mcbsp.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126
  1. /*
  2. * sound/soc/omap/mcbsp.c
  3. *
  4. * Copyright (C) 2004 Nokia Corporation
  5. * Author: Samuel Ortiz <samuel.ortiz@nokia.com>
  6. *
  7. * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
  8. * Peter Ujfalusi <peter.ujfalusi@ti.com>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. *
  14. * Multichannel mode not supported.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/err.h>
  22. #include <linux/clk.h>
  23. #include <linux/delay.h>
  24. #include <linux/io.h>
  25. #include <linux/slab.h>
  26. #include <linux/pm_runtime.h>
  27. #include <plat/mcbsp.h>
  28. #include "mcbsp.h"
  29. static void omap_mcbsp_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
  30. {
  31. void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
  32. if (mcbsp->pdata->reg_size == 2) {
  33. ((u16 *)mcbsp->reg_cache)[reg] = (u16)val;
  34. __raw_writew((u16)val, addr);
  35. } else {
  36. ((u32 *)mcbsp->reg_cache)[reg] = val;
  37. __raw_writel(val, addr);
  38. }
  39. }
  40. static int omap_mcbsp_read(struct omap_mcbsp *mcbsp, u16 reg, bool from_cache)
  41. {
  42. void __iomem *addr = mcbsp->io_base + reg * mcbsp->pdata->reg_step;
  43. if (mcbsp->pdata->reg_size == 2) {
  44. return !from_cache ? __raw_readw(addr) :
  45. ((u16 *)mcbsp->reg_cache)[reg];
  46. } else {
  47. return !from_cache ? __raw_readl(addr) :
  48. ((u32 *)mcbsp->reg_cache)[reg];
  49. }
  50. }
  51. static void omap_mcbsp_st_write(struct omap_mcbsp *mcbsp, u16 reg, u32 val)
  52. {
  53. __raw_writel(val, mcbsp->st_data->io_base_st + reg);
  54. }
  55. static int omap_mcbsp_st_read(struct omap_mcbsp *mcbsp, u16 reg)
  56. {
  57. return __raw_readl(mcbsp->st_data->io_base_st + reg);
  58. }
  59. #define MCBSP_READ(mcbsp, reg) \
  60. omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 0)
  61. #define MCBSP_WRITE(mcbsp, reg, val) \
  62. omap_mcbsp_write(mcbsp, OMAP_MCBSP_REG_##reg, val)
  63. #define MCBSP_READ_CACHE(mcbsp, reg) \
  64. omap_mcbsp_read(mcbsp, OMAP_MCBSP_REG_##reg, 1)
  65. #define MCBSP_ST_READ(mcbsp, reg) \
  66. omap_mcbsp_st_read(mcbsp, OMAP_ST_REG_##reg)
  67. #define MCBSP_ST_WRITE(mcbsp, reg, val) \
  68. omap_mcbsp_st_write(mcbsp, OMAP_ST_REG_##reg, val)
  69. static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp)
  70. {
  71. dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id);
  72. dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n",
  73. MCBSP_READ(mcbsp, DRR2));
  74. dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n",
  75. MCBSP_READ(mcbsp, DRR1));
  76. dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n",
  77. MCBSP_READ(mcbsp, DXR2));
  78. dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n",
  79. MCBSP_READ(mcbsp, DXR1));
  80. dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n",
  81. MCBSP_READ(mcbsp, SPCR2));
  82. dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n",
  83. MCBSP_READ(mcbsp, SPCR1));
  84. dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n",
  85. MCBSP_READ(mcbsp, RCR2));
  86. dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n",
  87. MCBSP_READ(mcbsp, RCR1));
  88. dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n",
  89. MCBSP_READ(mcbsp, XCR2));
  90. dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n",
  91. MCBSP_READ(mcbsp, XCR1));
  92. dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n",
  93. MCBSP_READ(mcbsp, SRGR2));
  94. dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n",
  95. MCBSP_READ(mcbsp, SRGR1));
  96. dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n",
  97. MCBSP_READ(mcbsp, PCR0));
  98. dev_dbg(mcbsp->dev, "***********************\n");
  99. }
  100. static irqreturn_t omap_mcbsp_irq_handler(int irq, void *dev_id)
  101. {
  102. struct omap_mcbsp *mcbsp = dev_id;
  103. u16 irqst;
  104. irqst = MCBSP_READ(mcbsp, IRQST);
  105. dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst);
