core.c 195 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #ifdef CONFIG_PARAVIRT
  77. #include <asm/paravirt.h>
  78. #endif
  79. #include "sched.h"
  80. #include "../workqueue_sched.h"
  81. #define CREATE_TRACE_POINTS
  82. #include <trace/events/sched.h>
  83. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  84. {
  85. unsigned long delta;
  86. ktime_t soft, hard, now;
  87. for (;;) {
  88. if (hrtimer_active(period_timer))
  89. break;
  90. now = hrtimer_cb_get_time(period_timer);
  91. hrtimer_forward(period_timer, now, period);
  92. soft = hrtimer_get_softexpires(period_timer);
  93. hard = hrtimer_get_expires(period_timer);
  94. delta = ktime_to_ns(ktime_sub(hard, soft));
  95. __hrtimer_start_range_ns(period_timer, soft, delta,
  96. HRTIMER_MODE_ABS_PINNED, 0);
  97. }
  98. }
  99. DEFINE_MUTEX(sched_domains_mutex);
  100. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  101. static void update_rq_clock_task(struct rq *rq, s64 delta);
  102. void update_rq_clock(struct rq *rq)
  103. {
  104. s64 delta;
  105. if (rq->skip_clock_update > 0)
  106. return;
  107. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  108. rq->clock += delta;
  109. update_rq_clock_task(rq, delta);
  110. }
  111. /*
  112. * Debugging: various feature bits
  113. */
  114. #define SCHED_FEAT(name, enabled) \
  115. (1UL << __SCHED_FEAT_##name) * enabled |
  116. const_debug unsigned int sysctl_sched_features =
  117. #include "features.h"
  118. 0;
  119. #undef SCHED_FEAT
  120. #ifdef CONFIG_SCHED_DEBUG
  121. #define SCHED_FEAT(name, enabled) \
  122. #name ,
  123. static __read_mostly char *sched_feat_names[] = {
  124. #include "features.h"
  125. NULL
  126. };
  127. #undef SCHED_FEAT
  128. static int sched_feat_show(struct seq_file *m, void *v)
  129. {
  130. int i;
  131. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  132. if (!(sysctl_sched_features & (1UL << i)))
  133. seq_puts(m, "NO_");
  134. seq_printf(m, "%s ", sched_feat_names[i]);
  135. }
  136. seq_puts(m, "\n");
  137. return 0;
  138. }
  139. #ifdef HAVE_JUMP_LABEL
  140. #define jump_label_key__true jump_label_key_enabled
  141. #define jump_label_key__false jump_label_key_disabled
  142. #define SCHED_FEAT(name, enabled) \
  143. jump_label_key__##enabled ,
  144. struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR] = {
  145. #include "features.h"
  146. };
  147. #undef SCHED_FEAT
  148. static void sched_feat_disable(int i)
  149. {
  150. if (jump_label_enabled(&sched_feat_keys[i]))
  151. jump_label_dec(&sched_feat_keys[i]);
  152. }
  153. static void sched_feat_enable(int i)
  154. {
  155. if (!jump_label_enabled(&sched_feat_keys[i]))
  156. jump_label_inc(&sched_feat_keys[i]);
  157. }
  158. #else
  159. static void sched_feat_disable(int i) { };
  160. static void sched_feat_enable(int i) { };
  161. #endif /* HAVE_JUMP_LABEL */
  162. static ssize_t
  163. sched_feat_write(struct file *filp, const char __user *ubuf,
  164. size_t cnt, loff_t *ppos)
  165. {
  166. char buf[64];
  167. char *cmp;
  168. int neg = 0;
  169. int i;
  170. if (cnt > 63)
  171. cnt = 63;
  172. if (copy_from_user(&buf, ubuf, cnt))
  173. return -EFAULT;
  174. buf[cnt] = 0;
  175. cmp = strstrip(buf);
  176. if (strncmp(cmp, "NO_", 3) == 0) {
  177. neg = 1;
  178. cmp += 3;
  179. }
  180. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  181. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  182. if (neg) {
  183. sysctl_sched_features &= ~(1UL << i);
  184. sched_feat_disable(i);
  185. } else {
  186. sysctl_sched_features |= (1UL << i);
  187. sched_feat_enable(i);
  188. }
  189. break;
  190. }
  191. }
  192. if (i == __SCHED_FEAT_NR)
  193. return -EINVAL;
  194. *ppos += cnt;
  195. return cnt;
  196. }
  197. static int sched_feat_open(struct inode *inode, struct file *filp)
  198. {
  199. return single_open(filp, sched_feat_show, NULL);
  200. }
  201. static const struct file_operations sched_feat_fops = {
  202. .open = sched_feat_open,
  203. .write = sched_feat_write,
  204. .read = seq_read,
  205. .llseek = seq_lseek,
  206. .release = single_release,
  207. };
  208. static __init int sched_init_debug(void)
  209. {
  210. debugfs_create_file("sched_features", 0644, NULL, NULL,
  211. &sched_feat_fops);
  212. return 0;
  213. }
  214. late_initcall(sched_init_debug);
  215. #endif /* CONFIG_SCHED_DEBUG */
  216. /*
  217. * Number of tasks to iterate in a single balance run.
  218. * Limited because this is done with IRQs disabled.
  219. */
  220. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  221. /*
  222. * period over which we average the RT time consumption, measured
  223. * in ms.
  224. *
  225. * default: 1s
  226. */
  227. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  228. /*
  229. * period over which we measure -rt task cpu usage in us.
  230. * default: 1s
  231. */
  232. unsigned int sysctl_sched_rt_period = 1000000;
  233. __read_mostly int scheduler_running;
  234. /*
  235. * part of the period that we allow rt tasks to run in us.
  236. * default: 0.95s
  237. */
  238. int sysctl_sched_rt_runtime = 950000;
  239. /*
  240. * __task_rq_lock - lock the rq @p resides on.
  241. */
  242. static inline struct rq *__task_rq_lock(struct task_struct *p)
  243. __acquires(rq->lock)
  244. {
  245. struct rq *rq;
  246. lockdep_assert_held(&p->pi_lock);
  247. for (;;) {
  248. rq = task_rq(p);
  249. raw_spin_lock(&rq->lock);
  250. if (likely(rq == task_rq(p)))
  251. return rq;
  252. raw_spin_unlock(&rq->lock);
  253. }
  254. }
  255. /*
  256. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  257. */
  258. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  259. __acquires(p->pi_lock)
  260. __acquires(rq->lock)
  261. {
  262. struct rq *rq;
  263. for (;;) {
  264. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  265. rq = task_rq(p);
  266. raw_spin_lock(&rq->lock);
  267. if (likely(rq == task_rq(p)))
  268. return rq;
  269. raw_spin_unlock(&rq->lock);
  270. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  271. }
  272. }
  273. static void __task_rq_unlock(struct rq *rq)
  274. __releases(rq->lock)
  275. {
  276. raw_spin_unlock(&rq->lock);
  277. }
  278. static inline void
  279. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  280. __releases(rq->lock)
  281. __releases(p->pi_lock)
  282. {
  283. raw_spin_unlock(&rq->lock);
  284. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  285. }
  286. /*
  287. * this_rq_lock - lock this runqueue and disable interrupts.
  288. */
  289. static struct rq *this_rq_lock(void)
  290. __acquires(rq->lock)
  291. {
  292. struct rq *rq;
  293. local_irq_disable();
  294. rq = this_rq();
  295. raw_spin_lock(&rq->lock);
  296. return rq;
  297. }
  298. #ifdef CONFIG_SCHED_HRTICK
  299. /*
  300. * Use HR-timers to deliver accurate preemption points.
  301. *
  302. * Its all a bit involved since we cannot program an hrt while holding the
  303. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  304. * reschedule event.
  305. *
  306. * When we get rescheduled we reprogram the hrtick_timer outside of the
  307. * rq->lock.
  308. */
  309. static void hrtick_clear(struct rq *rq)
  310. {
  311. if (hrtimer_active(&rq->hrtick_timer))
  312. hrtimer_cancel(&rq->hrtick_timer);
  313. }
  314. /*
  315. * High-resolution timer tick.
  316. * Runs from hardirq context with interrupts disabled.
  317. */
  318. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  319. {
  320. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  321. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  322. raw_spin_lock(&rq->lock);
  323. update_rq_clock(rq);
  324. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  325. raw_spin_unlock(&rq->lock);
  326. return HRTIMER_NORESTART;
  327. }
  328. #ifdef CONFIG_SMP
  329. /*
  330. * called from hardirq (IPI) context
  331. */
  332. static void __hrtick_start(void *arg)
  333. {
  334. struct rq *rq = arg;
  335. raw_spin_lock(&rq->lock);
  336. hrtimer_restart(&rq->hrtick_timer);
  337. rq->hrtick_csd_pending = 0;
  338. raw_spin_unlock(&rq->lock);
  339. }
  340. /*
  341. * Called to set the hrtick timer state.
  342. *
  343. * called with rq->lock held and irqs disabled
  344. */
  345. void hrtick_start(struct rq *rq, u64 delay)
  346. {
  347. struct hrtimer *timer = &rq->hrtick_timer;
  348. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  349. hrtimer_set_expires(timer, time);
  350. if (rq == this_rq()) {
  351. hrtimer_restart(timer);
  352. } else if (!rq->hrtick_csd_pending) {
  353. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  354. rq->hrtick_csd_pending = 1;
  355. }
  356. }
  357. static int
  358. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  359. {
  360. int cpu = (int)(long)hcpu;
  361. switch (action) {
  362. case CPU_UP_CANCELED:
  363. case CPU_UP_CANCELED_FROZEN:
  364. case CPU_DOWN_PREPARE:
  365. case CPU_DOWN_PREPARE_FROZEN:
  366. case CPU_DEAD:
  367. case CPU_DEAD_FROZEN:
  368. hrtick_clear(cpu_rq(cpu));
  369. return NOTIFY_OK;
  370. }
  371. return NOTIFY_DONE;
  372. }
  373. static __init void init_hrtick(void)
  374. {
  375. hotcpu_notifier(hotplug_hrtick, 0);
  376. }
  377. #else
  378. /*
  379. * Called to set the hrtick timer state.
  380. *
  381. * called with rq->lock held and irqs disabled
  382. */
  383. void hrtick_start(struct rq *rq, u64 delay)
  384. {
  385. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  386. HRTIMER_MODE_REL_PINNED, 0);
  387. }
  388. static inline void init_hrtick(void)
  389. {
  390. }
  391. #endif /* CONFIG_SMP */
  392. static void init_rq_hrtick(struct rq *rq)
  393. {
  394. #ifdef CONFIG_SMP
  395. rq->hrtick_csd_pending = 0;
  396. rq->hrtick_csd.flags = 0;
  397. rq->hrtick_csd.func = __hrtick_start;
  398. rq->hrtick_csd.info = rq;
  399. #endif
  400. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  401. rq->hrtick_timer.function = hrtick;
  402. }
  403. #else /* CONFIG_SCHED_HRTICK */
  404. static inline void hrtick_clear(struct rq *rq)
  405. {
  406. }
  407. static inline void init_rq_hrtick(struct rq *rq)
  408. {
  409. }
  410. static inline void init_hrtick(void)
  411. {
  412. }
  413. #endif /* CONFIG_SCHED_HRTICK */
  414. /*
  415. * resched_task - mark a task 'to be rescheduled now'.
  416. *
  417. * On UP this means the setting of the need_resched flag, on SMP it
  418. * might also involve a cross-CPU call to trigger the scheduler on
  419. * the target CPU.
  420. */
  421. #ifdef CONFIG_SMP
  422. #ifndef tsk_is_polling
  423. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  424. #endif
  425. void resched_task(struct task_struct *p)
  426. {
  427. int cpu;
  428. assert_raw_spin_locked(&task_rq(p)->lock);
  429. if (test_tsk_need_resched(p))
  430. return;
  431. set_tsk_need_resched(p);
  432. cpu = task_cpu(p);
  433. if (cpu == smp_processor_id())
  434. return;
  435. /* NEED_RESCHED must be visible before we test polling */
  436. smp_mb();
  437. if (!tsk_is_polling(p))
  438. smp_send_reschedule(cpu);
  439. }
  440. void resched_cpu(int cpu)
  441. {
  442. struct rq *rq = cpu_rq(cpu);
  443. unsigned long flags;
  444. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  445. return;
  446. resched_task(cpu_curr(cpu));
  447. raw_spin_unlock_irqrestore(&rq->lock, flags);
  448. }
  449. #ifdef CONFIG_NO_HZ
  450. /*
  451. * In the semi idle case, use the nearest busy cpu for migrating timers
  452. * from an idle cpu. This is good for power-savings.
  453. *
  454. * We don't do similar optimization for completely idle system, as
  455. * selecting an idle cpu will add more delays to the timers than intended
  456. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  457. */
  458. int get_nohz_timer_target(void)
  459. {
  460. int cpu = smp_processor_id();
  461. int i;
  462. struct sched_domain *sd;
  463. rcu_read_lock();
  464. for_each_domain(cpu, sd) {
  465. for_each_cpu(i, sched_domain_span(sd)) {
  466. if (!idle_cpu(i)) {
  467. cpu = i;
  468. goto unlock;
  469. }
  470. }
  471. }
  472. unlock:
  473. rcu_read_unlock();
  474. return cpu;
  475. }
  476. /*
  477. * When add_timer_on() enqueues a timer into the timer wheel of an
  478. * idle CPU then this timer might expire before the next timer event
  479. * which is scheduled to wake up that CPU. In case of a completely
  480. * idle system the next event might even be infinite time into the
  481. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  482. * leaves the inner idle loop so the newly added timer is taken into
  483. * account when the CPU goes back to idle and evaluates the timer
  484. * wheel for the next timer event.
  485. */
  486. void wake_up_idle_cpu(int cpu)
  487. {
  488. struct rq *rq = cpu_rq(cpu);
  489. if (cpu == smp_processor_id())
  490. return;
  491. /*
  492. * This is safe, as this function is called with the timer
  493. * wheel base lock of (cpu) held. When the CPU is on the way
  494. * to idle and has not yet set rq->curr to idle then it will
  495. * be serialized on the timer wheel base lock and take the new
  496. * timer into account automatically.
  497. */
  498. if (rq->curr != rq->idle)
  499. return;
  500. /*
  501. * We can set TIF_RESCHED on the idle task of the other CPU
  502. * lockless. The worst case is that the other CPU runs the
  503. * idle task through an additional NOOP schedule()
  504. */
  505. set_tsk_need_resched(rq->idle);
  506. /* NEED_RESCHED must be visible before we test polling */
  507. smp_mb();
  508. if (!tsk_is_polling(rq->idle))
  509. smp_send_reschedule(cpu);
  510. }
  511. static inline bool got_nohz_idle_kick(void)
  512. {
  513. int cpu = smp_processor_id();
  514. return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  515. }
  516. #else /* CONFIG_NO_HZ */
  517. static inline bool got_nohz_idle_kick(void)
  518. {
  519. return false;
  520. }
  521. #endif /* CONFIG_NO_HZ */
  522. void sched_avg_update(struct rq *rq)
  523. {
  524. s64 period = sched_avg_period();
  525. while ((s64)(rq->clock - rq->age_stamp) > period) {
  526. /*
  527. * Inline assembly required to prevent the compiler
  528. * optimising this loop into a divmod call.
  529. * See __iter_div_u64_rem() for another example of this.
  530. */
  531. asm("" : "+rm" (rq->age_stamp));
  532. rq->age_stamp += period;
  533. rq->rt_avg /= 2;
  534. }
  535. }
  536. #else /* !CONFIG_SMP */
  537. void resched_task(struct task_struct *p)
  538. {
  539. assert_raw_spin_locked(&task_rq(p)->lock);
  540. set_tsk_need_resched(p);
  541. }
  542. #endif /* CONFIG_SMP */
  543. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  544. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  545. /*
  546. * Iterate task_group tree rooted at *from, calling @down when first entering a
  547. * node and @up when leaving it for the final time.
  548. *
  549. * Caller must hold rcu_lock or sufficient equivalent.
  550. */
  551. int walk_tg_tree_from(struct task_group *from,
  552. tg_visitor down, tg_visitor up, void *data)
  553. {
  554. struct task_group *parent, *child;
  555. int ret;
  556. parent = from;
  557. down:
  558. ret = (*down)(parent, data);
  559. if (ret)
  560. goto out;
  561. list_for_each_entry_rcu(child, &parent->children, siblings) {
  562. parent = child;
  563. goto down;
  564. up:
  565. continue;
  566. }
  567. ret = (*up)(parent, data);
  568. if (ret || parent == from)
  569. goto out;
  570. child = parent;
  571. parent = parent->parent;
  572. if (parent)
  573. goto up;
  574. out:
  575. return ret;
  576. }
  577. int tg_nop(struct task_group *tg, void *data)
  578. {
  579. return 0;
  580. }
  581. #endif
  582. void update_cpu_load(struct rq *this_rq);
  583. static void set_load_weight(struct task_struct *p)
  584. {
  585. int prio = p->static_prio - MAX_RT_PRIO;
  586. struct load_weight *load = &p->se.load;
  587. /*
  588. * SCHED_IDLE tasks get minimal weight:
  589. */
  590. if (p->policy == SCHED_IDLE) {
  591. load->weight = scale_load(WEIGHT_IDLEPRIO);
  592. load->inv_weight = WMULT_IDLEPRIO;
  593. return;
  594. }
  595. load->weight = scale_load(prio_to_weight[prio]);
  596. load->inv_weight = prio_to_wmult[prio];
  597. }
  598. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  599. {
  600. update_rq_clock(rq);
  601. sched_info_queued(p);
  602. p->sched_class->enqueue_task(rq, p, flags);
  603. }
  604. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  605. {
  606. update_rq_clock(rq);
  607. sched_info_dequeued(p);
  608. p->sched_class->dequeue_task(rq, p, flags);
  609. }
  610. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  611. {
  612. if (task_contributes_to_load(p))
  613. rq->nr_uninterruptible--;
  614. enqueue_task(rq, p, flags);
  615. }
  616. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  617. {
  618. if (task_contributes_to_load(p))
  619. rq->nr_uninterruptible++;
  620. dequeue_task(rq, p, flags);
  621. }
  622. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  623. /*
  624. * There are no locks covering percpu hardirq/softirq time.
  625. * They are only modified in account_system_vtime, on corresponding CPU
  626. * with interrupts disabled. So, writes are safe.
  627. * They are read and saved off onto struct rq in update_rq_clock().
  628. * This may result in other CPU reading this CPU's irq time and can
  629. * race with irq/account_system_vtime on this CPU. We would either get old
  630. * or new value with a side effect of accounting a slice of irq time to wrong
  631. * task when irq is in progress while we read rq->clock. That is a worthy
  632. * compromise in place of having locks on each irq in account_system_time.
  633. */
  634. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  635. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  636. static DEFINE_PER_CPU(u64, irq_start_time);
  637. static int sched_clock_irqtime;
  638. void enable_sched_clock_irqtime(void)
  639. {
  640. sched_clock_irqtime = 1;
  641. }
  642. void disable_sched_clock_irqtime(void)
  643. {
  644. sched_clock_irqtime = 0;
  645. }
  646. #ifndef CONFIG_64BIT
  647. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  648. static inline void irq_time_write_begin(void)
  649. {
  650. __this_cpu_inc(irq_time_seq.sequence);
  651. smp_wmb();
  652. }
  653. static inline void irq_time_write_end(void)
  654. {
  655. smp_wmb();
  656. __this_cpu_inc(irq_time_seq.sequence);
  657. }
  658. static inline u64 irq_time_read(int cpu)
  659. {
  660. u64 irq_time;
  661. unsigned seq;
  662. do {
  663. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  664. irq_time = per_cpu(cpu_softirq_time, cpu) +
  665. per_cpu(cpu_hardirq_time, cpu);
  666. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  667. return irq_time;
  668. }
  669. #else /* CONFIG_64BIT */
  670. static inline void irq_time_write_begin(void)
  671. {
  672. }
  673. static inline void irq_time_write_end(void)
  674. {
  675. }
  676. static inline u64 irq_time_read(int cpu)
  677. {
  678. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  679. }
  680. #endif /* CONFIG_64BIT */
  681. /*
  682. * Called before incrementing preempt_count on {soft,}irq_enter
  683. * and before decrementing preempt_count on {soft,}irq_exit.
  684. */
  685. void account_system_vtime(struct task_struct *curr)
  686. {
  687. unsigned long flags;
  688. s64 delta;
  689. int cpu;
  690. if (!sched_clock_irqtime)
  691. return;
  692. local_irq_save(flags);
  693. cpu = smp_processor_id();
  694. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  695. __this_cpu_add(irq_start_time, delta);
  696. irq_time_write_begin();
  697. /*
  698. * We do not account for softirq time from ksoftirqd here.
  699. * We want to continue accounting softirq time to ksoftirqd thread
  700. * in that case, so as not to confuse scheduler with a special task
  701. * that do not consume any time, but still wants to run.
  702. */
  703. if (hardirq_count())
  704. __this_cpu_add(cpu_hardirq_time, delta);
  705. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  706. __this_cpu_add(cpu_softirq_time, delta);
  707. irq_time_write_end();
  708. local_irq_restore(flags);
  709. }
  710. EXPORT_SYMBOL_GPL(account_system_vtime);
  711. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  712. #ifdef CONFIG_PARAVIRT
  713. static inline u64 steal_ticks(u64 steal)
  714. {
  715. if (unlikely(steal > NSEC_PER_SEC))
  716. return div_u64(steal, TICK_NSEC);
  717. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  718. }
  719. #endif
  720. static void update_rq_clock_task(struct rq *rq, s64 delta)
  721. {
  722. /*
  723. * In theory, the compile should just see 0 here, and optimize out the call
  724. * to sched_rt_avg_update. But I don't trust it...
  725. */
  726. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  727. s64 steal = 0, irq_delta = 0;
  728. #endif
  729. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  730. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  731. /*
  732. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  733. * this case when a previous update_rq_clock() happened inside a
  734. * {soft,}irq region.
  735. *
  736. * When this happens, we stop ->clock_task and only update the
  737. * prev_irq_time stamp to account for the part that fit, so that a next
  738. * update will consume the rest. This ensures ->clock_task is
  739. * monotonic.
  740. *
  741. * It does however cause some slight miss-attribution of {soft,}irq
  742. * time, a more accurate solution would be to update the irq_time using
  743. * the current rq->clock timestamp, except that would require using
  744. * atomic ops.
  745. */
  746. if (irq_delta > delta)
  747. irq_delta = delta;
  748. rq->prev_irq_time += irq_delta;
  749. delta -= irq_delta;
  750. #endif
  751. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  752. if (static_branch((&paravirt_steal_rq_enabled))) {
  753. u64 st;
  754. steal = paravirt_steal_clock(cpu_of(rq));
  755. steal -= rq->prev_steal_time_rq;
  756. if (unlikely(steal > delta))
  757. steal = delta;
  758. st = steal_ticks(steal);
  759. steal = st * TICK_NSEC;
  760. rq->prev_steal_time_rq += steal;
  761. delta -= steal;
  762. }
  763. #endif
  764. rq->clock_task += delta;
  765. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  766. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  767. sched_rt_avg_update(rq, irq_delta + steal);
  768. #endif
  769. }
  770. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  771. static int irqtime_account_hi_update(void)
  772. {
  773. u64 *cpustat = kcpustat_this_cpu->cpustat;
  774. unsigned long flags;
  775. u64 latest_ns;
  776. int ret = 0;
  777. local_irq_save(flags);
  778. latest_ns = this_cpu_read(cpu_hardirq_time);
  779. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  780. ret = 1;
  781. local_irq_restore(flags);
  782. return ret;
  783. }
  784. static int irqtime_account_si_update(void)
  785. {
  786. u64 *cpustat = kcpustat_this_cpu->cpustat;
  787. unsigned long flags;
  788. u64 latest_ns;
  789. int ret = 0;
  790. local_irq_save(flags);
  791. latest_ns = this_cpu_read(cpu_softirq_time);
  792. if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
  793. ret = 1;
  794. local_irq_restore(flags);
  795. return ret;
  796. }
  797. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  798. #define sched_clock_irqtime (0)
  799. #endif
  800. void sched_set_stop_task(int cpu, struct task_struct *stop)
  801. {
  802. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  803. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  804. if (stop) {
  805. /*
  806. * Make it appear like a SCHED_FIFO task, its something
  807. * userspace knows about and won't get confused about.
  808. *
  809. * Also, it will make PI more or less work without too
  810. * much confusion -- but then, stop work should not
  811. * rely on PI working anyway.
  812. */
  813. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  814. stop->sched_class = &stop_sched_class;
  815. }
  816. cpu_rq(cpu)->stop = stop;
  817. if (old_stop) {
  818. /*
  819. * Reset it back to a normal scheduling class so that
  820. * it can die in pieces.
  821. */
  822. old_stop->sched_class = &rt_sched_class;
  823. }
  824. }
  825. /*
  826. * __normal_prio - return the priority that is based on the static prio
  827. */
  828. static inline int __normal_prio(struct task_struct *p)
  829. {
  830. return p->static_prio;
  831. }
  832. /*
  833. * Calculate the expected normal priority: i.e. priority
  834. * without taking RT-inheritance into account. Might be
  835. * boosted by interactivity modifiers. Changes upon fork,
  836. * setprio syscalls, and whenever the interactivity
  837. * estimator recalculates.
  838. */
  839. static inline int normal_prio(struct task_struct *p)
  840. {
  841. int prio;
  842. if (task_has_rt_policy(p))
  843. prio = MAX_RT_PRIO-1 - p->rt_priority;
  844. else
  845. prio = __normal_prio(p);
  846. return prio;
  847. }
  848. /*
  849. * Calculate the current priority, i.e. the priority
  850. * taken into account by the scheduler. This value might
  851. * be boosted by RT tasks, or might be boosted by
  852. * interactivity modifiers. Will be RT if the task got
  853. * RT-boosted. If not then it returns p->normal_prio.
  854. */
  855. static int effective_prio(struct task_struct *p)
  856. {
  857. p->normal_prio = normal_prio(p);
  858. /*
  859. * If we are RT tasks or we were boosted to RT priority,
  860. * keep the priority unchanged. Otherwise, update priority
  861. * to the normal priority:
  862. */
  863. if (!rt_prio(p->prio))
  864. return p->normal_prio;
  865. return p->prio;
  866. }
  867. /**
  868. * task_curr - is this task currently executing on a CPU?
  869. * @p: the task in question.
  870. */
  871. inline int task_curr(const struct task_struct *p)
  872. {
  873. return cpu_curr(task_cpu(p)) == p;
  874. }
  875. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  876. const struct sched_class *prev_class,
  877. int oldprio)
  878. {
  879. if (prev_class != p->sched_class) {
  880. if (prev_class->switched_from)
  881. prev_class->switched_from(rq, p);
  882. p->sched_class->switched_to(rq, p);
  883. } else if (oldprio != p->prio)
  884. p->sched_class->prio_changed(rq, p, oldprio);
  885. }
  886. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  887. {
  888. const struct sched_class *class;
  889. if (p->sched_class == rq->curr->sched_class) {
  890. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  891. } else {
  892. for_each_class(class) {
  893. if (class == rq->curr->sched_class)
  894. break;
  895. if (class == p->sched_class) {
  896. resched_task(rq->curr);
  897. break;
  898. }
  899. }
  900. }
  901. /*
  902. * A queue event has occurred, and we're going to schedule. In
  903. * this case, we can save a useless back to back clock update.
  904. */
  905. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  906. rq->skip_clock_update = 1;
  907. }
  908. #ifdef CONFIG_SMP
  909. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  910. {
  911. #ifdef CONFIG_SCHED_DEBUG
  912. /*
  913. * We should never call set_task_cpu() on a blocked task,
  914. * ttwu() will sort out the placement.
  915. */
  916. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  917. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  918. #ifdef CONFIG_LOCKDEP
  919. /*
  920. * The caller should hold either p->pi_lock or rq->lock, when changing
  921. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  922. *
  923. * sched_move_task() holds both and thus holding either pins the cgroup,
  924. * see set_task_rq().
  925. *
  926. * Furthermore, all task_rq users should acquire both locks, see
  927. * task_rq_lock().
  928. */
  929. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  930. lockdep_is_held(&task_rq(p)->lock)));
  931. #endif
  932. #endif
  933. trace_sched_migrate_task(p, new_cpu);
  934. if (task_cpu(p) != new_cpu) {
  935. p->se.nr_migrations++;
  936. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  937. }
  938. __set_task_cpu(p, new_cpu);
  939. }
  940. struct migration_arg {
  941. struct task_struct *task;
  942. int dest_cpu;
  943. };
  944. static int migration_cpu_stop(void *data);
  945. /*
  946. * wait_task_inactive - wait for a thread to unschedule.
