy)) {
  915. struct buffer_head *bh;
  916. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  917. if (!bh) {
  918. *errp = -EIO;
  919. goto err;
  920. }
  921. if (buffer_new(&dummy)) {
  922. J_ASSERT(create != 0);
  923. J_ASSERT(handle != NULL);
  924. /*
  925. * Now that we do not always journal data, we should
  926. * keep in mind whether this should always journal the
  927. * new buffer as metadata. For now, regular file
  928. * writes use ext3_get_block instead, so it's not a
  929. * problem.
  930. */
  931. lock_buffer(bh);
  932. BUFFER_TRACE(bh, "call get_create_access");
  933. fatal = ext3_journal_get_create_access(handle, bh);
  934. if (!fatal && !buffer_uptodate(bh)) {
  935. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  936. set_buffer_uptodate(bh);
  937. }
  938. unlock_buffer(bh);
  939. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  940. err = ext3_journal_dirty_metadata(handle, bh);
  941. if (!fatal)
  942. fatal = err;
  943. } else {
  944. BUFFER_TRACE(bh, "not a new buffer");
  945. }
  946. if (fatal) {
  947. *errp = fatal;
  948. brelse(bh);
  949. bh = NULL;
  950. }
  951. return bh;
  952. }
  953. err:
  954. return NULL;
  955. }
  956. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  957. int block, int create, int *err)
  958. {
  959. struct buffer_head * bh;
  960. bh = ext3_getblk(handle, inode, block, create, err);
  961. if (!bh)
  962. return bh;
  963. if (buffer_uptodate(bh))
  964. return bh;
  965. ll_rw_block(READ_META, 1, &bh);
  966. wait_on_buffer(bh);
  967. if (buffer_uptodate(bh))
  968. return bh;
  969. put_bh(bh);
  970. *err = -EIO;
  971. return NULL;
  972. }
  973. static int walk_page_buffers( handle_t *handle,
  974. struct buffer_head *head,
  975. unsigned from,
  976. unsigned to,
  977. int *partial,
  978. int (*fn)( handle_t *handle,
  979. struct buffer_head *bh))
  980. {
  981. struct buffer_head *bh;
  982. unsigned block_start, block_end;
  983. unsigned blocksize = head->b_size;
  984. int err, ret = 0;
  985. struct buffer_head *next;
  986. for ( bh = head, block_start = 0;
  987. ret == 0 && (bh != head || !block_start);
  988. block_start = block_end, bh = next)
  989. {
  990. next = bh->b_this_page;
  991. block_end = block_start + blocksize;
  992. if (block_end <= from || block_start >= to) {
  993. if (partial && !buffer_uptodate(bh))
  994. *partial = 1;
  995. continue;
  996. }
  997. err = (*fn)(handle, bh);
  998. if (!ret)
  999. ret = err;
  1000. }
  1001. return ret;
  1002. }
  1003. /*
  1004. * To preserve ordering, it is essential that the hole instantiation and
  1005. * the data write be encapsulated in a single transaction. We cannot
  1006. * close off a transaction and start a new one between the ext3_get_block()
  1007. * and the commit_write(). So doing the journal_start at the start of
  1008. * prepare_write() is the right place.
  1009. *
  1010. * Also, this function can nest inside ext3_writepage() ->
  1011. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1012. * has generated enough buffer credits to do the whole page. So we won't
  1013. * block on the journal in that case, which is good, because the caller may
  1014. * be PF_MEMALLOC.
  1015. *
  1016. * By accident, ext3 can be reentered when a transaction is open via
  1017. * quota file writes. If we were to commit the transaction while thus
  1018. * reentered, there can be a deadlock - we would be holding a quota
  1019. * lock, and the commit would never complete if another thread had a
  1020. * transaction open and was blocking on the quota lock - a ranking
  1021. * violation.
  1022. *
  1023. * So what we do is to rely on the fact that journal_stop/journal_start
  1024. * will _not_ run commit under these circumstances because handle->h_ref
  1025. * is elevated. We'll still have enough credits for the tiny quotafile
  1026. * write.
  1027. */
  1028. static int do_journal_get_write_access(handle_t *handle,
  1029. struct buffer_head *bh)
  1030. {
  1031. if (!buffer_mapped(bh) || buffer_freed(bh))
  1032. return 0;
  1033. return ext3_journal_get_write_access(handle, bh);
  1034. }
  1035. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1036. loff_t pos, unsigned len, unsigned flags,
  1037. struct page **pagep, void **fsdata)
  1038. {
  1039. struct inode *inode = mapping->host;
  1040. int ret;
  1041. handle_t *handle;
  1042. int retries = 0;
  1043. struct page *page;
  1044. pgoff_t index;
  1045. unsigned from, to;
  1046. /* Reserve one block more for addition to orphan list in case
  1047. * we allocate blocks but write fails for some reason */
  1048. int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
  1049. index = pos >> PAGE_CACHE_SHIFT;
  1050. from = pos & (PAGE_CACHE_SIZE - 1);
  1051. to = from + len;
  1052. retry:
  1053. page = grab_cache_page_write_begin(mapping, index, flags);
  1054. if (!page)
  1055. return -ENOMEM;
  1056. *pagep = page;
  1057. handle = ext3_journal_start(inode, needed_blocks);
  1058. if (IS_ERR(handle)) {
  1059. unlock_page(page);
  1060. page_cache_release(page);
  1061. ret = PTR_ERR(handle);
  1062. goto out;
  1063. }
  1064. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1065. ext3_get_block);
  1066. if (ret)
  1067. goto write_begin_failed;
  1068. if (ext3_should_journal_data(inode)) {
  1069. ret = walk_page_buffers(handle, page_buffers(page),
  1070. from, to, NULL, do_journal_get_write_access);
  1071. }
  1072. write_begin_failed:
  1073. if (ret) {
  1074. /*
  1075. * block_write_begin may have instantiated a few blocks
  1076. * outside i_size. Trim these off again. Don't need
  1077. * i_size_read because we hold i_mutex.
  1078. *
  1079. * Add inode to orphan list in case we crash before truncate
  1080. * finishes. Do this only if ext3_can_truncate() agrees so
  1081. * that orphan processing code is happy.
  1082. */
  1083. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1084. ext3_orphan_add(handle, inode);
  1085. ext3_journal_stop(handle);
  1086. unlock_page(page);
  1087. page_cache_release(page);
  1088. if (pos + len > inode->i_size)
  1089. ext3_truncate(inode);
  1090. }
  1091. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1092. goto retry;
  1093. out:
  1094. return ret;
  1095. }
  1096. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1097. {
  1098. int err = journal_dirty_data(handle, bh);
  1099. if (err)
  1100. ext3_journal_abort_handle(__func__, __func__,
  1101. bh, handle, err);
  1102. return err;
  1103. }
  1104. /* For ordered writepage and write_end functions */
  1105. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1106. {
  1107. /*
  1108. * Write could have mapped the buffer but it didn't copy the data in
  1109. * yet. So avoid filing such buffer into a transaction.
  1110. */
  1111. if (buffer_mapped(bh) && buffer_uptodate(bh))
  1112. return ext3_journal_dirty_data(handle, bh);
  1113. return 0;
  1114. }
  1115. /* For write_end() in data=journal mode */
  1116. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1117. {
  1118. if (!buffer_mapped(bh) || buffer_freed(bh))
  1119. return 0;
  1120. set_buffer_uptodate(bh);
  1121. return ext3_journal_dirty_metadata(handle, bh);
  1122. }
  1123. /*
  1124. * This is nasty and subtle: ext3_write_begin() could have allocated blocks
  1125. * for the whole page but later we failed to copy the data in. Update inode
  1126. * size according to what we managed to copy. The rest is going to be
  1127. * truncated in write_end function.
  1128. */
  1129. static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
  1130. {
  1131. /* What matters to us is i_disksize. We don't write i_size anywhere */
  1132. if (pos + copied > inode->i_size)
  1133. i_size_write(inode, pos + copied);
  1134. if (pos + copied > EXT3_I(inode)->i_disksize) {
  1135. EXT3_I(inode)->i_disksize = pos + copied;
  1136. mark_inode_dirty(inode);
  1137. }
  1138. }
  1139. /*
  1140. * We need to pick up the new inode size which generic_commit_write gave us
  1141. * `file' can be NULL - eg, when called from page_symlink().
  1142. *
  1143. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1144. * buffers are managed internally.
  1145. */
  1146. static int ext3_ordered_write_end(struct file *file,
  1147. struct address_space *mapping,
  1148. loff_t pos, unsigned len, unsigned copied,
  1149. struct page *page, void *fsdata)
  1150. {
  1151. handle_t *handle = ext3_journal_current_handle();
  1152. struct inode *inode = file->f_mapping->host;
  1153. unsigned from, to;
  1154. int ret = 0, ret2;
  1155. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1156. from = pos & (PAGE_CACHE_SIZE - 1);
  1157. to = from + copied;
  1158. ret = walk_page_buffers(handle, page_buffers(page),
  1159. from, to, NULL, journal_dirty_data_fn);
  1160. if (ret == 0)
  1161. update_file_sizes(inode, pos, copied);
  1162. /*
  1163. * There may be allocated blocks outside of i_size because
  1164. * we failed to copy some data. Prepare for truncate.
  1165. */
  1166. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1167. ext3_orphan_add(handle, inode);
  1168. ret2 = ext3_journal_stop(handle);
  1169. if (!ret)
  1170. ret = ret2;
  1171. unlock_page(page);
  1172. page_cache_release(page);
  1173. if (pos + len > inode->i_size)
  1174. ext3_truncate(inode);
  1175. return ret ? ret : copied;
  1176. }
  1177. static int ext3_writeback_write_end(struct file *file,
  1178. struct address_space *mapping,
  1179. loff_t pos, unsigned len, unsigned copied,
  1180. struct page *page, void *fsdata)
  1181. {
  1182. handle_t *handle = ext3_journal_current_handle();
  1183. struct inode *inode = file->f_mapping->host;
  1184. int ret;
  1185. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1186. update_file_sizes(inode, pos, copied);
  1187. /*
  1188. * There may be allocated blocks outside of i_size because
  1189. * we failed to copy some data. Prepare for truncate.