  106. if (irqst & RSYNCERREN)
  107. dev_err(mcbsp->dev, "RX Frame Sync Error!\n");
  108. if (irqst & RFSREN)
  109. dev_dbg(mcbsp->dev, "RX Frame Sync\n");
  110. if (irqst & REOFEN)
  111. dev_dbg(mcbsp->dev, "RX End Of Frame\n");
  112. if (irqst & RRDYEN)
  113. dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n");
  114. if (irqst & RUNDFLEN)
  115. dev_err(mcbsp->dev, "RX Buffer Underflow!\n");
  116. if (irqst & ROVFLEN)
  117. dev_err(mcbsp->dev, "RX Buffer Overflow!\n");
  118. if (irqst & XSYNCERREN)
  119. dev_err(mcbsp->dev, "TX Frame Sync Error!\n");
  120. if (irqst & XFSXEN)
  121. dev_dbg(mcbsp->dev, "TX Frame Sync\n");
  122. if (irqst & XEOFEN)
  123. dev_dbg(mcbsp->dev, "TX End Of Frame\n");
  124. if (irqst & XRDYEN)
  125. dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n");
  126. if (irqst & XUNDFLEN)
  127. dev_err(mcbsp->dev, "TX Buffer Underflow!\n");
  128. if (irqst & XOVFLEN)
  129. dev_err(mcbsp->dev, "TX Buffer Overflow!\n");
  130. if (irqst & XEMPTYEOFEN)
  131. dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n");
  132. MCBSP_WRITE(mcbsp, IRQST, irqst);
  133. return IRQ_HANDLED;
  134. }
  135. static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *dev_id)
  136. {
  137. struct omap_mcbsp *mcbsp_tx = dev_id;
  138. u16 irqst_spcr2;
  139. irqst_spcr2 = MCBSP_READ(mcbsp_tx, SPCR2);
  140. dev_dbg(mcbsp_tx->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2);
  141. if (irqst_spcr2 & XSYNC_ERR) {
  142. dev_err(mcbsp_tx->dev, "TX Frame Sync Error! : 0x%x\n",
  143. irqst_spcr2);
  144. /* Writing zero to XSYNC_ERR clears the IRQ */
  145. MCBSP_WRITE(mcbsp_tx, SPCR2, MCBSP_READ_CACHE(mcbsp_tx, SPCR2));
  146. }
  147. return IRQ_HANDLED;
  148. }
  149. static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *dev_id)
  150. {
  151. struct omap_mcbsp *mcbsp_rx = dev_id;
  152. u16 irqst_spcr1;
  153. irqst_spcr1 = MCBSP_READ(mcbsp_rx, SPCR1);
  154. dev_dbg(mcbsp_rx->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1);
  155. if (irqst_spcr1 & RSYNC_ERR) {
  156. dev_err(mcbsp_rx->dev, "RX Frame Sync Error! : 0x%x\n",
  157. irqst_spcr1);
  158. /* Writing zero to RSYNC_ERR clears the IRQ */
  159. MCBSP_WRITE(mcbsp_rx, SPCR1, MCBSP_READ_CACHE(mcbsp_rx, SPCR1));
  160. }
  161. return IRQ_HANDLED;
  162. }
  163. /*
  164. * omap_mcbsp_config simply write a config to the
  165. * appropriate McBSP.
  166. * You either call this function or set the McBSP registers
  167. * by yourself before calling omap_mcbsp_start().
  168. */
  169. void omap_mcbsp_config(struct omap_mcbsp *mcbsp,
  170. const struct omap_mcbsp_reg_cfg *config)
  171. {
  172. dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n",
  173. mcbsp->id, mcbsp->phys_base);
  174. /* We write the given config */
  175. MCBSP_WRITE(mcbsp, SPCR2, config->spcr2);
  176. MCBSP_WRITE(mcbsp, SPCR1, config->spcr1);
  177. MCBSP_WRITE(mcbsp, RCR2, config->rcr2);
  178. MCBSP_WRITE(mcbsp, RCR1, config->rcr1);
  179. MCBSP_WRITE(mcbsp, XCR2, config->xcr2);
  180. MCBSP_WRITE(mcbsp, XCR1, config->xcr1);
  181. MCBSP_WRITE(mcbsp, SRGR2, config->srgr2);
  182. MCBSP_WRITE(mcbsp, SRGR1, config->srgr1);
  183. MCBSP_WRITE(mcbsp, MCR2, config->mcr2);
  184. MCBSP_WRITE(mcbsp, MCR1, config->mcr1);
  185. MCBSP_WRITE(mcbsp, PCR0, config->pcr0);
  186. if (mcbsp->pdata->has_ccr) {
  187. MCBSP_WRITE(mcbsp, XCCR, config->xccr);
  188. MCBSP_WRITE(mcbsp, RCCR, config->rccr);
  189. }
  190. /* Enable wakeup behavior */
  191. if (mcbsp->pdata->has_wakeup)
  192. MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN);
  193. /* Enable TX/RX sync error interrupts by default */
  194. if (mcbsp->irq)
  195. MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN);
  196. }
  197. /**
  198. * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register
  199. * @id - mcbsp id
  200. * @stream - indicates the direction of data flow (rx or tx)
  201. *