  947. *
  948. * If @match_state is nonzero, it's the @p->state value just checked and
  949. * not expected to change. If it changes, i.e. @p might have woken up,
  950. * then return zero. When we succeed in waiting for @p to be off its CPU,
  951. * we return a positive number (its total switch count). If a second call
  952. * a short while later returns the same number, the caller can be sure that
  953. * @p has remained unscheduled the whole time.
  954. *
  955. * The caller must ensure that the task *will* unschedule sometime soon,
  956. * else this function might spin for a *long* time. This function can't
  957. * be called with interrupts off, or it may introduce deadlock with
  958. * smp_call_function() if an IPI is sent by the same process we are
  959. * waiting to become inactive.
  960. */
  961. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  962. {
  963. unsigned long flags;
  964. int running, on_rq;
  965. unsigned long ncsw;
  966. struct rq *rq;
  967. for (;;) {
  968. /*
  969. * We do the initial early heuristics without holding
  970. * any task-queue locks at all. We'll only try to get
  971. * the runqueue lock when things look like they will
  972. * work out!
  973. */
  974. rq = task_rq(p);
  975. /*
  976. * If the task is actively running on another CPU
  977. * still, just relax and busy-wait without holding
  978. * any locks.
  979. *
  980. * NOTE! Since we don't hold any locks, it's not
  981. * even sure that "rq" stays as the right runqueue!
  982. * But we don't care, since "task_running()" will
  983. * return false if the runqueue has changed and p
  984. * is actually now running somewhere else!
  985. */
  986. while (task_running(rq, p)) {
  987. if (match_state && unlikely(p->state != match_state))
  988. return 0;
  989. cpu_relax();
  990. }
  991. /*
  992. * Ok, time to look more closely! We need the rq
  993. * lock now, to be *sure*. If we're wrong, we'll
  994. * just go back and repeat.
  995. */
  996. rq = task_rq_lock(p, &flags);
  997. trace_sched_wait_task(p);
  998. running = task_running(rq, p);
  999. on_rq = p->on_rq;
  1000. ncsw = 0;
  1001. if (!match_state || p->state == match_state)
  1002. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1003. task_rq_unlock(rq, p, &flags);
  1004. /*
  1005. * If it changed from the expected state, bail out now.
  1006. */
  1007. if (unlikely(!ncsw))
  1008. break;
  1009. /*
  1010. * Was it really running after all now that we
  1011. * checked with the proper locks actually held?
  1012. *
  1013. * Oops. Go back and try again..
  1014. */
  1015. if (unlikely(running)) {
  1016. cpu_relax();
  1017. continue;
  1018. }
  1019. /*
  1020. * It's not enough that it's not actively running,
  1021. * it must be off the runqueue _entirely_, and not
  1022. * preempted!
  1023. *
  1024. * So if it was still runnable (but just not actively
  1025. * running right now), it's preempted, and we should
  1026. * yield - it could be a while.
  1027. */
  1028. if (unlikely(on_rq)) {
  1029. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1030. set_current_state(TASK_UNINTERRUPTIBLE);
  1031. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1032. continue;
  1033. }
  1034. /*
  1035. * Ahh, all good. It wasn't running, and it wasn't
  1036. * runnable, which means that it will never become
  1037. * running in the future either. We're all done!
  1038. */
  1039. break;
  1040. }
  1041. return ncsw;
  1042. }
  1043. /***
  1044. * kick_process - kick a running thread to enter/exit the kernel
  1045. * @p: the to-be-kicked thread
  1046. *
  1047. * Cause a process which is running on another CPU to enter
  1048. * kernel-mode, without any delay. (to get signals handled.)
  1049. *
  1050. * NOTE: this function doesn't have to take the runqueue lock,
  1051. * because all it wants to ensure is that the remote task enters
  1052. * the kernel. If the IPI races and the task has been migrated
  1053. * to another CPU then no harm is done and the purpose has been
  1054. * achieved as well.
  1055. */
  1056. void kick_process(struct task_struct *p)
  1057. {
  1058. int cpu;
  1059. preempt_disable();
  1060. cpu = task_cpu(p);
  1061. if ((cpu != smp_processor_id()) && task_curr(p))
  1062. smp_send_reschedule(cpu);
  1063. preempt_enable();
  1064. }
  1065. EXPORT_SYMBOL_GPL(kick_process);
  1066. #endif /* CONFIG_SMP */
  1067. #ifdef CONFIG_SMP
  1068. /*
  1069. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1070. */
  1071. static int select_fallback_rq(int cpu, struct task_struct *p)
  1072. {
  1073. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1074. enum { cpuset, possible, fail } state = cpuset;
  1075. int dest_cpu;
  1076. /* Look for allowed, online CPU in same node. */
  1077. for_each_cpu_mask(dest_cpu, *nodemask) {
  1078. if (!cpu_online(dest_cpu))
  1079. continue;
  1080. if (!cpu_active(dest_cpu))
  1081. continue;
  1082. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1083. return dest_cpu;
  1084. }
  1085. for (;;) {
  1086. /* Any allowed, online CPU? */
  1087. for_each_cpu_mask(dest_cpu, *tsk_cpus_allowed(p)) {
  1088. if (!cpu_online(dest_cpu))
  1089. continue;
  1090. if (!cpu_active(dest_cpu))
  1091. continue;
  1092. goto out;
  1093. }
  1094. switch (state) {
  1095. case cpuset:
  1096. /* No more Mr. Nice Guy. */
  1097. cpuset_cpus_allowed_fallback(p);
  1098. state = possible;
  1099. break;
  1100. case possible:
  1101. do_set_cpus_allowed(p, cpu_possible_mask);
  1102. state = fail;
  1103. break;
  1104. case fail:
  1105. BUG();
  1106. break;
  1107. }
  1108. }
  1109. out:
  1110. if (state != cpuset) {
  1111. /*
  1112. * Don't tell them about moving exiting tasks or
  1113. * kernel threads (both mm NULL), since they never
  1114. * leave kernel.
  1115. */
  1116. if (p->mm && printk_ratelimit()) {
  1117. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1118. task_pid_nr(p), p->comm, cpu);
  1119. }
  1120. }
  1121. return dest_cpu;
  1122. }
  1123. /*
  1124. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1125. */
  1126. static inline
  1127. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1128. {
  1129. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1130. /*
  1131. * In order not to call set_task_cpu() on a blocking task we need
  1132. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1133. * cpu.
  1134. *
  1135. * Since this is common to all placement strategies, this lives here.
  1136. *
  1137. * [ this allows ->select_task() to simply return task_cpu(p) and
  1138. * not worry about this generic constraint ]
  1139. */
  1140. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1141. !cpu_online(cpu)))
  1142. cpu = select_fallback_rq(task_cpu(p), p);
  1143. return cpu;
  1144. }
  1145. static void update_avg(u64 *avg, u64 sample)
  1146. {
  1147. s64 diff = sample - *avg;
  1148. *avg += diff >> 3;
  1149. }
  1150. #endif
  1151. static void
  1152. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1153. {
  1154. #ifdef CONFIG_SCHEDSTATS
  1155. struct rq *rq = this_rq();
  1156. #ifdef CONFIG_SMP
  1157. int this_cpu = smp_processor_id();
  1158. if (cpu == this_cpu) {
  1159. schedstat_inc(rq, ttwu_local);
  1160. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1161. } else {
  1162. struct sched_domain *sd;
  1163. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1164. rcu_read_lock();
  1165. for_each_domain(this_cpu, sd) {
  1166. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1167. schedstat_inc(sd, ttwu_wake_remote);
  1168. break;
  1169. }
  1170. }
  1171. rcu_read_unlock();
  1172. }
  1173. if (wake_flags & WF_MIGRATED)
  1174. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1175. #endif /* CONFIG_SMP */
  1176. schedstat_inc(rq, ttwu_count);
  1177. schedstat_inc(p, se.statistics.nr_wakeups);
  1178. if (wake_flags & WF_SYNC)
  1179. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1180. #endif /* CONFIG_SCHEDSTATS */
  1181. }
  1182. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1183. {
  1184. activate_task(rq, p, en_flags);
  1185. p->on_rq = 1;
  1186. /* if a worker is waking up, notify workqueue */
  1187. if (p->flags & PF_WQ_WORKER)
  1188. wq_worker_waking_up(p, cpu_of(rq));
  1189. }
  1190. /*
  1191. * Mark the task runnable and perform wakeup-preemption.
  1192. */
  1193. static void
  1194. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1195. {
  1196. trace_sched_wakeup(p, true);
  1197. check_preempt_curr(rq, p, wake_flags);
  1198. p->state = TASK_RUNNING;
  1199. #ifdef CONFIG_SMP
  1200. if (p->sched_class->task_woken)
  1201. p->sched_class->task_woken(rq, p);
  1202. if (rq->idle_stamp) {
  1203. u64 delta = rq->clock - rq->idle_stamp;
  1204. u64 max = 2*sysctl_sched_migration_cost;
  1205. if (delta > max)
  1206. rq->avg_idle = max;
  1207. else
  1208. update_avg(&rq->avg_idle, delta);
  1209. rq->idle_stamp = 0;
  1210. }
  1211. #endif
  1212. }
  1213. static void
  1214. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1215. {
  1216. #ifdef CONFIG_SMP
  1217. if (p->sched_contributes_to_load)
  1218. rq->nr_uninterruptible--;
  1219. #endif
  1220. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1221. ttwu_do_wakeup(rq, p, wake_flags);
  1222. }
  1223. /*
  1224. * Called in case the task @p isn't fully descheduled from its runqueue,
  1225. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1226. * since all we need to do is flip p->state to TASK_RUNNING, since
  1227. * the task is still ->on_rq.
  1228. */
  1229. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1230. {
  1231. struct rq *rq;
  1232. int ret = 0;
  1233. rq = __task_rq_lock(p);
  1234. if (p->on_rq) {
  1235. ttwu_do_wakeup(rq, p, wake_flags);
  1236. ret = 1;
  1237. }
  1238. __task_rq_unlock(rq);
  1239. return ret;
  1240. }
  1241. #ifdef CONFIG_SMP
  1242. static void sched_ttwu_pending(void)
  1243. {
  1244. struct rq *rq = this_rq();
  1245. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1246. struct task_struct *p;
  1247. raw_spin_lock(&rq->lock);
  1248. while (llist) {
  1249. p = llist_entry(llist, struct task_struct, wake_entry);
  1250. llist = llist_next(llist);
  1251. ttwu_do_activate(rq, p, 0);
  1252. }
  1253. raw_spin_unlock(&rq->lock);
  1254. }
  1255. void scheduler_ipi(void)
  1256. {
  1257. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1258. return;
  1259. /*
  1260. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1261. * traditionally all their work was done from the interrupt return
  1262. * path. Now that we actually do some work, we need to make sure
  1263. * we do call them.
  1264. *
  1265. * Some archs already do call them, luckily irq_enter/exit nest
  1266. * properly.
  1267. *
  1268. * Arguably we should visit all archs and update all handlers,
  1269. * however a fair share of IPIs are still resched only so this would
  1270. * somewhat pessimize the simple resched case.
  1271. */
  1272. irq_enter();
  1273. sched_ttwu_pending();
  1274. /*
  1275. * Check if someone kicked us for doing the nohz idle load balance.
  1276. */
  1277. if (unlikely(got_nohz_idle_kick() && !need_resched())) {
  1278. this_rq()->idle_balance = 1;
  1279. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1280. }
  1281. irq_exit();
  1282. }
  1283. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1284. {
  1285. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1286. smp_send_reschedule(cpu);
  1287. }
  1288. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1289. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  1290. {
  1291. struct rq *rq;
  1292. int ret = 0;
  1293. rq = __task_rq_lock(p);
  1294. if (p->on_cpu) {
  1295. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1296. ttwu_do_wakeup(rq, p, wake_flags);
  1297. ret = 1;
  1298. }
  1299. __task_rq_unlock(rq);
  1300. return ret;
  1301. }
  1302. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1303. bool cpus_share_cache(int this_cpu, int that_cpu)
  1304. {
  1305. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1306. }
  1307. #endif /* CONFIG_SMP */
  1308. static void ttwu_queue(struct task_struct *p, int cpu)
  1309. {
  1310. struct rq *rq = cpu_rq(cpu);
  1311. #if defined(CONFIG_SMP)
  1312. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1313. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1314. ttwu_queue_remote(p, cpu);
  1315. return;
  1316. }
  1317. #endif
  1318. raw_spin_lock(&rq->lock);
  1319. ttwu_do_activate(rq, p, 0);
  1320. raw_spin_unlock(&rq->lock);
  1321. }
  1322. /**
  1323. * try_to_wake_up - wake up a thread
  1324. * @p: the thread to be awakened
  1325. * @state: the mask of task states that can be woken
  1326. * @wake_flags: wake modifier flags (WF_*)
  1327. *
  1328. * Put it on the run-queue if it's not already there. The "current"
  1329. * thread is always on the run-queue (except when the actual
  1330. * re-schedule is in progress), and as such you're allowed to do
  1331. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1332. * runnable without the overhead of this.
  1333. *
  1334. * Returns %true if @p was woken up, %false if it was already running
  1335. * or @state didn't match @p's state.
  1336. */
  1337. static int
  1338. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1339. {
  1340. unsigned long flags;
  1341. int cpu, success = 0;
  1342. smp_wmb();
  1343. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1344. if (!(p->state & state))
  1345. goto out;
  1346. success = 1; /* we're going to change ->state */
  1347. cpu = task_cpu(p);
  1348. if (p->on_rq && ttwu_remote(p, wake_flags))
  1349. goto stat;
  1350. #ifdef CONFIG_SMP
  1351. /*
  1352. * If the owning (remote) cpu is still in the middle of schedule() with
  1353. * this task as prev, wait until its done referencing the task.
  1354. */
  1355. while (p->on_cpu) {
  1356. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1357. /*
  1358. * In case the architecture enables interrupts in
  1359. * context_switch(), we cannot busy wait, since that
  1360. * would lead to deadlocks when an interrupt hits and
  1361. * tries to wake up @prev. So bail and do a complete
  1362. * remote wakeup.
  1363. */
  1364. if (ttwu_activate_remote(p, wake_flags))
  1365. goto stat;
  1366. #else
  1367. cpu_relax();
  1368. #endif
  1369. }
  1370. /*
  1371. * Pairs with the smp_wmb() in finish_lock_switch().
  1372. */
  1373. smp_rmb();
  1374. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1375. p->state = TASK_WAKING;
  1376. if (p->sched_class->task_waking)
  1377. p->sched_class->task_waking(p);
  1378. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  1379. if (task_cpu(p) != cpu) {
  1380. wake_flags |= WF_MIGRATED;
  1381. set_task_cpu(p, cpu);
  1382. }
  1383. #endif /* CONFIG_SMP */
  1384. ttwu_queue(p, cpu);
  1385. stat:
  1386. ttwu_stat(p, cpu, wake_flags);
  1387. out:
  1388. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1389. return success;
  1390. }
  1391. /**
  1392. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1393. * @p: the thread to be awakened
  1394. *
  1395. * Put @p on the run-queue if it's not already there. The caller must
  1396. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1397. * the current task.
  1398. */
  1399. static void try_to_wake_up_local(struct task_struct *p)
  1400. {
  1401. struct rq *rq = task_rq(p);
  1402. BUG_ON(rq != this_rq());
  1403. BUG_ON(p == current);
  1404. lockdep_assert_held(&rq->lock);
  1405. if (!raw_spin_trylock(&p->pi_lock)) {
  1406. raw_spin_unlock(&rq->lock);
  1407. raw_spin_lock(&p->pi_lock);
  1408. raw_spin_lock(&rq->lock);
  1409. }
  1410. if (!(p->state & TASK_NORMAL))
  1411. goto out;
  1412. if (!p->on_rq)
  1413. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1414. ttwu_do_wakeup(rq, p, 0);
  1415. ttwu_stat(p, smp_processor_id(), 0);
  1416. out:
  1417. raw_spin_unlock(&p->pi_lock);
  1418. }
  1419. /**
  1420. * wake_up_process - Wake up a specific process
  1421. * @p: The process to be woken up.
  1422. *
  1423. * Attempt to wake up the nominated process and move it to the set of runnable
  1424. * processes. Returns 1 if the process was woken up, 0 if it was already
  1425. * running.
  1426. *
  1427. * It may be assumed that this function implies a write memory barrier before
  1428. * changing the task state if and only if any tasks are woken up.
  1429. */
  1430. int wake_up_process(struct task_struct *p)
  1431. {
  1432. return try_to_wake_up(p, TASK_ALL, 0);
  1433. }
  1434. EXPORT_SYMBOL(wake_up_process);
  1435. int wake_up_state(struct task_struct *p, unsigned int state)
  1436. {
  1437. return try_to_wake_up(p, state, 0);
  1438. }
  1439. /*
  1440. * Perform scheduler related setup for a newly forked process p.
  1441. * p is forked by current.
  1442. *
  1443. * __sched_fork() is basic setup used by init_idle() too:
  1444. */
  1445. static void __sched_fork(struct task_struct *p)
  1446. {
  1447. p->on_rq = 0;
  1448. p->se.on_rq = 0;
  1449. p->se.exec_start = 0;
  1450. p->se.sum_exec_runtime = 0;
  1451. p->se.prev_sum_exec_runtime = 0;
  1452. p->se.nr_migrations = 0;
  1453. p->se.vruntime = 0;
  1454. INIT_LIST_HEAD(&p->se.group_node);
  1455. #ifdef CONFIG_SCHEDSTATS
  1456. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1457. #endif
  1458. INIT_LIST_HEAD(&p->rt.run_list);
  1459. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1460. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1461. #endif
  1462. }
  1463. /*
  1464. * fork()/clone()-time setup:
  1465. */
  1466. void sched_fork(struct task_struct *p)
  1467. {
  1468. unsigned long flags;
  1469. int cpu = get_cpu();
  1470. __sched_fork(p);
  1471. /*
  1472. * We mark the process as running here. This guarantees that
  1473. * nobody will actually run it, and a signal or other external
  1474. * event cannot wake it up and insert it on the runqueue either.
  1475. */
  1476. p->state = TASK_RUNNING;
  1477. /*
  1478. * Make sure we do not leak PI boosting priority to the child.
  1479. */
  1480. p->prio = current->normal_prio;
  1481. /*
  1482. * Revert to default priority/policy on fork if requested.
  1483. */
  1484. if (unlikely(p->sched_reset_on_fork)) {
  1485. if (task_has_rt_policy(p)) {
  1486. p->policy = SCHED_NORMAL;
  1487. p->static_prio = NICE_TO_PRIO(0);
  1488. p->rt_priority = 0;
  1489. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1490. p->static_prio = NICE_TO_PRIO(0);
  1491. p->prio = p->normal_prio = __normal_prio(p);
  1492. set_load_weight(p);
  1493. /*
  1494. * We don't need the reset flag anymore after the fork. It has
  1495. * fulfilled its duty:
  1496. */
  1497. p->sched_reset_on_fork = 0;
  1498. }
  1499. if (!rt_prio(p->prio))
  1500. p->sched_class = &fair_sched_class;
  1501. if (p->sched_class->task_fork)
  1502. p->sched_class->task_fork(p);
  1503. /*
  1504. * The child is not yet in the pid-hash so no cgroup attach races,
  1505. * and the cgroup is pinned to this child due to cgroup_fork()
  1506. * is ran before sched_fork().
  1507. *
  1508. * Silence PROVE_RCU.
  1509. */
  1510. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1511. set_task_cpu(p, cpu);
  1512. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1513. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1514. if (likely(sched_info_on()))
  1515. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1516. #endif
  1517. #if defined(CONFIG_SMP)
  1518. p->on_cpu = 0;
  1519. #endif
  1520. #ifdef CONFIG_PREEMPT_COUNT
  1521. /* Want to start with kernel preemption disabled. */
  1522. task_thread_info(p)->preempt_count = 1;
  1523. #endif
  1524. #ifdef CONFIG_SMP
  1525. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1526. #endif
  1527. put_cpu();
  1528. }
  1529. /*
  1530. * wake_up_new_task - wake up a newly created task for the first time.
  1531. *
  1532. * This function will do some initial scheduler statistics housekeeping
  1533. * that must be done for every newly created context, then puts the task
  1534. * on the runqueue and wakes it.
  1535. */
  1536. void wake_up_new_task(struct task_struct *p)
  1537. {
  1538. unsigned long flags;
  1539. struct rq *rq;
  1540. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1541. #ifdef CONFIG_SMP
  1542. /*
  1543. * Fork balancing, do it here and not earlier because:
  1544. * - cpus_allowed can change in the fork path
  1545. * - any previously selected cpu might disappear through hotplug
  1546. */
  1547. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  1548. #endif
  1549. rq = __task_rq_lock(p);
  1550. activate_task(rq, p, 0);
  1551. p->on_rq = 1;
  1552. trace_sched_wakeup_new(p, true);
  1553. check_preempt_curr(rq, p, WF_FORK);
  1554. #ifdef CONFIG_SMP
  1555. if (p->sched_class->task_woken)
  1556. p->sched_class->task_woken(rq, p);
  1557. #endif
  1558. task_rq_unlock(rq, p, &flags);
  1559. }
  1560. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1561. /**
  1562. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1563. * @notifier: notifier struct to register
  1564. */
  1565. void preempt_notifier_register(struct preempt_notifier *notifier)
  1566. {
  1567. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1568. }
  1569. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1570. /**
  1571. * preempt_notifier_unregister - no longer interested in preemption notifications
  1572. * @notifier: notifier struct to unregister
  1573. *
  1574. * This is safe to call from within a preemption notifier.
  1575. */
  1576. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1577. {
  1578. hlist_del(&notifier->link);
  1579. }
  1580. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1581. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1582. {
  1583. struct preempt_notifier *notifier;
  1584. struct hlist_node *node;
  1585. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1586. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1587. }
  1588. static void
  1589. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1590. struct task_struct *next)
  1591. {
  1592. struct preempt_notifier *notifier;
  1593. struct hlist_node *node;
  1594. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1595. notifier->ops->sched_out(notifier, next);
  1596. }
  1597. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1598. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1599. {
  1600. }
  1601. static void
  1602. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1603. struct task_struct *next)
  1604. {
  1605. }
  1606. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1607. /**
  1608. * prepare_task_switch - prepare to switch tasks
  1609. * @rq: the runqueue preparing to switch
  1610. * @prev: the current task that is being switched out
  1611. * @next: the task we are going to switch to.
  1612. *
  1613. * This is called with the rq lock held and interrupts off. It must
  1614. * be paired with a subsequent finish_task_switch after the context
  1615. * switch.
  1616. *
  1617. * prepare_task_switch sets up locking and calls architecture specific
  1618. * hooks.
  1619. */
  1620. static inline void
  1621. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1622. struct task_struct *next)
  1623. {
  1624. sched_info_switch(prev, next);
  1625. perf_event_task_sched_out(prev, next);
  1626. fire_sched_out_preempt_notifiers(prev, next);
  1627. prepare_lock_switch(rq, next);
  1628. prepare_arch_switch(next);
  1629. trace_sched_switch(prev, next);
  1630. }
  1631. /**
  1632. * finish_task_switch - clean up after a task-switch
  1633. * @rq: runqueue associated with task-switch
  1634. * @prev: the thread we just switched away from.
  1635. *
  1636. * finish_task_switch must be called after the context switch, paired
  1637. * with a prepare_task_switch call before the context switch.
  1638. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1639. * and do any other architecture-specific cleanup actions.
  1640. *
  1641. * Note that we may have delayed dropping an mm in context_switch(). If
  1642. * so, we finish that here outside of the runqueue lock. (Doing it
  1643. * with the lock held can cause deadlocks; see schedule() for
  1644. * details.)
  1645. */
  1646. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1647. __releases(rq->lock)
  1648. {
  1649. struct mm_struct *mm = rq->prev_mm;
  1650. long prev_state;
  1651. rq->prev_mm = NULL;
  1652. /*
  1653. * A task struct has one reference for the use as "current".
  1654. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1655. * schedule one last time. The schedule call will never return, and
  1656. * the scheduled task must drop that reference.
  1657. * The test for TASK_DEAD must occur while the runqueue locks are
  1658. * still held, otherwise prev could be scheduled on another cpu, die
  1659. * there before we look at prev->state, and then the reference would
  1660. * be dropped twice.
  1661. * Manfred Spraul <manfred@colorfullife.com>
  1662. */
  1663. prev_state = prev->state;
  1664. finish_arch_switch(prev);
  1665. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1666. local_irq_disable();
  1667. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1668. perf_event_task_sched_in(prev, current);
  1669. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1670. local_irq_enable();
  1671. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  1672. finish_lock_switch(rq, prev);
  1673. fire_sched_in_preempt_notifiers(current);
  1674. if (mm)
  1675. mmdrop(mm);
  1676. if (unlikely(prev_state == TASK_DEAD)) {
  1677. /*
  1678. * Remove function-return probe instances associated with this
  1679. * task and put them back on the free list.
  1680. */
  1681. kprobe_flush_task(prev);
  1682. put_task_struct(prev);
  1683. }
  1684. }
  1685. #ifdef CONFIG_SMP
  1686. /* assumes rq->lock is held */
  1687. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1688. {
  1689. if (prev->sched_class->pre_schedule)
  1690. prev->sched_class->pre_schedule(rq, prev);
  1691. }
  1692. /* rq->lock is NOT held, but preemption is disabled */
  1693. static inline void post_schedule(struct rq *rq)
  1694. {
  1695. if (rq->post_schedule) {
  1696. unsigned long flags;
  1697. raw_spin_lock_irqsave(&rq->lock, flags);
  1698. if (rq->curr->sched_class->post_schedule)
  1699. rq->curr->sched_class->post_schedule(rq);
  1700. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1701. rq->post_schedule = 0;
  1702. }
  1703. }
  1704. #else
  1705. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1706. {
  1707. }
  1708. static inline void post_schedule(struct rq *rq)
  1709. {
  1710. }
  1711. #endif
  1712. /**
  1713. * schedule_tail - first thing a freshly forked thread must call.
  1714. * @prev: the thread we just switched away from.
  1715. */
  1716. asmlinkage void schedule_tail(struct task_struct *prev)
  1717. __releases(rq->lock)
  1718. {
  1719. struct rq *rq = this_rq();
  1720. finish_task_switch(rq, prev);
  1721. /*
  1722. * FIXME: do we need to worry about rq being invalidated by the
  1723. * task_switch?
  1724. */
  1725. post_schedule(rq);
  1726. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1727. /* In this case, finish_task_switch does not reenable preemption */
  1728. preempt_enable();
  1729. #endif
  1730. if (current->set_child_tid)
  1731. put_user(task_pid_vnr(current), current->set_child_tid);
  1732. }
  1733. /*
  1734. * context_switch - switch to the new MM and the new
  1735. * thread's register state.
  1736. */
  1737. static inline void
  1738. context_switch(struct rq *rq, struct task_struct *prev,
  1739. struct task_struct *next)
  1740. {
  1741. struct mm_struct *mm, *oldmm;
  1742. prepare_task_switch(rq, prev, next);
  1743. mm = next->mm;
  1744. oldmm = prev->active_mm;
  1745. /*
  1746. * For paravirt, this is coupled with an exit in switch_to to
  1747. * combine the page table reload and the switch backend into
  1748. * one hypercall.
  1749. */
  1750. arch_start_context_switch(prev);
  1751. if (!mm) {
  1752. next->active_mm = oldmm;
  1753. atomic_inc(&oldmm->mm_count);
  1754. enter_lazy_tlb(oldmm, next);
  1755. } else
  1756. switch_mm(oldmm, mm, next);
  1757. if (!prev->mm) {
  1758. prev->active_mm = NULL;
  1759. rq->prev_mm = oldmm;
  1760. }
  1761. /*
  1762. * Since the runqueue lock will be released by the next
  1763. * task (which is an invalid locking op but in the case
  1764. * of the scheduler it's an obvious special-case), so we
  1765. * do an early lockdep release here:
  1766. */
  1767. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1768. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1769. #endif
  1770. /* Here we just switch the register state and the stack. */
  1771. switch_to(prev, next, prev);
  1772. barrier();
  1773. /*
  1774. * this_rq must be evaluated again because prev may have moved
  1775. * CPUs since it called schedule(), thus the 'rq' on its stack
  1776. * frame will be invalid.
  1777. */
  1778. finish_task_switch(this_rq(), prev);
  1779. }
  1780. /*
  1781. * nr_running, nr_uninterruptible and nr_context_switches:
  1782. *
  1783. * externally visible scheduler statistics: current number of runnable
  1784. * threads, current number of uninterruptible-sleeping threads, total
  1785. * number of context switches performed since bootup.