  1190. */
  1191. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1192. ext3_orphan_add(handle, inode);
  1193. ret = ext3_journal_stop(handle);
  1194. unlock_page(page);
  1195. page_cache_release(page);
  1196. if (pos + len > inode->i_size)
  1197. ext3_truncate(inode);
  1198. return ret ? ret : copied;
  1199. }
  1200. static int ext3_journalled_write_end(struct file *file,
  1201. struct address_space *mapping,
  1202. loff_t pos, unsigned len, unsigned copied,
  1203. struct page *page, void *fsdata)
  1204. {
  1205. handle_t *handle = ext3_journal_current_handle();
  1206. struct inode *inode = mapping->host;
  1207. int ret = 0, ret2;
  1208. int partial = 0;
  1209. unsigned from, to;
  1210. from = pos & (PAGE_CACHE_SIZE - 1);
  1211. to = from + len;
  1212. if (copied < len) {
  1213. if (!PageUptodate(page))
  1214. copied = 0;
  1215. page_zero_new_buffers(page, from + copied, to);
  1216. to = from + copied;
  1217. }
  1218. ret = walk_page_buffers(handle, page_buffers(page), from,
  1219. to, &partial, write_end_fn);
  1220. if (!partial)
  1221. SetPageUptodate(page);
  1222. if (pos + copied > inode->i_size)
  1223. i_size_write(inode, pos + copied);
  1224. /*
  1225. * There may be allocated blocks outside of i_size because
  1226. * we failed to copy some data. Prepare for truncate.
  1227. */
  1228. if (pos + len > inode->i_size && ext3_can_truncate(inode))
  1229. ext3_orphan_add(handle, inode);
  1230. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1231. if (inode->i_size > EXT3_I(inode)->i_disksize) {
  1232. EXT3_I(inode)->i_disksize = inode->i_size;
  1233. ret2 = ext3_mark_inode_dirty(handle, inode);
  1234. if (!ret)
  1235. ret = ret2;
  1236. }
  1237. ret2 = ext3_journal_stop(handle);
  1238. if (!ret)
  1239. ret = ret2;
  1240. unlock_page(page);
  1241. page_cache_release(page);
  1242. if (pos + len > inode->i_size)
  1243. ext3_truncate(inode);
  1244. return ret ? ret : copied;
  1245. }
  1246. /*
  1247. * bmap() is special. It gets used by applications such as lilo and by
  1248. * the swapper to find the on-disk block of a specific piece of data.
  1249. *
  1250. * Naturally, this is dangerous if the block concerned is still in the
  1251. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1252. * filesystem and enables swap, then they may get a nasty shock when the
  1253. * data getting swapped to that swapfile suddenly gets overwritten by
  1254. * the original zero's written out previously to the journal and
  1255. * awaiting writeback in the kernel's buffer cache.
  1256. *
  1257. * So, if we see any bmap calls here on a modified, data-journaled file,
  1258. * take extra steps to flush any blocks which might be in the cache.
  1259. */
  1260. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1261. {
  1262. struct inode *inode = mapping->host;
  1263. journal_t *journal;
  1264. int err;
  1265. if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
  1266. /*
  1267. * This is a REALLY heavyweight approach, but the use of
  1268. * bmap on dirty files is expected to be extremely rare:
  1269. * only if we run lilo or swapon on a freshly made file
  1270. * do we expect this to happen.
  1271. *
  1272. * (bmap requires CAP_SYS_RAWIO so this does not
  1273. * represent an unprivileged user DOS attack --- we'd be
  1274. * in trouble if mortal users could trigger this path at
  1275. * will.)
  1276. *
  1277. * NB. EXT3_STATE_JDATA is not set on files other than
  1278. * regular files. If somebody wants to bmap a directory
  1279. * or symlink and gets confused because the buffer
  1280. * hasn't yet been flushed to disk, they deserve
  1281. * everything they get.
  1282. */
  1283. EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
  1284. journal = EXT3_JOURNAL(inode);
  1285. journal_lock_updates(journal);
  1286. err = journal_flush(journal);
  1287. journal_unlock_updates(journal);
  1288. if (err)
  1289. return 0;
  1290. }
  1291. return generic_block_bmap(mapping,block,ext3_get_block);
  1292. }
  1293. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1294. {
  1295. get_bh(bh);
  1296. return 0;
  1297. }
  1298. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1299. {
  1300. put_bh(bh);
  1301. return 0;
  1302. }
  1303. static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
  1304. {
  1305. return !buffer_mapped(bh);
  1306. }
  1307. /*
  1308. * Note that we always start a transaction even if we're not journalling
  1309. * data. This is to preserve ordering: any hole instantiation within
  1310. * __block_write_full_page -> ext3_get_block() should be journalled
  1311. * along with the data so we don't crash and then get metadata which
  1312. * refers to old data.
  1313. *
  1314. * In all journalling modes block_write_full_page() will start the I/O.
  1315. *
  1316. * Problem:
  1317. *
  1318. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1319. * ext3_writepage()
  1320. *
  1321. * Similar for:
  1322. *
  1323. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1324. *
  1325. * Same applies to ext3_get_block(). We will deadlock on various things like
  1326. * lock_journal and i_truncate_mutex.
  1327. *
  1328. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1329. * allocations fail.
  1330. *
  1331. * 16May01: If we're reentered then journal_current_handle() will be
  1332. * non-zero. We simply *return*.
  1333. *
  1334. * 1 July 2001: @@@ FIXME:
  1335. * In journalled data mode, a data buffer may be metadata against the
  1336. * current transaction. But the same file is part of a shared mapping
  1337. * and someone does a writepage() on it.
  1338. *
  1339. * We will move the buffer onto the async_data list, but *after* it has
  1340. * been dirtied. So there's a small window where we have dirty data on
  1341. * BJ_Metadata.
  1342. *
  1343. * Note that this only applies to the last partial page in the file. The
  1344. * bit which block_write_full_page() uses prepare/commit for. (That's
  1345. * broken code anyway: it's wrong for msync()).
  1346. *
  1347. * It's a rare case: affects the final partial page, for journalled data
  1348. * where the file is subject to bith write() and writepage() in the same
  1349. * transction. To fix it we'll need a custom block_write_full_page().
  1350. * We'll probably need that anyway for journalling writepage() output.
  1351. *
  1352. * We don't honour synchronous mounts for writepage(). That would be
  1353. * disastrous. Any write() or metadata operation will sync the fs for
  1354. * us.
  1355. *
  1356. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1357. * we don't need to open a transaction here.
  1358. */
  1359. static int ext3_ordered_writepage(struct page *page,
  1360. struct writeback_control *wbc)
  1361. {
  1362. struct inode *inode = page->mapping->host;
  1363. struct buffer_head *page_bufs;
  1364. handle_t *handle = NULL;
  1365. int ret = 0;
  1366. int err;
  1367. J_ASSERT(PageLocked(page));
  1368. /*
  1369. * We give up here if we're reentered, because it might be for a
  1370. * different filesystem.
  1371. */
  1372. if (ext3_journal_current_handle())
  1373. goto out_fail;
  1374. if (!page_has_buffers(page)) {
  1375. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1376. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1377. page_bufs = page_buffers(page);
  1378. } else {
  1379. page_bufs = page_buffers(page);
  1380. if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
  1381. NULL, buffer_unmapped)) {
  1382. /* Provide NULL get_block() to catch bugs if buffers
  1383. * weren't really mapped */
  1384. return block_write_full_page(page, NULL, wbc);
  1385. }
  1386. }
  1387. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1388. if (IS_ERR(handle)) {
  1389. ret = PTR_ERR(handle);
  1390. goto out_fail;
  1391. }
  1392. walk_page_buffers(handle, page_bufs, 0,
  1393. PAGE_CACHE_SIZE, NULL, bget_one);
  1394. ret = block_write_full_page(page, ext3_get_block, wbc);
  1395. /*
  1396. * The page can become unlocked at any point now, and
  1397. * truncate can then come in and change things. So we
  1398. * can't touch *page from now on. But *page_bufs is
  1399. * safe due to elevated refcount.
  1400. */
  1401. /*
  1402. * And attach them to the current transaction. But only if
  1403. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1404. * and generally junk.
  1405. */
  1406. if (ret == 0) {
  1407. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1408. NULL, journal_dirty_data_fn);
  1409. if (!ret)
  1410. ret = err;
  1411. }
  1412. walk_page_buffers(handle, page_bufs, 0,
  1413. PAGE_CACHE_SIZE, NULL, bput_one);
  1414. err = ext3_journal_stop(handle);
  1415. if (!ret)
  1416. ret = err;
  1417. return ret;
  1418. out_fail:
  1419. redirty_page_for_writepage(wbc, page);
  1420. unlock_page(page);
  1421. return ret;
  1422. }
  1423. static int ext3_writeback_writepage(struct page *page,
  1424. struct writeback_control *wbc)
  1425. {
  1426. struct inode *inode = page->mapping->host;
  1427. handle_t *handle = NULL;
  1428. int ret = 0;
  1429. int err;
  1430. if (ext3_journal_current_handle())
  1431. goto out_fail;
  1432. if (page_has_buffers(page)) {
  1433. if (!walk_page_buffers(NULL, page_buffers(page), 0,
  1434. PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
  1435. /* Provide NULL get_block() to catch bugs if buffers
  1436. * weren't really mapped */
  1437. return block_write_full_page(page, NULL, wbc);
  1438. }
  1439. }
  1440. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1441. if (IS_ERR(handle)) {
  1442. ret = PTR_ERR(handle);
  1443. goto out_fail;
  1444. }
  1445. if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
  1446. ret = nobh_writepage(page, ext3_get_block, wbc);
  1447. else
  1448. ret = block_write_full_page(page, ext3_get_block, wbc);
  1449. err = ext3_journal_stop(handle);
  1450. if (!ret)
  1451. ret = err;
  1452. return ret;
  1453. out_fail:
  1454. redirty_page_for_writepage(wbc, page);
  1455. unlock_page(page);
  1456. return ret;
  1457. }
  1458. static int ext3_journalled_writepage(struct page *page,
  1459. struct writeback_control *wbc)
  1460. {
  1461. struct inode *inode = page->mapping->host;
  1462. handle_t *handle = NULL;
  1463. int ret = 0;
  1464. int err;
  1465. if (ext3_journal_current_handle())
  1466. goto no_write;
  1467. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1468. if (IS_ERR(handle)) {
  1469. ret = PTR_ERR(handle);
  1470. goto no_write;
  1471. }
  1472. if (!page_has_buffers(page) || PageChecked(page)) {
  1473. /*
  1474. * It's mmapped pagecache. Add buffers and journal it. There
  1475. * doesn't seem much point in redirtying the page here.