  202. * Returns the address of mcbsp data transmit register or data receive register
  203. * to be used by DMA for transferring/receiving data based on the value of
  204. * @stream for the requested mcbsp given by @id
  205. */
  206. static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp,
  207. unsigned int stream)
  208. {
  209. int data_reg;
  210. if (mcbsp->pdata->reg_size == 2) {
  211. if (stream)
  212. data_reg = OMAP_MCBSP_REG_DRR1;
  213. else
  214. data_reg = OMAP_MCBSP_REG_DXR1;
  215. } else {
  216. if (stream)
  217. data_reg = OMAP_MCBSP_REG_DRR;
  218. else
  219. data_reg = OMAP_MCBSP_REG_DXR;
  220. }
  221. return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step;
  222. }
  223. static void omap_st_on(struct omap_mcbsp *mcbsp)
  224. {
  225. unsigned int w;
  226. if (mcbsp->pdata->enable_st_clock)
  227. mcbsp->pdata->enable_st_clock(mcbsp->id, 1);
  228. /* Enable McBSP Sidetone */
  229. w = MCBSP_READ(mcbsp, SSELCR);
  230. MCBSP_WRITE(mcbsp, SSELCR, w | SIDETONEEN);
  231. /* Enable Sidetone from Sidetone Core */
  232. w = MCBSP_ST_READ(mcbsp, SSELCR);
  233. MCBSP_ST_WRITE(mcbsp, SSELCR, w | ST_SIDETONEEN);
  234. }
  235. static void omap_st_off(struct omap_mcbsp *mcbsp)
  236. {
  237. unsigned int w;
  238. w = MCBSP_ST_READ(mcbsp, SSELCR);
  239. MCBSP_ST_WRITE(mcbsp, SSELCR, w & ~(ST_SIDETONEEN));
  240. w = MCBSP_READ(mcbsp, SSELCR);
  241. MCBSP_WRITE(mcbsp, SSELCR, w & ~(SIDETONEEN));
  242. if (mcbsp->pdata->enable_st_clock)
  243. mcbsp->pdata->enable_st_clock(mcbsp->id, 0);
  244. }
  245. static void omap_st_fir_write(struct omap_mcbsp *mcbsp, s16 *fir)
  246. {
  247. u16 val, i;
  248. val = MCBSP_ST_READ(mcbsp, SSELCR);
  249. if (val & ST_COEFFWREN)
  250. MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
  251. MCBSP_ST_WRITE(mcbsp, SSELCR, val | ST_COEFFWREN);
  252. for (i = 0; i < 128; i++)
  253. MCBSP_ST_WRITE(mcbsp, SFIRCR, fir[i]);
  254. i = 0;
  255. val = MCBSP_ST_READ(mcbsp, SSELCR);
  256. while (!(val & ST_COEFFWRDONE) && (++i < 1000))
  257. val = MCBSP_ST_READ(mcbsp, SSELCR);
  258. MCBSP_ST_WRITE(mcbsp, SSELCR, val & ~(ST_COEFFWREN));
  259. if (i == 1000)
  260. dev_err(mcbsp->dev, "McBSP FIR load error!\n");
  261. }
  262. static void omap_st_chgain(struct omap_mcbsp *mcbsp)
  263. {
  264. u16 w;
  265. struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
  266. w = MCBSP_ST_READ(mcbsp, SSELCR);
  267. MCBSP_ST_WRITE(mcbsp, SGAINCR, ST_CH0GAIN(st_data->ch0gain) | \
  268. ST_CH1GAIN(st_data->ch1gain));
  269. }
  270. int omap_st_set_chgain(struct omap_mcbsp *mcbsp, int channel, s16 chgain)
  271. {
  272. struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
  273. int ret = 0;
  274. if (!st_data)
  275. return -ENOENT;
  276. spin_lock_irq(&mcbsp->lock);
  277. if (channel == 0)
  278. st_data->ch0gain = chgain;
  279. else if (channel == 1)
  280. st_data->ch1gain = chgain;
  281. else
  282. ret = -EINVAL;
  283. if (st_data->enabled)
  284. omap_st_chgain(mcbsp);
  285. spin_unlock_irq(&mcbsp->lock);
  286. return ret;
  287. }
  288. int omap_st_get_chgain(struct omap_mcbsp *mcbsp, int channel, s16 *chgain)
  289. {
  290. struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
  291. int ret = 0;
  292. if (!st_data)
  293. return -ENOENT;
  294. spin_lock_irq(&mcbsp->lock);
  295. if (channel == 0)
  296. *chgain = st_data->ch0gain;
  297. else if (channel == 1)
  298. *chgain = st_data->ch1gain;
  299. else
  300. ret = -EINVAL;
  301. spin_unlock_irq(&mcbsp->lock);
  302. return ret;
  303. }
  304. static int omap_st_start(struct omap_mcbsp *mcbsp)
  305. {
  306. struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
  307. if (st_data->enabled && !st_data->running) {
  308. omap_st_fir_write(mcbsp, st_data->taps);
  309. omap_st_chgain(mcbsp);
  310. if (!mcbsp->free) {
  311. omap_st_on(mcbsp);
  312. st_data->running = 1;
  313. }
  314. }
  315. return 0;
  316. }
  317. int omap_st_enable(struct omap_mcbsp *mcbsp)
  318. {