  1786. */
  1787. unsigned long nr_running(void)
  1788. {
  1789. unsigned long i, sum = 0;
  1790. for_each_online_cpu(i)
  1791. sum += cpu_rq(i)->nr_running;
  1792. return sum;
  1793. }
  1794. unsigned long nr_uninterruptible(void)
  1795. {
  1796. unsigned long i, sum = 0;
  1797. for_each_possible_cpu(i)
  1798. sum += cpu_rq(i)->nr_uninterruptible;
  1799. /*
  1800. * Since we read the counters lockless, it might be slightly
  1801. * inaccurate. Do not allow it to go below zero though:
  1802. */
  1803. if (unlikely((long)sum < 0))
  1804. sum = 0;
  1805. return sum;
  1806. }
  1807. unsigned long long nr_context_switches(void)
  1808. {
  1809. int i;
  1810. unsigned long long sum = 0;
  1811. for_each_possible_cpu(i)
  1812. sum += cpu_rq(i)->nr_switches;
  1813. return sum;
  1814. }
  1815. unsigned long nr_iowait(void)
  1816. {
  1817. unsigned long i, sum = 0;
  1818. for_each_possible_cpu(i)
  1819. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1820. return sum;
  1821. }
  1822. unsigned long nr_iowait_cpu(int cpu)
  1823. {
  1824. struct rq *this = cpu_rq(cpu);
  1825. return atomic_read(&this->nr_iowait);
  1826. }
  1827. unsigned long this_cpu_load(void)
  1828. {
  1829. struct rq *this = this_rq();
  1830. return this->cpu_load[0];
  1831. }
  1832. /* Variables and functions for calc_load */
  1833. static atomic_long_t calc_load_tasks;
  1834. static unsigned long calc_load_update;
  1835. unsigned long avenrun[3];
  1836. EXPORT_SYMBOL(avenrun);
  1837. static long calc_load_fold_active(struct rq *this_rq)
  1838. {
  1839. long nr_active, delta = 0;
  1840. nr_active = this_rq->nr_running;
  1841. nr_active += (long) this_rq->nr_uninterruptible;
  1842. if (nr_active != this_rq->calc_load_active) {
  1843. delta = nr_active - this_rq->calc_load_active;
  1844. this_rq->calc_load_active = nr_active;
  1845. }
  1846. return delta;
  1847. }
  1848. static unsigned long
  1849. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  1850. {
  1851. load *= exp;
  1852. load += active * (FIXED_1 - exp);
  1853. load += 1UL << (FSHIFT - 1);
  1854. return load >> FSHIFT;
  1855. }
  1856. #ifdef CONFIG_NO_HZ
  1857. /*
  1858. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  1859. *
  1860. * When making the ILB scale, we should try to pull this in as well.
  1861. */
  1862. static atomic_long_t calc_load_tasks_idle;
  1863. void calc_load_account_idle(struct rq *this_rq)
  1864. {
  1865. long delta;
  1866. delta = calc_load_fold_active(this_rq);
  1867. if (delta)
  1868. atomic_long_add(delta, &calc_load_tasks_idle);
  1869. }
  1870. static long calc_load_fold_idle(void)
  1871. {
  1872. long delta = 0;
  1873. /*
  1874. * Its got a race, we don't care...
  1875. */
  1876. if (atomic_long_read(&calc_load_tasks_idle))
  1877. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  1878. return delta;
  1879. }
  1880. /**
  1881. * fixed_power_int - compute: x^n, in O(log n) time
  1882. *
  1883. * @x: base of the power
  1884. * @frac_bits: fractional bits of @x
  1885. * @n: power to raise @x to.
  1886. *
  1887. * By exploiting the relation between the definition of the natural power
  1888. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  1889. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  1890. * (where: n_i \elem {0, 1}, the binary vector representing n),
  1891. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  1892. * of course trivially computable in O(log_2 n), the length of our binary
  1893. * vector.
  1894. */
  1895. static unsigned long
  1896. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  1897. {
  1898. unsigned long result = 1UL << frac_bits;
  1899. if (n) for (;;) {
  1900. if (n & 1) {
  1901. result *= x;
  1902. result += 1UL << (frac_bits - 1);
  1903. result >>= frac_bits;
  1904. }
  1905. n >>= 1;
  1906. if (!n)
  1907. break;
  1908. x *= x;
  1909. x += 1UL << (frac_bits - 1);
  1910. x >>= frac_bits;
  1911. }
  1912. return result;
  1913. }
  1914. /*
  1915. * a1 = a0 * e + a * (1 - e)
  1916. *
  1917. * a2 = a1 * e + a * (1 - e)
  1918. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  1919. * = a0 * e^2 + a * (1 - e) * (1 + e)
  1920. *
  1921. * a3 = a2 * e + a * (1 - e)
  1922. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  1923. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  1924. *
  1925. * ...
  1926. *
  1927. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  1928. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  1929. * = a0 * e^n + a * (1 - e^n)
  1930. *
  1931. * [1] application of the geometric series:
  1932. *
  1933. * n 1 - x^(n+1)
  1934. * S_n := \Sum x^i = -------------
  1935. * i=0 1 - x
  1936. */
  1937. static unsigned long
  1938. calc_load_n(unsigned long load, unsigned long exp,
  1939. unsigned long active, unsigned int n)
  1940. {
  1941. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  1942. }
  1943. /*
  1944. * NO_HZ can leave us missing all per-cpu ticks calling
  1945. * calc_load_account_active(), but since an idle CPU folds its delta into
  1946. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  1947. * in the pending idle delta if our idle period crossed a load cycle boundary.
  1948. *
  1949. * Once we've updated the global active value, we need to apply the exponential
  1950. * weights adjusted to the number of cycles missed.
  1951. */
  1952. static void calc_global_nohz(void)
  1953. {
  1954. long delta, active, n;
  1955. /*
  1956. * If we crossed a calc_load_update boundary, make sure to fold
  1957. * any pending idle changes, the respective CPUs might have
  1958. * missed the tick driven calc_load_account_active() update
  1959. * due to NO_HZ.
  1960. */
  1961. delta = calc_load_fold_idle();
  1962. if (delta)
  1963. atomic_long_add(delta, &calc_load_tasks);
  1964. /*
  1965. * It could be the one fold was all it took, we done!
  1966. */
  1967. if (time_before(jiffies, calc_load_update + 10))
  1968. return;
  1969. /*
  1970. * Catch-up, fold however many we are behind still
  1971. */
  1972. delta = jiffies - calc_load_update - 10;
  1973. n = 1 + (delta / LOAD_FREQ);
  1974. active = atomic_long_read(&calc_load_tasks);
  1975. active = active > 0 ? active * FIXED_1 : 0;
  1976. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  1977. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  1978. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  1979. calc_load_update += n * LOAD_FREQ;
  1980. }
  1981. #else
  1982. void calc_load_account_idle(struct rq *this_rq)
  1983. {
  1984. }
  1985. static inline long calc_load_fold_idle(void)
  1986. {
  1987. return 0;
  1988. }
  1989. static void calc_global_nohz(void)
  1990. {
  1991. }
  1992. #endif
  1993. /**
  1994. * get_avenrun - get the load average array
  1995. * @loads: pointer to dest load array
  1996. * @offset: offset to add
  1997. * @shift: shift count to shift the result left
  1998. *
  1999. * These values are estimates at best, so no need for locking.
  2000. */
  2001. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2002. {
  2003. loads[0] = (avenrun[0] + offset) << shift;
  2004. loads[1] = (avenrun[1] + offset) << shift;
  2005. loads[2] = (avenrun[2] + offset) << shift;
  2006. }
  2007. /*
  2008. * calc_load - update the avenrun load estimates 10 ticks after the
  2009. * CPUs have updated calc_load_tasks.
  2010. */
  2011. void calc_global_load(unsigned long ticks)
  2012. {
  2013. long active;
  2014. if (time_before(jiffies, calc_load_update + 10))
  2015. return;
  2016. active = atomic_long_read(&calc_load_tasks);
  2017. active = active > 0 ? active * FIXED_1 : 0;
  2018. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2019. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2020. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2021. calc_load_update += LOAD_FREQ;
  2022. /*
  2023. * Account one period with whatever state we found before
  2024. * folding in the nohz state and ageing the entire idle period.
  2025. *
  2026. * This avoids loosing a sample when we go idle between
  2027. * calc_load_account_active() (10 ticks ago) and now and thus
  2028. * under-accounting.
  2029. */
  2030. calc_global_nohz();
  2031. }
  2032. /*
  2033. * Called from update_cpu_load() to periodically update this CPU's
  2034. * active count.
  2035. */
  2036. static void calc_load_account_active(struct rq *this_rq)
  2037. {
  2038. long delta;
  2039. if (time_before(jiffies, this_rq->calc_load_update))
  2040. return;
  2041. delta = calc_load_fold_active(this_rq);
  2042. delta += calc_load_fold_idle();
  2043. if (delta)
  2044. atomic_long_add(delta, &calc_load_tasks);
  2045. this_rq->calc_load_update += LOAD_FREQ;
  2046. }
  2047. /*
  2048. * The exact cpuload at various idx values, calculated at every tick would be
  2049. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2050. *
  2051. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2052. * on nth tick when cpu may be busy, then we have:
  2053. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2054. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2055. *
  2056. * decay_load_missed() below does efficient calculation of
  2057. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2058. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2059. *
  2060. * The calculation is approximated on a 128 point scale.
  2061. * degrade_zero_ticks is the number of ticks after which load at any
  2062. * particular idx is approximated to be zero.
  2063. * degrade_factor is a precomputed table, a row for each load idx.
  2064. * Each column corresponds to degradation factor for a power of two ticks,
  2065. * based on 128 point scale.
  2066. * Example:
  2067. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2068. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2069. *
  2070. * With this power of 2 load factors, we can degrade the load n times
  2071. * by looking at 1 bits in n and doing as many mult/shift instead of
  2072. * n mult/shifts needed by the exact degradation.
  2073. */
  2074. #define DEGRADE_SHIFT 7
  2075. static const unsigned char
  2076. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2077. static const unsigned char
  2078. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2079. {0, 0, 0, 0, 0, 0, 0, 0},
  2080. {64, 32, 8, 0, 0, 0, 0, 0},
  2081. {96, 72, 40, 12, 1, 0, 0},
  2082. {112, 98, 75, 43, 15, 1, 0},
  2083. {120, 112, 98, 76, 45, 16, 2} };
  2084. /*
  2085. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2086. * would be when CPU is idle and so we just decay the old load without
  2087. * adding any new load.
  2088. */
  2089. static unsigned long
  2090. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2091. {
  2092. int j = 0;
  2093. if (!missed_updates)
  2094. return load;
  2095. if (missed_updates >= degrade_zero_ticks[idx])
  2096. return 0;
  2097. if (idx == 1)
  2098. return load >> missed_updates;
  2099. while (missed_updates) {
  2100. if (missed_updates % 2)
  2101. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2102. missed_updates >>= 1;
  2103. j++;
  2104. }
  2105. return load;
  2106. }
  2107. /*
  2108. * Update rq->cpu_load[] statistics. This function is usually called every
  2109. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2110. * every tick. We fix it up based on jiffies.
  2111. */
  2112. void update_cpu_load(struct rq *this_rq)
  2113. {
  2114. unsigned long this_load = this_rq->load.weight;
  2115. unsigned long curr_jiffies = jiffies;
  2116. unsigned long pending_updates;
  2117. int i, scale;
  2118. this_rq->nr_load_updates++;
  2119. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2120. if (curr_jiffies == this_rq->last_load_update_tick)
  2121. return;
  2122. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2123. this_rq->last_load_update_tick = curr_jiffies;
  2124. /* Update our load: */
  2125. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2126. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2127. unsigned long old_load, new_load;
  2128. /* scale is effectively 1 << i now, and >> i divides by scale */
  2129. old_load = this_rq->cpu_load[i];
  2130. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2131. new_load = this_load;
  2132. /*
  2133. * Round up the averaging division if load is increasing. This
  2134. * prevents us from getting stuck on 9 if the load is 10, for
  2135. * example.
  2136. */
  2137. if (new_load > old_load)
  2138. new_load += scale - 1;
  2139. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2140. }
  2141. sched_avg_update(this_rq);
  2142. }
  2143. static void update_cpu_load_active(struct rq *this_rq)
  2144. {
  2145. update_cpu_load(this_rq);
  2146. calc_load_account_active(this_rq);
  2147. }
  2148. #ifdef CONFIG_SMP
  2149. /*
  2150. * sched_exec - execve() is a valuable balancing opportunity, because at
  2151. * this point the task has the smallest effective memory and cache footprint.
  2152. */
  2153. void sched_exec(void)
  2154. {
  2155. struct task_struct *p = current;
  2156. unsigned long flags;
  2157. int dest_cpu;
  2158. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2159. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  2160. if (dest_cpu == smp_processor_id())
  2161. goto unlock;
  2162. if (likely(cpu_active(dest_cpu))) {
  2163. struct migration_arg arg = { p, dest_cpu };
  2164. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2165. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2166. return;
  2167. }
  2168. unlock:
  2169. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2170. }
  2171. #endif
  2172. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2173. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2174. EXPORT_PER_CPU_SYMBOL(kstat);
  2175. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2176. /*
  2177. * Return any ns on the sched_clock that have not yet been accounted in
  2178. * @p in case that task is currently running.
  2179. *
  2180. * Called with task_rq_lock() held on @rq.
  2181. */
  2182. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2183. {
  2184. u64 ns = 0;
  2185. if (task_current(rq, p)) {
  2186. update_rq_clock(rq);
  2187. ns = rq->clock_task - p->se.exec_start;
  2188. if ((s64)ns < 0)
  2189. ns = 0;
  2190. }
  2191. return ns;
  2192. }
  2193. unsigned long long task_delta_exec(struct task_struct *p)
  2194. {
  2195. unsigned long flags;
  2196. struct rq *rq;
  2197. u64 ns = 0;
  2198. rq = task_rq_lock(p, &flags);
  2199. ns = do_task_delta_exec(p, rq);
  2200. task_rq_unlock(rq, p, &flags);
  2201. return ns;
  2202. }
  2203. /*
  2204. * Return accounted runtime for the task.
  2205. * In case the task is currently running, return the runtime plus current's
  2206. * pending runtime that have not been accounted yet.
  2207. */
  2208. unsigned long long task_sched_runtime(struct task_struct *p)
  2209. {
  2210. unsigned long flags;
  2211. struct rq *rq;
  2212. u64 ns = 0;
  2213. rq = task_rq_lock(p, &flags);
  2214. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2215. task_rq_unlock(rq, p, &flags);
  2216. return ns;
  2217. }
  2218. #ifdef CONFIG_CGROUP_CPUACCT
  2219. struct cgroup_subsys cpuacct_subsys;
  2220. struct cpuacct root_cpuacct;
  2221. #endif
  2222. static inline void task_group_account_field(struct task_struct *p, int index,
  2223. u64 tmp)
  2224. {
  2225. #ifdef CONFIG_CGROUP_CPUACCT
  2226. struct kernel_cpustat *kcpustat;
  2227. struct cpuacct *ca;
  2228. #endif
  2229. /*
  2230. * Since all updates are sure to touch the root cgroup, we
  2231. * get ourselves ahead and touch it first. If the root cgroup
  2232. * is the only cgroup, then nothing else should be necessary.
  2233. *
  2234. */
  2235. __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
  2236. #ifdef CONFIG_CGROUP_CPUACCT
  2237. if (unlikely(!cpuacct_subsys.active))
  2238. return;
  2239. rcu_read_lock();
  2240. ca = task_ca(p);
  2241. while (ca && (ca != &root_cpuacct)) {
  2242. kcpustat = this_cpu_ptr(ca->cpustat);
  2243. kcpustat->cpustat[index] += tmp;
  2244. ca = parent_ca(ca);
  2245. }
  2246. rcu_read_unlock();
  2247. #endif
  2248. }
  2249. /*
  2250. * Account user cpu time to a process.
  2251. * @p: the process that the cpu time gets accounted to
  2252. * @cputime: the cpu time spent in user space since the last update
  2253. * @cputime_scaled: cputime scaled by cpu frequency
  2254. */
  2255. void account_user_time(struct task_struct *p, cputime_t cputime,
  2256. cputime_t cputime_scaled)
  2257. {
  2258. int index;
  2259. /* Add user time to process. */
  2260. p->utime += cputime;
  2261. p->utimescaled += cputime_scaled;
  2262. account_group_user_time(p, cputime);
  2263. index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
  2264. /* Add user time to cpustat. */
  2265. task_group_account_field(p, index, (__force u64) cputime);
  2266. /* Account for user time used */
  2267. acct_update_integrals(p);
  2268. }
  2269. /*
  2270. * Account guest cpu time to a process.
  2271. * @p: the process that the cpu time gets accounted to
  2272. * @cputime: the cpu time spent in virtual machine since the last update
  2273. * @cputime_scaled: cputime scaled by cpu frequency
  2274. */
  2275. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2276. cputime_t cputime_scaled)
  2277. {
  2278. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2279. /* Add guest time to process. */
  2280. p->utime += cputime;
  2281. p->utimescaled += cputime_scaled;
  2282. account_group_user_time(p, cputime);
  2283. p->gtime += cputime;
  2284. /* Add guest time to cpustat. */
  2285. if (TASK_NICE(p) > 0) {
  2286. cpustat[CPUTIME_NICE] += (__force u64) cputime;
  2287. cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
  2288. } else {
  2289. cpustat[CPUTIME_USER] += (__force u64) cputime;
  2290. cpustat[CPUTIME_GUEST] += (__force u64) cputime;
  2291. }
  2292. }
  2293. /*
  2294. * Account system cpu time to a process and desired cpustat field
  2295. * @p: the process that the cpu time gets accounted to
  2296. * @cputime: the cpu time spent in kernel space since the last update
  2297. * @cputime_scaled: cputime scaled by cpu frequency
  2298. * @target_cputime64: pointer to cpustat field that has to be updated
  2299. */
  2300. static inline
  2301. void __account_system_time(struct task_struct *p, cputime_t cputime,
  2302. cputime_t cputime_scaled, int index)
  2303. {
  2304. /* Add system time to process. */
  2305. p->stime += cputime;
  2306. p->stimescaled += cputime_scaled;
  2307. account_group_system_time(p, cputime);
  2308. /* Add system time to cpustat. */
  2309. task_group_account_field(p, index, (__force u64) cputime);
  2310. /* Account for system time used */
  2311. acct_update_integrals(p);
  2312. }
  2313. /*
  2314. * Account system cpu time to a process.
  2315. * @p: the process that the cpu time gets accounted to
  2316. * @hardirq_offset: the offset to subtract from hardirq_count()
  2317. * @cputime: the cpu time spent in kernel space since the last update
  2318. * @cputime_scaled: cputime scaled by cpu frequency
  2319. */
  2320. void account_system_time(struct task_struct *p, int hardirq_offset,
  2321. cputime_t cputime, cputime_t cputime_scaled)
  2322. {
  2323. int index;
  2324. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2325. account_guest_time(p, cputime, cputime_scaled);
  2326. return;
  2327. }
  2328. if (hardirq_count() - hardirq_offset)
  2329. index = CPUTIME_IRQ;
  2330. else if (in_serving_softirq())
  2331. index = CPUTIME_SOFTIRQ;
  2332. else
  2333. index = CPUTIME_SYSTEM;
  2334. __account_system_time(p, cputime, cputime_scaled, index);
  2335. }
  2336. /*
  2337. * Account for involuntary wait time.
  2338. * @cputime: the cpu time spent in involuntary wait
  2339. */
  2340. void account_steal_time(cputime_t cputime)
  2341. {
  2342. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2343. cpustat[CPUTIME_STEAL] += (__force u64) cputime;
  2344. }
  2345. /*
  2346. * Account for idle time.
  2347. * @cputime: the cpu time spent in idle wait
  2348. */
  2349. void account_idle_time(cputime_t cputime)
  2350. {
  2351. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2352. struct rq *rq = this_rq();
  2353. if (atomic_read(&rq->nr_iowait) > 0)
  2354. cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
  2355. else
  2356. cpustat[CPUTIME_IDLE] += (__force u64) cputime;
  2357. }
  2358. static __always_inline bool steal_account_process_tick(void)
  2359. {
  2360. #ifdef CONFIG_PARAVIRT
  2361. if (static_branch(&paravirt_steal_enabled)) {
  2362. u64 steal, st = 0;
  2363. steal = paravirt_steal_clock(smp_processor_id());
  2364. steal -= this_rq()->prev_steal_time;
  2365. st = steal_ticks(steal);
  2366. this_rq()->prev_steal_time += st * TICK_NSEC;
  2367. account_steal_time(st);
  2368. return st;
  2369. }
  2370. #endif
  2371. return false;
  2372. }
  2373. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2374. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  2375. /*
  2376. * Account a tick to a process and cpustat
  2377. * @p: the process that the cpu time gets accounted to
  2378. * @user_tick: is the tick from userspace
  2379. * @rq: the pointer to rq
  2380. *
  2381. * Tick demultiplexing follows the order
  2382. * - pending hardirq update
  2383. * - pending softirq update
  2384. * - user_time
  2385. * - idle_time
  2386. * - system time
  2387. * - check for guest_time
  2388. * - else account as system_time
  2389. *
  2390. * Check for hardirq is done both for system and user time as there is
  2391. * no timer going off while we are on hardirq and hence we may never get an
  2392. * opportunity to update it solely in system time.
  2393. * p->stime and friends are only updated on system time and not on irq
  2394. * softirq as those do not count in task exec_runtime any more.
  2395. */
  2396. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2397. struct rq *rq)
  2398. {
  2399. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2400. u64 *cpustat = kcpustat_this_cpu->cpustat;
  2401. if (steal_account_process_tick())
  2402. return;
  2403. if (irqtime_account_hi_update()) {
  2404. cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
  2405. } else if (irqtime_account_si_update()) {
  2406. cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
  2407. } else if (this_cpu_ksoftirqd() == p) {
  2408. /*
  2409. * ksoftirqd time do not get accounted in cpu_softirq_time.
  2410. * So, we have to handle it separately here.
  2411. * Also, p->stime needs to be updated for ksoftirqd.
  2412. */
  2413. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2414. CPUTIME_SOFTIRQ);
  2415. } else if (user_tick) {
  2416. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2417. } else if (p == rq->idle) {
  2418. account_idle_time(cputime_one_jiffy);
  2419. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  2420. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2421. } else {
  2422. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  2423. CPUTIME_SYSTEM);
  2424. }
  2425. }
  2426. static void irqtime_account_idle_ticks(int ticks)
  2427. {
  2428. int i;
  2429. struct rq *rq = this_rq();
  2430. for (i = 0; i < ticks; i++)
  2431. irqtime_account_process_tick(current, 0, rq);
  2432. }
  2433. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  2434. static void irqtime_account_idle_ticks(int ticks) {}
  2435. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  2436. struct rq *rq) {}
  2437. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  2438. /*
  2439. * Account a single tick of cpu time.
  2440. * @p: the process that the cpu time gets accounted to
  2441. * @user_tick: indicates if the tick is a user or a system tick
  2442. */
  2443. void account_process_tick(struct task_struct *p, int user_tick)
  2444. {
  2445. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2446. struct rq *rq = this_rq();
  2447. if (sched_clock_irqtime) {
  2448. irqtime_account_process_tick(p, user_tick, rq);
  2449. return;
  2450. }
  2451. if (steal_account_process_tick())
  2452. return;
  2453. if (user_tick)
  2454. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2455. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2456. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2457. one_jiffy_scaled);
  2458. else
  2459. account_idle_time(cputime_one_jiffy);
  2460. }
  2461. /*
  2462. * Account multiple ticks of steal time.
  2463. * @p: the process from which the cpu time has been stolen
  2464. * @ticks: number of stolen ticks
  2465. */
  2466. void account_steal_ticks(unsigned long ticks)
  2467. {
  2468. account_steal_time(jiffies_to_cputime(ticks));
  2469. }
  2470. /*
  2471. * Account multiple ticks of idle time.
  2472. * @ticks: number of stolen ticks
  2473. */
  2474. void account_idle_ticks(unsigned long ticks)
  2475. {
  2476. if (sched_clock_irqtime) {
  2477. irqtime_account_idle_ticks(ticks);
  2478. return;
  2479. }
  2480. account_idle_time(jiffies_to_cputime(ticks));
  2481. }
  2482. #endif
  2483. /*
  2484. * Use precise platform statistics if available:
  2485. */
  2486. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2487. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2488. {
  2489. *ut = p->utime;
  2490. *st = p->stime;
  2491. }
  2492. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2493. {
  2494. struct task_cputime cputime;
  2495. thread_group_cputime(p, &cputime);
  2496. *ut = cputime.utime;
  2497. *st = cputime.stime;
  2498. }
  2499. #else
  2500. #ifndef nsecs_to_cputime
  2501. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2502. #endif
  2503. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2504. {
  2505. cputime_t rtime, utime = p->utime, total = utime + p->stime;
  2506. /*
  2507. * Use CFS's precise accounting:
  2508. */
  2509. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2510. if (total) {
  2511. u64 temp = (__force u64) rtime;
  2512. temp *= (__force u64) utime;
  2513. do_div(temp, (__force u32) total);
  2514. utime = (__force cputime_t) temp;
  2515. } else
  2516. utime = rtime;
  2517. /*
  2518. * Compare with previous values, to keep monotonicity:
  2519. */
  2520. p->prev_utime = max(p->prev_utime, utime);
  2521. p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
  2522. *ut = p->prev_utime;
  2523. *st = p->prev_stime;
  2524. }
  2525. /*
  2526. * Must be called with siglock held.
  2527. */
  2528. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2529. {
  2530. struct signal_struct *sig = p->signal;
  2531. struct task_cputime cputime;
  2532. cputime_t rtime, utime, total;
  2533. thread_group_cputime(p, &cputime);
  2534. total = cputime.utime + cputime.stime;
  2535. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2536. if (total) {
  2537. u64 temp = (__force u64) rtime;
  2538. temp *= (__force u64) cputime.utime;
  2539. do_div(temp, (__force u32) total);
  2540. utime = (__force cputime_t) temp;
  2541. } else
  2542. utime = rtime;
  2543. sig->prev_utime = max(sig->prev_utime, utime);
  2544. sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
  2545. *ut = sig->prev_utime;
  2546. *st = sig->prev_stime;
  2547. }
  2548. #endif
  2549. /*
  2550. * This function gets called by the timer code, with HZ frequency.
  2551. * We call it with interrupts disabled.
  2552. */
  2553. void scheduler_tick(void)
  2554. {
  2555. int cpu = smp_processor_id();
  2556. struct rq *rq = cpu_rq(cpu);
  2557. struct task_struct *curr = rq->curr;
  2558. sched_clock_tick();
  2559. raw_spin_lock(&rq->lock);
  2560. update_rq_clock(rq);
  2561. update_cpu_load_active(rq);
  2562. curr->sched_class->task_tick(rq, curr, 0);
  2563. raw_spin_unlock(&rq->lock);
  2564. perf_event_task_tick();
  2565. #ifdef CONFIG_SMP
  2566. rq->idle_balance = idle_cpu(cpu);
  2567. trigger_load_balance(rq, cpu);
  2568. #endif
  2569. }
  2570. notrace unsigned long get_parent_ip(unsigned long addr)
  2571. {
  2572. if (in_lock_functions(addr)) {
  2573. addr = CALLER_ADDR2;
  2574. if (in_lock_functions(addr))
  2575. addr = CALLER_ADDR3;
  2576. }
  2577. return addr;
  2578. }
  2579. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2580. defined(CONFIG_PREEMPT_TRACER))
  2581. void __kprobes add_preempt_count(int val)
  2582. {
  2583. #ifdef CONFIG_DEBUG_PREEMPT
  2584. /*
  2585. * Underflow?
  2586. */
  2587. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2588. return;
  2589. #endif
  2590. preempt_count() += val;
  2591. #ifdef CONFIG_DEBUG_PREEMPT
  2592. /*
  2593. * Spinlock count overflowing soon?
  2594. */
  2595. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2596. PREEMPT_MASK - 10);
  2597. #endif
  2598. if (preempt_count() == val)
  2599. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2600. }
  2601. EXPORT_SYMBOL(add_preempt_count);
  2602. void __kprobes sub_preempt_count(int val)
  2603. {
  2604. #ifdef CONFIG_DEBUG_PREEMPT
  2605. /*
  2606. * Underflow?
  2607. */
  2608. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2609. return;
  2610. /*
  2611. * Is the spinlock portion underflowing?