  1476. */
  1477. ClearPageChecked(page);
  1478. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1479. ext3_get_block);
  1480. if (ret != 0) {
  1481. ext3_journal_stop(handle);
  1482. goto out_unlock;
  1483. }
  1484. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1485. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1486. err = walk_page_buffers(handle, page_buffers(page), 0,
  1487. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1488. if (ret == 0)
  1489. ret = err;
  1490. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1491. unlock_page(page);
  1492. } else {
  1493. /*
  1494. * It may be a page full of checkpoint-mode buffers. We don't
  1495. * really know unless we go poke around in the buffer_heads.
  1496. * But block_write_full_page will do the right thing.
  1497. */
  1498. ret = block_write_full_page(page, ext3_get_block, wbc);
  1499. }
  1500. err = ext3_journal_stop(handle);
  1501. if (!ret)
  1502. ret = err;
  1503. out:
  1504. return ret;
  1505. no_write:
  1506. redirty_page_for_writepage(wbc, page);
  1507. out_unlock:
  1508. unlock_page(page);
  1509. goto out;
  1510. }
  1511. static int ext3_readpage(struct file *file, struct page *page)
  1512. {
  1513. return mpage_readpage(page, ext3_get_block);
  1514. }
  1515. static int
  1516. ext3_readpages(struct file *file, struct address_space *mapping,
  1517. struct list_head *pages, unsigned nr_pages)
  1518. {
  1519. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1520. }
  1521. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1522. {
  1523. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1524. /*
  1525. * If it's a full truncate we just forget about the pending dirtying
  1526. */
  1527. if (offset == 0)
  1528. ClearPageChecked(page);
  1529. journal_invalidatepage(journal, page, offset);
  1530. }
  1531. static int ext3_releasepage(struct page *page, gfp_t wait)
  1532. {
  1533. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1534. WARN_ON(PageChecked(page));
  1535. if (!page_has_buffers(page))
  1536. return 0;
  1537. return journal_try_to_free_buffers(journal, page, wait);
  1538. }
  1539. /*
  1540. * If the O_DIRECT write will extend the file then add this inode to the
  1541. * orphan list. So recovery will truncate it back to the original size
  1542. * if the machine crashes during the write.
  1543. *
  1544. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1545. * crashes then stale disk data _may_ be exposed inside the file. But current
  1546. * VFS code falls back into buffered path in that case so we are safe.
  1547. */
  1548. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1549. const struct iovec *iov, loff_t offset,
  1550. unsigned long nr_segs)
  1551. {
  1552. struct file *file = iocb->ki_filp;
  1553. struct inode *inode = file->f_mapping->host;
  1554. struct ext3_inode_info *ei = EXT3_I(inode);
  1555. handle_t *handle;
  1556. ssize_t ret;
  1557. int orphan = 0;
  1558. size_t count = iov_length(iov, nr_segs);
  1559. if (rw == WRITE) {
  1560. loff_t final_size = offset + count;
  1561. if (final_size > inode->i_size) {
  1562. /* Credits for sb + inode write */
  1563. handle = ext3_journal_start(inode, 2);
  1564. if (IS_ERR(handle)) {
  1565. ret = PTR_ERR(handle);
  1566. goto out;
  1567. }
  1568. ret = ext3_orphan_add(handle, inode);
  1569. if (ret) {
  1570. ext3_journal_stop(handle);
  1571. goto out;
  1572. }
  1573. orphan = 1;
  1574. ei->i_disksize = inode->i_size;
  1575. ext3_journal_stop(handle);
  1576. }
  1577. }
  1578. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1579. offset, nr_segs,
  1580. ext3_get_block, NULL);
  1581. if (orphan) {
  1582. int err;
  1583. /* Credits for sb + inode write */
  1584. handle = ext3_journal_start(inode, 2);
  1585. if (IS_ERR(handle)) {
  1586. /* This is really bad luck. We've written the data
  1587. * but cannot extend i_size. Bail out and pretend
  1588. * the write failed... */
  1589. ret = PTR_ERR(handle);
  1590. goto out;
  1591. }
  1592. if (inode->i_nlink)
  1593. ext3_orphan_del(handle, inode);
  1594. if (ret > 0) {
  1595. loff_t end = offset + ret;
  1596. if (end > inode->i_size) {
  1597. ei->i_disksize = end;
  1598. i_size_write(inode, end);
  1599. /*
  1600. * We're going to return a positive `ret'
  1601. * here due to non-zero-length I/O, so there's
  1602. * no way of reporting error returns from
  1603. * ext3_mark_inode_dirty() to userspace. So
  1604. * ignore it.
  1605. */
  1606. ext3_mark_inode_dirty(handle, inode);
  1607. }
  1608. }
  1609. err = ext3_journal_stop(handle);
  1610. if (ret == 0)
  1611. ret = err;
  1612. }
  1613. out:
  1614. return ret;
  1615. }
  1616. /*
  1617. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1618. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1619. * much here because ->set_page_dirty is called under VFS locks. The page is
  1620. * not necessarily locked.
  1621. *
  1622. * We cannot just dirty the page and leave attached buffers clean, because the
  1623. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1624. * or jbddirty because all the journalling code will explode.
  1625. *
  1626. * So what we do is to mark the page "pending dirty" and next time writepage
  1627. * is called, propagate that into the buffers appropriately.
  1628. */
  1629. static int ext3_journalled_set_page_dirty(struct page *page)
  1630. {
  1631. SetPageChecked(page);
  1632. return __set_page_dirty_nobuffers(page);
  1633. }
  1634. static const struct address_space_operations ext3_ordered_aops = {
  1635. .readpage = ext3_readpage,
  1636. .readpages = ext3_readpages,
  1637. .writepage = ext3_ordered_writepage,
  1638. .sync_page = block_sync_page,
  1639. .write_begin = ext3_write_begin,
  1640. .write_end = ext3_ordered_write_end,
  1641. .bmap = ext3_bmap,
  1642. .invalidatepage = ext3_invalidatepage,
  1643. .releasepage = ext3_releasepage,
  1644. .direct_IO = ext3_direct_IO,
  1645. .migratepage = buffer_migrate_page,
  1646. .is_partially_uptodate = block_is_partially_uptodate,
  1647. };
  1648. static const struct address_space_operations ext3_writeback_aops = {
  1649. .readpage = ext3_readpage,
  1650. .readpages = ext3_readpages,
  1651. .writepage = ext3_writeback_writepage,
  1652. .sync_page = block_sync_page,
  1653. .write_begin = ext3_write_begin,
  1654. .write_end = ext3_writeback_write_end,
  1655. .bmap = ext3_bmap,
  1656. .invalidatepage = ext3_invalidatepage,
  1657. .releasepage = ext3_releasepage,
  1658. .direct_IO = ext3_direct_IO,
  1659. .migratepage = buffer_migrate_page,
  1660. .is_partially_uptodate = block_is_partially_uptodate,
  1661. };
  1662. static const struct address_space_operations ext3_journalled_aops = {
  1663. .readpage = ext3_readpage,
  1664. .readpages = ext3_readpages,
  1665. .writepage = ext3_journalled_writepage,
  1666. .sync_page = block_sync_page,
  1667. .write_begin = ext3_write_begin,
  1668. .write_end = ext3_journalled_write_end,
  1669. .set_page_dirty = ext3_journalled_set_page_dirty,
  1670. .bmap = ext3_bmap,
  1671. .invalidatepage = ext3_invalidatepage,
  1672. .releasepage = ext3_releasepage,
  1673. .is_partially_uptodate = block_is_partially_uptodate,
  1674. };
  1675. void ext3_set_aops(struct inode *inode)
  1676. {
  1677. if (ext3_should_order_data(inode))
  1678. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1679. else if (ext3_should_writeback_data(inode))
  1680. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1681. else
  1682. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1683. }
  1684. /*
  1685. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1686. * up to the end of the block which corresponds to `from'.
  1687. * This required during truncate. We need to physically zero the tail end
  1688. * of that block so it doesn't yield old data if the file is later grown.
  1689. */
  1690. static int ext3_block_truncate_page(handle_t *handle, struct page *page,
  1691. struct address_space *mapping, loff_t from)
  1692. {
  1693. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1694. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1695. unsigned blocksize, iblock, length, pos;
  1696. struct inode *inode = mapping->host;
  1697. struct buffer_head *bh;
  1698. int err = 0;
  1699. blocksize = inode->i_sb->s_blocksize;
  1700. length = blocksize - (offset & (blocksize - 1));
  1701. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1702. /*
  1703. * For "nobh" option, we can only work if we don't need to
  1704. * read-in the page - otherwise we create buffers to do the IO.