  319. struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
  320. if (!st_data)
  321. return -ENODEV;
  322. spin_lock_irq(&mcbsp->lock);
  323. st_data->enabled = 1;
  324. omap_st_start(mcbsp);
  325. spin_unlock_irq(&mcbsp->lock);
  326. return 0;
  327. }
  328. static int omap_st_stop(struct omap_mcbsp *mcbsp)
  329. {
  330. struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
  331. if (st_data->running) {
  332. if (!mcbsp->free) {
  333. omap_st_off(mcbsp);
  334. st_data->running = 0;
  335. }
  336. }
  337. return 0;
  338. }
  339. int omap_st_disable(struct omap_mcbsp *mcbsp)
  340. {
  341. struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
  342. int ret = 0;
  343. if (!st_data)
  344. return -ENODEV;
  345. spin_lock_irq(&mcbsp->lock);
  346. omap_st_stop(mcbsp);
  347. st_data->enabled = 0;
  348. spin_unlock_irq(&mcbsp->lock);
  349. return ret;
  350. }
  351. int omap_st_is_enabled(struct omap_mcbsp *mcbsp)
  352. {
  353. struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
  354. if (!st_data)
  355. return -ENODEV;
  356. return st_data->enabled;
  357. }
  358. /*
  359. * omap_mcbsp_set_rx_threshold configures the transmit threshold in words.
  360. * The threshold parameter is 1 based, and it is converted (threshold - 1)
  361. * for the THRSH2 register.
  362. */
  363. void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
  364. {
  365. if (mcbsp->pdata->buffer_size == 0)
  366. return;
  367. if (threshold && threshold <= mcbsp->max_tx_thres)
  368. MCBSP_WRITE(mcbsp, THRSH2, threshold - 1);
  369. }
  370. /*
  371. * omap_mcbsp_set_rx_threshold configures the receive threshold in words.
  372. * The threshold parameter is 1 based, and it is converted (threshold - 1)
  373. * for the THRSH1 register.
  374. */
  375. void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold)
  376. {
  377. if (mcbsp->pdata->buffer_size == 0)
  378. return;
  379. if (threshold && threshold <= mcbsp->max_rx_thres)
  380. MCBSP_WRITE(mcbsp, THRSH1, threshold - 1);
  381. }
  382. /*
  383. * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO
  384. */
  385. u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp)
  386. {
  387. u16 buffstat;
  388. if (mcbsp->pdata->buffer_size == 0)
  389. return 0;
  390. /* Returns the number of free locations in the buffer */
  391. buffstat = MCBSP_READ(mcbsp, XBUFFSTAT);
  392. /* Number of slots are different in McBSP ports */
  393. return mcbsp->pdata->buffer_size - buffstat;
  394. }
  395. /*
  396. * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO
  397. * to reach the threshold value (when the DMA will be triggered to read it)
  398. */
  399. u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp)
  400. {
  401. u16 buffstat, threshold;
  402. if (mcbsp->pdata->buffer_size == 0)
  403. return 0;
  404. /* Returns the number of used locations in the buffer */
  405. buffstat = MCBSP_READ(mcbsp, RBUFFSTAT);
  406. /* RX threshold */
  407. threshold = MCBSP_READ(mcbsp, THRSH1);
  408. /* Return the number of location till we reach the threshold limit */
  409. if (threshold <= buffstat)
  410. return 0;
  411. else
  412. return threshold - buffstat;
  413. }
  414. int omap_mcbsp_request(struct omap_mcbsp *mcbsp)
  415. {
  416. void *reg_cache;
  417. int err;
  418. reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL);
  419. if (!reg_cache) {
  420. return -ENOMEM;
  421. }
  422. spin_lock(&mcbsp->lock);
  423. if (!mcbsp->free) {
  424. dev_err(mcbsp->dev, "McBSP%d is currently in use\n",
  425. mcbsp->id);
  426. err = -EBUSY;
  427. goto err_kfree;
  428. }
  429. mcbsp->free = false;
  430. mcbsp->reg_cache = reg_cache;
  431. spin_unlock(&mcbsp->lock);
  432. if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->request)
  433. mcbsp->pdata->ops->request(mcbsp->id - 1);
  434. /*
  435. * Make sure that transmitter, receiver and sample-rate generator are
  436. * not running before activating IRQs.