  2612. */
  2613. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2614. !(preempt_count() & PREEMPT_MASK)))
  2615. return;
  2616. #endif
  2617. if (preempt_count() == val)
  2618. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2619. preempt_count() -= val;
  2620. }
  2621. EXPORT_SYMBOL(sub_preempt_count);
  2622. #endif
  2623. /*
  2624. * Print scheduling while atomic bug:
  2625. */
  2626. static noinline void __schedule_bug(struct task_struct *prev)
  2627. {
  2628. struct pt_regs *regs = get_irq_regs();
  2629. if (oops_in_progress)
  2630. return;
  2631. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2632. prev->comm, prev->pid, preempt_count());
  2633. debug_show_held_locks(prev);
  2634. print_modules();
  2635. if (irqs_disabled())
  2636. print_irqtrace_events(prev);
  2637. if (regs)
  2638. show_regs(regs);
  2639. else
  2640. dump_stack();
  2641. }
  2642. /*
  2643. * Various schedule()-time debugging checks and statistics:
  2644. */
  2645. static inline void schedule_debug(struct task_struct *prev)
  2646. {
  2647. /*
  2648. * Test if we are atomic. Since do_exit() needs to call into
  2649. * schedule() atomically, we ignore that path for now.
  2650. * Otherwise, whine if we are scheduling when we should not be.
  2651. */
  2652. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2653. __schedule_bug(prev);
  2654. rcu_sleep_check();
  2655. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2656. schedstat_inc(this_rq(), sched_count);
  2657. }
  2658. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2659. {
  2660. if (prev->on_rq || rq->skip_clock_update < 0)
  2661. update_rq_clock(rq);
  2662. prev->sched_class->put_prev_task(rq, prev);
  2663. }
  2664. /*
  2665. * Pick up the highest-prio task:
  2666. */
  2667. static inline struct task_struct *
  2668. pick_next_task(struct rq *rq)
  2669. {
  2670. const struct sched_class *class;
  2671. struct task_struct *p;
  2672. /*
  2673. * Optimization: we know that if all tasks are in
  2674. * the fair class we can call that function directly:
  2675. */
  2676. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2677. p = fair_sched_class.pick_next_task(rq);
  2678. if (likely(p))
  2679. return p;
  2680. }
  2681. for_each_class(class) {
  2682. p = class->pick_next_task(rq);
  2683. if (p)
  2684. return p;
  2685. }
  2686. BUG(); /* the idle class will always have a runnable task */
  2687. }
  2688. /*
  2689. * __schedule() is the main scheduler function.
  2690. */
  2691. static void __sched __schedule(void)
  2692. {
  2693. struct task_struct *prev, *next;
  2694. unsigned long *switch_count;
  2695. struct rq *rq;
  2696. int cpu;
  2697. need_resched:
  2698. preempt_disable();
  2699. cpu = smp_processor_id();
  2700. rq = cpu_rq(cpu);
  2701. rcu_note_context_switch(cpu);
  2702. prev = rq->curr;
  2703. schedule_debug(prev);
  2704. if (sched_feat(HRTICK))
  2705. hrtick_clear(rq);
  2706. raw_spin_lock_irq(&rq->lock);
  2707. switch_count = &prev->nivcsw;
  2708. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2709. if (unlikely(signal_pending_state(prev->state, prev))) {
  2710. prev->state = TASK_RUNNING;
  2711. } else {
  2712. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2713. prev->on_rq = 0;
  2714. /*
  2715. * If a worker went to sleep, notify and ask workqueue
  2716. * whether it wants to wake up a task to maintain
  2717. * concurrency.
  2718. */
  2719. if (prev->flags & PF_WQ_WORKER) {
  2720. struct task_struct *to_wakeup;
  2721. to_wakeup = wq_worker_sleeping(prev, cpu);
  2722. if (to_wakeup)
  2723. try_to_wake_up_local(to_wakeup);
  2724. }
  2725. }
  2726. switch_count = &prev->nvcsw;
  2727. }
  2728. pre_schedule(rq, prev);
  2729. if (unlikely(!rq->nr_running))
  2730. idle_balance(cpu, rq);
  2731. put_prev_task(rq, prev);
  2732. next = pick_next_task(rq);
  2733. clear_tsk_need_resched(prev);
  2734. rq->skip_clock_update = 0;
  2735. if (likely(prev != next)) {
  2736. rq->nr_switches++;
  2737. rq->curr = next;
  2738. ++*switch_count;
  2739. context_switch(rq, prev, next); /* unlocks the rq */
  2740. /*
  2741. * The context switch have flipped the stack from under us
  2742. * and restored the local variables which were saved when
  2743. * this task called schedule() in the past. prev == current
  2744. * is still correct, but it can be moved to another cpu/rq.
  2745. */
  2746. cpu = smp_processor_id();
  2747. rq = cpu_rq(cpu);
  2748. } else
  2749. raw_spin_unlock_irq(&rq->lock);
  2750. post_schedule(rq);
  2751. sched_preempt_enable_no_resched();
  2752. if (need_resched())
  2753. goto need_resched;
  2754. }
  2755. static inline void sched_submit_work(struct task_struct *tsk)
  2756. {
  2757. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2758. return;
  2759. /*
  2760. * If we are going to sleep and we have plugged IO queued,
  2761. * make sure to submit it to avoid deadlocks.
  2762. */
  2763. if (blk_needs_flush_plug(tsk))
  2764. blk_schedule_flush_plug(tsk);
  2765. }
  2766. asmlinkage void __sched schedule(void)
  2767. {
  2768. struct task_struct *tsk = current;
  2769. sched_submit_work(tsk);
  2770. __schedule();
  2771. }
  2772. EXPORT_SYMBOL(schedule);
  2773. /**
  2774. * schedule_preempt_disabled - called with preemption disabled
  2775. *
  2776. * Returns with preemption disabled. Note: preempt_count must be 1
  2777. */
  2778. void __sched schedule_preempt_disabled(void)
  2779. {
  2780. sched_preempt_enable_no_resched();
  2781. schedule();
  2782. preempt_disable();
  2783. }
  2784. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  2785. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  2786. {
  2787. if (lock->owner != owner)
  2788. return false;
  2789. /*
  2790. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  2791. * lock->owner still matches owner, if that fails, owner might
  2792. * point to free()d memory, if it still matches, the rcu_read_lock()
  2793. * ensures the memory stays valid.
  2794. */
  2795. barrier();
  2796. return owner->on_cpu;
  2797. }
  2798. /*
  2799. * Look out! "owner" is an entirely speculative pointer
  2800. * access and not reliable.
  2801. */
  2802. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  2803. {
  2804. if (!sched_feat(OWNER_SPIN))
  2805. return 0;
  2806. rcu_read_lock();
  2807. while (owner_running(lock, owner)) {
  2808. if (need_resched())
  2809. break;
  2810. arch_mutex_cpu_relax();
  2811. }
  2812. rcu_read_unlock();
  2813. /*
  2814. * We break out the loop above on need_resched() and when the
  2815. * owner changed, which is a sign for heavy contention. Return
  2816. * success only when lock->owner is NULL.
  2817. */
  2818. return lock->owner == NULL;
  2819. }
  2820. #endif
  2821. #ifdef CONFIG_PREEMPT
  2822. /*
  2823. * this is the entry point to schedule() from in-kernel preemption
  2824. * off of preempt_enable. Kernel preemptions off return from interrupt
  2825. * occur there and call schedule directly.
  2826. */
  2827. asmlinkage void __sched notrace preempt_schedule(void)
  2828. {
  2829. struct thread_info *ti = current_thread_info();
  2830. /*
  2831. * If there is a non-zero preempt_count or interrupts are disabled,
  2832. * we do not want to preempt the current task. Just return..
  2833. */
  2834. if (likely(ti->preempt_count || irqs_disabled()))
  2835. return;
  2836. do {
  2837. add_preempt_count_notrace(PREEMPT_ACTIVE);
  2838. __schedule();
  2839. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  2840. /*
  2841. * Check again in case we missed a preemption opportunity
  2842. * between schedule and now.
  2843. */
  2844. barrier();
  2845. } while (need_resched());
  2846. }
  2847. EXPORT_SYMBOL(preempt_schedule);
  2848. /*
  2849. * this is the entry point to schedule() from kernel preemption
  2850. * off of irq context.
  2851. * Note, that this is called and return with irqs disabled. This will
  2852. * protect us against recursive calling from irq.
  2853. */
  2854. asmlinkage void __sched preempt_schedule_irq(void)
  2855. {
  2856. struct thread_info *ti = current_thread_info();
  2857. /* Catch callers which need to be fixed */
  2858. BUG_ON(ti->preempt_count || !irqs_disabled());
  2859. do {
  2860. add_preempt_count(PREEMPT_ACTIVE);
  2861. local_irq_enable();
  2862. __schedule();
  2863. local_irq_disable();
  2864. sub_preempt_count(PREEMPT_ACTIVE);
  2865. /*
  2866. * Check again in case we missed a preemption opportunity
  2867. * between schedule and now.
  2868. */
  2869. barrier();
  2870. } while (need_resched());
  2871. }
  2872. #endif /* CONFIG_PREEMPT */
  2873. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2874. void *key)
  2875. {
  2876. return try_to_wake_up(curr->private, mode, wake_flags);
  2877. }
  2878. EXPORT_SYMBOL(default_wake_function);
  2879. /*
  2880. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2881. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2882. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2883. *
  2884. * There are circumstances in which we can try to wake a task which has already
  2885. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2886. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2887. */
  2888. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2889. int nr_exclusive, int wake_flags, void *key)
  2890. {
  2891. wait_queue_t *curr, *next;
  2892. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  2893. unsigned flags = curr->flags;
  2894. if (curr->func(curr, mode, wake_flags, key) &&
  2895. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  2896. break;
  2897. }
  2898. }
  2899. /**
  2900. * __wake_up - wake up threads blocked on a waitqueue.
  2901. * @q: the waitqueue
  2902. * @mode: which threads
  2903. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2904. * @key: is directly passed to the wakeup function
  2905. *
  2906. * It may be assumed that this function implies a write memory barrier before
  2907. * changing the task state if and only if any tasks are woken up.
  2908. */
  2909. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  2910. int nr_exclusive, void *key)
  2911. {
  2912. unsigned long flags;
  2913. spin_lock_irqsave(&q->lock, flags);
  2914. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2915. spin_unlock_irqrestore(&q->lock, flags);
  2916. }
  2917. EXPORT_SYMBOL(__wake_up);
  2918. /*
  2919. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2920. */
  2921. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
  2922. {
  2923. __wake_up_common(q, mode, nr, 0, NULL);
  2924. }
  2925. EXPORT_SYMBOL_GPL(__wake_up_locked);
  2926. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  2927. {
  2928. __wake_up_common(q, mode, 1, 0, key);
  2929. }
  2930. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  2931. /**
  2932. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  2933. * @q: the waitqueue
  2934. * @mode: which threads
  2935. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2936. * @key: opaque value to be passed to wakeup targets
  2937. *
  2938. * The sync wakeup differs that the waker knows that it will schedule
  2939. * away soon, so while the target thread will be woken up, it will not
  2940. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2941. * with each other. This can prevent needless bouncing between CPUs.
  2942. *
  2943. * On UP it can prevent extra preemption.
  2944. *
  2945. * It may be assumed that this function implies a write memory barrier before
  2946. * changing the task state if and only if any tasks are woken up.
  2947. */
  2948. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  2949. int nr_exclusive, void *key)
  2950. {
  2951. unsigned long flags;
  2952. int wake_flags = WF_SYNC;
  2953. if (unlikely(!q))
  2954. return;
  2955. if (unlikely(!nr_exclusive))
  2956. wake_flags = 0;
  2957. spin_lock_irqsave(&q->lock, flags);
  2958. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  2959. spin_unlock_irqrestore(&q->lock, flags);
  2960. }
  2961. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  2962. /*
  2963. * __wake_up_sync - see __wake_up_sync_key()
  2964. */
  2965. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2966. {
  2967. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  2968. }
  2969. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2970. /**
  2971. * complete: - signals a single thread waiting on this completion
  2972. * @x: holds the state of this particular completion
  2973. *
  2974. * This will wake up a single thread waiting on this completion. Threads will be
  2975. * awakened in the same order in which they were queued.
  2976. *
  2977. * See also complete_all(), wait_for_completion() and related routines.
  2978. *
  2979. * It may be assumed that this function implies a write memory barrier before
  2980. * changing the task state if and only if any tasks are woken up.
  2981. */
  2982. void complete(struct completion *x)
  2983. {
  2984. unsigned long flags;
  2985. spin_lock_irqsave(&x->wait.lock, flags);
  2986. x->done++;
  2987. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  2988. spin_unlock_irqrestore(&x->wait.lock, flags);
  2989. }
  2990. EXPORT_SYMBOL(complete);
  2991. /**
  2992. * complete_all: - signals all threads waiting on this completion
  2993. * @x: holds the state of this particular completion
  2994. *
  2995. * This will wake up all threads waiting on this particular completion event.
  2996. *
  2997. * It may be assumed that this function implies a write memory barrier before
  2998. * changing the task state if and only if any tasks are woken up.
  2999. */
  3000. void complete_all(struct completion *x)
  3001. {
  3002. unsigned long flags;
  3003. spin_lock_irqsave(&x->wait.lock, flags);
  3004. x->done += UINT_MAX/2;
  3005. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3006. spin_unlock_irqrestore(&x->wait.lock, flags);
  3007. }
  3008. EXPORT_SYMBOL(complete_all);
  3009. static inline long __sched
  3010. do_wait_for_common(struct completion *x, long timeout, int state)
  3011. {
  3012. if (!x->done) {
  3013. DECLARE_WAITQUEUE(wait, current);
  3014. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3015. do {
  3016. if (signal_pending_state(state, current)) {
  3017. timeout = -ERESTARTSYS;
  3018. break;
  3019. }
  3020. __set_current_state(state);
  3021. spin_unlock_irq(&x->wait.lock);
  3022. timeout = schedule_timeout(timeout);
  3023. spin_lock_irq(&x->wait.lock);
  3024. } while (!x->done && timeout);
  3025. __remove_wait_queue(&x->wait, &wait);
  3026. if (!x->done)
  3027. return timeout;
  3028. }
  3029. x->done--;
  3030. return timeout ?: 1;
  3031. }
  3032. static long __sched
  3033. wait_for_common(struct completion *x, long timeout, int state)
  3034. {
  3035. might_sleep();
  3036. spin_lock_irq(&x->wait.lock);
  3037. timeout = do_wait_for_common(x, timeout, state);
  3038. spin_unlock_irq(&x->wait.lock);
  3039. return timeout;
  3040. }
  3041. /**
  3042. * wait_for_completion: - waits for completion of a task
  3043. * @x: holds the state of this particular completion
  3044. *
  3045. * This waits to be signaled for completion of a specific task. It is NOT
  3046. * interruptible and there is no timeout.
  3047. *
  3048. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3049. * and interrupt capability. Also see complete().
  3050. */
  3051. void __sched wait_for_completion(struct completion *x)
  3052. {
  3053. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3054. }
  3055. EXPORT_SYMBOL(wait_for_completion);
  3056. /**
  3057. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3058. * @x: holds the state of this particular completion
  3059. * @timeout: timeout value in jiffies
  3060. *
  3061. * This waits for either a completion of a specific task to be signaled or for a
  3062. * specified timeout to expire. The timeout is in jiffies. It is not
  3063. * interruptible.
  3064. *
  3065. * The return value is 0 if timed out, and positive (at least 1, or number of
  3066. * jiffies left till timeout) if completed.
  3067. */
  3068. unsigned long __sched
  3069. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3070. {
  3071. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3072. }
  3073. EXPORT_SYMBOL(wait_for_completion_timeout);
  3074. /**
  3075. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3076. * @x: holds the state of this particular completion
  3077. *
  3078. * This waits for completion of a specific task to be signaled. It is
  3079. * interruptible.
  3080. *
  3081. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3082. */
  3083. int __sched wait_for_completion_interruptible(struct completion *x)
  3084. {
  3085. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3086. if (t == -ERESTARTSYS)
  3087. return t;
  3088. return 0;
  3089. }
  3090. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3091. /**
  3092. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3093. * @x: holds the state of this particular completion
  3094. * @timeout: timeout value in jiffies
  3095. *
  3096. * This waits for either a completion of a specific task to be signaled or for a
  3097. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3098. *
  3099. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3100. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3101. */
  3102. long __sched
  3103. wait_for_completion_interruptible_timeout(struct completion *x,
  3104. unsigned long timeout)
  3105. {
  3106. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3107. }
  3108. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3109. /**
  3110. * wait_for_completion_killable: - waits for completion of a task (killable)
  3111. * @x: holds the state of this particular completion
  3112. *
  3113. * This waits to be signaled for completion of a specific task. It can be
  3114. * interrupted by a kill signal.
  3115. *
  3116. * The return value is -ERESTARTSYS if interrupted, 0 if completed.
  3117. */
  3118. int __sched wait_for_completion_killable(struct completion *x)
  3119. {
  3120. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3121. if (t == -ERESTARTSYS)
  3122. return t;
  3123. return 0;
  3124. }
  3125. EXPORT_SYMBOL(wait_for_completion_killable);
  3126. /**
  3127. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3128. * @x: holds the state of this particular completion
  3129. * @timeout: timeout value in jiffies
  3130. *
  3131. * This waits for either a completion of a specific task to be
  3132. * signaled or for a specified timeout to expire. It can be
  3133. * interrupted by a kill signal. The timeout is in jiffies.
  3134. *
  3135. * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
  3136. * positive (at least 1, or number of jiffies left till timeout) if completed.
  3137. */
  3138. long __sched
  3139. wait_for_completion_killable_timeout(struct completion *x,
  3140. unsigned long timeout)
  3141. {
  3142. return wait_for_common(x, timeout, TASK_KILLABLE);
  3143. }
  3144. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3145. /**
  3146. * try_wait_for_completion - try to decrement a completion without blocking
  3147. * @x: completion structure
  3148. *
  3149. * Returns: 0 if a decrement cannot be done without blocking
  3150. * 1 if a decrement succeeded.
  3151. *
  3152. * If a completion is being used as a counting completion,
  3153. * attempt to decrement the counter without blocking. This
  3154. * enables us to avoid waiting if the resource the completion
  3155. * is protecting is not available.
  3156. */
  3157. bool try_wait_for_completion(struct completion *x)
  3158. {
  3159. unsigned long flags;
  3160. int ret = 1;
  3161. spin_lock_irqsave(&x->wait.lock, flags);
  3162. if (!x->done)
  3163. ret = 0;
  3164. else
  3165. x->done--;
  3166. spin_unlock_irqrestore(&x->wait.lock, flags);
  3167. return ret;
  3168. }
  3169. EXPORT_SYMBOL(try_wait_for_completion);
  3170. /**
  3171. * completion_done - Test to see if a completion has any waiters
  3172. * @x: completion structure
  3173. *
  3174. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3175. * 1 if there are no waiters.
  3176. *
  3177. */
  3178. bool completion_done(struct completion *x)
  3179. {
  3180. unsigned long flags;
  3181. int ret = 1;
  3182. spin_lock_irqsave(&x->wait.lock, flags);
  3183. if (!x->done)
  3184. ret = 0;
  3185. spin_unlock_irqrestore(&x->wait.lock, flags);
  3186. return ret;
  3187. }
  3188. EXPORT_SYMBOL(completion_done);
  3189. static long __sched
  3190. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3191. {
  3192. unsigned long flags;
  3193. wait_queue_t wait;
  3194. init_waitqueue_entry(&wait, current);
  3195. __set_current_state(state);
  3196. spin_lock_irqsave(&q->lock, flags);
  3197. __add_wait_queue(q, &wait);
  3198. spin_unlock(&q->lock);
  3199. timeout = schedule_timeout(timeout);
  3200. spin_lock_irq(&q->lock);
  3201. __remove_wait_queue(q, &wait);
  3202. spin_unlock_irqrestore(&q->lock, flags);
  3203. return timeout;
  3204. }
  3205. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3206. {
  3207. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3208. }
  3209. EXPORT_SYMBOL(interruptible_sleep_on);
  3210. long __sched
  3211. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3212. {
  3213. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3214. }
  3215. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3216. void __sched sleep_on(wait_queue_head_t *q)
  3217. {
  3218. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3219. }
  3220. EXPORT_SYMBOL(sleep_on);
  3221. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3222. {
  3223. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3224. }
  3225. EXPORT_SYMBOL(sleep_on_timeout);
  3226. #ifdef CONFIG_RT_MUTEXES
  3227. /*
  3228. * rt_mutex_setprio - set the current priority of a task
  3229. * @p: task
  3230. * @prio: prio value (kernel-internal form)
  3231. *
  3232. * This function changes the 'effective' priority of a task. It does
  3233. * not touch ->normal_prio like __setscheduler().
  3234. *
  3235. * Used by the rt_mutex code to implement priority inheritance logic.
  3236. */
  3237. void rt_mutex_setprio(struct task_struct *p, int prio)
  3238. {
  3239. int oldprio, on_rq, running;
  3240. struct rq *rq;
  3241. const struct sched_class *prev_class;
  3242. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3243. rq = __task_rq_lock(p);
  3244. /*
  3245. * Idle task boosting is a nono in general. There is one
  3246. * exception, when PREEMPT_RT and NOHZ is active:
  3247. *
  3248. * The idle task calls get_next_timer_interrupt() and holds
  3249. * the timer wheel base->lock on the CPU and another CPU wants
  3250. * to access the timer (probably to cancel it). We can safely
  3251. * ignore the boosting request, as the idle CPU runs this code
  3252. * with interrupts disabled and will complete the lock
  3253. * protected section without being interrupted. So there is no
  3254. * real need to boost.
  3255. */
  3256. if (unlikely(p == rq->idle)) {
  3257. WARN_ON(p != rq->curr);
  3258. WARN_ON(p->pi_blocked_on);
  3259. goto out_unlock;
  3260. }
  3261. trace_sched_pi_setprio(p, prio);
  3262. oldprio = p->prio;
  3263. prev_class = p->sched_class;
  3264. on_rq = p->on_rq;
  3265. running = task_current(rq, p);
  3266. if (on_rq)
  3267. dequeue_task(rq, p, 0);
  3268. if (running)
  3269. p->sched_class->put_prev_task(rq, p);
  3270. if (rt_prio(prio))
  3271. p->sched_class = &rt_sched_class;
  3272. else
  3273. p->sched_class = &fair_sched_class;
  3274. p->prio = prio;
  3275. if (running)
  3276. p->sched_class->set_curr_task(rq);
  3277. if (on_rq)
  3278. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3279. check_class_changed(rq, p, prev_class, oldprio);
  3280. out_unlock:
  3281. __task_rq_unlock(rq);
  3282. }
  3283. #endif
  3284. void set_user_nice(struct task_struct *p, long nice)
  3285. {
  3286. int old_prio, delta, on_rq;
  3287. unsigned long flags;
  3288. struct rq *rq;
  3289. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3290. return;
  3291. /*
  3292. * We have to be careful, if called from sys_setpriority(),
  3293. * the task might be in the middle of scheduling on another CPU.
  3294. */
  3295. rq = task_rq_lock(p, &flags);
  3296. /*
  3297. * The RT priorities are set via sched_setscheduler(), but we still
  3298. * allow the 'normal' nice value to be set - but as expected
  3299. * it wont have any effect on scheduling until the task is
  3300. * SCHED_FIFO/SCHED_RR:
  3301. */
  3302. if (task_has_rt_policy(p)) {
  3303. p->static_prio = NICE_TO_PRIO(nice);
  3304. goto out_unlock;
  3305. }
  3306. on_rq = p->on_rq;
  3307. if (on_rq)
  3308. dequeue_task(rq, p, 0);
  3309. p->static_prio = NICE_TO_PRIO(nice);
  3310. set_load_weight(p);
  3311. old_prio = p->prio;
  3312. p->prio = effective_prio(p);
  3313. delta = p->prio - old_prio;
  3314. if (on_rq) {
  3315. enqueue_task(rq, p, 0);
  3316. /*
  3317. * If the task increased its priority or is running and
  3318. * lowered its priority, then reschedule its CPU:
  3319. */
  3320. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3321. resched_task(rq->curr);
  3322. }
  3323. out_unlock:
  3324. task_rq_unlock(rq, p, &flags);
  3325. }
  3326. EXPORT_SYMBOL(set_user_nice);
  3327. /*
  3328. * can_nice - check if a task can reduce its nice value
  3329. * @p: task
  3330. * @nice: nice value
  3331. */
  3332. int can_nice(const struct task_struct *p, const int nice)
  3333. {
  3334. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3335. int nice_rlim = 20 - nice;
  3336. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3337. capable(CAP_SYS_NICE));
  3338. }
  3339. #ifdef __ARCH_WANT_SYS_NICE
  3340. /*
  3341. * sys_nice - change the priority of the current process.
  3342. * @increment: priority increment
  3343. *
  3344. * sys_setpriority is a more generic, but much slower function that
  3345. * does similar things.
  3346. */
  3347. SYSCALL_DEFINE1(nice, int, increment)
  3348. {
  3349. long nice, retval;
  3350. /*
  3351. * Setpriority might change our priority at the same moment.
  3352. * We don't have to worry. Conceptually one call occurs first
  3353. * and we have a single winner.
  3354. */
  3355. if (increment < -40)
  3356. increment = -40;
  3357. if (increment > 40)
  3358. increment = 40;
  3359. nice = TASK_NICE(current) + increment;
  3360. if (nice < -20)
  3361. nice = -20;
  3362. if (nice > 19)
  3363. nice = 19;
  3364. if (increment < 0 && !can_nice(current, nice))
  3365. return -EPERM;
  3366. retval = security_task_setnice(current, nice);
  3367. if (retval)
  3368. return retval;
  3369. set_user_nice(current, nice);
  3370. return 0;
  3371. }
  3372. #endif
  3373. /**
  3374. * task_prio - return the priority value of a given task.
  3375. * @p: the task in question.
  3376. *
  3377. * This is the priority value as seen by users in /proc.
  3378. * RT tasks are offset by -200. Normal tasks are centered
  3379. * around 0, value goes from -16 to +15.
  3380. */
  3381. int task_prio(const struct task_struct *p)
  3382. {
  3383. return p->prio - MAX_RT_PRIO;
  3384. }
  3385. /**
  3386. * task_nice - return the nice value of a given task.
  3387. * @p: the task in question.
  3388. */
  3389. int task_nice(const struct task_struct *p)
  3390. {
  3391. return TASK_NICE(p);
  3392. }
  3393. EXPORT_SYMBOL(task_nice);
  3394. /**
  3395. * idle_cpu - is a given cpu idle currently?
  3396. * @cpu: the processor in question.
  3397. */
  3398. int idle_cpu(int cpu)
  3399. {
  3400. struct rq *rq = cpu_rq(cpu);
  3401. if (rq->curr != rq->idle)
  3402. return 0;
  3403. if (rq->nr_running)
  3404. return 0;
  3405. #ifdef CONFIG_SMP
  3406. if (!llist_empty(&rq->wake_list))
  3407. return 0;
  3408. #endif
  3409. return 1;
  3410. }
  3411. /**
  3412. * idle_task - return the idle task for a given cpu.
  3413. * @cpu: the processor in question.
  3414. */
  3415. struct task_struct *idle_task(int cpu)
  3416. {
  3417. return cpu_rq(cpu)->idle;
  3418. }
  3419. /**
  3420. * find_process_by_pid - find a process with a matching PID value.
  3421. * @pid: the pid in question.
  3422. */
  3423. static struct task_struct *find_process_by_pid(pid_t pid)
  3424. {
  3425. return pid ? find_task_by_vpid(pid) : current;
  3426. }
  3427. /* Actually do priority change: must hold rq lock. */
  3428. static void
  3429. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3430. {
  3431. p->policy = policy;
  3432. p->rt_priority = prio;
  3433. p->normal_prio = normal_prio(p);
  3434. /* we are holding p->pi_lock already */
  3435. p->prio = rt_mutex_getprio(p);
  3436. if (rt_prio(p->prio))
  3437. p->sched_class = &rt_sched_class;
  3438. else
  3439. p->sched_class = &fair_sched_class;
  3440. set_load_weight(p);
  3441. }
  3442. /*
  3443. * check the target process has a UID that matches the current process's
  3444. */
  3445. static bool check_same_owner(struct task_struct *p)
  3446. {
  3447. const struct cred *cred = current_cred(), *pcred;
  3448. bool match;
  3449. rcu_read_lock();
  3450. pcred = __task_cred(p);
  3451. if (cred->user->user_ns == pcred->user->user_ns)
  3452. match = (cred->euid == pcred->euid ||
  3453. cred->euid == pcred->uid);
  3454. else
  3455. match = false;
  3456. rcu_read_unlock();
  3457. return match;
  3458. }
  3459. static int __sched_setscheduler(struct task_struct *p, int policy,
  3460. const struct sched_param *param, bool user)
  3461. {
  3462. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3463. unsigned long flags;
  3464. const struct sched_class *prev_class;
  3465. struct rq *rq;
  3466. int reset_on_fork;
  3467. /* may grab non-irq protected spin_locks */
  3468. BUG_ON(in_interrupt());
  3469. recheck:
  3470. /* double check policy once rq lock held */
  3471. if (policy < 0) {
  3472. reset_on_fork = p->sched_reset_on_fork;
  3473. policy = oldpolicy = p->policy;
  3474. } else {
  3475. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3476. policy &= ~SCHED_RESET_ON_FORK;
  3477. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3478. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3479. policy != SCHED_IDLE)
  3480. return -EINVAL;
  3481. }
  3482. /*
  3483. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3484. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3485. * SCHED_BATCH and SCHED_IDLE is 0.