  1705. */
  1706. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1707. ext3_should_writeback_data(inode) && PageUptodate(page)) {
  1708. zero_user(page, offset, length);
  1709. set_page_dirty(page);
  1710. goto unlock;
  1711. }
  1712. if (!page_has_buffers(page))
  1713. create_empty_buffers(page, blocksize, 0);
  1714. /* Find the buffer that contains "offset" */
  1715. bh = page_buffers(page);
  1716. pos = blocksize;
  1717. while (offset >= pos) {
  1718. bh = bh->b_this_page;
  1719. iblock++;
  1720. pos += blocksize;
  1721. }
  1722. err = 0;
  1723. if (buffer_freed(bh)) {
  1724. BUFFER_TRACE(bh, "freed: skip");
  1725. goto unlock;
  1726. }
  1727. if (!buffer_mapped(bh)) {
  1728. BUFFER_TRACE(bh, "unmapped");
  1729. ext3_get_block(inode, iblock, bh, 0);
  1730. /* unmapped? It's a hole - nothing to do */
  1731. if (!buffer_mapped(bh)) {
  1732. BUFFER_TRACE(bh, "still unmapped");
  1733. goto unlock;
  1734. }
  1735. }
  1736. /* Ok, it's mapped. Make sure it's up-to-date */
  1737. if (PageUptodate(page))
  1738. set_buffer_uptodate(bh);
  1739. if (!buffer_uptodate(bh)) {
  1740. err = -EIO;
  1741. ll_rw_block(READ, 1, &bh);
  1742. wait_on_buffer(bh);
  1743. /* Uhhuh. Read error. Complain and punt. */
  1744. if (!buffer_uptodate(bh))
  1745. goto unlock;
  1746. }
  1747. if (ext3_should_journal_data(inode)) {
  1748. BUFFER_TRACE(bh, "get write access");
  1749. err = ext3_journal_get_write_access(handle, bh);
  1750. if (err)
  1751. goto unlock;
  1752. }
  1753. zero_user(page, offset, length);
  1754. BUFFER_TRACE(bh, "zeroed end of block");
  1755. err = 0;
  1756. if (ext3_should_journal_data(inode)) {
  1757. err = ext3_journal_dirty_metadata(handle, bh);
  1758. } else {
  1759. if (ext3_should_order_data(inode))
  1760. err = ext3_journal_dirty_data(handle, bh);
  1761. mark_buffer_dirty(bh);
  1762. }
  1763. unlock:
  1764. unlock_page(page);
  1765. page_cache_release(page);
  1766. return err;
  1767. }
  1768. /*
  1769. * Probably it should be a library function... search for first non-zero word
  1770. * or memcmp with zero_page, whatever is better for particular architecture.
  1771. * Linus?
  1772. */
  1773. static inline int all_zeroes(__le32 *p, __le32 *q)
  1774. {
  1775. while (p < q)
  1776. if (*p++)
  1777. return 0;
  1778. return 1;
  1779. }
  1780. /**
  1781. * ext3_find_shared - find the indirect blocks for partial truncation.
  1782. * @inode: inode in question
  1783. * @depth: depth of the affected branch
  1784. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1785. * @chain: place to store the pointers to partial indirect blocks
  1786. * @top: place to the (detached) top of branch
  1787. *
  1788. * This is a helper function used by ext3_truncate().
  1789. *
  1790. * When we do truncate() we may have to clean the ends of several
  1791. * indirect blocks but leave the blocks themselves alive. Block is
  1792. * partially truncated if some data below the new i_size is refered
  1793. * from it (and it is on the path to the first completely truncated
  1794. * data block, indeed). We have to free the top of that path along
  1795. * with everything to the right of the path. Since no allocation
  1796. * past the truncation point is possible until ext3_truncate()
  1797. * finishes, we may safely do the latter, but top of branch may
  1798. * require special attention - pageout below the truncation point
  1799. * might try to populate it.
  1800. *
  1801. * We atomically detach the top of branch from the tree, store the
  1802. * block number of its root in *@top, pointers to buffer_heads of
  1803. * partially truncated blocks - in @chain[].bh and pointers to
  1804. * their last elements that should not be removed - in
  1805. * @chain[].p. Return value is the pointer to last filled element
  1806. * of @chain.
  1807. *
  1808. * The work left to caller to do the actual freeing of subtrees:
  1809. * a) free the subtree starting from *@top
  1810. * b) free the subtrees whose roots are stored in
  1811. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1812. * c) free the subtrees growing from the inode past the @chain[0].
  1813. * (no partially truncated stuff there). */
  1814. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1815. int offsets[4], Indirect chain[4], __le32 *top)
  1816. {
  1817. Indirect *partial, *p;
  1818. int k, err;
  1819. *top = 0;
  1820. /* Make k index the deepest non-null offest + 1 */
  1821. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1822. ;
  1823. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1824. /* Writer: pointers */
  1825. if (!partial)
  1826. partial = chain + k-1;
  1827. /*
  1828. * If the branch acquired continuation since we've looked at it -
  1829. * fine, it should all survive and (new) top doesn't belong to us.
  1830. */
  1831. if (!partial->key && *partial->p)
  1832. /* Writer: end */
  1833. goto no_top;
  1834. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1835. ;
  1836. /*
  1837. * OK, we've found the last block that must survive. The rest of our
  1838. * branch should be detached before unlocking. However, if that rest
  1839. * of branch is all ours and does not grow immediately from the inode
  1840. * it's easier to cheat and just decrement partial->p.
  1841. */
  1842. if (p == chain + k - 1 && p > chain) {
  1843. p->p--;
  1844. } else {
  1845. *top = *p->p;
  1846. /* Nope, don't do this in ext3. Must leave the tree intact */
  1847. #if 0
  1848. *p->p = 0;
  1849. #endif
  1850. }
  1851. /* Writer: end */
  1852. while(partial > p) {
  1853. brelse(partial->bh);
  1854. partial--;
  1855. }
  1856. no_top:
  1857. return partial;
  1858. }
  1859. /*
  1860. * Zero a number of block pointers in either an inode or an indirect block.
  1861. * If we restart the transaction we must again get write access to the
  1862. * indirect block for further modification.
  1863. *
  1864. * We release `count' blocks on disk, but (last - first) may be greater
  1865. * than `count' because there can be holes in there.
  1866. */
  1867. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  1868. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  1869. unsigned long count, __le32 *first, __le32 *last)
  1870. {
  1871. __le32 *p;
  1872. if (try_to_extend_transaction(handle, inode)) {
  1873. if (bh) {
  1874. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1875. ext3_journal_dirty_metadata(handle, bh);
  1876. }
  1877. ext3_mark_inode_dirty(handle, inode);
  1878. ext3_journal_test_restart(handle, inode);
  1879. if (bh) {
  1880. BUFFER_TRACE(bh, "retaking write access");
  1881. ext3_journal_get_write_access(handle, bh);
  1882. }
  1883. }
  1884. /*
  1885. * Any buffers which are on the journal will be in memory. We find
  1886. * them on the hash table so journal_revoke() will run journal_forget()
  1887. * on them. We've already detached each block from the file, so
  1888. * bforget() in journal_forget() should be safe.
  1889. *
  1890. * AKPM: turn on bforget in journal_forget()!!!
  1891. */
  1892. for (p = first; p < last; p++) {
  1893. u32 nr = le32_to_cpu(*p);
  1894. if (nr) {
  1895. struct buffer_head *bh;
  1896. *p = 0;
  1897. bh = sb_find_get_block(inode->i_sb, nr);
  1898. ext3_forget(handle, 0, inode, bh, nr);
  1899. }
  1900. }
  1901. ext3_free_blocks(handle, inode, block_to_free, count);
  1902. }
  1903. /**
  1904. * ext3_free_data - free a list of data blocks
  1905. * @handle: handle for this transaction
  1906. * @inode: inode we are dealing with
  1907. * @this_bh: indirect buffer_head which contains *@first and *@last
  1908. * @first: array of block numbers
  1909. * @last: points immediately past the end of array
  1910. *
  1911. * We are freeing all blocks refered from that array (numbers are stored as
  1912. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1913. *
  1914. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1915. * blocks are contiguous then releasing them at one time will only affect one
  1916. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1917. * actually use a lot of journal space.
  1918. *
  1919. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1920. * block pointers.
  1921. */
  1922. static void ext3_free_data(handle_t *handle, struct inode *inode,
  1923. struct buffer_head *this_bh,
  1924. __le32 *first, __le32 *last)
  1925. {
  1926. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1927. unsigned long count = 0; /* Number of blocks in the run */
  1928. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1929. corresponding to
  1930. block_to_free */
  1931. ext3_fsblk_t nr; /* Current block # */
  1932. __le32 *p; /* Pointer into inode/ind
  1933. for current block */
  1934. int err;
  1935. if (this_bh) { /* For indirect block */
  1936. BUFFER_TRACE(this_bh, "get_write_access");
  1937. err = ext3_journal_get_write_access(handle, this_bh);
  1938. /* Important: if we can't update the indirect pointers
  1939. * to the blocks, we can't free them. */
  1940. if (err)
  1941. return;
  1942. }
  1943. for (p = first; p < last; p++) {
  1944. nr = le32_to_cpu(*p);
  1945. if (nr) {
  1946. /* accumulate blocks to free if they're contiguous */
  1947. if (count == 0) {
  1948. block_to_free = nr;
  1949. block_to_free_p = p;
  1950. count = 1;
  1951. } else if (nr == block_to_free + count) {
  1952. count++;
  1953. } else {
  1954. ext3_clear_blocks(handle, inode, this_bh,
  1955. block_to_free,
  1956. count, block_to_free_p, p);
  1957. block_to_free = nr;
  1958. block_to_free_p = p;
  1959. count = 1;
  1960. }
  1961. }
  1962. }
  1963. if (count > 0)
  1964. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  1965. count, block_to_free_p, p);
  1966. if (this_bh) {
  1967. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  1968. /*
  1969. * The buffer head should have an attached journal head at this
  1970. * point. However, if the data is corrupted and an indirect
  1971. * block pointed to itself, it would have been detached when
  1972. * the block was cleared. Check for this instead of OOPSing.
  1973. */
  1974. if (bh2jh(this_bh))
  1975. ext3_journal_dirty_metadata(handle, this_bh);
  1976. else
  1977. ext3_error(inode->i_sb, "ext3_free_data",
  1978. "circular indirect block detected, "
  1979. "inode=%lu, block=%llu",
  1980. inode->i_ino,
  1981. (unsigned long long)this_bh->b_blocknr);
  1982. }
  1983. }
  1984. /**
  1985. * ext3_free_branches - free an array of branches
  1986. * @handle: JBD handle for this transaction
  1987. * @inode: inode we are dealing with
  1988. * @parent_bh: the buffer_head which contains *@first and *@last
  1989. * @first: array of block numbers
  1990. * @last: pointer immediately past the end of array
  1991. * @depth: depth of the branches to free
  1992. *
  1993. * We are freeing all blocks refered from these branches (numbers are
  1994. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1995. * appropriately.