  437. */
  438. MCBSP_WRITE(mcbsp, SPCR1, 0);
  439. MCBSP_WRITE(mcbsp, SPCR2, 0);
  440. if (mcbsp->irq) {
  441. err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0,
  442. "McBSP", (void *)mcbsp);
  443. if (err != 0) {
  444. dev_err(mcbsp->dev, "Unable to request IRQ\n");
  445. goto err_clk_disable;
  446. }
  447. } else {
  448. err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0,
  449. "McBSP TX", (void *)mcbsp);
  450. if (err != 0) {
  451. dev_err(mcbsp->dev, "Unable to request TX IRQ\n");
  452. goto err_clk_disable;
  453. }
  454. err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0,
  455. "McBSP RX", (void *)mcbsp);
  456. if (err != 0) {
  457. dev_err(mcbsp->dev, "Unable to request RX IRQ\n");
  458. goto err_free_irq;
  459. }
  460. }
  461. return 0;
  462. err_free_irq:
  463. free_irq(mcbsp->tx_irq, (void *)mcbsp);
  464. err_clk_disable:
  465. if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
  466. mcbsp->pdata->ops->free(mcbsp->id - 1);
  467. /* Disable wakeup behavior */
  468. if (mcbsp->pdata->has_wakeup)
  469. MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
  470. spin_lock(&mcbsp->lock);
  471. mcbsp->free = true;
  472. mcbsp->reg_cache = NULL;
  473. err_kfree:
  474. spin_unlock(&mcbsp->lock);
  475. kfree(reg_cache);
  476. return err;
  477. }
  478. void omap_mcbsp_free(struct omap_mcbsp *mcbsp)
  479. {
  480. void *reg_cache;
  481. if (mcbsp->pdata && mcbsp->pdata->ops && mcbsp->pdata->ops->free)
  482. mcbsp->pdata->ops->free(mcbsp->id - 1);
  483. /* Disable wakeup behavior */
  484. if (mcbsp->pdata->has_wakeup)
  485. MCBSP_WRITE(mcbsp, WAKEUPEN, 0);
  486. /* Disable interrupt requests */
  487. if (mcbsp->irq)
  488. MCBSP_WRITE(mcbsp, IRQEN, 0);
  489. if (mcbsp->irq) {
  490. free_irq(mcbsp->irq, (void *)mcbsp);
  491. } else {
  492. free_irq(mcbsp->rx_irq, (void *)mcbsp);
  493. free_irq(mcbsp->tx_irq, (void *)mcbsp);
  494. }
  495. reg_cache = mcbsp->reg_cache;
  496. /*
  497. * Select CLKS source from internal source unconditionally before
  498. * marking the McBSP port as free.
  499. * If the external clock source via MCBSP_CLKS pin has been selected the
  500. * system will refuse to enter idle if the CLKS pin source is not reset
  501. * back to internal source.
  502. */
  503. if (!cpu_class_is_omap1())
  504. omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC);
  505. spin_lock(&mcbsp->lock);
  506. if (mcbsp->free)
  507. dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id);
  508. else
  509. mcbsp->free = true;
  510. mcbsp->reg_cache = NULL;
  511. spin_unlock(&mcbsp->lock);
  512. if (reg_cache)
  513. kfree(reg_cache);
  514. }
  515. /*
  516. * Here we start the McBSP, by enabling transmitter, receiver or both.
  517. * If no transmitter or receiver is active prior calling, then sample-rate
  518. * generator and frame sync are started.
  519. */
  520. void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int tx, int rx)
  521. {
  522. int enable_srg = 0;
  523. u16 w;
  524. if (mcbsp->st_data)
  525. omap_st_start(mcbsp);
  526. /* Only enable SRG, if McBSP is master */
  527. w = MCBSP_READ_CACHE(mcbsp, PCR0);
  528. if (w & (FSXM | FSRM | CLKXM | CLKRM))
  529. enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
  530. MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
  531. if (enable_srg) {
  532. /* Start the sample generator */
  533. w = MCBSP_READ_CACHE(mcbsp, SPCR2);
  534. MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6));
  535. }
  536. /* Enable transmitter and receiver */
  537. tx &= 1;
  538. w = MCBSP_READ_CACHE(mcbsp, SPCR2);
  539. MCBSP_WRITE(mcbsp, SPCR2, w | tx);
  540. rx &= 1;
  541. w = MCBSP_READ_CACHE(mcbsp, SPCR1);
  542. MCBSP_WRITE(mcbsp, SPCR1, w | rx);
  543. /*
  544. * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec
  545. * REVISIT: 100us may give enough time for two CLKSRG, however
  546. * due to some unknown PM related, clock gating etc. reason it
  547. * is now at 500us.