  3486. */
  3487. if (param->sched_priority < 0 ||
  3488. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3489. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3490. return -EINVAL;
  3491. if (rt_policy(policy) != (param->sched_priority != 0))
  3492. return -EINVAL;
  3493. /*
  3494. * Allow unprivileged RT tasks to decrease priority:
  3495. */
  3496. if (user && !capable(CAP_SYS_NICE)) {
  3497. if (rt_policy(policy)) {
  3498. unsigned long rlim_rtprio =
  3499. task_rlimit(p, RLIMIT_RTPRIO);
  3500. /* can't set/change the rt policy */
  3501. if (policy != p->policy && !rlim_rtprio)
  3502. return -EPERM;
  3503. /* can't increase priority */
  3504. if (param->sched_priority > p->rt_priority &&
  3505. param->sched_priority > rlim_rtprio)
  3506. return -EPERM;
  3507. }
  3508. /*
  3509. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3510. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3511. */
  3512. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3513. if (!can_nice(p, TASK_NICE(p)))
  3514. return -EPERM;
  3515. }
  3516. /* can't change other user's priorities */
  3517. if (!check_same_owner(p))
  3518. return -EPERM;
  3519. /* Normal users shall not reset the sched_reset_on_fork flag */
  3520. if (p->sched_reset_on_fork && !reset_on_fork)
  3521. return -EPERM;
  3522. }
  3523. if (user) {
  3524. retval = security_task_setscheduler(p);
  3525. if (retval)
  3526. return retval;
  3527. }
  3528. /*
  3529. * make sure no PI-waiters arrive (or leave) while we are
  3530. * changing the priority of the task:
  3531. *
  3532. * To be able to change p->policy safely, the appropriate
  3533. * runqueue lock must be held.
  3534. */
  3535. rq = task_rq_lock(p, &flags);
  3536. /*
  3537. * Changing the policy of the stop threads its a very bad idea
  3538. */
  3539. if (p == rq->stop) {
  3540. task_rq_unlock(rq, p, &flags);
  3541. return -EINVAL;
  3542. }
  3543. /*
  3544. * If not changing anything there's no need to proceed further:
  3545. */
  3546. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  3547. param->sched_priority == p->rt_priority))) {
  3548. __task_rq_unlock(rq);
  3549. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3550. return 0;
  3551. }
  3552. #ifdef CONFIG_RT_GROUP_SCHED
  3553. if (user) {
  3554. /*
  3555. * Do not allow realtime tasks into groups that have no runtime
  3556. * assigned.
  3557. */
  3558. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3559. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3560. !task_group_is_autogroup(task_group(p))) {
  3561. task_rq_unlock(rq, p, &flags);
  3562. return -EPERM;
  3563. }
  3564. }
  3565. #endif
  3566. /* recheck policy now with rq lock held */
  3567. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3568. policy = oldpolicy = -1;
  3569. task_rq_unlock(rq, p, &flags);
  3570. goto recheck;
  3571. }
  3572. on_rq = p->on_rq;
  3573. running = task_current(rq, p);
  3574. if (on_rq)
  3575. dequeue_task(rq, p, 0);
  3576. if (running)
  3577. p->sched_class->put_prev_task(rq, p);
  3578. p->sched_reset_on_fork = reset_on_fork;
  3579. oldprio = p->prio;
  3580. prev_class = p->sched_class;
  3581. __setscheduler(rq, p, policy, param->sched_priority);
  3582. if (running)
  3583. p->sched_class->set_curr_task(rq);
  3584. if (on_rq)
  3585. enqueue_task(rq, p, 0);
  3586. check_class_changed(rq, p, prev_class, oldprio);
  3587. task_rq_unlock(rq, p, &flags);
  3588. rt_mutex_adjust_pi(p);
  3589. return 0;
  3590. }
  3591. /**
  3592. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3593. * @p: the task in question.
  3594. * @policy: new policy.
  3595. * @param: structure containing the new RT priority.
  3596. *
  3597. * NOTE that the task may be already dead.
  3598. */
  3599. int sched_setscheduler(struct task_struct *p, int policy,
  3600. const struct sched_param *param)
  3601. {
  3602. return __sched_setscheduler(p, policy, param, true);
  3603. }
  3604. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3605. /**
  3606. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3607. * @p: the task in question.
  3608. * @policy: new policy.
  3609. * @param: structure containing the new RT priority.
  3610. *
  3611. * Just like sched_setscheduler, only don't bother checking if the
  3612. * current context has permission. For example, this is needed in
  3613. * stop_machine(): we create temporary high priority worker threads,
  3614. * but our caller might not have that capability.
  3615. */
  3616. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3617. const struct sched_param *param)
  3618. {
  3619. return __sched_setscheduler(p, policy, param, false);
  3620. }
  3621. static int
  3622. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3623. {
  3624. struct sched_param lparam;
  3625. struct task_struct *p;
  3626. int retval;
  3627. if (!param || pid < 0)
  3628. return -EINVAL;
  3629. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3630. return -EFAULT;
  3631. rcu_read_lock();
  3632. retval = -ESRCH;
  3633. p = find_process_by_pid(pid);
  3634. if (p != NULL)
  3635. retval = sched_setscheduler(p, policy, &lparam);
  3636. rcu_read_unlock();
  3637. return retval;
  3638. }
  3639. /**
  3640. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3641. * @pid: the pid in question.
  3642. * @policy: new policy.
  3643. * @param: structure containing the new RT priority.
  3644. */
  3645. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3646. struct sched_param __user *, param)
  3647. {
  3648. /* negative values for policy are not valid */
  3649. if (policy < 0)
  3650. return -EINVAL;
  3651. return do_sched_setscheduler(pid, policy, param);
  3652. }
  3653. /**
  3654. * sys_sched_setparam - set/change the RT priority of a thread
  3655. * @pid: the pid in question.
  3656. * @param: structure containing the new RT priority.
  3657. */
  3658. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3659. {
  3660. return do_sched_setscheduler(pid, -1, param);
  3661. }
  3662. /**
  3663. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3664. * @pid: the pid in question.
  3665. */
  3666. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3667. {
  3668. struct task_struct *p;
  3669. int retval;
  3670. if (pid < 0)
  3671. return -EINVAL;
  3672. retval = -ESRCH;
  3673. rcu_read_lock();
  3674. p = find_process_by_pid(pid);
  3675. if (p) {
  3676. retval = security_task_getscheduler(p);
  3677. if (!retval)
  3678. retval = p->policy
  3679. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3680. }
  3681. rcu_read_unlock();
  3682. return retval;
  3683. }
  3684. /**
  3685. * sys_sched_getparam - get the RT priority of a thread
  3686. * @pid: the pid in question.
  3687. * @param: structure containing the RT priority.
  3688. */
  3689. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3690. {
  3691. struct sched_param lp;
  3692. struct task_struct *p;
  3693. int retval;
  3694. if (!param || pid < 0)
  3695. return -EINVAL;
  3696. rcu_read_lock();
  3697. p = find_process_by_pid(pid);
  3698. retval = -ESRCH;
  3699. if (!p)
  3700. goto out_unlock;
  3701. retval = security_task_getscheduler(p);
  3702. if (retval)
  3703. goto out_unlock;
  3704. lp.sched_priority = p->rt_priority;
  3705. rcu_read_unlock();
  3706. /*
  3707. * This one might sleep, we cannot do it with a spinlock held ...
  3708. */
  3709. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3710. return retval;
  3711. out_unlock:
  3712. rcu_read_unlock();
  3713. return retval;
  3714. }
  3715. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3716. {
  3717. cpumask_var_t cpus_allowed, new_mask;
  3718. struct task_struct *p;
  3719. int retval;
  3720. get_online_cpus();
  3721. rcu_read_lock();
  3722. p = find_process_by_pid(pid);
  3723. if (!p) {
  3724. rcu_read_unlock();
  3725. put_online_cpus();
  3726. return -ESRCH;
  3727. }
  3728. /* Prevent p going away */
  3729. get_task_struct(p);
  3730. rcu_read_unlock();
  3731. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3732. retval = -ENOMEM;
  3733. goto out_put_task;
  3734. }
  3735. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3736. retval = -ENOMEM;
  3737. goto out_free_cpus_allowed;
  3738. }
  3739. retval = -EPERM;
  3740. if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
  3741. goto out_unlock;
  3742. retval = security_task_setscheduler(p);
  3743. if (retval)
  3744. goto out_unlock;
  3745. cpuset_cpus_allowed(p, cpus_allowed);
  3746. cpumask_and(new_mask, in_mask, cpus_allowed);
  3747. again:
  3748. retval = set_cpus_allowed_ptr(p, new_mask);
  3749. if (!retval) {
  3750. cpuset_cpus_allowed(p, cpus_allowed);
  3751. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3752. /*
  3753. * We must have raced with a concurrent cpuset
  3754. * update. Just reset the cpus_allowed to the
  3755. * cpuset's cpus_allowed
  3756. */
  3757. cpumask_copy(new_mask, cpus_allowed);
  3758. goto again;
  3759. }
  3760. }
  3761. out_unlock:
  3762. free_cpumask_var(new_mask);
  3763. out_free_cpus_allowed:
  3764. free_cpumask_var(cpus_allowed);
  3765. out_put_task:
  3766. put_task_struct(p);
  3767. put_online_cpus();
  3768. return retval;
  3769. }
  3770. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3771. struct cpumask *new_mask)
  3772. {
  3773. if (len < cpumask_size())
  3774. cpumask_clear(new_mask);
  3775. else if (len > cpumask_size())
  3776. len = cpumask_size();
  3777. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3778. }
  3779. /**
  3780. * sys_sched_setaffinity - set the cpu affinity of a process
  3781. * @pid: pid of the process
  3782. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3783. * @user_mask_ptr: user-space pointer to the new cpu mask
  3784. */
  3785. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3786. unsigned long __user *, user_mask_ptr)
  3787. {
  3788. cpumask_var_t new_mask;
  3789. int retval;
  3790. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3791. return -ENOMEM;
  3792. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3793. if (retval == 0)
  3794. retval = sched_setaffinity(pid, new_mask);
  3795. free_cpumask_var(new_mask);
  3796. return retval;
  3797. }
  3798. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3799. {
  3800. struct task_struct *p;
  3801. unsigned long flags;
  3802. int retval;
  3803. get_online_cpus();
  3804. rcu_read_lock();
  3805. retval = -ESRCH;
  3806. p = find_process_by_pid(pid);
  3807. if (!p)
  3808. goto out_unlock;
  3809. retval = security_task_getscheduler(p);
  3810. if (retval)
  3811. goto out_unlock;
  3812. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3813. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  3814. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3815. out_unlock:
  3816. rcu_read_unlock();
  3817. put_online_cpus();
  3818. return retval;
  3819. }
  3820. /**
  3821. * sys_sched_getaffinity - get the cpu affinity of a process
  3822. * @pid: pid of the process
  3823. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3824. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3825. */
  3826. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3827. unsigned long __user *, user_mask_ptr)
  3828. {
  3829. int ret;
  3830. cpumask_var_t mask;
  3831. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3832. return -EINVAL;
  3833. if (len & (sizeof(unsigned long)-1))
  3834. return -EINVAL;
  3835. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3836. return -ENOMEM;
  3837. ret = sched_getaffinity(pid, mask);
  3838. if (ret == 0) {
  3839. size_t retlen = min_t(size_t, len, cpumask_size());
  3840. if (copy_to_user(user_mask_ptr, mask, retlen))
  3841. ret = -EFAULT;
  3842. else
  3843. ret = retlen;
  3844. }
  3845. free_cpumask_var(mask);
  3846. return ret;
  3847. }
  3848. /**
  3849. * sys_sched_yield - yield the current processor to other threads.
  3850. *
  3851. * This function yields the current CPU to other tasks. If there are no
  3852. * other threads running on this CPU then this function will return.
  3853. */
  3854. SYSCALL_DEFINE0(sched_yield)
  3855. {
  3856. struct rq *rq = this_rq_lock();
  3857. schedstat_inc(rq, yld_count);
  3858. current->sched_class->yield_task(rq);
  3859. /*
  3860. * Since we are going to call schedule() anyway, there's
  3861. * no need to preempt or enable interrupts:
  3862. */
  3863. __release(rq->lock);
  3864. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3865. do_raw_spin_unlock(&rq->lock);
  3866. sched_preempt_enable_no_resched();
  3867. schedule();
  3868. return 0;
  3869. }
  3870. static inline int should_resched(void)
  3871. {
  3872. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  3873. }
  3874. static void __cond_resched(void)
  3875. {
  3876. add_preempt_count(PREEMPT_ACTIVE);
  3877. __schedule();
  3878. sub_preempt_count(PREEMPT_ACTIVE);
  3879. }
  3880. int __sched _cond_resched(void)
  3881. {
  3882. if (should_resched()) {
  3883. __cond_resched();
  3884. return 1;
  3885. }
  3886. return 0;
  3887. }
  3888. EXPORT_SYMBOL(_cond_resched);
  3889. /*
  3890. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3891. * call schedule, and on return reacquire the lock.
  3892. *
  3893. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3894. * operations here to prevent schedule() from being called twice (once via
  3895. * spin_unlock(), once by hand).
  3896. */
  3897. int __cond_resched_lock(spinlock_t *lock)
  3898. {
  3899. int resched = should_resched();
  3900. int ret = 0;
  3901. lockdep_assert_held(lock);
  3902. if (spin_needbreak(lock) || resched) {
  3903. spin_unlock(lock);
  3904. if (resched)
  3905. __cond_resched();
  3906. else
  3907. cpu_relax();
  3908. ret = 1;
  3909. spin_lock(lock);
  3910. }
  3911. return ret;
  3912. }
  3913. EXPORT_SYMBOL(__cond_resched_lock);
  3914. int __sched __cond_resched_softirq(void)
  3915. {
  3916. BUG_ON(!in_softirq());
  3917. if (should_resched()) {
  3918. local_bh_enable();
  3919. __cond_resched();
  3920. local_bh_disable();
  3921. return 1;
  3922. }
  3923. return 0;
  3924. }
  3925. EXPORT_SYMBOL(__cond_resched_softirq);
  3926. /**
  3927. * yield - yield the current processor to other threads.
  3928. *
  3929. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3930. *
  3931. * The scheduler is at all times free to pick the calling task as the most
  3932. * eligible task to run, if removing the yield() call from your code breaks
  3933. * it, its already broken.
  3934. *
  3935. * Typical broken usage is:
  3936. *
  3937. * while (!event)
  3938. * yield();
  3939. *
  3940. * where one assumes that yield() will let 'the other' process run that will
  3941. * make event true. If the current task is a SCHED_FIFO task that will never
  3942. * happen. Never use yield() as a progress guarantee!!
  3943. *
  3944. * If you want to use yield() to wait for something, use wait_event().
  3945. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3946. * If you still want to use yield(), do not!
  3947. */
  3948. void __sched yield(void)
  3949. {
  3950. set_current_state(TASK_RUNNING);
  3951. sys_sched_yield();
  3952. }
  3953. EXPORT_SYMBOL(yield);
  3954. /**
  3955. * yield_to - yield the current processor to another thread in
  3956. * your thread group, or accelerate that thread toward the
  3957. * processor it's on.
  3958. * @p: target task
  3959. * @preempt: whether task preemption is allowed or not
  3960. *
  3961. * It's the caller's job to ensure that the target task struct
  3962. * can't go away on us before we can do any checks.
  3963. *
  3964. * Returns true if we indeed boosted the target task.
  3965. */
  3966. bool __sched yield_to(struct task_struct *p, bool preempt)
  3967. {
  3968. struct task_struct *curr = current;
  3969. struct rq *rq, *p_rq;
  3970. unsigned long flags;
  3971. bool yielded = 0;
  3972. local_irq_save(flags);
  3973. rq = this_rq();
  3974. again:
  3975. p_rq = task_rq(p);
  3976. double_rq_lock(rq, p_rq);
  3977. while (task_rq(p) != p_rq) {
  3978. double_rq_unlock(rq, p_rq);
  3979. goto again;
  3980. }
  3981. if (!curr->sched_class->yield_to_task)
  3982. goto out;
  3983. if (curr->sched_class != p->sched_class)
  3984. goto out;
  3985. if (task_running(p_rq, p) || p->state)
  3986. goto out;
  3987. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3988. if (yielded) {
  3989. schedstat_inc(rq, yld_count);
  3990. /*
  3991. * Make p's CPU reschedule; pick_next_entity takes care of
  3992. * fairness.
  3993. */
  3994. if (preempt && rq != p_rq)
  3995. resched_task(p_rq->curr);
  3996. } else {
  3997. /*
  3998. * We might have set it in task_yield_fair(), but are
  3999. * not going to schedule(), so don't want to skip
  4000. * the next update.
  4001. */
  4002. rq->skip_clock_update = 0;
  4003. }
  4004. out:
  4005. double_rq_unlock(rq, p_rq);
  4006. local_irq_restore(flags);
  4007. if (yielded)
  4008. schedule();
  4009. return yielded;
  4010. }
  4011. EXPORT_SYMBOL_GPL(yield_to);
  4012. /*
  4013. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4014. * that process accounting knows that this is a task in IO wait state.
  4015. */
  4016. void __sched io_schedule(void)
  4017. {
  4018. struct rq *rq = raw_rq();
  4019. delayacct_blkio_start();
  4020. atomic_inc(&rq->nr_iowait);
  4021. blk_flush_plug(current);
  4022. current->in_iowait = 1;
  4023. schedule();
  4024. current->in_iowait = 0;
  4025. atomic_dec(&rq->nr_iowait);
  4026. delayacct_blkio_end();
  4027. }
  4028. EXPORT_SYMBOL(io_schedule);
  4029. long __sched io_schedule_timeout(long timeout)
  4030. {
  4031. struct rq *rq = raw_rq();
  4032. long ret;
  4033. delayacct_blkio_start();
  4034. atomic_inc(&rq->nr_iowait);
  4035. blk_flush_plug(current);
  4036. current->in_iowait = 1;
  4037. ret = schedule_timeout(timeout);
  4038. current->in_iowait = 0;
  4039. atomic_dec(&rq->nr_iowait);
  4040. delayacct_blkio_end();
  4041. return ret;
  4042. }
  4043. /**
  4044. * sys_sched_get_priority_max - return maximum RT priority.
  4045. * @policy: scheduling class.
  4046. *
  4047. * this syscall returns the maximum rt_priority that can be used
  4048. * by a given scheduling class.
  4049. */
  4050. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4051. {
  4052. int ret = -EINVAL;
  4053. switch (policy) {
  4054. case SCHED_FIFO:
  4055. case SCHED_RR:
  4056. ret = MAX_USER_RT_PRIO-1;
  4057. break;
  4058. case SCHED_NORMAL:
  4059. case SCHED_BATCH:
  4060. case SCHED_IDLE:
  4061. ret = 0;
  4062. break;
  4063. }
  4064. return ret;
  4065. }
  4066. /**
  4067. * sys_sched_get_priority_min - return minimum RT priority.
  4068. * @policy: scheduling class.
  4069. *
  4070. * this syscall returns the minimum rt_priority that can be used
  4071. * by a given scheduling class.
  4072. */
  4073. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4074. {
  4075. int ret = -EINVAL;
  4076. switch (policy) {
  4077. case SCHED_FIFO:
  4078. case SCHED_RR:
  4079. ret = 1;
  4080. break;
  4081. case SCHED_NORMAL:
  4082. case SCHED_BATCH:
  4083. case SCHED_IDLE:
  4084. ret = 0;
  4085. }
  4086. return ret;
  4087. }
  4088. /**
  4089. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4090. * @pid: pid of the process.
  4091. * @interval: userspace pointer to the timeslice value.
  4092. *
  4093. * this syscall writes the default timeslice value of a given process
  4094. * into the user-space timespec buffer. A value of '0' means infinity.
  4095. */
  4096. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4097. struct timespec __user *, interval)
  4098. {
  4099. struct task_struct *p;
  4100. unsigned int time_slice;
  4101. unsigned long flags;
  4102. struct rq *rq;
  4103. int retval;
  4104. struct timespec t;
  4105. if (pid < 0)
  4106. return -EINVAL;
  4107. retval = -ESRCH;
  4108. rcu_read_lock();
  4109. p = find_process_by_pid(pid);
  4110. if (!p)
  4111. goto out_unlock;
  4112. retval = security_task_getscheduler(p);
  4113. if (retval)
  4114. goto out_unlock;
  4115. rq = task_rq_lock(p, &flags);
  4116. time_slice = p->sched_class->get_rr_interval(rq, p);
  4117. task_rq_unlock(rq, p, &flags);
  4118. rcu_read_unlock();
  4119. jiffies_to_timespec(time_slice, &t);
  4120. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4121. return retval;
  4122. out_unlock:
  4123. rcu_read_unlock();
  4124. return retval;
  4125. }
  4126. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4127. void sched_show_task(struct task_struct *p)
  4128. {
  4129. unsigned long free = 0;
  4130. unsigned state;
  4131. state = p->state ? __ffs(p->state) + 1 : 0;
  4132. printk(KERN_INFO "%-15.15s %c", p->comm,
  4133. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4134. #if BITS_PER_LONG == 32
  4135. if (state == TASK_RUNNING)
  4136. printk(KERN_CONT " running ");
  4137. else
  4138. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4139. #else
  4140. if (state == TASK_RUNNING)
  4141. printk(KERN_CONT " running task ");
  4142. else
  4143. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4144. #endif
  4145. #ifdef CONFIG_DEBUG_STACK_USAGE
  4146. free = stack_not_used(p);
  4147. #endif
  4148. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4149. task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
  4150. (unsigned long)task_thread_info(p)->flags);
  4151. show_stack(p, NULL);
  4152. }
  4153. void show_state_filter(unsigned long state_filter)
  4154. {
  4155. struct task_struct *g, *p;
  4156. #if BITS_PER_LONG == 32
  4157. printk(KERN_INFO
  4158. " task PC stack pid father\n");
  4159. #else
  4160. printk(KERN_INFO
  4161. " task PC stack pid father\n");
  4162. #endif
  4163. rcu_read_lock();
  4164. do_each_thread(g, p) {
  4165. /*
  4166. * reset the NMI-timeout, listing all files on a slow
  4167. * console might take a lot of time:
  4168. */
  4169. touch_nmi_watchdog();
  4170. if (!state_filter || (p->state & state_filter))
  4171. sched_show_task(p);
  4172. } while_each_thread(g, p);
  4173. touch_all_softlockup_watchdogs();
  4174. #ifdef CONFIG_SCHED_DEBUG
  4175. sysrq_sched_debug_show();
  4176. #endif
  4177. rcu_read_unlock();
  4178. /*
  4179. * Only show locks if all tasks are dumped:
  4180. */
  4181. if (!state_filter)
  4182. debug_show_all_locks();
  4183. }
  4184. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4185. {
  4186. idle->sched_class = &idle_sched_class;
  4187. }
  4188. /**
  4189. * init_idle - set up an idle thread for a given CPU
  4190. * @idle: task in question
  4191. * @cpu: cpu the idle task belongs to
  4192. *
  4193. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4194. * flag, to make booting more robust.
  4195. */
  4196. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4197. {
  4198. struct rq *rq = cpu_rq(cpu);
  4199. unsigned long flags;
  4200. raw_spin_lock_irqsave(&rq->lock, flags);
  4201. __sched_fork(idle);
  4202. idle->state = TASK_RUNNING;
  4203. idle->se.exec_start = sched_clock();
  4204. do_set_cpus_allowed(idle, cpumask_of(cpu));
  4205. /*
  4206. * We're having a chicken and egg problem, even though we are
  4207. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4208. * lockdep check in task_group() will fail.
  4209. *
  4210. * Similar case to sched_fork(). / Alternatively we could
  4211. * use task_rq_lock() here and obtain the other rq->lock.
  4212. *
  4213. * Silence PROVE_RCU
  4214. */
  4215. rcu_read_lock();
  4216. __set_task_cpu(idle, cpu);
  4217. rcu_read_unlock();
  4218. rq->curr = rq->idle = idle;
  4219. #if defined(CONFIG_SMP)
  4220. idle->on_cpu = 1;
  4221. #endif
  4222. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4223. /* Set the preempt count _outside_ the spinlocks! */
  4224. task_thread_info(idle)->preempt_count = 0;
  4225. /*
  4226. * The idle tasks have their own, simple scheduling class:
  4227. */
  4228. idle->sched_class = &idle_sched_class;
  4229. ftrace_graph_init_idle_task(idle, cpu);
  4230. #if defined(CONFIG_SMP)
  4231. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4232. #endif
  4233. }
  4234. #ifdef CONFIG_SMP
  4235. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  4236. {
  4237. if (p->sched_class && p->sched_class->set_cpus_allowed)
  4238. p->sched_class->set_cpus_allowed(p, new_mask);
  4239. cpumask_copy(&p->cpus_allowed, new_mask);
  4240. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4241. }
  4242. /*
  4243. * This is how migration works:
  4244. *
  4245. * 1) we invoke migration_cpu_stop() on the target CPU using
  4246. * stop_one_cpu().
  4247. * 2) stopper starts to run (implicitly forcing the migrated thread
  4248. * off the CPU)
  4249. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4250. * 4) if it's in the wrong runqueue then the migration thread removes
  4251. * it and puts it into the right queue.
  4252. * 5) stopper completes and stop_one_cpu() returns and the migration
  4253. * is done.
  4254. */
  4255. /*
  4256. * Change a given task's CPU affinity. Migrate the thread to a
  4257. * proper CPU and schedule it away if the CPU it's executing on
  4258. * is removed from the allowed bitmask.
  4259. *
  4260. * NOTE: the caller must have a valid reference to the task, the
  4261. * task must not exit() & deallocate itself prematurely. The
  4262. * call is not atomic; no spinlocks may be held.
  4263. */
  4264. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4265. {
  4266. unsigned long flags;
  4267. struct rq *rq;
  4268. unsigned int dest_cpu;
  4269. int ret = 0;
  4270. rq = task_rq_lock(p, &flags);
  4271. if (cpumask_equal(&p->cpus_allowed, new_mask))
  4272. goto out;
  4273. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4274. ret = -EINVAL;
  4275. goto out;
  4276. }
  4277. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  4278. ret = -EINVAL;
  4279. goto out;
  4280. }
  4281. do_set_cpus_allowed(p, new_mask);
  4282. /* Can the task run on the task's current CPU? If so, we're done */
  4283. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4284. goto out;
  4285. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4286. if (p->on_rq) {
  4287. struct migration_arg arg = { p, dest_cpu };
  4288. /* Need help from migration thread: drop lock and wait. */
  4289. task_rq_unlock(rq, p, &flags);
  4290. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4291. tlb_migrate_finish(p->mm);
  4292. return 0;
  4293. }
  4294. out:
  4295. task_rq_unlock(rq, p, &flags);
  4296. return ret;
  4297. }
  4298. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4299. /*
  4300. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4301. * this because either it can't run here any more (set_cpus_allowed()
  4302. * away from this CPU, or CPU going down), or because we're
  4303. * attempting to rebalance this task on exec (sched_exec).
  4304. *
  4305. * So we race with normal scheduler movements, but that's OK, as long
  4306. * as the task is no longer on this CPU.
  4307. *
  4308. * Returns non-zero if task was successfully migrated.
  4309. */
  4310. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4311. {
  4312. struct rq *rq_dest, *rq_src;
  4313. int ret = 0;
  4314. if (unlikely(!cpu_active(dest_cpu)))
  4315. return ret;
  4316. rq_src = cpu_rq(src_cpu);
  4317. rq_dest = cpu_rq(dest_cpu);
  4318. raw_spin_lock(&p->pi_lock);
  4319. double_rq_lock(rq_src, rq_dest);
  4320. /* Already moved. */
  4321. if (task_cpu(p) != src_cpu)
  4322. goto done;
  4323. /* Affinity changed (again). */
  4324. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4325. goto fail;
  4326. /*
  4327. * If we're not on a rq, the next wake-up will ensure we're
  4328. * placed properly.