  1996. */
  1997. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  1998. struct buffer_head *parent_bh,
  1999. __le32 *first, __le32 *last, int depth)
  2000. {
  2001. ext3_fsblk_t nr;
  2002. __le32 *p;
  2003. if (is_handle_aborted(handle))
  2004. return;
  2005. if (depth--) {
  2006. struct buffer_head *bh;
  2007. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2008. p = last;
  2009. while (--p >= first) {
  2010. nr = le32_to_cpu(*p);
  2011. if (!nr)
  2012. continue; /* A hole */
  2013. /* Go read the buffer for the next level down */
  2014. bh = sb_bread(inode->i_sb, nr);
  2015. /*
  2016. * A read failure? Report error and clear slot
  2017. * (should be rare).
  2018. */
  2019. if (!bh) {
  2020. ext3_error(inode->i_sb, "ext3_free_branches",
  2021. "Read failure, inode=%lu, block="E3FSBLK,
  2022. inode->i_ino, nr);
  2023. continue;
  2024. }
  2025. /* This zaps the entire block. Bottom up. */
  2026. BUFFER_TRACE(bh, "free child branches");
  2027. ext3_free_branches(handle, inode, bh,
  2028. (__le32*)bh->b_data,
  2029. (__le32*)bh->b_data + addr_per_block,
  2030. depth);
  2031. /*
  2032. * We've probably journalled the indirect block several
  2033. * times during the truncate. But it's no longer
  2034. * needed and we now drop it from the transaction via
  2035. * journal_revoke().
  2036. *
  2037. * That's easy if it's exclusively part of this
  2038. * transaction. But if it's part of the committing
  2039. * transaction then journal_forget() will simply
  2040. * brelse() it. That means that if the underlying
  2041. * block is reallocated in ext3_get_block(),
  2042. * unmap_underlying_metadata() will find this block
  2043. * and will try to get rid of it. damn, damn.
  2044. *
  2045. * If this block has already been committed to the
  2046. * journal, a revoke record will be written. And
  2047. * revoke records must be emitted *before* clearing
  2048. * this block's bit in the bitmaps.
  2049. */
  2050. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2051. /*
  2052. * Everything below this this pointer has been
  2053. * released. Now let this top-of-subtree go.
  2054. *
  2055. * We want the freeing of this indirect block to be
  2056. * atomic in the journal with the updating of the
  2057. * bitmap block which owns it. So make some room in
  2058. * the journal.
  2059. *
  2060. * We zero the parent pointer *after* freeing its
  2061. * pointee in the bitmaps, so if extend_transaction()
  2062. * for some reason fails to put the bitmap changes and
  2063. * the release into the same transaction, recovery
  2064. * will merely complain about releasing a free block,
  2065. * rather than leaking blocks.
  2066. */
  2067. if (is_handle_aborted(handle))
  2068. return;
  2069. if (try_to_extend_transaction(handle, inode)) {
  2070. ext3_mark_inode_dirty(handle, inode);
  2071. ext3_journal_test_restart(handle, inode);
  2072. }
  2073. ext3_free_blocks(handle, inode, nr, 1);
  2074. if (parent_bh) {
  2075. /*
  2076. * The block which we have just freed is
  2077. * pointed to by an indirect block: journal it
  2078. */
  2079. BUFFER_TRACE(parent_bh, "get_write_access");
  2080. if (!ext3_journal_get_write_access(handle,
  2081. parent_bh)){
  2082. *p = 0;
  2083. BUFFER_TRACE(parent_bh,
  2084. "call ext3_journal_dirty_metadata");
  2085. ext3_journal_dirty_metadata(handle,
  2086. parent_bh);
  2087. }
  2088. }
  2089. }
  2090. } else {
  2091. /* We have reached the bottom of the tree. */
  2092. BUFFER_TRACE(parent_bh, "free data blocks");
  2093. ext3_free_data(handle, inode, parent_bh, first, last);
  2094. }
  2095. }
  2096. int ext3_can_truncate(struct inode *inode)
  2097. {
  2098. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2099. return 0;
  2100. if (S_ISREG(inode->i_mode))
  2101. return 1;
  2102. if (S_ISDIR(inode->i_mode))
  2103. return 1;
  2104. if (S_ISLNK(inode->i_mode))
  2105. return !ext3_inode_is_fast_symlink(inode);
  2106. return 0;
  2107. }
  2108. /*
  2109. * ext3_truncate()
  2110. *
  2111. * We block out ext3_get_block() block instantiations across the entire
  2112. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2113. * simultaneously on behalf of the same inode.
  2114. *
  2115. * As we work through the truncate and commmit bits of it to the journal there
  2116. * is one core, guiding principle: the file's tree must always be consistent on
  2117. * disk. We must be able to restart the truncate after a crash.
  2118. *
  2119. * The file's tree may be transiently inconsistent in memory (although it
  2120. * probably isn't), but whenever we close off and commit a journal transaction,
  2121. * the contents of (the filesystem + the journal) must be consistent and
  2122. * restartable. It's pretty simple, really: bottom up, right to left (although
  2123. * left-to-right works OK too).
  2124. *
  2125. * Note that at recovery time, journal replay occurs *before* the restart of
  2126. * truncate against the orphan inode list.
  2127. *
  2128. * The committed inode has the new, desired i_size (which is the same as
  2129. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2130. * that this inode's truncate did not complete and it will again call
  2131. * ext3_truncate() to have another go. So there will be instantiated blocks
  2132. * to the right of the truncation point in a crashed ext3 filesystem. But
  2133. * that's fine - as long as they are linked from the inode, the post-crash
  2134. * ext3_truncate() run will find them and release them.
  2135. */
  2136. void ext3_truncate(struct inode *inode)
  2137. {
  2138. handle_t *handle;
  2139. struct ext3_inode_info *ei = EXT3_I(inode);
  2140. __le32 *i_data = ei->i_data;
  2141. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2142. struct address_space *mapping = inode->i_mapping;
  2143. int offsets[4];
  2144. Indirect chain[4];
  2145. Indirect *partial;
  2146. __le32 nr = 0;
  2147. int n;
  2148. long last_block;
  2149. unsigned blocksize = inode->i_sb->s_blocksize;
  2150. struct page *page;
  2151. if (!ext3_can_truncate(inode))
  2152. goto out_notrans;
  2153. if (inode->i_size == 0 && ext3_should_writeback_data(inode))
  2154. ei->i_state |= EXT3_STATE_FLUSH_ON_CLOSE;
  2155. /*
  2156. * We have to lock the EOF page here, because lock_page() nests
  2157. * outside journal_start().
  2158. */
  2159. if ((inode->i_size & (blocksize - 1)) == 0) {
  2160. /* Block boundary? Nothing to do */
  2161. page = NULL;
  2162. } else {
  2163. page = grab_cache_page(mapping,
  2164. inode->i_size >> PAGE_CACHE_SHIFT);
  2165. if (!page)
  2166. goto out_notrans;
  2167. }
  2168. handle = start_transaction(inode);
  2169. if (IS_ERR(handle)) {
  2170. if (page) {
  2171. clear_highpage(page);
  2172. flush_dcache_page(page);
  2173. unlock_page(page);
  2174. page_cache_release(page);
  2175. }
  2176. goto out_notrans;
  2177. }
  2178. last_block = (inode->i_size + blocksize-1)
  2179. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2180. if (page)
  2181. ext3_block_truncate_page(handle, page, mapping, inode->i_size);
  2182. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2183. if (n == 0)
  2184. goto out_stop; /* error */
  2185. /*
  2186. * OK. This truncate is going to happen. We add the inode to the
  2187. * orphan list, so that if this truncate spans multiple transactions,
  2188. * and we crash, we will resume the truncate when the filesystem
  2189. * recovers. It also marks the inode dirty, to catch the new size.
  2190. *
  2191. * Implication: the file must always be in a sane, consistent
  2192. * truncatable state while each transaction commits.
  2193. */
  2194. if (ext3_orphan_add(handle, inode))
  2195. goto out_stop;
  2196. /*
  2197. * The orphan list entry will now protect us from any crash which
  2198. * occurs before the truncate completes, so it is now safe to propagate
  2199. * the new, shorter inode size (held for now in i_size) into the
  2200. * on-disk inode. We do this via i_disksize, which is the value which
  2201. * ext3 *really* writes onto the disk inode.
  2202. */
  2203. ei->i_disksize = inode->i_size;
  2204. /*
  2205. * From here we block out all ext3_get_block() callers who want to
  2206. * modify the block allocation tree.
  2207. */
  2208. mutex_lock(&ei->truncate_mutex);
  2209. if (n == 1) { /* direct blocks */
  2210. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2211. i_data + EXT3_NDIR_BLOCKS);
  2212. goto do_indirects;
  2213. }
  2214. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2215. /* Kill the top of shared branch (not detached) */
  2216. if (nr) {
  2217. if (partial == chain) {
  2218. /* Shared branch grows from the inode */
  2219. ext3_free_branches(handle, inode, NULL,
  2220. &nr, &nr+1, (chain+n-1) - partial);
  2221. *partial->p = 0;
  2222. /*
  2223. * We mark the inode dirty prior to restart,
  2224. * and prior to stop. No need for it here.