  548. */
  549. udelay(500);
  550. if (enable_srg) {
  551. /* Start frame sync */
  552. w = MCBSP_READ_CACHE(mcbsp, SPCR2);
  553. MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7));
  554. }
  555. if (mcbsp->pdata->has_ccr) {
  556. /* Release the transmitter and receiver */
  557. w = MCBSP_READ_CACHE(mcbsp, XCCR);
  558. w &= ~(tx ? XDISABLE : 0);
  559. MCBSP_WRITE(mcbsp, XCCR, w);
  560. w = MCBSP_READ_CACHE(mcbsp, RCCR);
  561. w &= ~(rx ? RDISABLE : 0);
  562. MCBSP_WRITE(mcbsp, RCCR, w);
  563. }
  564. /* Dump McBSP Regs */
  565. omap_mcbsp_dump_reg(mcbsp);
  566. }
  567. void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int tx, int rx)
  568. {
  569. int idle;
  570. u16 w;
  571. /* Reset transmitter */
  572. tx &= 1;
  573. if (mcbsp->pdata->has_ccr) {
  574. w = MCBSP_READ_CACHE(mcbsp, XCCR);
  575. w |= (tx ? XDISABLE : 0);
  576. MCBSP_WRITE(mcbsp, XCCR, w);
  577. }
  578. w = MCBSP_READ_CACHE(mcbsp, SPCR2);
  579. MCBSP_WRITE(mcbsp, SPCR2, w & ~tx);
  580. /* Reset receiver */
  581. rx &= 1;
  582. if (mcbsp->pdata->has_ccr) {
  583. w = MCBSP_READ_CACHE(mcbsp, RCCR);
  584. w |= (rx ? RDISABLE : 0);
  585. MCBSP_WRITE(mcbsp, RCCR, w);
  586. }
  587. w = MCBSP_READ_CACHE(mcbsp, SPCR1);
  588. MCBSP_WRITE(mcbsp, SPCR1, w & ~rx);
  589. idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) |
  590. MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1);
  591. if (idle) {
  592. /* Reset the sample rate generator */
  593. w = MCBSP_READ_CACHE(mcbsp, SPCR2);
  594. MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6));
  595. }
  596. if (mcbsp->st_data)
  597. omap_st_stop(mcbsp);
  598. }
  599. int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id)
  600. {
  601. struct clk *fck_src;
  602. const char *src;
  603. int r;
  604. if (fck_src_id == MCBSP_CLKS_PAD_SRC)
  605. src = "pad_fck";
  606. else if (fck_src_id == MCBSP_CLKS_PRCM_SRC)
  607. src = "prcm_fck";
  608. else
  609. return -EINVAL;
  610. fck_src = clk_get(mcbsp->dev, src);
  611. if (IS_ERR(fck_src)) {
  612. dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src);
  613. return -EINVAL;
  614. }
  615. pm_runtime_put_sync(mcbsp->dev);
  616. r = clk_set_parent(mcbsp->fclk, fck_src);
  617. if (r) {
  618. dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n",
  619. src);
  620. clk_put(fck_src);
  621. return r;
  622. }
  623. pm_runtime_get_sync(mcbsp->dev);
  624. clk_put(fck_src);
  625. return 0;
  626. }
  627. int omap_mcbsp_6pin_src_mux(struct omap_mcbsp *mcbsp, u8 mux)
  628. {
  629. const char *signal, *src;
  630. if (mcbsp->pdata->mux_signal)
  631. return -EINVAL;
  632. switch (mux) {
  633. case CLKR_SRC_CLKR:
  634. signal = "clkr";
  635. src = "clkr";
  636. break;
  637. case CLKR_SRC_CLKX:
  638. signal = "clkr";
  639. src = "clkx";
  640. break;
  641. case FSR_SRC_FSR:
  642. signal = "fsr";
  643. src = "fsr";
  644. break;
  645. case FSR_SRC_FSX:
  646. signal = "fsr";
  647. src = "fsx";
  648. break;
  649. default:
  650. return -EINVAL;
  651. }
  652. return mcbsp->pdata->mux_signal(mcbsp->dev, signal, src);
  653. }
  654. #define max_thres(m) (mcbsp->pdata->buffer_size)
  655. #define valid_threshold(m, val) ((val) <= max_thres(m))
  656. #define THRESHOLD_PROP_BUILDER(prop) \
  657. static ssize_t prop##_show(struct device *dev, \
  658. struct device_attribute *attr, char *buf) \
  659. { \
  660. struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
  661. \
  662. return sprintf(buf, "%u\n", mcbsp->prop); \
  663. } \
  664. \
  665. static ssize_t prop##_store(struct device *dev, \
  666. struct device_attribute *attr, \
  667. const char *buf, size_t size) \
  668. { \
  669. struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \
  670. unsigned long val; \
  671. int status; \
  672. \
  673. status = strict_strtoul(buf, 0, &val); \
  674. if (status) \
  675. return status; \
  676. \
  677. if (!valid_threshold(mcbsp, val)) \
  678. return -EDOM; \
  679. \
  680. mcbsp->prop = val; \
  681. return size; \
  682. } \
  683. \
  684. static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store);
  685. THRESHOLD_PROP_BUILDER(max_tx_thres);
  686. THRESHOLD_PROP_BUILDER(max_rx_thres);