  4329. */
  4330. if (p->on_rq) {
  4331. dequeue_task(rq_src, p, 0);
  4332. set_task_cpu(p, dest_cpu);
  4333. enqueue_task(rq_dest, p, 0);
  4334. check_preempt_curr(rq_dest, p, 0);
  4335. }
  4336. done:
  4337. ret = 1;
  4338. fail:
  4339. double_rq_unlock(rq_src, rq_dest);
  4340. raw_spin_unlock(&p->pi_lock);
  4341. return ret;
  4342. }
  4343. /*
  4344. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4345. * and performs thread migration by bumping thread off CPU then
  4346. * 'pushing' onto another runqueue.
  4347. */
  4348. static int migration_cpu_stop(void *data)
  4349. {
  4350. struct migration_arg *arg = data;
  4351. /*
  4352. * The original target cpu might have gone down and we might
  4353. * be on another cpu but it doesn't matter.
  4354. */
  4355. local_irq_disable();
  4356. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4357. local_irq_enable();
  4358. return 0;
  4359. }
  4360. #ifdef CONFIG_HOTPLUG_CPU
  4361. /*
  4362. * Ensures that the idle task is using init_mm right before its cpu goes
  4363. * offline.
  4364. */
  4365. void idle_task_exit(void)
  4366. {
  4367. struct mm_struct *mm = current->active_mm;
  4368. BUG_ON(cpu_online(smp_processor_id()));
  4369. if (mm != &init_mm)
  4370. switch_mm(mm, &init_mm, current);
  4371. mmdrop(mm);
  4372. }
  4373. /*
  4374. * While a dead CPU has no uninterruptible tasks queued at this point,
  4375. * it might still have a nonzero ->nr_uninterruptible counter, because
  4376. * for performance reasons the counter is not stricly tracking tasks to
  4377. * their home CPUs. So we just add the counter to another CPU's counter,
  4378. * to keep the global sum constant after CPU-down:
  4379. */
  4380. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4381. {
  4382. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4383. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4384. rq_src->nr_uninterruptible = 0;
  4385. }
  4386. /*
  4387. * remove the tasks which were accounted by rq from calc_load_tasks.
  4388. */
  4389. static void calc_global_load_remove(struct rq *rq)
  4390. {
  4391. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4392. rq->calc_load_active = 0;
  4393. }
  4394. /*
  4395. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4396. * try_to_wake_up()->select_task_rq().
  4397. *
  4398. * Called with rq->lock held even though we'er in stop_machine() and
  4399. * there's no concurrency possible, we hold the required locks anyway
  4400. * because of lock validation efforts.
  4401. */
  4402. static void migrate_tasks(unsigned int dead_cpu)
  4403. {
  4404. struct rq *rq = cpu_rq(dead_cpu);
  4405. struct task_struct *next, *stop = rq->stop;
  4406. int dest_cpu;
  4407. /*
  4408. * Fudge the rq selection such that the below task selection loop
  4409. * doesn't get stuck on the currently eligible stop task.
  4410. *
  4411. * We're currently inside stop_machine() and the rq is either stuck
  4412. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4413. * either way we should never end up calling schedule() until we're
  4414. * done here.
  4415. */
  4416. rq->stop = NULL;
  4417. /* Ensure any throttled groups are reachable by pick_next_task */
  4418. unthrottle_offline_cfs_rqs(rq);
  4419. for ( ; ; ) {
  4420. /*
  4421. * There's this thread running, bail when that's the only
  4422. * remaining thread.
  4423. */
  4424. if (rq->nr_running == 1)
  4425. break;
  4426. next = pick_next_task(rq);
  4427. BUG_ON(!next);
  4428. next->sched_class->put_prev_task(rq, next);
  4429. /* Find suitable destination for @next, with force if needed. */
  4430. dest_cpu = select_fallback_rq(dead_cpu, next);
  4431. raw_spin_unlock(&rq->lock);
  4432. __migrate_task(next, dead_cpu, dest_cpu);
  4433. raw_spin_lock(&rq->lock);
  4434. }
  4435. rq->stop = stop;
  4436. }
  4437. #endif /* CONFIG_HOTPLUG_CPU */
  4438. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4439. static struct ctl_table sd_ctl_dir[] = {
  4440. {
  4441. .procname = "sched_domain",
  4442. .mode = 0555,
  4443. },
  4444. {}
  4445. };
  4446. static struct ctl_table sd_ctl_root[] = {
  4447. {
  4448. .procname = "kernel",
  4449. .mode = 0555,
  4450. .child = sd_ctl_dir,
  4451. },
  4452. {}
  4453. };
  4454. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4455. {
  4456. struct ctl_table *entry =
  4457. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4458. return entry;
  4459. }
  4460. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4461. {
  4462. struct ctl_table *entry;
  4463. /*
  4464. * In the intermediate directories, both the child directory and
  4465. * procname are dynamically allocated and could fail but the mode
  4466. * will always be set. In the lowest directory the names are
  4467. * static strings and all have proc handlers.
  4468. */
  4469. for (entry = *tablep; entry->mode; entry++) {
  4470. if (entry->child)
  4471. sd_free_ctl_entry(&entry->child);
  4472. if (entry->proc_handler == NULL)
  4473. kfree(entry->procname);
  4474. }
  4475. kfree(*tablep);
  4476. *tablep = NULL;
  4477. }
  4478. static void
  4479. set_table_entry(struct ctl_table *entry,
  4480. const char *procname, void *data, int maxlen,
  4481. umode_t mode, proc_handler *proc_handler)
  4482. {
  4483. entry->procname = procname;
  4484. entry->data = data;
  4485. entry->maxlen = maxlen;
  4486. entry->mode = mode;
  4487. entry->proc_handler = proc_handler;
  4488. }
  4489. static struct ctl_table *
  4490. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4491. {
  4492. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4493. if (table == NULL)
  4494. return NULL;
  4495. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4496. sizeof(long), 0644, proc_doulongvec_minmax);
  4497. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4498. sizeof(long), 0644, proc_doulongvec_minmax);
  4499. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4500. sizeof(int), 0644, proc_dointvec_minmax);
  4501. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4502. sizeof(int), 0644, proc_dointvec_minmax);
  4503. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4504. sizeof(int), 0644, proc_dointvec_minmax);
  4505. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4506. sizeof(int), 0644, proc_dointvec_minmax);
  4507. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4508. sizeof(int), 0644, proc_dointvec_minmax);
  4509. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4510. sizeof(int), 0644, proc_dointvec_minmax);
  4511. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4512. sizeof(int), 0644, proc_dointvec_minmax);
  4513. set_table_entry(&table[9], "cache_nice_tries",
  4514. &sd->cache_nice_tries,
  4515. sizeof(int), 0644, proc_dointvec_minmax);
  4516. set_table_entry(&table[10], "flags", &sd->flags,
  4517. sizeof(int), 0644, proc_dointvec_minmax);
  4518. set_table_entry(&table[11], "name", sd->name,
  4519. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4520. /* &table[12] is terminator */
  4521. return table;
  4522. }
  4523. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4524. {
  4525. struct ctl_table *entry, *table;
  4526. struct sched_domain *sd;
  4527. int domain_num = 0, i;
  4528. char buf[32];
  4529. for_each_domain(cpu, sd)
  4530. domain_num++;
  4531. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4532. if (table == NULL)
  4533. return NULL;
  4534. i = 0;
  4535. for_each_domain(cpu, sd) {
  4536. snprintf(buf, 32, "domain%d", i);
  4537. entry->procname = kstrdup(buf, GFP_KERNEL);
  4538. entry->mode = 0555;
  4539. entry->child = sd_alloc_ctl_domain_table(sd);
  4540. entry++;
  4541. i++;
  4542. }
  4543. return table;
  4544. }
  4545. static struct ctl_table_header *sd_sysctl_header;
  4546. static void register_sched_domain_sysctl(void)
  4547. {
  4548. int i, cpu_num = num_possible_cpus();
  4549. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4550. char buf[32];
  4551. WARN_ON(sd_ctl_dir[0].child);
  4552. sd_ctl_dir[0].child = entry;
  4553. if (entry == NULL)
  4554. return;
  4555. for_each_possible_cpu(i) {
  4556. snprintf(buf, 32, "cpu%d", i);
  4557. entry->procname = kstrdup(buf, GFP_KERNEL);
  4558. entry->mode = 0555;
  4559. entry->child = sd_alloc_ctl_cpu_table(i);
  4560. entry++;
  4561. }
  4562. WARN_ON(sd_sysctl_header);
  4563. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4564. }
  4565. /* may be called multiple times per register */
  4566. static void unregister_sched_domain_sysctl(void)
  4567. {
  4568. if (sd_sysctl_header)
  4569. unregister_sysctl_table(sd_sysctl_header);
  4570. sd_sysctl_header = NULL;
  4571. if (sd_ctl_dir[0].child)
  4572. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4573. }
  4574. #else
  4575. static void register_sched_domain_sysctl(void)
  4576. {
  4577. }
  4578. static void unregister_sched_domain_sysctl(void)
  4579. {
  4580. }
  4581. #endif
  4582. static void set_rq_online(struct rq *rq)
  4583. {
  4584. if (!rq->online) {
  4585. const struct sched_class *class;
  4586. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4587. rq->online = 1;
  4588. for_each_class(class) {
  4589. if (class->rq_online)
  4590. class->rq_online(rq);
  4591. }
  4592. }
  4593. }
  4594. static void set_rq_offline(struct rq *rq)
  4595. {
  4596. if (rq->online) {
  4597. const struct sched_class *class;
  4598. for_each_class(class) {
  4599. if (class->rq_offline)
  4600. class->rq_offline(rq);
  4601. }
  4602. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4603. rq->online = 0;
  4604. }
  4605. }
  4606. /*
  4607. * migration_call - callback that gets triggered when a CPU is added.
  4608. * Here we can start up the necessary migration thread for the new CPU.
  4609. */
  4610. static int __cpuinit
  4611. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4612. {
  4613. int cpu = (long)hcpu;
  4614. unsigned long flags;
  4615. struct rq *rq = cpu_rq(cpu);
  4616. switch (action & ~CPU_TASKS_FROZEN) {
  4617. case CPU_UP_PREPARE:
  4618. rq->calc_load_update = calc_load_update;
  4619. break;
  4620. case CPU_ONLINE:
  4621. /* Update our root-domain */
  4622. raw_spin_lock_irqsave(&rq->lock, flags);
  4623. if (rq->rd) {
  4624. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4625. set_rq_online(rq);
  4626. }
  4627. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4628. break;
  4629. #ifdef CONFIG_HOTPLUG_CPU
  4630. case CPU_DYING:
  4631. sched_ttwu_pending();
  4632. /* Update our root-domain */
  4633. raw_spin_lock_irqsave(&rq->lock, flags);
  4634. if (rq->rd) {
  4635. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4636. set_rq_offline(rq);
  4637. }
  4638. migrate_tasks(cpu);
  4639. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4640. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4641. migrate_nr_uninterruptible(rq);
  4642. calc_global_load_remove(rq);
  4643. break;
  4644. #endif
  4645. }
  4646. update_max_interval();
  4647. return NOTIFY_OK;
  4648. }
  4649. /*
  4650. * Register at high priority so that task migration (migrate_all_tasks)
  4651. * happens before everything else. This has to be lower priority than
  4652. * the notifier in the perf_event subsystem, though.
  4653. */
  4654. static struct notifier_block __cpuinitdata migration_notifier = {
  4655. .notifier_call = migration_call,
  4656. .priority = CPU_PRI_MIGRATION,
  4657. };
  4658. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  4659. unsigned long action, void *hcpu)
  4660. {
  4661. switch (action & ~CPU_TASKS_FROZEN) {
  4662. case CPU_STARTING:
  4663. case CPU_DOWN_FAILED:
  4664. set_cpu_active((long)hcpu, true);
  4665. return NOTIFY_OK;
  4666. default:
  4667. return NOTIFY_DONE;
  4668. }
  4669. }
  4670. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  4671. unsigned long action, void *hcpu)
  4672. {
  4673. switch (action & ~CPU_TASKS_FROZEN) {
  4674. case CPU_DOWN_PREPARE:
  4675. set_cpu_active((long)hcpu, false);
  4676. return NOTIFY_OK;
  4677. default:
  4678. return NOTIFY_DONE;
  4679. }
  4680. }
  4681. static int __init migration_init(void)
  4682. {
  4683. void *cpu = (void *)(long)smp_processor_id();
  4684. int err;
  4685. /* Initialize migration for the boot CPU */
  4686. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4687. BUG_ON(err == NOTIFY_BAD);
  4688. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4689. register_cpu_notifier(&migration_notifier);
  4690. /* Register cpu active notifiers */
  4691. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4692. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4693. return 0;
  4694. }
  4695. early_initcall(migration_init);
  4696. #endif
  4697. #ifdef CONFIG_SMP
  4698. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4699. #ifdef CONFIG_SCHED_DEBUG
  4700. static __read_mostly int sched_domain_debug_enabled;
  4701. static int __init sched_domain_debug_setup(char *str)
  4702. {
  4703. sched_domain_debug_enabled = 1;
  4704. return 0;
  4705. }
  4706. early_param("sched_debug", sched_domain_debug_setup);
  4707. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4708. struct cpumask *groupmask)
  4709. {
  4710. struct sched_group *group = sd->groups;
  4711. char str[256];
  4712. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4713. cpumask_clear(groupmask);
  4714. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4715. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4716. printk("does not load-balance\n");
  4717. if (sd->parent)
  4718. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4719. " has parent");
  4720. return -1;
  4721. }
  4722. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4723. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4724. printk(KERN_ERR "ERROR: domain->span does not contain "
  4725. "CPU%d\n", cpu);
  4726. }
  4727. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4728. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4729. " CPU%d\n", cpu);
  4730. }
  4731. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4732. do {
  4733. if (!group) {
  4734. printk("\n");
  4735. printk(KERN_ERR "ERROR: group is NULL\n");
  4736. break;
  4737. }
  4738. if (!group->sgp->power) {
  4739. printk(KERN_CONT "\n");
  4740. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4741. "set\n");
  4742. break;
  4743. }
  4744. if (!cpumask_weight(sched_group_cpus(group))) {
  4745. printk(KERN_CONT "\n");
  4746. printk(KERN_ERR "ERROR: empty group\n");
  4747. break;
  4748. }
  4749. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4750. printk(KERN_CONT "\n");
  4751. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4752. break;
  4753. }
  4754. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4755. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4756. printk(KERN_CONT " %s", str);
  4757. if (group->sgp->power != SCHED_POWER_SCALE) {
  4758. printk(KERN_CONT " (cpu_power = %d)",
  4759. group->sgp->power);
  4760. }
  4761. group = group->next;
  4762. } while (group != sd->groups);
  4763. printk(KERN_CONT "\n");
  4764. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4765. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4766. if (sd->parent &&
  4767. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4768. printk(KERN_ERR "ERROR: parent span is not a superset "
  4769. "of domain->span\n");
  4770. return 0;
  4771. }
  4772. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4773. {
  4774. int level = 0;
  4775. if (!sched_domain_debug_enabled)
  4776. return;
  4777. if (!sd) {
  4778. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4779. return;
  4780. }
  4781. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4782. for (;;) {
  4783. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4784. break;
  4785. level++;
  4786. sd = sd->parent;
  4787. if (!sd)
  4788. break;
  4789. }
  4790. }
  4791. #else /* !CONFIG_SCHED_DEBUG */
  4792. # define sched_domain_debug(sd, cpu) do { } while (0)
  4793. #endif /* CONFIG_SCHED_DEBUG */
  4794. static int sd_degenerate(struct sched_domain *sd)
  4795. {
  4796. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4797. return 1;
  4798. /* Following flags need at least 2 groups */
  4799. if (sd->flags & (SD_LOAD_BALANCE |
  4800. SD_BALANCE_NEWIDLE |
  4801. SD_BALANCE_FORK |
  4802. SD_BALANCE_EXEC |
  4803. SD_SHARE_CPUPOWER |
  4804. SD_SHARE_PKG_RESOURCES)) {
  4805. if (sd->groups != sd->groups->next)
  4806. return 0;
  4807. }
  4808. /* Following flags don't use groups */
  4809. if (sd->flags & (SD_WAKE_AFFINE))
  4810. return 0;
  4811. return 1;
  4812. }
  4813. static int
  4814. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4815. {
  4816. unsigned long cflags = sd->flags, pflags = parent->flags;
  4817. if (sd_degenerate(parent))
  4818. return 1;
  4819. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4820. return 0;
  4821. /* Flags needing groups don't count if only 1 group in parent */
  4822. if (parent->groups == parent->groups->next) {
  4823. pflags &= ~(SD_LOAD_BALANCE |
  4824. SD_BALANCE_NEWIDLE |
  4825. SD_BALANCE_FORK |
  4826. SD_BALANCE_EXEC |
  4827. SD_SHARE_CPUPOWER |
  4828. SD_SHARE_PKG_RESOURCES);
  4829. if (nr_node_ids == 1)
  4830. pflags &= ~SD_SERIALIZE;
  4831. }
  4832. if (~cflags & pflags)
  4833. return 0;
  4834. return 1;
  4835. }
  4836. static void free_rootdomain(struct rcu_head *rcu)
  4837. {
  4838. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4839. cpupri_cleanup(&rd->cpupri);
  4840. free_cpumask_var(rd->rto_mask);
  4841. free_cpumask_var(rd->online);
  4842. free_cpumask_var(rd->span);
  4843. kfree(rd);
  4844. }
  4845. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4846. {
  4847. struct root_domain *old_rd = NULL;
  4848. unsigned long flags;
  4849. raw_spin_lock_irqsave(&rq->lock, flags);
  4850. if (rq->rd) {
  4851. old_rd = rq->rd;
  4852. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4853. set_rq_offline(rq);
  4854. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4855. /*
  4856. * If we dont want to free the old_rt yet then
  4857. * set old_rd to NULL to skip the freeing later
  4858. * in this function:
  4859. */
  4860. if (!atomic_dec_and_test(&old_rd->refcount))
  4861. old_rd = NULL;
  4862. }
  4863. atomic_inc(&rd->refcount);
  4864. rq->rd = rd;
  4865. cpumask_set_cpu(rq->cpu, rd->span);
  4866. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4867. set_rq_online(rq);
  4868. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4869. if (old_rd)
  4870. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4871. }
  4872. static int init_rootdomain(struct root_domain *rd)
  4873. {
  4874. memset(rd, 0, sizeof(*rd));
  4875. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4876. goto out;
  4877. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4878. goto free_span;
  4879. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4880. goto free_online;
  4881. if (cpupri_init(&rd->cpupri) != 0)
  4882. goto free_rto_mask;
  4883. return 0;
  4884. free_rto_mask:
  4885. free_cpumask_var(rd->rto_mask);
  4886. free_online:
  4887. free_cpumask_var(rd->online);
  4888. free_span:
  4889. free_cpumask_var(rd->span);
  4890. out:
  4891. return -ENOMEM;
  4892. }
  4893. /*
  4894. * By default the system creates a single root-domain with all cpus as
  4895. * members (mimicking the global state we have today).
  4896. */
  4897. struct root_domain def_root_domain;
  4898. static void init_defrootdomain(void)
  4899. {
  4900. init_rootdomain(&def_root_domain);
  4901. atomic_set(&def_root_domain.refcount, 1);
  4902. }
  4903. static struct root_domain *alloc_rootdomain(void)
  4904. {
  4905. struct root_domain *rd;
  4906. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4907. if (!rd)
  4908. return NULL;
  4909. if (init_rootdomain(rd) != 0) {
  4910. kfree(rd);
  4911. return NULL;
  4912. }
  4913. return rd;
  4914. }
  4915. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4916. {
  4917. struct sched_group *tmp, *first;
  4918. if (!sg)
  4919. return;
  4920. first = sg;
  4921. do {
  4922. tmp = sg->next;
  4923. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4924. kfree(sg->sgp);
  4925. kfree(sg);
  4926. sg = tmp;
  4927. } while (sg != first);
  4928. }
  4929. static void free_sched_domain(struct rcu_head *rcu)
  4930. {
  4931. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4932. /*
  4933. * If its an overlapping domain it has private groups, iterate and
  4934. * nuke them all.
  4935. */
  4936. if (sd->flags & SD_OVERLAP) {
  4937. free_sched_groups(sd->groups, 1);
  4938. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4939. kfree(sd->groups->sgp);
  4940. kfree(sd->groups);
  4941. }
  4942. kfree(sd);
  4943. }
  4944. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4945. {
  4946. call_rcu(&sd->rcu, free_sched_domain);
  4947. }
  4948. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4949. {
  4950. for (; sd; sd = sd->parent)
  4951. destroy_sched_domain(sd, cpu);
  4952. }
  4953. /*
  4954. * Keep a special pointer to the highest sched_domain that has
  4955. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4956. * allows us to avoid some pointer chasing select_idle_sibling().
  4957. *
  4958. * Also keep a unique ID per domain (we use the first cpu number in
  4959. * the cpumask of the domain), this allows us to quickly tell if
  4960. * two cpus are in the same cache domain, see cpus_share_cache().
  4961. */
  4962. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4963. DEFINE_PER_CPU(int, sd_llc_id);
  4964. static void update_top_cache_domain(int cpu)
  4965. {
  4966. struct sched_domain *sd;
  4967. int id = cpu;
  4968. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4969. if (sd)
  4970. id = cpumask_first(sched_domain_span(sd));
  4971. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4972. per_cpu(sd_llc_id, cpu) = id;
  4973. }
  4974. /*
  4975. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4976. * hold the hotplug lock.
  4977. */
  4978. static void
  4979. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4980. {
  4981. struct rq *rq = cpu_rq(cpu);
  4982. struct sched_domain *tmp;
  4983. /* Remove the sched domains which do not contribute to scheduling. */
  4984. for (tmp = sd; tmp; ) {
  4985. struct sched_domain *parent = tmp->parent;
  4986. if (!parent)
  4987. break;
  4988. if (sd_parent_degenerate(tmp, parent)) {
  4989. tmp->parent = parent->parent;
  4990. if (parent->parent)
  4991. parent->parent->child = tmp;
  4992. destroy_sched_domain(parent, cpu);
  4993. } else
  4994. tmp = tmp->parent;
  4995. }
  4996. if (sd && sd_degenerate(sd)) {
  4997. tmp = sd;
  4998. sd = sd->parent;
  4999. destroy_sched_domain(tmp, cpu);
  5000. if (sd)
  5001. sd->child = NULL;
  5002. }
  5003. sched_domain_debug(sd, cpu);
  5004. rq_attach_root(rq, rd);
  5005. tmp = rq->sd;
  5006. rcu_assign_pointer(rq->sd, sd);
  5007. destroy_sched_domains(tmp, cpu);
  5008. update_top_cache_domain(cpu);
  5009. }
  5010. /* cpus with isolated domains */
  5011. static cpumask_var_t cpu_isolated_map;
  5012. /* Setup the mask of cpus configured for isolated domains */
  5013. static int __init isolated_cpu_setup(char *str)
  5014. {
  5015. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5016. cpulist_parse(str, cpu_isolated_map);
  5017. return 1;
  5018. }
  5019. __setup("isolcpus=", isolated_cpu_setup);
  5020. #ifdef CONFIG_NUMA
  5021. /**
  5022. * find_next_best_node - find the next node to include in a sched_domain
  5023. * @node: node whose sched_domain we're building
  5024. * @used_nodes: nodes already in the sched_domain
  5025. *
  5026. * Find the next node to include in a given scheduling domain. Simply
  5027. * finds the closest node not already in the @used_nodes map.
  5028. *
  5029. * Should use nodemask_t.
  5030. */
  5031. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5032. {
  5033. int i, n, val, min_val, best_node = -1;
  5034. min_val = INT_MAX;
  5035. for (i = 0; i < nr_node_ids; i++) {
  5036. /* Start at @node */
  5037. n = (node + i) % nr_node_ids;
  5038. if (!nr_cpus_node(n))
  5039. continue;
  5040. /* Skip already used nodes */
  5041. if (node_isset(n, *used_nodes))
  5042. continue;
  5043. /* Simple min distance search */
  5044. val = node_distance(node, n);
  5045. if (val < min_val) {
  5046. min_val = val;
  5047. best_node = n;
  5048. }
  5049. }
  5050. if (best_node != -1)
  5051. node_set(best_node, *used_nodes);
  5052. return best_node;
  5053. }
  5054. /**
  5055. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5056. * @node: node whose cpumask we're constructing
  5057. * @span: resulting cpumask
  5058. *
  5059. * Given a node, construct a good cpumask for its sched_domain to span. It
  5060. * should be one that prevents unnecessary balancing, but also spreads tasks
  5061. * out optimally.
  5062. */
  5063. static void sched_domain_node_span(int node, struct cpumask *span)
  5064. {
  5065. nodemask_t used_nodes;
  5066. int i;
  5067. cpumask_clear(span);
  5068. nodes_clear(used_nodes);
  5069. cpumask_or(span, span, cpumask_of_node(node));
  5070. node_set(node, used_nodes);
  5071. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5072. int next_node = find_next_best_node(node, &used_nodes);
  5073. if (next_node < 0)
  5074. break;
  5075. cpumask_or(span, span, cpumask_of_node(next_node));
  5076. }
  5077. }
  5078. static const struct cpumask *cpu_node_mask(int cpu)
  5079. {
  5080. lockdep_assert_held(&sched_domains_mutex);
  5081. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5082. return sched_domains_tmpmask;
  5083. }
  5084. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5085. {
  5086. return cpu_possible_mask;
  5087. }
  5088. #endif /* CONFIG_NUMA */
  5089. static const struct cpumask *cpu_cpu_mask(int cpu)
  5090. {
  5091. return cpumask_of_node(cpu_to_node(cpu));
  5092. }
  5093. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5094. struct sd_data {
  5095. struct sched_domain **__percpu sd;
  5096. struct sched_group **__percpu sg;
  5097. struct sched_group_power **__percpu sgp;
  5098. };
  5099. struct s_data {
  5100. struct sched_domain ** __percpu sd;
  5101. struct root_domain *rd;
  5102. };
  5103. enum s_alloc {
  5104. sa_rootdomain,
  5105. sa_sd,
  5106. sa_sd_storage,
  5107. sa_none,
  5108. };
  5109. struct sched_domain_topology_level;
  5110. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  5111. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  5112. #define SDTL_OVERLAP 0x01
  5113. struct sched_domain_topology_level {
  5114. sched_domain_init_f init;
  5115. sched_domain_mask_f mask;
  5116. int flags;
  5117. struct sd_data data;
  5118. };
  5119. static int
  5120. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5121. {
  5122. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5123. const struct cpumask *span = sched_domain_span(sd);
  5124. struct cpumask *covered = sched_domains_tmpmask;
  5125. struct sd_data *sdd = sd->private;
  5126. struct sched_domain *child;
  5127. int i;
  5128. cpumask_clear(covered);
  5129. for_each_cpu(i, span) {
  5130. struct cpumask *sg_span;
  5131. if (cpumask_test_cpu(i, covered))
  5132. continue;
  5133. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5134. GFP_KERNEL, cpu_to_node(cpu));
  5135. if (!sg)
  5136. goto fail;
  5137. sg_span = sched_group_cpus(sg);
  5138. child = *per_cpu_ptr(sdd->sd, i);
  5139. if (child->child) {
  5140. child = child->child;
  5141. cpumask_copy(sg_span, sched_domain_span(child));
  5142. } else
  5143. cpumask_set_cpu(i, sg_span);
  5144. cpumask_or(covered, covered, sg_span);
  5145. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  5146. atomic_inc(&sg->sgp->ref);
  5147. if (cpumask_test_cpu(cpu, sg_span))
  5148. groups = sg;
  5149. if (!first)
  5150. first = sg;
  5151. if (last)
  5152. last->next = sg;
  5153. last = sg;
  5154. last->next = first;
  5155. }
  5156. sd->groups = groups;
  5157. return 0;
  5158. fail:
  5159. free_sched_groups(first, 0);
  5160. return -ENOMEM;
  5161. }
  5162. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5163. {
  5164. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5165. struct sched_domain *child = sd->child;
  5166. if (child)
  5167. cpu = cpumask_first(sched_domain_span(child));
  5168. if (sg) {
  5169. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5170. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  5171. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  5172. }
  5173. return cpu;
  5174. }
  5175. /*
  5176. * build_sched_groups will build a circular linked list of the groups
  5177. * covered by the given span, and will set each group's ->cpumask correctly,
  5178. * and ->cpu_power to 0.