  2225. */
  2226. } else {
  2227. /* Shared branch grows from an indirect block */
  2228. BUFFER_TRACE(partial->bh, "get_write_access");
  2229. ext3_free_branches(handle, inode, partial->bh,
  2230. partial->p,
  2231. partial->p+1, (chain+n-1) - partial);
  2232. }
  2233. }
  2234. /* Clear the ends of indirect blocks on the shared branch */
  2235. while (partial > chain) {
  2236. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2237. (__le32*)partial->bh->b_data+addr_per_block,
  2238. (chain+n-1) - partial);
  2239. BUFFER_TRACE(partial->bh, "call brelse");
  2240. brelse (partial->bh);
  2241. partial--;
  2242. }
  2243. do_indirects:
  2244. /* Kill the remaining (whole) subtrees */
  2245. switch (offsets[0]) {
  2246. default:
  2247. nr = i_data[EXT3_IND_BLOCK];
  2248. if (nr) {
  2249. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2250. i_data[EXT3_IND_BLOCK] = 0;
  2251. }
  2252. case EXT3_IND_BLOCK:
  2253. nr = i_data[EXT3_DIND_BLOCK];
  2254. if (nr) {
  2255. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2256. i_data[EXT3_DIND_BLOCK] = 0;
  2257. }
  2258. case EXT3_DIND_BLOCK:
  2259. nr = i_data[EXT3_TIND_BLOCK];
  2260. if (nr) {
  2261. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2262. i_data[EXT3_TIND_BLOCK] = 0;
  2263. }
  2264. case EXT3_TIND_BLOCK:
  2265. ;
  2266. }
  2267. ext3_discard_reservation(inode);
  2268. mutex_unlock(&ei->truncate_mutex);
  2269. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2270. ext3_mark_inode_dirty(handle, inode);
  2271. /*
  2272. * In a multi-transaction truncate, we only make the final transaction
  2273. * synchronous
  2274. */
  2275. if (IS_SYNC(inode))
  2276. handle->h_sync = 1;
  2277. out_stop:
  2278. /*
  2279. * If this was a simple ftruncate(), and the file will remain alive
  2280. * then we need to clear up the orphan record which we created above.
  2281. * However, if this was a real unlink then we were called by
  2282. * ext3_delete_inode(), and we allow that function to clean up the
  2283. * orphan info for us.
  2284. */
  2285. if (inode->i_nlink)
  2286. ext3_orphan_del(handle, inode);
  2287. ext3_journal_stop(handle);
  2288. return;
  2289. out_notrans:
  2290. /*
  2291. * Delete the inode from orphan list so that it doesn't stay there
  2292. * forever and trigger assertion on umount.
  2293. */
  2294. if (inode->i_nlink)
  2295. ext3_orphan_del(NULL, inode);
  2296. }
  2297. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2298. unsigned long ino, struct ext3_iloc *iloc)
  2299. {
  2300. unsigned long block_group;
  2301. unsigned long offset;
  2302. ext3_fsblk_t block;
  2303. struct ext3_group_desc *gdp;
  2304. if (!ext3_valid_inum(sb, ino)) {
  2305. /*
  2306. * This error is already checked for in namei.c unless we are
  2307. * looking at an NFS filehandle, in which case no error
  2308. * report is needed
  2309. */
  2310. return 0;
  2311. }
  2312. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2313. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2314. if (!gdp)
  2315. return 0;
  2316. /*
  2317. * Figure out the offset within the block group inode table
  2318. */
  2319. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2320. EXT3_INODE_SIZE(sb);
  2321. block = le32_to_cpu(gdp->bg_inode_table) +
  2322. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2323. iloc->block_group = block_group;
  2324. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2325. return block;
  2326. }
  2327. /*
  2328. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2329. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2330. * data in memory that is needed to recreate the on-disk version of this
  2331. * inode.
  2332. */
  2333. static int __ext3_get_inode_loc(struct inode *inode,
  2334. struct ext3_iloc *iloc, int in_mem)
  2335. {
  2336. ext3_fsblk_t block;
  2337. struct buffer_head *bh;
  2338. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2339. if (!block)
  2340. return -EIO;
  2341. bh = sb_getblk(inode->i_sb, block);
  2342. if (!bh) {
  2343. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2344. "unable to read inode block - "
  2345. "inode=%lu, block="E3FSBLK,
  2346. inode->i_ino, block);
  2347. return -EIO;
  2348. }
  2349. if (!buffer_uptodate(bh)) {
  2350. lock_buffer(bh);
  2351. /*
  2352. * If the buffer has the write error flag, we have failed
  2353. * to write out another inode in the same block. In this
  2354. * case, we don't have to read the block because we may
  2355. * read the old inode data successfully.
  2356. */
  2357. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2358. set_buffer_uptodate(bh);
  2359. if (buffer_uptodate(bh)) {
  2360. /* someone brought it uptodate while we waited */
  2361. unlock_buffer(bh);
  2362. goto has_buffer;
  2363. }
  2364. /*
  2365. * If we have all information of the inode in memory and this
  2366. * is the only valid inode in the block, we need not read the
  2367. * block.
  2368. */
  2369. if (in_mem) {
  2370. struct buffer_head *bitmap_bh;
  2371. struct ext3_group_desc *desc;
  2372. int inodes_per_buffer;
  2373. int inode_offset, i;
  2374. int block_group;
  2375. int start;
  2376. block_group = (inode->i_ino - 1) /
  2377. EXT3_INODES_PER_GROUP(inode->i_sb);
  2378. inodes_per_buffer = bh->b_size /
  2379. EXT3_INODE_SIZE(inode->i_sb);
  2380. inode_offset = ((inode->i_ino - 1) %
  2381. EXT3_INODES_PER_GROUP(inode->i_sb));
  2382. start = inode_offset & ~(inodes_per_buffer - 1);
  2383. /* Is the inode bitmap in cache? */
  2384. desc = ext3_get_group_desc(inode->i_sb,
  2385. block_group, NULL);
  2386. if (!desc)
  2387. goto make_io;
  2388. bitmap_bh = sb_getblk(inode->i_sb,
  2389. le32_to_cpu(desc->bg_inode_bitmap));
  2390. if (!bitmap_bh)
  2391. goto make_io;
  2392. /*
  2393. * If the inode bitmap isn't in cache then the
  2394. * optimisation may end up performing two reads instead
  2395. * of one, so skip it.
  2396. */
  2397. if (!buffer_uptodate(bitmap_bh)) {
  2398. brelse(bitmap_bh);
  2399. goto make_io;
  2400. }
  2401. for (i = start; i < start + inodes_per_buffer; i++) {
  2402. if (i == inode_offset)
  2403. continue;
  2404. if (ext3_test_bit(i, bitmap_bh->b_data))
  2405. break;
  2406. }
  2407. brelse(bitmap_bh);
  2408. if (i == start + inodes_per_buffer) {
  2409. /* all other inodes are free, so skip I/O */
  2410. memset(bh->b_data, 0, bh->b_size);
  2411. set_buffer_uptodate(bh);
  2412. unlock_buffer(bh);
  2413. goto has_buffer;
  2414. }
  2415. }
  2416. make_io:
  2417. /*
  2418. * There are other valid inodes in the buffer, this inode
  2419. * has in-inode xattrs, or we don't have this inode in memory.
  2420. * Read the block from disk.
  2421. */
  2422. get_bh(bh);
  2423. bh->b_end_io = end_buffer_read_sync;
  2424. submit_bh(READ_META, bh);
  2425. wait_on_buffer(bh);
  2426. if (!buffer_uptodate(bh)) {
  2427. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2428. "unable to read inode block - "
  2429. "inode=%lu, block="E3FSBLK,
  2430. inode->i_ino, block);
  2431. brelse(bh);
  2432. return -EIO;
  2433. }
  2434. }
  2435. has_buffer:
  2436. iloc->bh = bh;
  2437. return 0;
  2438. }
  2439. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2440. {
  2441. /* We have all inode data except xattrs in memory here. */
  2442. return __ext3_get_inode_loc(inode, iloc,
  2443. !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
  2444. }
  2445. void ext3_set_inode_flags(struct inode *inode)
  2446. {
  2447. unsigned int flags = EXT3_I(inode)->i_flags;
  2448. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2449. if (flags & EXT3_SYNC_FL)
  2450. inode->i_flags |= S_SYNC;
  2451. if (flags & EXT3_APPEND_FL)
  2452. inode->i_flags |= S_APPEND;
  2453. if (flags & EXT3_IMMUTABLE_FL)
  2454. inode->i_flags |= S_IMMUTABLE;
  2455. if (flags & EXT3_NOATIME_FL)
  2456. inode->i_flags |= S_NOATIME;
  2457. if (flags & EXT3_DIRSYNC_FL)
  2458. inode->i_flags |= S_DIRSYNC;
  2459. }
  2460. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2461. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2462. {
  2463. unsigned int flags = ei->vfs_inode.i_flags;
  2464. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2465. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2466. if (flags & S_SYNC)
  2467. ei->i_flags |= EXT3_SYNC_FL;
  2468. if (flags & S_APPEND)
  2469. ei->i_flags |= EXT3_APPEND_FL;
  2470. if (flags & S_IMMUTABLE)
  2471. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2472. if (flags & S_NOATIME)
  2473. ei->i_flags |= EXT3_NOATIME_FL;
  2474. if (flags & S_DIRSYNC)
  2475. ei->i_flags |= EXT3_DIRSYNC_FL;
  2476. }
  2477. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2478. {
  2479. struct ext3_iloc iloc;
  2480. struct ext3_inode *raw_inode;
  2481. struct ext3_inode_info *ei;
  2482. struct buffer_head *bh;
  2483. struct inode *inode;
  2484. long ret;
  2485. int block;
  2486. inode = iget_locked(sb, ino);
  2487. if (!inode)
  2488. return ERR_PTR(-ENOMEM);
  2489. if (!(inode->i_state & I_NEW))
  2490. return inode;
  2491. ei = EXT3_I(inode);
  2492. ei->i_block_alloc_info = NULL;
  2493. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2494. if (ret < 0)
  2495. goto bad_inode;
  2496. bh = iloc.bh;
  2497. raw_inode = ext3_raw_inode(&iloc);
  2498. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2499. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2500. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2501. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2502. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2503. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2504. }
  2505. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2506. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2507. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2508. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2509. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2510. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2511. ei->i_state = 0;
  2512. ei->i_dir_start_lookup = 0;
  2513. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2514. /* We now have enough fields to check if the inode was active or not.