  687. static const char *dma_op_modes[] = {
  688. "element", "threshold",
  689. };
  690. static ssize_t dma_op_mode_show(struct device *dev,
  691. struct device_attribute *attr, char *buf)
  692. {
  693. struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
  694. int dma_op_mode, i = 0;
  695. ssize_t len = 0;
  696. const char * const *s;
  697. dma_op_mode = mcbsp->dma_op_mode;
  698. for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) {
  699. if (dma_op_mode == i)
  700. len += sprintf(buf + len, "[%s] ", *s);
  701. else
  702. len += sprintf(buf + len, "%s ", *s);
  703. }
  704. len += sprintf(buf + len, "\n");
  705. return len;
  706. }
  707. static ssize_t dma_op_mode_store(struct device *dev,
  708. struct device_attribute *attr,
  709. const char *buf, size_t size)
  710. {
  711. struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
  712. const char * const *s;
  713. int i = 0;
  714. for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++)
  715. if (sysfs_streq(buf, *s))
  716. break;
  717. if (i == ARRAY_SIZE(dma_op_modes))
  718. return -EINVAL;
  719. spin_lock_irq(&mcbsp->lock);
  720. if (!mcbsp->free) {
  721. size = -EBUSY;
  722. goto unlock;
  723. }
  724. mcbsp->dma_op_mode = i;
  725. unlock:
  726. spin_unlock_irq(&mcbsp->lock);
  727. return size;
  728. }
  729. static DEVICE_ATTR(dma_op_mode, 0644, dma_op_mode_show, dma_op_mode_store);
  730. static const struct attribute *additional_attrs[] = {
  731. &dev_attr_max_tx_thres.attr,
  732. &dev_attr_max_rx_thres.attr,
  733. &dev_attr_dma_op_mode.attr,
  734. NULL,
  735. };
  736. static const struct attribute_group additional_attr_group = {
  737. .attrs = (struct attribute **)additional_attrs,
  738. };
  739. static ssize_t st_taps_show(struct device *dev,
  740. struct device_attribute *attr, char *buf)
  741. {
  742. struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
  743. struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
  744. ssize_t status = 0;
  745. int i;
  746. spin_lock_irq(&mcbsp->lock);
  747. for (i = 0; i < st_data->nr_taps; i++)
  748. status += sprintf(&buf[status], (i ? ", %d" : "%d"),
  749. st_data->taps[i]);
  750. if (i)
  751. status += sprintf(&buf[status], "\n");
  752. spin_unlock_irq(&mcbsp->lock);
  753. return status;
  754. }
  755. static ssize_t st_taps_store(struct device *dev,
  756. struct device_attribute *attr,
  757. const char *buf, size_t size)
  758. {
  759. struct omap_mcbsp *mcbsp = dev_get_drvdata(dev);
  760. struct omap_mcbsp_st_data *st_data = mcbsp->st_data;
  761. int val, tmp, status, i = 0;
  762. spin_lock_irq(&mcbsp->lock);
  763. memset(st_data->taps, 0, sizeof(st_data->taps));
  764. st_data->nr_taps = 0;
  765. do {
  766. status = sscanf(buf, "%d%n", &val, &tmp);
  767. if (status < 0 || status == 0) {
  768. size = -EINVAL;
  769. goto out;
  770. }
  771. if (val < -32768 || val > 32767) {
  772. size = -EINVAL;
  773. goto out;
  774. }
  775. st_data->taps[i++] = val;
  776. buf += tmp;
  777. if (*buf != ',')
  778. break;
  779. buf++;
  780. } while (1);
  781. st_data->nr_taps = i;
  782. out:
  783. spin_unlock_irq(&mcbsp->lock);
  784. return size;
  785. }
  786. static DEVICE_ATTR(st_taps, 0644, st_taps_show, st_taps_store);
  787. static const struct attribute *sidetone_attrs[] = {
  788. &dev_attr_st_taps.attr,
  789. NULL,
  790. };
  791. static const struct attribute_group sidetone_attr_group = {
  792. .attrs = (struct attribute **)sidetone_attrs,
  793. };
  794. static int __devinit omap_st_add(struct omap_mcbsp *mcbsp,
  795. struct resource *res)
  796. {
  797. struct omap_mcbsp_st_data *st_data;
  798. int err;
  799. st_data = devm_kzalloc(mcbsp->dev, sizeof(*mcbsp->st_data), GFP_KERNEL);
  800. if (!st_data)
  801. return -ENOMEM;
  802. st_data->io_base_st = devm_ioremap(mcbsp->dev, res->start,
  803. resource_size(res));
  804. if (!st_data->io_base_st)
  805. return -ENOMEM;
  806. err = sysfs_create_group(&mcbsp->dev->kobj, &sidetone_attr_group);
  807. if (err)
  808. return err;
  809. mcbsp->st_data = st_data;
  810. return 0;
  811. }
  812. /*
  813. * McBSP1 and McBSP3 are directly mapped on 1610 and 1510.
  814. * 730 has only 2 McBSP, and both of them are MPU peripherals.