  5179. *
  5180. * Assumes the sched_domain tree is fully constructed
  5181. */
  5182. static int
  5183. build_sched_groups(struct sched_domain *sd, int cpu)
  5184. {
  5185. struct sched_group *first = NULL, *last = NULL;
  5186. struct sd_data *sdd = sd->private;
  5187. const struct cpumask *span = sched_domain_span(sd);
  5188. struct cpumask *covered;
  5189. int i;
  5190. get_group(cpu, sdd, &sd->groups);
  5191. atomic_inc(&sd->groups->ref);
  5192. if (cpu != cpumask_first(sched_domain_span(sd)))
  5193. return 0;
  5194. lockdep_assert_held(&sched_domains_mutex);
  5195. covered = sched_domains_tmpmask;
  5196. cpumask_clear(covered);
  5197. for_each_cpu(i, span) {
  5198. struct sched_group *sg;
  5199. int group = get_group(i, sdd, &sg);
  5200. int j;
  5201. if (cpumask_test_cpu(i, covered))
  5202. continue;
  5203. cpumask_clear(sched_group_cpus(sg));
  5204. sg->sgp->power = 0;
  5205. for_each_cpu(j, span) {
  5206. if (get_group(j, sdd, NULL) != group)
  5207. continue;
  5208. cpumask_set_cpu(j, covered);
  5209. cpumask_set_cpu(j, sched_group_cpus(sg));
  5210. }
  5211. if (!first)
  5212. first = sg;
  5213. if (last)
  5214. last->next = sg;
  5215. last = sg;
  5216. }
  5217. last->next = first;
  5218. return 0;
  5219. }
  5220. /*
  5221. * Initialize sched groups cpu_power.
  5222. *
  5223. * cpu_power indicates the capacity of sched group, which is used while
  5224. * distributing the load between different sched groups in a sched domain.
  5225. * Typically cpu_power for all the groups in a sched domain will be same unless
  5226. * there are asymmetries in the topology. If there are asymmetries, group
  5227. * having more cpu_power will pickup more load compared to the group having
  5228. * less cpu_power.
  5229. */
  5230. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5231. {
  5232. struct sched_group *sg = sd->groups;
  5233. WARN_ON(!sd || !sg);
  5234. do {
  5235. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5236. sg = sg->next;
  5237. } while (sg != sd->groups);
  5238. if (cpu != group_first_cpu(sg))
  5239. return;
  5240. update_group_power(sd, cpu);
  5241. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  5242. }
  5243. int __weak arch_sd_sibling_asym_packing(void)
  5244. {
  5245. return 0*SD_ASYM_PACKING;
  5246. }
  5247. /*
  5248. * Initializers for schedule domains
  5249. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5250. */
  5251. #ifdef CONFIG_SCHED_DEBUG
  5252. # define SD_INIT_NAME(sd, type) sd->name = #type
  5253. #else
  5254. # define SD_INIT_NAME(sd, type) do { } while (0)
  5255. #endif
  5256. #define SD_INIT_FUNC(type) \
  5257. static noinline struct sched_domain * \
  5258. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  5259. { \
  5260. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  5261. *sd = SD_##type##_INIT; \
  5262. SD_INIT_NAME(sd, type); \
  5263. sd->private = &tl->data; \
  5264. return sd; \
  5265. }
  5266. SD_INIT_FUNC(CPU)
  5267. #ifdef CONFIG_NUMA
  5268. SD_INIT_FUNC(ALLNODES)
  5269. SD_INIT_FUNC(NODE)
  5270. #endif
  5271. #ifdef CONFIG_SCHED_SMT
  5272. SD_INIT_FUNC(SIBLING)
  5273. #endif
  5274. #ifdef CONFIG_SCHED_MC
  5275. SD_INIT_FUNC(MC)
  5276. #endif
  5277. #ifdef CONFIG_SCHED_BOOK
  5278. SD_INIT_FUNC(BOOK)
  5279. #endif
  5280. static int default_relax_domain_level = -1;
  5281. int sched_domain_level_max;
  5282. static int __init setup_relax_domain_level(char *str)
  5283. {
  5284. unsigned long val;
  5285. val = simple_strtoul(str, NULL, 0);
  5286. if (val < sched_domain_level_max)
  5287. default_relax_domain_level = val;
  5288. return 1;
  5289. }
  5290. __setup("relax_domain_level=", setup_relax_domain_level);
  5291. static void set_domain_attribute(struct sched_domain *sd,
  5292. struct sched_domain_attr *attr)
  5293. {
  5294. int request;
  5295. if (!attr || attr->relax_domain_level < 0) {
  5296. if (default_relax_domain_level < 0)
  5297. return;
  5298. else
  5299. request = default_relax_domain_level;
  5300. } else
  5301. request = attr->relax_domain_level;
  5302. if (request < sd->level) {
  5303. /* turn off idle balance on this domain */
  5304. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5305. } else {
  5306. /* turn on idle balance on this domain */
  5307. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5308. }
  5309. }
  5310. static void __sdt_free(const struct cpumask *cpu_map);
  5311. static int __sdt_alloc(const struct cpumask *cpu_map);
  5312. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5313. const struct cpumask *cpu_map)
  5314. {
  5315. switch (what) {
  5316. case sa_rootdomain:
  5317. if (!atomic_read(&d->rd->refcount))
  5318. free_rootdomain(&d->rd->rcu); /* fall through */
  5319. case sa_sd:
  5320. free_percpu(d->sd); /* fall through */
  5321. case sa_sd_storage:
  5322. __sdt_free(cpu_map); /* fall through */
  5323. case sa_none:
  5324. break;
  5325. }
  5326. }
  5327. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5328. const struct cpumask *cpu_map)
  5329. {
  5330. memset(d, 0, sizeof(*d));
  5331. if (__sdt_alloc(cpu_map))
  5332. return sa_sd_storage;
  5333. d->sd = alloc_percpu(struct sched_domain *);
  5334. if (!d->sd)
  5335. return sa_sd_storage;
  5336. d->rd = alloc_rootdomain();
  5337. if (!d->rd)
  5338. return sa_sd;
  5339. return sa_rootdomain;
  5340. }
  5341. /*
  5342. * NULL the sd_data elements we've used to build the sched_domain and
  5343. * sched_group structure so that the subsequent __free_domain_allocs()
  5344. * will not free the data we're using.
  5345. */
  5346. static void claim_allocations(int cpu, struct sched_domain *sd)
  5347. {
  5348. struct sd_data *sdd = sd->private;
  5349. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5350. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5351. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5352. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5353. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  5354. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  5355. }
  5356. #ifdef CONFIG_SCHED_SMT
  5357. static const struct cpumask *cpu_smt_mask(int cpu)
  5358. {
  5359. return topology_thread_cpumask(cpu);
  5360. }
  5361. #endif
  5362. /*
  5363. * Topology list, bottom-up.
  5364. */
  5365. static struct sched_domain_topology_level default_topology[] = {
  5366. #ifdef CONFIG_SCHED_SMT
  5367. { sd_init_SIBLING, cpu_smt_mask, },
  5368. #endif
  5369. #ifdef CONFIG_SCHED_MC
  5370. { sd_init_MC, cpu_coregroup_mask, },
  5371. #endif
  5372. #ifdef CONFIG_SCHED_BOOK
  5373. { sd_init_BOOK, cpu_book_mask, },
  5374. #endif
  5375. { sd_init_CPU, cpu_cpu_mask, },
  5376. #ifdef CONFIG_NUMA
  5377. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  5378. { sd_init_ALLNODES, cpu_allnodes_mask, },
  5379. #endif
  5380. { NULL, },
  5381. };
  5382. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5383. static int __sdt_alloc(const struct cpumask *cpu_map)
  5384. {
  5385. struct sched_domain_topology_level *tl;
  5386. int j;
  5387. for (tl = sched_domain_topology; tl->init; tl++) {
  5388. struct sd_data *sdd = &tl->data;
  5389. sdd->sd = alloc_percpu(struct sched_domain *);
  5390. if (!sdd->sd)
  5391. return -ENOMEM;
  5392. sdd->sg = alloc_percpu(struct sched_group *);
  5393. if (!sdd->sg)
  5394. return -ENOMEM;
  5395. sdd->sgp = alloc_percpu(struct sched_group_power *);
  5396. if (!sdd->sgp)
  5397. return -ENOMEM;
  5398. for_each_cpu(j, cpu_map) {
  5399. struct sched_domain *sd;
  5400. struct sched_group *sg;
  5401. struct sched_group_power *sgp;
  5402. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5403. GFP_KERNEL, cpu_to_node(j));
  5404. if (!sd)
  5405. return -ENOMEM;
  5406. *per_cpu_ptr(sdd->sd, j) = sd;
  5407. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5408. GFP_KERNEL, cpu_to_node(j));
  5409. if (!sg)
  5410. return -ENOMEM;
  5411. *per_cpu_ptr(sdd->sg, j) = sg;
  5412. sgp = kzalloc_node(sizeof(struct sched_group_power),
  5413. GFP_KERNEL, cpu_to_node(j));
  5414. if (!sgp)
  5415. return -ENOMEM;
  5416. *per_cpu_ptr(sdd->sgp, j) = sgp;
  5417. }
  5418. }
  5419. return 0;
  5420. }
  5421. static void __sdt_free(const struct cpumask *cpu_map)
  5422. {
  5423. struct sched_domain_topology_level *tl;
  5424. int j;
  5425. for (tl = sched_domain_topology; tl->init; tl++) {
  5426. struct sd_data *sdd = &tl->data;
  5427. for_each_cpu(j, cpu_map) {
  5428. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  5429. if (sd && (sd->flags & SD_OVERLAP))
  5430. free_sched_groups(sd->groups, 0);
  5431. kfree(*per_cpu_ptr(sdd->sd, j));
  5432. kfree(*per_cpu_ptr(sdd->sg, j));
  5433. kfree(*per_cpu_ptr(sdd->sgp, j));
  5434. }
  5435. free_percpu(sdd->sd);
  5436. free_percpu(sdd->sg);
  5437. free_percpu(sdd->sgp);
  5438. }
  5439. }
  5440. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5441. struct s_data *d, const struct cpumask *cpu_map,
  5442. struct sched_domain_attr *attr, struct sched_domain *child,
  5443. int cpu)
  5444. {
  5445. struct sched_domain *sd = tl->init(tl, cpu);
  5446. if (!sd)
  5447. return child;
  5448. set_domain_attribute(sd, attr);
  5449. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5450. if (child) {
  5451. sd->level = child->level + 1;
  5452. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5453. child->parent = sd;
  5454. }
  5455. sd->child = child;
  5456. return sd;
  5457. }
  5458. /*
  5459. * Build sched domains for a given set of cpus and attach the sched domains
  5460. * to the individual cpus
  5461. */
  5462. static int build_sched_domains(const struct cpumask *cpu_map,
  5463. struct sched_domain_attr *attr)
  5464. {
  5465. enum s_alloc alloc_state = sa_none;
  5466. struct sched_domain *sd;
  5467. struct s_data d;
  5468. int i, ret = -ENOMEM;
  5469. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5470. if (alloc_state != sa_rootdomain)
  5471. goto error;
  5472. /* Set up domains for cpus specified by the cpu_map. */
  5473. for_each_cpu(i, cpu_map) {
  5474. struct sched_domain_topology_level *tl;
  5475. sd = NULL;
  5476. for (tl = sched_domain_topology; tl->init; tl++) {
  5477. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  5478. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5479. sd->flags |= SD_OVERLAP;
  5480. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5481. break;
  5482. }
  5483. while (sd->child)
  5484. sd = sd->child;
  5485. *per_cpu_ptr(d.sd, i) = sd;
  5486. }
  5487. /* Build the groups for the domains */
  5488. for_each_cpu(i, cpu_map) {
  5489. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5490. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5491. if (sd->flags & SD_OVERLAP) {
  5492. if (build_overlap_sched_groups(sd, i))
  5493. goto error;
  5494. } else {
  5495. if (build_sched_groups(sd, i))
  5496. goto error;
  5497. }
  5498. }
  5499. }
  5500. /* Calculate CPU power for physical packages and nodes */
  5501. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5502. if (!cpumask_test_cpu(i, cpu_map))
  5503. continue;
  5504. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5505. claim_allocations(i, sd);
  5506. init_sched_groups_power(i, sd);
  5507. }
  5508. }
  5509. /* Attach the domains */
  5510. rcu_read_lock();
  5511. for_each_cpu(i, cpu_map) {
  5512. sd = *per_cpu_ptr(d.sd, i);
  5513. cpu_attach_domain(sd, d.rd, i);
  5514. }
  5515. rcu_read_unlock();
  5516. ret = 0;
  5517. error:
  5518. __free_domain_allocs(&d, alloc_state, cpu_map);
  5519. return ret;
  5520. }
  5521. static cpumask_var_t *doms_cur; /* current sched domains */
  5522. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5523. static struct sched_domain_attr *dattr_cur;
  5524. /* attribues of custom domains in 'doms_cur' */
  5525. /*
  5526. * Special case: If a kmalloc of a doms_cur partition (array of
  5527. * cpumask) fails, then fallback to a single sched domain,
  5528. * as determined by the single cpumask fallback_doms.
  5529. */
  5530. static cpumask_var_t fallback_doms;
  5531. /*
  5532. * arch_update_cpu_topology lets virtualized architectures update the
  5533. * cpu core maps. It is supposed to return 1 if the topology changed
  5534. * or 0 if it stayed the same.
  5535. */
  5536. int __attribute__((weak)) arch_update_cpu_topology(void)
  5537. {
  5538. return 0;
  5539. }
  5540. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5541. {
  5542. int i;
  5543. cpumask_var_t *doms;
  5544. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5545. if (!doms)
  5546. return NULL;
  5547. for (i = 0; i < ndoms; i++) {
  5548. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5549. free_sched_domains(doms, i);
  5550. return NULL;
  5551. }
  5552. }
  5553. return doms;
  5554. }
  5555. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5556. {
  5557. unsigned int i;
  5558. for (i = 0; i < ndoms; i++)
  5559. free_cpumask_var(doms[i]);
  5560. kfree(doms);
  5561. }
  5562. /*
  5563. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5564. * For now this just excludes isolated cpus, but could be used to
  5565. * exclude other special cases in the future.
  5566. */
  5567. static int init_sched_domains(const struct cpumask *cpu_map)
  5568. {
  5569. int err;
  5570. arch_update_cpu_topology();
  5571. ndoms_cur = 1;
  5572. doms_cur = alloc_sched_domains(ndoms_cur);
  5573. if (!doms_cur)
  5574. doms_cur = &fallback_doms;
  5575. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5576. dattr_cur = NULL;
  5577. err = build_sched_domains(doms_cur[0], NULL);
  5578. register_sched_domain_sysctl();
  5579. return err;
  5580. }
  5581. /*
  5582. * Detach sched domains from a group of cpus specified in cpu_map
  5583. * These cpus will now be attached to the NULL domain
  5584. */
  5585. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5586. {
  5587. int i;
  5588. rcu_read_lock();
  5589. for_each_cpu(i, cpu_map)
  5590. cpu_attach_domain(NULL, &def_root_domain, i);
  5591. rcu_read_unlock();
  5592. }
  5593. /* handle null as "default" */
  5594. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5595. struct sched_domain_attr *new, int idx_new)
  5596. {
  5597. struct sched_domain_attr tmp;
  5598. /* fast path */
  5599. if (!new && !cur)
  5600. return 1;
  5601. tmp = SD_ATTR_INIT;
  5602. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5603. new ? (new + idx_new) : &tmp,
  5604. sizeof(struct sched_domain_attr));
  5605. }
  5606. /*
  5607. * Partition sched domains as specified by the 'ndoms_new'
  5608. * cpumasks in the array doms_new[] of cpumasks. This compares
  5609. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5610. * It destroys each deleted domain and builds each new domain.
  5611. *
  5612. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5613. * The masks don't intersect (don't overlap.) We should setup one
  5614. * sched domain for each mask. CPUs not in any of the cpumasks will
  5615. * not be load balanced. If the same cpumask appears both in the
  5616. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5617. * it as it is.
  5618. *
  5619. * The passed in 'doms_new' should be allocated using
  5620. * alloc_sched_domains. This routine takes ownership of it and will
  5621. * free_sched_domains it when done with it. If the caller failed the
  5622. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5623. * and partition_sched_domains() will fallback to the single partition
  5624. * 'fallback_doms', it also forces the domains to be rebuilt.
  5625. *
  5626. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5627. * ndoms_new == 0 is a special case for destroying existing domains,
  5628. * and it will not create the default domain.
  5629. *
  5630. * Call with hotplug lock held
  5631. */
  5632. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5633. struct sched_domain_attr *dattr_new)
  5634. {
  5635. int i, j, n;
  5636. int new_topology;
  5637. mutex_lock(&sched_domains_mutex);
  5638. /* always unregister in case we don't destroy any domains */
  5639. unregister_sched_domain_sysctl();
  5640. /* Let architecture update cpu core mappings. */
  5641. new_topology = arch_update_cpu_topology();
  5642. n = doms_new ? ndoms_new : 0;
  5643. /* Destroy deleted domains */
  5644. for (i = 0; i < ndoms_cur; i++) {
  5645. for (j = 0; j < n && !new_topology; j++) {
  5646. if (cpumask_equal(doms_cur[i], doms_new[j])
  5647. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5648. goto match1;
  5649. }
  5650. /* no match - a current sched domain not in new doms_new[] */
  5651. detach_destroy_domains(doms_cur[i]);
  5652. match1:
  5653. ;
  5654. }
  5655. if (doms_new == NULL) {
  5656. ndoms_cur = 0;
  5657. doms_new = &fallback_doms;
  5658. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5659. WARN_ON_ONCE(dattr_new);
  5660. }
  5661. /* Build new domains */
  5662. for (i = 0; i < ndoms_new; i++) {
  5663. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  5664. if (cpumask_equal(doms_new[i], doms_cur[j])
  5665. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5666. goto match2;
  5667. }
  5668. /* no match - add a new doms_new */
  5669. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5670. match2:
  5671. ;
  5672. }
  5673. /* Remember the new sched domains */
  5674. if (doms_cur != &fallback_doms)
  5675. free_sched_domains(doms_cur, ndoms_cur);
  5676. kfree(dattr_cur); /* kfree(NULL) is safe */
  5677. doms_cur = doms_new;
  5678. dattr_cur = dattr_new;
  5679. ndoms_cur = ndoms_new;
  5680. register_sched_domain_sysctl();
  5681. mutex_unlock(&sched_domains_mutex);
  5682. }
  5683. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5684. static void reinit_sched_domains(void)
  5685. {
  5686. get_online_cpus();
  5687. /* Destroy domains first to force the rebuild */
  5688. partition_sched_domains(0, NULL, NULL);
  5689. rebuild_sched_domains();
  5690. put_online_cpus();
  5691. }
  5692. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5693. {
  5694. unsigned int level = 0;
  5695. if (sscanf(buf, "%u", &level) != 1)
  5696. return -EINVAL;
  5697. /*
  5698. * level is always be positive so don't check for
  5699. * level < POWERSAVINGS_BALANCE_NONE which is 0
  5700. * What happens on 0 or 1 byte write,
  5701. * need to check for count as well?
  5702. */
  5703. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  5704. return -EINVAL;
  5705. if (smt)
  5706. sched_smt_power_savings = level;
  5707. else
  5708. sched_mc_power_savings = level;
  5709. reinit_sched_domains();
  5710. return count;
  5711. }
  5712. #ifdef CONFIG_SCHED_MC
  5713. static ssize_t sched_mc_power_savings_show(struct device *dev,
  5714. struct device_attribute *attr,
  5715. char *buf)
  5716. {
  5717. return sprintf(buf, "%u\n", sched_mc_power_savings);
  5718. }
  5719. static ssize_t sched_mc_power_savings_store(struct device *dev,
  5720. struct device_attribute *attr,
  5721. const char *buf, size_t count)
  5722. {
  5723. return sched_power_savings_store(buf, count, 0);
  5724. }
  5725. static DEVICE_ATTR(sched_mc_power_savings, 0644,
  5726. sched_mc_power_savings_show,
  5727. sched_mc_power_savings_store);
  5728. #endif
  5729. #ifdef CONFIG_SCHED_SMT
  5730. static ssize_t sched_smt_power_savings_show(struct device *dev,
  5731. struct device_attribute *attr,
  5732. char *buf)
  5733. {
  5734. return sprintf(buf, "%u\n", sched_smt_power_savings);
  5735. }
  5736. static ssize_t sched_smt_power_savings_store(struct device *dev,
  5737. struct device_attribute *attr,
  5738. const char *buf, size_t count)
  5739. {
  5740. return sched_power_savings_store(buf, count, 1);
  5741. }
  5742. static DEVICE_ATTR(sched_smt_power_savings, 0644,
  5743. sched_smt_power_savings_show,
  5744. sched_smt_power_savings_store);
  5745. #endif
  5746. int __init sched_create_sysfs_power_savings_entries(struct device *dev)
  5747. {
  5748. int err = 0;
  5749. #ifdef CONFIG_SCHED_SMT
  5750. if (smt_capable())
  5751. err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
  5752. #endif
  5753. #ifdef CONFIG_SCHED_MC
  5754. if (!err && mc_capable())
  5755. err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
  5756. #endif
  5757. return err;
  5758. }
  5759. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  5760. /*
  5761. * Update cpusets according to cpu_active mask. If cpusets are
  5762. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5763. * around partition_sched_domains().
  5764. */
  5765. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5766. void *hcpu)
  5767. {
  5768. switch (action & ~CPU_TASKS_FROZEN) {
  5769. case CPU_ONLINE:
  5770. case CPU_DOWN_FAILED:
  5771. cpuset_update_active_cpus();
  5772. return NOTIFY_OK;
  5773. default:
  5774. return NOTIFY_DONE;
  5775. }
  5776. }
  5777. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5778. void *hcpu)
  5779. {
  5780. switch (action & ~CPU_TASKS_FROZEN) {
  5781. case CPU_DOWN_PREPARE:
  5782. cpuset_update_active_cpus();
  5783. return NOTIFY_OK;
  5784. default:
  5785. return NOTIFY_DONE;
  5786. }
  5787. }
  5788. void __init sched_init_smp(void)
  5789. {
  5790. cpumask_var_t non_isolated_cpus;
  5791. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5792. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5793. get_online_cpus();
  5794. mutex_lock(&sched_domains_mutex);
  5795. init_sched_domains(cpu_active_mask);
  5796. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5797. if (cpumask_empty(non_isolated_cpus))
  5798. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5799. mutex_unlock(&sched_domains_mutex);
  5800. put_online_cpus();
  5801. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5802. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5803. /* RT runtime code needs to handle some hotplug events */
  5804. hotcpu_notifier(update_runtime, 0);
  5805. init_hrtick();
  5806. /* Move init over to a non-isolated CPU */
  5807. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5808. BUG();
  5809. sched_init_granularity();
  5810. free_cpumask_var(non_isolated_cpus);
  5811. init_sched_rt_class();
  5812. }
  5813. #else
  5814. void __init sched_init_smp(void)
  5815. {
  5816. sched_init_granularity();
  5817. }
  5818. #endif /* CONFIG_SMP */
  5819. const_debug unsigned int sysctl_timer_migration = 1;
  5820. int in_sched_functions(unsigned long addr)
  5821. {
  5822. return in_lock_functions(addr) ||
  5823. (addr >= (unsigned long)__sched_text_start
  5824. && addr < (unsigned long)__sched_text_end);
  5825. }
  5826. #ifdef CONFIG_CGROUP_SCHED
  5827. struct task_group root_task_group;
  5828. #endif
  5829. DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  5830. void __init sched_init(void)
  5831. {
  5832. int i, j;
  5833. unsigned long alloc_size = 0, ptr;
  5834. #ifdef CONFIG_FAIR_GROUP_SCHED
  5835. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5836. #endif
  5837. #ifdef CONFIG_RT_GROUP_SCHED
  5838. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5839. #endif
  5840. #ifdef CONFIG_CPUMASK_OFFSTACK
  5841. alloc_size += num_possible_cpus() * cpumask_size();
  5842. #endif
  5843. if (alloc_size) {
  5844. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5845. #ifdef CONFIG_FAIR_GROUP_SCHED
  5846. root_task_group.se = (struct sched_entity **)ptr;
  5847. ptr += nr_cpu_ids * sizeof(void **);
  5848. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5849. ptr += nr_cpu_ids * sizeof(void **);
  5850. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5851. #ifdef CONFIG_RT_GROUP_SCHED
  5852. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5853. ptr += nr_cpu_ids * sizeof(void **);
  5854. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5855. ptr += nr_cpu_ids * sizeof(void **);
  5856. #endif /* CONFIG_RT_GROUP_SCHED */
  5857. #ifdef CONFIG_CPUMASK_OFFSTACK
  5858. for_each_possible_cpu(i) {
  5859. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  5860. ptr += cpumask_size();
  5861. }
  5862. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5863. }
  5864. #ifdef CONFIG_SMP
  5865. init_defrootdomain();
  5866. #endif
  5867. init_rt_bandwidth(&def_rt_bandwidth,
  5868. global_rt_period(), global_rt_runtime());
  5869. #ifdef CONFIG_RT_GROUP_SCHED
  5870. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5871. global_rt_period(), global_rt_runtime());
  5872. #endif /* CONFIG_RT_GROUP_SCHED */
  5873. #ifdef CONFIG_CGROUP_SCHED
  5874. list_add(&root_task_group.list, &task_groups);
  5875. INIT_LIST_HEAD(&root_task_group.children);
  5876. INIT_LIST_HEAD(&root_task_group.siblings);
  5877. autogroup_init(&init_task);
  5878. #endif /* CONFIG_CGROUP_SCHED */
  5879. #ifdef CONFIG_CGROUP_CPUACCT
  5880. root_cpuacct.cpustat = &kernel_cpustat;
  5881. root_cpuacct.cpuusage = alloc_percpu(u64);
  5882. /* Too early, not expected to fail */
  5883. BUG_ON(!root_cpuacct.cpuusage);
  5884. #endif
  5885. for_each_possible_cpu(i) {
  5886. struct rq *rq;
  5887. rq = cpu_rq(i);
  5888. raw_spin_lock_init(&rq->lock);
  5889. rq->nr_running = 0;
  5890. rq->calc_load_active = 0;
  5891. rq->calc_load_update = jiffies + LOAD_FREQ;
  5892. init_cfs_rq(&rq->cfs);
  5893. init_rt_rq(&rq->rt, rq);
  5894. #ifdef CONFIG_FAIR_GROUP_SCHED
  5895. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5896. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5897. /*
  5898. * How much cpu bandwidth does root_task_group get?
  5899. *
  5900. * In case of task-groups formed thr' the cgroup filesystem, it
  5901. * gets 100% of the cpu resources in the system. This overall
  5902. * system cpu resource is divided among the tasks of
  5903. * root_task_group and its child task-groups in a fair manner,
  5904. * based on each entity's (task or task-group's) weight
  5905. * (se->load.weight).
  5906. *
  5907. * In other words, if root_task_group has 10 tasks of weight
  5908. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5909. * then A0's share of the cpu resource is:
  5910. *
  5911. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5912. *
  5913. * We achieve this by letting root_task_group's tasks sit
  5914. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5915. */
  5916. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5917. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5918. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5919. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5920. #ifdef CONFIG_RT_GROUP_SCHED
  5921. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5922. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5923. #endif
  5924. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5925. rq->cpu_load[j] = 0;
  5926. rq->last_load_update_tick = jiffies;
  5927. #ifdef CONFIG_SMP
  5928. rq->sd = NULL;
  5929. rq->rd = NULL;
  5930. rq->cpu_power = SCHED_POWER_SCALE;
  5931. rq->post_schedule = 0;
  5932. rq->active_balance = 0;
  5933. rq->next_balance = jiffies;
  5934. rq->push_cpu = 0;
  5935. rq->cpu = i;
  5936. rq->online = 0;
  5937. rq->idle_stamp = 0;
  5938. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5939. INIT_LIST_HEAD(&rq->cfs_tasks);
  5940. rq_attach_root(rq, &def_root_domain);
  5941. #ifdef CONFIG_NO_HZ
  5942. rq->nohz_flags = 0;
  5943. #endif
  5944. #endif
  5945. init_rq_hrtick(rq);
  5946. atomic_set(&rq->nr_iowait, 0);
  5947. }
  5948. set_load_weight(&init_task);
  5949. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5950. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5951. #endif
  5952. #ifdef CONFIG_RT_MUTEXES
  5953. plist_head_init(&init_task.pi_waiters);
  5954. #endif
  5955. /*
  5956. * The boot idle thread does lazy MMU switching as well:
  5957. */
  5958. atomic_inc(&init_mm.mm_count);
  5959. enter_lazy_tlb(&init_mm, current);
  5960. /*
  5961. * Make us the idle thread. Technically, schedule() should not be
  5962. * called from this thread, however somewhere below it might be,
  5963. * but because we are the idle thread, we just pick up running again
  5964. * when this runqueue becomes "idle".