  2515. * This is needed because nfsd might try to access dead inodes
  2516. * the test is that same one that e2fsck uses
  2517. * NeilBrown 1999oct15
  2518. */
  2519. if (inode->i_nlink == 0) {
  2520. if (inode->i_mode == 0 ||
  2521. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2522. /* this inode is deleted */
  2523. brelse (bh);
  2524. ret = -ESTALE;
  2525. goto bad_inode;
  2526. }
  2527. /* The only unlinked inodes we let through here have
  2528. * valid i_mode and are being read by the orphan
  2529. * recovery code: that's fine, we're about to complete
  2530. * the process of deleting those. */
  2531. }
  2532. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2533. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2534. #ifdef EXT3_FRAGMENTS
  2535. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2536. ei->i_frag_no = raw_inode->i_frag;
  2537. ei->i_frag_size = raw_inode->i_fsize;
  2538. #endif
  2539. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2540. if (!S_ISREG(inode->i_mode)) {
  2541. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2542. } else {
  2543. inode->i_size |=
  2544. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2545. }
  2546. ei->i_disksize = inode->i_size;
  2547. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2548. ei->i_block_group = iloc.block_group;
  2549. /*
  2550. * NOTE! The in-memory inode i_data array is in little-endian order
  2551. * even on big-endian machines: we do NOT byteswap the block numbers!
  2552. */
  2553. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2554. ei->i_data[block] = raw_inode->i_block[block];
  2555. INIT_LIST_HEAD(&ei->i_orphan);
  2556. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2557. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2558. /*
  2559. * When mke2fs creates big inodes it does not zero out
  2560. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2561. * so ignore those first few inodes.
  2562. */
  2563. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2564. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2565. EXT3_INODE_SIZE(inode->i_sb)) {
  2566. brelse (bh);
  2567. ret = -EIO;
  2568. goto bad_inode;
  2569. }
  2570. if (ei->i_extra_isize == 0) {
  2571. /* The extra space is currently unused. Use it. */
  2572. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2573. EXT3_GOOD_OLD_INODE_SIZE;
  2574. } else {
  2575. __le32 *magic = (void *)raw_inode +
  2576. EXT3_GOOD_OLD_INODE_SIZE +
  2577. ei->i_extra_isize;
  2578. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2579. ei->i_state |= EXT3_STATE_XATTR;
  2580. }
  2581. } else
  2582. ei->i_extra_isize = 0;
  2583. if (S_ISREG(inode->i_mode)) {
  2584. inode->i_op = &ext3_file_inode_operations;
  2585. inode->i_fop = &ext3_file_operations;
  2586. ext3_set_aops(inode);
  2587. } else if (S_ISDIR(inode->i_mode)) {
  2588. inode->i_op = &ext3_dir_inode_operations;
  2589. inode->i_fop = &ext3_dir_operations;
  2590. } else if (S_ISLNK(inode->i_mode)) {
  2591. if (ext3_inode_is_fast_symlink(inode)) {
  2592. inode->i_op = &ext3_fast_symlink_inode_operations;
  2593. nd_terminate_link(ei->i_data, inode->i_size,
  2594. sizeof(ei->i_data) - 1);
  2595. } else {
  2596. inode->i_op = &ext3_symlink_inode_operations;
  2597. ext3_set_aops(inode);
  2598. }
  2599. } else {
  2600. inode->i_op = &ext3_special_inode_operations;
  2601. if (raw_inode->i_block[0])
  2602. init_special_inode(inode, inode->i_mode,
  2603. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2604. else
  2605. init_special_inode(inode, inode->i_mode,
  2606. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2607. }
  2608. brelse (iloc.bh);
  2609. ext3_set_inode_flags(inode);
  2610. unlock_new_inode(inode);
  2611. return inode;
  2612. bad_inode:
  2613. iget_failed(inode);
  2614. return ERR_PTR(ret);
  2615. }
  2616. /*
  2617. * Post the struct inode info into an on-disk inode location in the
  2618. * buffer-cache. This gobbles the caller's reference to the
  2619. * buffer_head in the inode location struct.
  2620. *
  2621. * The caller must have write access to iloc->bh.
  2622. */
  2623. static int ext3_do_update_inode(handle_t *handle,
  2624. struct inode *inode,
  2625. struct ext3_iloc *iloc)
  2626. {
  2627. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2628. struct ext3_inode_info *ei = EXT3_I(inode);
  2629. struct buffer_head *bh = iloc->bh;
  2630. int err = 0, rc, block;
  2631. /* For fields not not tracking in the in-memory inode,
  2632. * initialise them to zero for new inodes. */
  2633. if (ei->i_state & EXT3_STATE_NEW)
  2634. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2635. ext3_get_inode_flags(ei);
  2636. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2637. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2638. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2639. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2640. /*
  2641. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2642. * re-used with the upper 16 bits of the uid/gid intact
  2643. */
  2644. if(!ei->i_dtime) {
  2645. raw_inode->i_uid_high =
  2646. cpu_to_le16(high_16_bits(inode->i_uid));
  2647. raw_inode->i_gid_high =
  2648. cpu_to_le16(high_16_bits(inode->i_gid));
  2649. } else {
  2650. raw_inode->i_uid_high = 0;
  2651. raw_inode->i_gid_high = 0;
  2652. }
  2653. } else {
  2654. raw_inode->i_uid_low =
  2655. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2656. raw_inode->i_gid_low =
  2657. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2658. raw_inode->i_uid_high = 0;
  2659. raw_inode->i_gid_high = 0;
  2660. }
  2661. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2662. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2663. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2664. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2665. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2666. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2667. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2668. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2669. #ifdef EXT3_FRAGMENTS
  2670. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2671. raw_inode->i_frag = ei->i_frag_no;
  2672. raw_inode->i_fsize = ei->i_frag_size;
  2673. #endif
  2674. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2675. if (!S_ISREG(inode->i_mode)) {
  2676. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2677. } else {
  2678. raw_inode->i_size_high =
  2679. cpu_to_le32(ei->i_disksize >> 32);
  2680. if (ei->i_disksize > 0x7fffffffULL) {
  2681. struct super_block *sb = inode->i_sb;
  2682. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2683. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2684. EXT3_SB(sb)->s_es->s_rev_level ==
  2685. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2686. /* If this is the first large file
  2687. * created, add a flag to the superblock.
  2688. */
  2689. err = ext3_journal_get_write_access(handle,
  2690. EXT3_SB(sb)->s_sbh);
  2691. if (err)
  2692. goto out_brelse;
  2693. ext3_update_dynamic_rev(sb);
  2694. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2695. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2696. handle->h_sync = 1;
  2697. err = ext3_journal_dirty_metadata(handle,
  2698. EXT3_SB(sb)->s_sbh);
  2699. }
  2700. }
  2701. }
  2702. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2703. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2704. if (old_valid_dev(inode->i_rdev)) {
  2705. raw_inode->i_block[0] =
  2706. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2707. raw_inode->i_block[1] = 0;
  2708. } else {
  2709. raw_inode->i_block[0] = 0;
  2710. raw_inode->i_block[1] =
  2711. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2712. raw_inode->i_block[2] = 0;
  2713. }
  2714. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2715. raw_inode->i_block[block] = ei->i_data[block];
  2716. if (ei->i_extra_isize)
  2717. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2718. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2719. rc = ext3_journal_dirty_metadata(handle, bh);
  2720. if (!err)
  2721. err = rc;
  2722. ei->i_state &= ~EXT3_STATE_NEW;
  2723. out_brelse:
  2724. brelse (bh);
  2725. ext3_std_error(inode->i_sb, err);
  2726. return err;
  2727. }
  2728. /*
  2729. * ext3_write_inode()
  2730. *
  2731. * We are called from a few places:
  2732. *
  2733. * - Within generic_file_write() for O_SYNC files.
  2734. * Here, there will be no transaction running. We wait for any running
  2735. * trasnaction to commit.
  2736. *
  2737. * - Within sys_sync(), kupdate and such.
  2738. * We wait on commit, if tol to.
  2739. *
  2740. * - Within prune_icache() (PF_MEMALLOC == true)
  2741. * Here we simply return. We can't afford to block kswapd on the
  2742. * journal commit.
  2743. *
  2744. * In all cases it is actually safe for us to return without doing anything,
  2745. * because the inode has been copied into a raw inode buffer in
  2746. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2747. * knfsd.
  2748. *
  2749. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2750. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2751. * which we are interested.
  2752. *
  2753. * It would be a bug for them to not do this. The code:
  2754. *
  2755. * mark_inode_dirty(inode)
  2756. * stuff();
  2757. * inode->i_size = expr;
  2758. *
  2759. * is in error because a kswapd-driven write_inode() could occur while
  2760. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2761. * will no longer be on the superblock's dirty inode list.
  2762. */
  2763. int ext3_write_inode(struct inode *inode, int wait)
  2764. {
  2765. if (current->flags & PF_MEMALLOC)
  2766. return 0;
  2767. if (ext3_journal_current_handle()) {
  2768. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2769. dump_stack();
  2770. return -EIO;
  2771. }
  2772. if (!wait)
  2773. return 0;
  2774. return ext3_force_commit(inode->i_sb);
  2775. }
  2776. /*
  2777. * ext3_setattr()
  2778. *
  2779. * Called from notify_change.
  2780. *
  2781. * We want to trap VFS attempts to truncate the file as soon as
  2782. * possible. In particular, we want to make sure that when the VFS
  2783. * shrinks i_size, we put the inode on the orphan list and modify
  2784. * i_disksize immediately, so that during the subsequent flushing of
  2785. * dirty pages and freeing of disk blocks, we can guarantee that any
  2786. * commit will leave the blocks being flushed in an unused state on
  2787. * disk. (On recovery, the inode will get truncated and the blocks will
  2788. * be freed, so we have a strong guarantee that no future commit will
  2789. * leave these blocks visible to the user.)
  2790. *
  2791. * Called with inode->sem down.