  815. */
  816. int __devinit omap_mcbsp_init(struct platform_device *pdev)
  817. {
  818. struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
  819. struct resource *res;
  820. int ret = 0;
  821. spin_lock_init(&mcbsp->lock);
  822. mcbsp->free = true;
  823. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu");
  824. if (!res) {
  825. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  826. if (!res) {
  827. dev_err(mcbsp->dev, "invalid memory resource\n");
  828. return -ENOMEM;
  829. }
  830. }
  831. if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res),
  832. dev_name(&pdev->dev))) {
  833. dev_err(mcbsp->dev, "memory region already claimed\n");
  834. return -ENODEV;
  835. }
  836. mcbsp->phys_base = res->start;
  837. mcbsp->reg_cache_size = resource_size(res);
  838. mcbsp->io_base = devm_ioremap(&pdev->dev, res->start,
  839. resource_size(res));
  840. if (!mcbsp->io_base)
  841. return -ENOMEM;
  842. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
  843. if (!res)
  844. mcbsp->phys_dma_base = mcbsp->phys_base;
  845. else
  846. mcbsp->phys_dma_base = res->start;
  847. /*
  848. * OMAP1, 2 uses two interrupt lines: TX, RX
  849. * OMAP2430, OMAP3 SoC have combined IRQ line as well.
  850. * OMAP4 and newer SoC only have the combined IRQ line.
  851. * Use the combined IRQ if available since it gives better debugging
  852. * possibilities.
  853. */
  854. mcbsp->irq = platform_get_irq_byname(pdev, "common");
  855. if (mcbsp->irq == -ENXIO) {
  856. mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx");
  857. if (mcbsp->tx_irq == -ENXIO) {
  858. mcbsp->irq = platform_get_irq(pdev, 0);
  859. mcbsp->tx_irq = 0;
  860. } else {
  861. mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx");
  862. mcbsp->irq = 0;
  863. }
  864. }
  865. res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
  866. if (!res) {
  867. dev_err(&pdev->dev, "invalid rx DMA channel\n");
  868. return -ENODEV;
  869. }
  870. /* RX DMA request number, and port address configuration */
  871. mcbsp->dma_data[1].name = "Audio Capture";
  872. mcbsp->dma_data[1].dma_req = res->start;
  873. mcbsp->dma_data[1].port_addr = omap_mcbsp_dma_reg_params(mcbsp, 1);
  874. res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
  875. if (!res) {
  876. dev_err(&pdev->dev, "invalid tx DMA channel\n");
  877. return -ENODEV;
  878. }
  879. /* TX DMA request number, and port address configuration */
  880. mcbsp->dma_data[0].name = "Audio Playback";
  881. mcbsp->dma_data[0].dma_req = res->start;
  882. mcbsp->dma_data[0].port_addr = omap_mcbsp_dma_reg_params(mcbsp, 0);
  883. mcbsp->fclk = clk_get(&pdev->dev, "fck");
  884. if (IS_ERR(mcbsp->fclk)) {
  885. ret = PTR_ERR(mcbsp->fclk);
  886. dev_err(mcbsp->dev, "unable to get fck: %d\n", ret);
  887. return ret;
  888. }
  889. mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT;
  890. if (mcbsp->pdata->buffer_size) {
  891. /*
  892. * Initially configure the maximum thresholds to a safe value.
  893. * The McBSP FIFO usage with these values should not go under
  894. * 16 locations.
  895. * If the whole FIFO without safety buffer is used, than there
  896. * is a possibility that the DMA will be not able to push the
  897. * new data on time, causing channel shifts in runtime.
  898. */
  899. mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10;
  900. mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10;
  901. ret = sysfs_create_group(&mcbsp->dev->kobj,
  902. &additional_attr_group);
  903. if (ret) {
  904. dev_err(mcbsp->dev,
  905. "Unable to create additional controls\n");
  906. goto err_thres;
  907. }
  908. } else {
  909. mcbsp->max_tx_thres = -EINVAL;
  910. mcbsp->max_rx_thres = -EINVAL;
  911. }
  912. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sidetone");
  913. if (res) {
  914. ret = omap_st_add(mcbsp, res);
  915. if (ret) {
  916. dev_err(mcbsp->dev,
  917. "Unable to create sidetone controls\n");
  918. goto err_st;
  919. }
  920. }
  921. return 0;
  922. err_st:
  923. if (mcbsp->pdata->buffer_size)
  924. sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
  925. err_thres:
  926. clk_put(mcbsp->fclk);
  927. return ret;
  928. }
  929. void __devexit omap_mcbsp_sysfs_remove(struct omap_mcbsp *mcbsp)
  930. {
  931. if (mcbsp->pdata->buffer_size)
  932. sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group);
  933. if (mcbsp->st_data)
  934. sysfs_remove_group(&mcbsp->dev->kobj, &sidetone_attr_group);
  935. }