  2792. */
  2793. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2794. {
  2795. struct inode *inode = dentry->d_inode;
  2796. int error, rc = 0;
  2797. const unsigned int ia_valid = attr->ia_valid;
  2798. error = inode_change_ok(inode, attr);
  2799. if (error)
  2800. return error;
  2801. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2802. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2803. handle_t *handle;
  2804. /* (user+group)*(old+new) structure, inode write (sb,
  2805. * inode block, ? - but truncate inode update has it) */
  2806. handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2807. EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2808. if (IS_ERR(handle)) {
  2809. error = PTR_ERR(handle);
  2810. goto err_out;
  2811. }
  2812. error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
  2813. if (error) {
  2814. ext3_journal_stop(handle);
  2815. return error;
  2816. }
  2817. /* Update corresponding info in inode so that everything is in
  2818. * one transaction */
  2819. if (attr->ia_valid & ATTR_UID)
  2820. inode->i_uid = attr->ia_uid;
  2821. if (attr->ia_valid & ATTR_GID)
  2822. inode->i_gid = attr->ia_gid;
  2823. error = ext3_mark_inode_dirty(handle, inode);
  2824. ext3_journal_stop(handle);
  2825. }
  2826. if (S_ISREG(inode->i_mode) &&
  2827. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2828. handle_t *handle;
  2829. handle = ext3_journal_start(inode, 3);
  2830. if (IS_ERR(handle)) {
  2831. error = PTR_ERR(handle);
  2832. goto err_out;
  2833. }
  2834. error = ext3_orphan_add(handle, inode);
  2835. EXT3_I(inode)->i_disksize = attr->ia_size;
  2836. rc = ext3_mark_inode_dirty(handle, inode);
  2837. if (!error)
  2838. error = rc;
  2839. ext3_journal_stop(handle);
  2840. }
  2841. rc = inode_setattr(inode, attr);
  2842. if (!rc && (ia_valid & ATTR_MODE))
  2843. rc = ext3_acl_chmod(inode);
  2844. err_out:
  2845. ext3_std_error(inode->i_sb, error);
  2846. if (!error)
  2847. error = rc;
  2848. return error;
  2849. }
  2850. /*
  2851. * How many blocks doth make a writepage()?
  2852. *
  2853. * With N blocks per page, it may be:
  2854. * N data blocks
  2855. * 2 indirect block
  2856. * 2 dindirect
  2857. * 1 tindirect
  2858. * N+5 bitmap blocks (from the above)
  2859. * N+5 group descriptor summary blocks
  2860. * 1 inode block
  2861. * 1 superblock.
  2862. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  2863. *
  2864. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  2865. *
  2866. * With ordered or writeback data it's the same, less the N data blocks.
  2867. *
  2868. * If the inode's direct blocks can hold an integral number of pages then a
  2869. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2870. * and dindirect block, and the "5" above becomes "3".
  2871. *
  2872. * This still overestimates under most circumstances. If we were to pass the
  2873. * start and end offsets in here as well we could do block_to_path() on each
  2874. * block and work out the exact number of indirects which are touched. Pah.
  2875. */
  2876. static int ext3_writepage_trans_blocks(struct inode *inode)
  2877. {
  2878. int bpp = ext3_journal_blocks_per_page(inode);
  2879. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  2880. int ret;
  2881. if (ext3_should_journal_data(inode))
  2882. ret = 3 * (bpp + indirects) + 2;
  2883. else
  2884. ret = 2 * (bpp + indirects) + 2;
  2885. #ifdef CONFIG_QUOTA
  2886. /* We know that structure was already allocated during vfs_dq_init so
  2887. * we will be updating only the data blocks + inodes */
  2888. ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2889. #endif
  2890. return ret;
  2891. }
  2892. /*
  2893. * The caller must have previously called ext3_reserve_inode_write().
  2894. * Give this, we know that the caller already has write access to iloc->bh.
  2895. */
  2896. int ext3_mark_iloc_dirty(handle_t *handle,
  2897. struct inode *inode, struct ext3_iloc *iloc)
  2898. {
  2899. int err = 0;
  2900. /* the do_update_inode consumes one bh->b_count */
  2901. get_bh(iloc->bh);
  2902. /* ext3_do_update_inode() does journal_dirty_metadata */
  2903. err = ext3_do_update_inode(handle, inode, iloc);
  2904. put_bh(iloc->bh);
  2905. return err;
  2906. }
  2907. /*
  2908. * On success, We end up with an outstanding reference count against
  2909. * iloc->bh. This _must_ be cleaned up later.
  2910. */
  2911. int
  2912. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  2913. struct ext3_iloc *iloc)
  2914. {
  2915. int err = 0;
  2916. if (handle) {
  2917. err = ext3_get_inode_loc(inode, iloc);
  2918. if (!err) {
  2919. BUFFER_TRACE(iloc->bh, "get_write_access");
  2920. err = ext3_journal_get_write_access(handle, iloc->bh);
  2921. if (err) {
  2922. brelse(iloc->bh);
  2923. iloc->bh = NULL;
  2924. }
  2925. }
  2926. }
  2927. ext3_std_error(inode->i_sb, err);
  2928. return err;
  2929. }
  2930. /*
  2931. * What we do here is to mark the in-core inode as clean with respect to inode
  2932. * dirtiness (it may still be data-dirty).
  2933. * This means that the in-core inode may be reaped by prune_icache
  2934. * without having to perform any I/O. This is a very good thing,
  2935. * because *any* task may call prune_icache - even ones which
  2936. * have a transaction open against a different journal.
  2937. *
  2938. * Is this cheating? Not really. Sure, we haven't written the
  2939. * inode out, but prune_icache isn't a user-visible syncing function.
  2940. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  2941. * we start and wait on commits.
  2942. *
  2943. * Is this efficient/effective? Well, we're being nice to the system
  2944. * by cleaning up our inodes proactively so they can be reaped
  2945. * without I/O. But we are potentially leaving up to five seconds'
  2946. * worth of inodes floating about which prune_icache wants us to
  2947. * write out. One way to fix that would be to get prune_icache()
  2948. * to do a write_super() to free up some memory. It has the desired
  2949. * effect.
  2950. */
  2951. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  2952. {
  2953. struct ext3_iloc iloc;
  2954. int err;
  2955. might_sleep();
  2956. err = ext3_reserve_inode_write(handle, inode, &iloc);
  2957. if (!err)
  2958. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  2959. return err;
  2960. }
  2961. /*
  2962. * ext3_dirty_inode() is called from __mark_inode_dirty()
  2963. *
  2964. * We're really interested in the case where a file is being extended.
  2965. * i_size has been changed by generic_commit_write() and we thus need
  2966. * to include the updated inode in the current transaction.
  2967. *
  2968. * Also, vfs_dq_alloc_space() will always dirty the inode when blocks
  2969. * are allocated to the file.
  2970. *
  2971. * If the inode is marked synchronous, we don't honour that here - doing
  2972. * so would cause a commit on atime updates, which we don't bother doing.
  2973. * We handle synchronous inodes at the highest possible level.
  2974. */
  2975. void ext3_dirty_inode(struct inode *inode)
  2976. {
  2977. handle_t *current_handle = ext3_journal_current_handle();
  2978. handle_t *handle;
  2979. handle = ext3_journal_start(inode, 2);
  2980. if (IS_ERR(handle))
  2981. goto out;
  2982. if (current_handle &&
  2983. current_handle->h_transaction != handle->h_transaction) {
  2984. /* This task has a transaction open against a different fs */
  2985. printk(KERN_EMERG "%s: transactions do not match!\n",
  2986. __func__);
  2987. } else {
  2988. jbd_debug(5, "marking dirty. outer handle=%p\n",
  2989. current_handle);
  2990. ext3_mark_inode_dirty(handle, inode);
  2991. }
  2992. ext3_journal_stop(handle);
  2993. out:
  2994. return;
  2995. }
  2996. #if 0
  2997. /*
  2998. * Bind an inode's backing buffer_head into this transaction, to prevent
  2999. * it from being flushed to disk early. Unlike
  3000. * ext3_reserve_inode_write, this leaves behind no bh reference and
  3001. * returns no iloc structure, so the caller needs to repeat the iloc
  3002. * lookup to mark the inode dirty later.
  3003. */
  3004. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  3005. {
  3006. struct ext3_iloc iloc;
  3007. int err = 0;
  3008. if (handle) {
  3009. err = ext3_get_inode_loc(inode, &iloc);
  3010. if (!err) {
  3011. BUFFER_TRACE(iloc.bh, "get_write_access");
  3012. err = journal_get_write_access(handle, iloc.bh);
  3013. if (!err)
  3014. err = ext3_journal_dirty_metadata(handle,
  3015. iloc.bh);
  3016. brelse(iloc.bh);
  3017. }
  3018. }
  3019. ext3_std_error(inode->i_sb, err);
  3020. return err;
  3021. }
  3022. #endif
  3023. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  3024. {
  3025. journal_t *journal;
  3026. handle_t *handle;
  3027. int err;
  3028. /*
  3029. * We have to be very careful here: changing a data block's
  3030. * journaling status dynamically is dangerous. If we write a
  3031. * data block to the journal, change the status and then delete
  3032. * that block, we risk forgetting to revoke the old log record
  3033. * from the journal and so a subsequent replay can corrupt data.
  3034. * So, first we make sure that the journal is empty and that
  3035. * nobody is changing anything.
  3036. */
  3037. journal = EXT3_JOURNAL(inode);
  3038. if (is_journal_aborted(journal))
  3039. return -EROFS;
  3040. journal_lock_updates(journal);
  3041. journal_flush(journal);
  3042. /*
  3043. * OK, there are no updates running now, and all cached data is
  3044. * synced to disk. We are now in a completely consistent state
  3045. * which doesn't have anything in the journal, and we know that
  3046. * no filesystem updates are running, so it is safe to modify
  3047. * the inode's in-core data-journaling state flag now.
  3048. */
  3049. if (val)
  3050. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3051. else
  3052. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3053. ext3_set_aops(inode);
  3054. journal_unlock_updates(journal);
  3055. /* Finally we can mark the inode as dirty. */
  3056. handle = ext3_journal_start(inode, 1);
  3057. if (IS_ERR(handle))
  3058. return PTR_ERR(handle);
  3059. err = ext3_mark_inode_dirty(handle, inode);
  3060. handle->h_sync = 1;
  3061. ext3_journal_stop(handle);
  3062. ext3_std_error(inode->i_sb, err);
  3063. return err;
  3064. }