  5965. */
  5966. init_idle(current, smp_processor_id());
  5967. calc_load_update = jiffies + LOAD_FREQ;
  5968. /*
  5969. * During early bootup we pretend to be a normal task:
  5970. */
  5971. current->sched_class = &fair_sched_class;
  5972. #ifdef CONFIG_SMP
  5973. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5974. /* May be allocated at isolcpus cmdline parse time */
  5975. if (cpu_isolated_map == NULL)
  5976. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5977. #endif
  5978. init_sched_fair_class();
  5979. scheduler_running = 1;
  5980. }
  5981. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5982. static inline int preempt_count_equals(int preempt_offset)
  5983. {
  5984. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5985. return (nested == preempt_offset);
  5986. }
  5987. void __might_sleep(const char *file, int line, int preempt_offset)
  5988. {
  5989. static unsigned long prev_jiffy; /* ratelimiting */
  5990. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5991. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5992. system_state != SYSTEM_RUNNING || oops_in_progress)
  5993. return;
  5994. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5995. return;
  5996. prev_jiffy = jiffies;
  5997. printk(KERN_ERR
  5998. "BUG: sleeping function called from invalid context at %s:%d\n",
  5999. file, line);
  6000. printk(KERN_ERR
  6001. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6002. in_atomic(), irqs_disabled(),
  6003. current->pid, current->comm);
  6004. debug_show_held_locks(current);
  6005. if (irqs_disabled())
  6006. print_irqtrace_events(current);
  6007. dump_stack();
  6008. }
  6009. EXPORT_SYMBOL(__might_sleep);
  6010. #endif
  6011. #ifdef CONFIG_MAGIC_SYSRQ
  6012. static void normalize_task(struct rq *rq, struct task_struct *p)
  6013. {
  6014. const struct sched_class *prev_class = p->sched_class;
  6015. int old_prio = p->prio;
  6016. int on_rq;
  6017. on_rq = p->on_rq;
  6018. if (on_rq)
  6019. dequeue_task(rq, p, 0);
  6020. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6021. if (on_rq) {
  6022. enqueue_task(rq, p, 0);
  6023. resched_task(rq->curr);
  6024. }
  6025. check_class_changed(rq, p, prev_class, old_prio);
  6026. }
  6027. void normalize_rt_tasks(void)
  6028. {
  6029. struct task_struct *g, *p;
  6030. unsigned long flags;
  6031. struct rq *rq;
  6032. read_lock_irqsave(&tasklist_lock, flags);
  6033. do_each_thread(g, p) {
  6034. /*
  6035. * Only normalize user tasks:
  6036. */
  6037. if (!p->mm)
  6038. continue;
  6039. p->se.exec_start = 0;
  6040. #ifdef CONFIG_SCHEDSTATS
  6041. p->se.statistics.wait_start = 0;
  6042. p->se.statistics.sleep_start = 0;
  6043. p->se.statistics.block_start = 0;
  6044. #endif
  6045. if (!rt_task(p)) {
  6046. /*
  6047. * Renice negative nice level userspace
  6048. * tasks back to 0:
  6049. */
  6050. if (TASK_NICE(p) < 0 && p->mm)
  6051. set_user_nice(p, 0);
  6052. continue;
  6053. }
  6054. raw_spin_lock(&p->pi_lock);
  6055. rq = __task_rq_lock(p);
  6056. normalize_task(rq, p);
  6057. __task_rq_unlock(rq);
  6058. raw_spin_unlock(&p->pi_lock);
  6059. } while_each_thread(g, p);
  6060. read_unlock_irqrestore(&tasklist_lock, flags);
  6061. }
  6062. #endif /* CONFIG_MAGIC_SYSRQ */
  6063. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6064. /*
  6065. * These functions are only useful for the IA64 MCA handling, or kdb.
  6066. *
  6067. * They can only be called when the whole system has been
  6068. * stopped - every CPU needs to be quiescent, and no scheduling
  6069. * activity can take place. Using them for anything else would
  6070. * be a serious bug, and as a result, they aren't even visible
  6071. * under any other configuration.
  6072. */
  6073. /**
  6074. * curr_task - return the current task for a given cpu.
  6075. * @cpu: the processor in question.
  6076. *
  6077. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6078. */
  6079. struct task_struct *curr_task(int cpu)
  6080. {
  6081. return cpu_curr(cpu);
  6082. }
  6083. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6084. #ifdef CONFIG_IA64
  6085. /**
  6086. * set_curr_task - set the current task for a given cpu.
  6087. * @cpu: the processor in question.
  6088. * @p: the task pointer to set.
  6089. *
  6090. * Description: This function must only be used when non-maskable interrupts
  6091. * are serviced on a separate stack. It allows the architecture to switch the
  6092. * notion of the current task on a cpu in a non-blocking manner. This function
  6093. * must be called with all CPU's synchronized, and interrupts disabled, the
  6094. * and caller must save the original value of the current task (see
  6095. * curr_task() above) and restore that value before reenabling interrupts and
  6096. * re-starting the system.
  6097. *
  6098. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6099. */
  6100. void set_curr_task(int cpu, struct task_struct *p)
  6101. {
  6102. cpu_curr(cpu) = p;
  6103. }
  6104. #endif
  6105. #ifdef CONFIG_CGROUP_SCHED
  6106. /* task_group_lock serializes the addition/removal of task groups */
  6107. static DEFINE_SPINLOCK(task_group_lock);
  6108. static void free_sched_group(struct task_group *tg)
  6109. {
  6110. free_fair_sched_group(tg);
  6111. free_rt_sched_group(tg);
  6112. autogroup_free(tg);
  6113. kfree(tg);
  6114. }
  6115. /* allocate runqueue etc for a new task group */
  6116. struct task_group *sched_create_group(struct task_group *parent)
  6117. {
  6118. struct task_group *tg;
  6119. unsigned long flags;
  6120. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6121. if (!tg)
  6122. return ERR_PTR(-ENOMEM);
  6123. if (!alloc_fair_sched_group(tg, parent))
  6124. goto err;
  6125. if (!alloc_rt_sched_group(tg, parent))
  6126. goto err;
  6127. spin_lock_irqsave(&task_group_lock, flags);
  6128. list_add_rcu(&tg->list, &task_groups);
  6129. WARN_ON(!parent); /* root should already exist */
  6130. tg->parent = parent;
  6131. INIT_LIST_HEAD(&tg->children);
  6132. list_add_rcu(&tg->siblings, &parent->children);
  6133. spin_unlock_irqrestore(&task_group_lock, flags);
  6134. return tg;
  6135. err:
  6136. free_sched_group(tg);
  6137. return ERR_PTR(-ENOMEM);
  6138. }
  6139. /* rcu callback to free various structures associated with a task group */
  6140. static void free_sched_group_rcu(struct rcu_head *rhp)
  6141. {
  6142. /* now it should be safe to free those cfs_rqs */
  6143. free_sched_group(container_of(rhp, struct task_group, rcu));
  6144. }
  6145. /* Destroy runqueue etc associated with a task group */
  6146. void sched_destroy_group(struct task_group *tg)
  6147. {
  6148. unsigned long flags;
  6149. int i;
  6150. /* end participation in shares distribution */
  6151. for_each_possible_cpu(i)
  6152. unregister_fair_sched_group(tg, i);
  6153. spin_lock_irqsave(&task_group_lock, flags);
  6154. list_del_rcu(&tg->list);
  6155. list_del_rcu(&tg->siblings);
  6156. spin_unlock_irqrestore(&task_group_lock, flags);
  6157. /* wait for possible concurrent references to cfs_rqs complete */
  6158. call_rcu(&tg->rcu, free_sched_group_rcu);
  6159. }
  6160. /* change task's runqueue when it moves between groups.
  6161. * The caller of this function should have put the task in its new group
  6162. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6163. * reflect its new group.
  6164. */
  6165. void sched_move_task(struct task_struct *tsk)
  6166. {
  6167. int on_rq, running;
  6168. unsigned long flags;
  6169. struct rq *rq;
  6170. rq = task_rq_lock(tsk, &flags);
  6171. running = task_current(rq, tsk);
  6172. on_rq = tsk->on_rq;
  6173. if (on_rq)
  6174. dequeue_task(rq, tsk, 0);
  6175. if (unlikely(running))
  6176. tsk->sched_class->put_prev_task(rq, tsk);
  6177. #ifdef CONFIG_FAIR_GROUP_SCHED
  6178. if (tsk->sched_class->task_move_group)
  6179. tsk->sched_class->task_move_group(tsk, on_rq);
  6180. else
  6181. #endif
  6182. set_task_rq(tsk, task_cpu(tsk));
  6183. if (unlikely(running))
  6184. tsk->sched_class->set_curr_task(rq);
  6185. if (on_rq)
  6186. enqueue_task(rq, tsk, 0);
  6187. task_rq_unlock(rq, tsk, &flags);
  6188. }
  6189. #endif /* CONFIG_CGROUP_SCHED */
  6190. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  6191. static unsigned long to_ratio(u64 period, u64 runtime)
  6192. {
  6193. if (runtime == RUNTIME_INF)
  6194. return 1ULL << 20;
  6195. return div64_u64(runtime << 20, period);
  6196. }
  6197. #endif
  6198. #ifdef CONFIG_RT_GROUP_SCHED
  6199. /*
  6200. * Ensure that the real time constraints are schedulable.
  6201. */
  6202. static DEFINE_MUTEX(rt_constraints_mutex);
  6203. /* Must be called with tasklist_lock held */
  6204. static inline int tg_has_rt_tasks(struct task_group *tg)
  6205. {
  6206. struct task_struct *g, *p;
  6207. do_each_thread(g, p) {
  6208. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6209. return 1;
  6210. } while_each_thread(g, p);
  6211. return 0;
  6212. }
  6213. struct rt_schedulable_data {
  6214. struct task_group *tg;
  6215. u64 rt_period;
  6216. u64 rt_runtime;
  6217. };
  6218. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6219. {
  6220. struct rt_schedulable_data *d = data;
  6221. struct task_group *child;
  6222. unsigned long total, sum = 0;
  6223. u64 period, runtime;
  6224. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6225. runtime = tg->rt_bandwidth.rt_runtime;
  6226. if (tg == d->tg) {
  6227. period = d->rt_period;
  6228. runtime = d->rt_runtime;
  6229. }
  6230. /*
  6231. * Cannot have more runtime than the period.
  6232. */
  6233. if (runtime > period && runtime != RUNTIME_INF)
  6234. return -EINVAL;
  6235. /*
  6236. * Ensure we don't starve existing RT tasks.
  6237. */
  6238. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6239. return -EBUSY;
  6240. total = to_ratio(period, runtime);
  6241. /*
  6242. * Nobody can have more than the global setting allows.
  6243. */
  6244. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6245. return -EINVAL;
  6246. /*
  6247. * The sum of our children's runtime should not exceed our own.
  6248. */
  6249. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6250. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6251. runtime = child->rt_bandwidth.rt_runtime;
  6252. if (child == d->tg) {
  6253. period = d->rt_period;
  6254. runtime = d->rt_runtime;
  6255. }
  6256. sum += to_ratio(period, runtime);
  6257. }
  6258. if (sum > total)
  6259. return -EINVAL;
  6260. return 0;
  6261. }
  6262. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6263. {
  6264. int ret;
  6265. struct rt_schedulable_data data = {
  6266. .tg = tg,
  6267. .rt_period = period,
  6268. .rt_runtime = runtime,
  6269. };
  6270. rcu_read_lock();
  6271. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6272. rcu_read_unlock();
  6273. return ret;
  6274. }
  6275. static int tg_set_rt_bandwidth(struct task_group *tg,
  6276. u64 rt_period, u64 rt_runtime)
  6277. {
  6278. int i, err = 0;
  6279. mutex_lock(&rt_constraints_mutex);
  6280. read_lock(&tasklist_lock);
  6281. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6282. if (err)
  6283. goto unlock;
  6284. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6285. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6286. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6287. for_each_possible_cpu(i) {
  6288. struct rt_rq *rt_rq = tg->rt_rq[i];
  6289. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6290. rt_rq->rt_runtime = rt_runtime;
  6291. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6292. }
  6293. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6294. unlock:
  6295. read_unlock(&tasklist_lock);
  6296. mutex_unlock(&rt_constraints_mutex);
  6297. return err;
  6298. }
  6299. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6300. {
  6301. u64 rt_runtime, rt_period;
  6302. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6303. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6304. if (rt_runtime_us < 0)
  6305. rt_runtime = RUNTIME_INF;
  6306. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6307. }
  6308. long sched_group_rt_runtime(struct task_group *tg)
  6309. {
  6310. u64 rt_runtime_us;
  6311. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6312. return -1;
  6313. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6314. do_div(rt_runtime_us, NSEC_PER_USEC);
  6315. return rt_runtime_us;
  6316. }
  6317. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6318. {
  6319. u64 rt_runtime, rt_period;
  6320. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6321. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6322. if (rt_period == 0)
  6323. return -EINVAL;
  6324. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6325. }
  6326. long sched_group_rt_period(struct task_group *tg)
  6327. {
  6328. u64 rt_period_us;
  6329. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6330. do_div(rt_period_us, NSEC_PER_USEC);
  6331. return rt_period_us;
  6332. }
  6333. static int sched_rt_global_constraints(void)
  6334. {
  6335. u64 runtime, period;
  6336. int ret = 0;
  6337. if (sysctl_sched_rt_period <= 0)
  6338. return -EINVAL;
  6339. runtime = global_rt_runtime();
  6340. period = global_rt_period();
  6341. /*
  6342. * Sanity check on the sysctl variables.
  6343. */
  6344. if (runtime > period && runtime != RUNTIME_INF)
  6345. return -EINVAL;
  6346. mutex_lock(&rt_constraints_mutex);
  6347. read_lock(&tasklist_lock);
  6348. ret = __rt_schedulable(NULL, 0, 0);
  6349. read_unlock(&tasklist_lock);
  6350. mutex_unlock(&rt_constraints_mutex);
  6351. return ret;
  6352. }
  6353. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6354. {
  6355. /* Don't accept realtime tasks when there is no way for them to run */
  6356. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6357. return 0;
  6358. return 1;
  6359. }
  6360. #else /* !CONFIG_RT_GROUP_SCHED */
  6361. static int sched_rt_global_constraints(void)
  6362. {
  6363. unsigned long flags;
  6364. int i;
  6365. if (sysctl_sched_rt_period <= 0)
  6366. return -EINVAL;
  6367. /*
  6368. * There's always some RT tasks in the root group
  6369. * -- migration, kstopmachine etc..
  6370. */
  6371. if (sysctl_sched_rt_runtime == 0)
  6372. return -EBUSY;
  6373. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6374. for_each_possible_cpu(i) {
  6375. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6376. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6377. rt_rq->rt_runtime = global_rt_runtime();
  6378. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6379. }
  6380. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6381. return 0;
  6382. }
  6383. #endif /* CONFIG_RT_GROUP_SCHED */
  6384. int sched_rt_handler(struct ctl_table *table, int write,
  6385. void __user *buffer, size_t *lenp,
  6386. loff_t *ppos)
  6387. {
  6388. int ret;
  6389. int old_period, old_runtime;
  6390. static DEFINE_MUTEX(mutex);
  6391. mutex_lock(&mutex);
  6392. old_period = sysctl_sched_rt_period;
  6393. old_runtime = sysctl_sched_rt_runtime;
  6394. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6395. if (!ret && write) {
  6396. ret = sched_rt_global_constraints();
  6397. if (ret) {
  6398. sysctl_sched_rt_period = old_period;
  6399. sysctl_sched_rt_runtime = old_runtime;
  6400. } else {
  6401. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6402. def_rt_bandwidth.rt_period =
  6403. ns_to_ktime(global_rt_period());
  6404. }
  6405. }
  6406. mutex_unlock(&mutex);
  6407. return ret;
  6408. }
  6409. #ifdef CONFIG_CGROUP_SCHED
  6410. /* return corresponding task_group object of a cgroup */
  6411. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6412. {
  6413. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6414. struct task_group, css);
  6415. }
  6416. static struct cgroup_subsys_state *
  6417. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6418. {
  6419. struct task_group *tg, *parent;
  6420. if (!cgrp->parent) {
  6421. /* This is early initialization for the top cgroup */
  6422. return &root_task_group.css;
  6423. }
  6424. parent = cgroup_tg(cgrp->parent);
  6425. tg = sched_create_group(parent);
  6426. if (IS_ERR(tg))
  6427. return ERR_PTR(-ENOMEM);
  6428. return &tg->css;
  6429. }
  6430. static void
  6431. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6432. {
  6433. struct task_group *tg = cgroup_tg(cgrp);
  6434. sched_destroy_group(tg);
  6435. }
  6436. static int cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6437. struct cgroup_taskset *tset)
  6438. {
  6439. struct task_struct *task;
  6440. cgroup_taskset_for_each(task, cgrp, tset) {
  6441. #ifdef CONFIG_RT_GROUP_SCHED
  6442. if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
  6443. return -EINVAL;
  6444. #else
  6445. /* We don't support RT-tasks being in separate groups */
  6446. if (task->sched_class != &fair_sched_class)
  6447. return -EINVAL;
  6448. #endif
  6449. }
  6450. return 0;
  6451. }
  6452. static void cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6453. struct cgroup_taskset *tset)
  6454. {
  6455. struct task_struct *task;
  6456. cgroup_taskset_for_each(task, cgrp, tset)
  6457. sched_move_task(task);
  6458. }
  6459. static void
  6460. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6461. struct cgroup *old_cgrp, struct task_struct *task)
  6462. {
  6463. /*
  6464. * cgroup_exit() is called in the copy_process() failure path.
  6465. * Ignore this case since the task hasn't ran yet, this avoids
  6466. * trying to poke a half freed task state from generic code.
  6467. */
  6468. if (!(task->flags & PF_EXITING))
  6469. return;
  6470. sched_move_task(task);
  6471. }
  6472. #ifdef CONFIG_FAIR_GROUP_SCHED
  6473. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6474. u64 shareval)
  6475. {
  6476. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  6477. }
  6478. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6479. {
  6480. struct task_group *tg = cgroup_tg(cgrp);
  6481. return (u64) scale_load_down(tg->shares);
  6482. }
  6483. #ifdef CONFIG_CFS_BANDWIDTH
  6484. static DEFINE_MUTEX(cfs_constraints_mutex);
  6485. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6486. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6487. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6488. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6489. {
  6490. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6491. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6492. if (tg == &root_task_group)
  6493. return -EINVAL;
  6494. /*
  6495. * Ensure we have at some amount of bandwidth every period. This is
  6496. * to prevent reaching a state of large arrears when throttled via
  6497. * entity_tick() resulting in prolonged exit starvation.
  6498. */
  6499. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6500. return -EINVAL;
  6501. /*
  6502. * Likewise, bound things on the otherside by preventing insane quota
  6503. * periods. This also allows us to normalize in computing quota
  6504. * feasibility.
  6505. */
  6506. if (period > max_cfs_quota_period)
  6507. return -EINVAL;
  6508. mutex_lock(&cfs_constraints_mutex);
  6509. ret = __cfs_schedulable(tg, period, quota);
  6510. if (ret)
  6511. goto out_unlock;
  6512. runtime_enabled = quota != RUNTIME_INF;
  6513. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6514. account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
  6515. raw_spin_lock_irq(&cfs_b->lock);
  6516. cfs_b->period = ns_to_ktime(period);
  6517. cfs_b->quota = quota;
  6518. __refill_cfs_bandwidth_runtime(cfs_b);
  6519. /* restart the period timer (if active) to handle new period expiry */
  6520. if (runtime_enabled && cfs_b->timer_active) {
  6521. /* force a reprogram */
  6522. cfs_b->timer_active = 0;
  6523. __start_cfs_bandwidth(cfs_b);
  6524. }
  6525. raw_spin_unlock_irq(&cfs_b->lock);
  6526. for_each_possible_cpu(i) {
  6527. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6528. struct rq *rq = cfs_rq->rq;
  6529. raw_spin_lock_irq(&rq->lock);
  6530. cfs_rq->runtime_enabled = runtime_enabled;
  6531. cfs_rq->runtime_remaining = 0;
  6532. if (cfs_rq->throttled)
  6533. unthrottle_cfs_rq(cfs_rq);
  6534. raw_spin_unlock_irq(&rq->lock);
  6535. }
  6536. out_unlock:
  6537. mutex_unlock(&cfs_constraints_mutex);
  6538. return ret;
  6539. }
  6540. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6541. {
  6542. u64 quota, period;
  6543. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6544. if (cfs_quota_us < 0)
  6545. quota = RUNTIME_INF;
  6546. else
  6547. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6548. return tg_set_cfs_bandwidth(tg, period, quota);
  6549. }
  6550. long tg_get_cfs_quota(struct task_group *tg)
  6551. {
  6552. u64 quota_us;
  6553. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6554. return -1;
  6555. quota_us = tg->cfs_bandwidth.quota;
  6556. do_div(quota_us, NSEC_PER_USEC);
  6557. return quota_us;
  6558. }
  6559. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6560. {
  6561. u64 quota, period;
  6562. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6563. quota = tg->cfs_bandwidth.quota;
  6564. return tg_set_cfs_bandwidth(tg, period, quota);
  6565. }
  6566. long tg_get_cfs_period(struct task_group *tg)
  6567. {
  6568. u64 cfs_period_us;
  6569. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6570. do_div(cfs_period_us, NSEC_PER_USEC);
  6571. return cfs_period_us;
  6572. }
  6573. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  6574. {
  6575. return tg_get_cfs_quota(cgroup_tg(cgrp));
  6576. }
  6577. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  6578. s64 cfs_quota_us)
  6579. {
  6580. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  6581. }
  6582. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  6583. {
  6584. return tg_get_cfs_period(cgroup_tg(cgrp));
  6585. }
  6586. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  6587. u64 cfs_period_us)
  6588. {
  6589. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  6590. }
  6591. struct cfs_schedulable_data {
  6592. struct task_group *tg;
  6593. u64 period, quota;
  6594. };
  6595. /*
  6596. * normalize group quota/period to be quota/max_period
  6597. * note: units are usecs
  6598. */
  6599. static u64 normalize_cfs_quota(struct task_group *tg,
  6600. struct cfs_schedulable_data *d)
  6601. {
  6602. u64 quota, period;
  6603. if (tg == d->tg) {
  6604. period = d->period;
  6605. quota = d->quota;
  6606. } else {
  6607. period = tg_get_cfs_period(tg);
  6608. quota = tg_get_cfs_quota(tg);
  6609. }
  6610. /* note: these should typically be equivalent */
  6611. if (quota == RUNTIME_INF || quota == -1)
  6612. return RUNTIME_INF;
  6613. return to_ratio(period, quota);
  6614. }
  6615. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6616. {
  6617. struct cfs_schedulable_data *d = data;
  6618. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6619. s64 quota = 0, parent_quota = -1;
  6620. if (!tg->parent) {
  6621. quota = RUNTIME_INF;
  6622. } else {
  6623. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6624. quota = normalize_cfs_quota(tg, d);
  6625. parent_quota = parent_b->hierarchal_quota;
  6626. /*
  6627. * ensure max(child_quota) <= parent_quota, inherit when no
  6628. * limit is set
  6629. */
  6630. if (quota == RUNTIME_INF)
  6631. quota = parent_quota;
  6632. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6633. return -EINVAL;
  6634. }
  6635. cfs_b->hierarchal_quota = quota;
  6636. return 0;
  6637. }
  6638. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6639. {
  6640. int ret;
  6641. struct cfs_schedulable_data data = {
  6642. .tg = tg,
  6643. .period = period,
  6644. .quota = quota,
  6645. };
  6646. if (quota != RUNTIME_INF) {
  6647. do_div(data.period, NSEC_PER_USEC);
  6648. do_div(data.quota, NSEC_PER_USEC);
  6649. }
  6650. rcu_read_lock();
  6651. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6652. rcu_read_unlock();
  6653. return ret;
  6654. }
  6655. static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6656. struct cgroup_map_cb *cb)
  6657. {
  6658. struct task_group *tg = cgroup_tg(cgrp);
  6659. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6660. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6661. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6662. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6663. return 0;
  6664. }
  6665. #endif /* CONFIG_CFS_BANDWIDTH */
  6666. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6667. #ifdef CONFIG_RT_GROUP_SCHED
  6668. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6669. s64 val)
  6670. {
  6671. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6672. }
  6673. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  6674. {
  6675. return sched_group_rt_runtime(cgroup_tg(cgrp));
  6676. }
  6677. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6678. u64 rt_period_us)
  6679. {
  6680. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  6681. }
  6682. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6683. {
  6684. return sched_group_rt_period(cgroup_tg(cgrp));
  6685. }
  6686. #endif /* CONFIG_RT_GROUP_SCHED */
  6687. static struct cftype cpu_files[] = {
  6688. #ifdef CONFIG_FAIR_GROUP_SCHED
  6689. {
  6690. .name = "shares",
  6691. .read_u64 = cpu_shares_read_u64,
  6692. .write_u64 = cpu_shares_write_u64,
  6693. },
  6694. #endif
  6695. #ifdef CONFIG_CFS_BANDWIDTH
  6696. {
  6697. .name = "cfs_quota_us",
  6698. .read_s64 = cpu_cfs_quota_read_s64,
  6699. .write_s64 = cpu_cfs_quota_write_s64,
  6700. },
  6701. {
  6702. .name = "cfs_period_us",
  6703. .read_u64 = cpu_cfs_period_read_u64,
  6704. .write_u64 = cpu_cfs_period_write_u64,
  6705. },
  6706. {
  6707. .name = "stat",
  6708. .read_map = cpu_stats_show,
  6709. },
  6710. #endif
  6711. #ifdef CONFIG_RT_GROUP_SCHED
  6712. {
  6713. .name = "rt_runtime_us",
  6714. .read_s64 = cpu_rt_runtime_read,
  6715. .write_s64 = cpu_rt_runtime_write,
  6716. },
  6717. {
  6718. .name = "rt_period_us",
  6719. .read_u64 = cpu_rt_period_read_uint,
  6720. .write_u64 = cpu_rt_period_write_uint,
  6721. },
  6722. #endif
  6723. };
  6724. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6725. {
  6726. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6727. }
  6728. struct cgroup_subsys cpu_cgroup_subsys = {
  6729. .name = "cpu",
  6730. .create = cpu_cgroup_create,
  6731. .destroy = cpu_cgroup_destroy,
  6732. .can_attach = cpu_cgroup_can_attach,
  6733. .attach = cpu_cgroup_attach,
  6734. .exit = cpu_cgroup_exit,
  6735. .populate = cpu_cgroup_populate,
  6736. .subsys_id = cpu_cgroup_subsys_id,
  6737. .early_init = 1,
  6738. };
  6739. #endif /* CONFIG_CGROUP_SCHED */
  6740. #ifdef CONFIG_CGROUP_CPUACCT
  6741. /*
  6742. * CPU accounting code for task groups.
  6743. *
  6744. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6745. * (balbir@in.ibm.com).
  6746. */
  6747. /* create a new cpu accounting group */
  6748. static struct cgroup_subsys_state *cpuacct_create(
  6749. struct cgroup_subsys *ss, struct cgroup *cgrp)
  6750. {
  6751. struct cpuacct *ca;
  6752. if (!cgrp->parent)
  6753. return &root_cpuacct.css;
  6754. ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6755. if (!ca)
  6756. goto out;
  6757. ca->cpuusage = alloc_percpu(u64);
  6758. if (!ca->cpuusage)
  6759. goto out_free_ca;
  6760. ca->cpustat = alloc_percpu(struct kernel_cpustat);
  6761. if (!ca->cpustat)
  6762. goto out_free_cpuusage;
  6763. return &ca->css;
  6764. out_free_cpuusage:
  6765. free_percpu(ca->cpuusage);
  6766. out_free_ca:
  6767. kfree(ca);
  6768. out:
  6769. return ERR_PTR(-ENOMEM);
  6770. }
  6771. /* destroy an existing cpu accounting group */
  6772. static void
  6773. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6774. {
  6775. struct cpuacct *ca = cgroup_ca(cgrp);
  6776. free_percpu(ca->cpustat);
  6777. free_percpu(ca->cpuusage);
  6778. kfree(ca);
  6779. }
  6780. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  6781. {
  6782. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6783. u64 data;
  6784. #ifndef CONFIG_64BIT
  6785. /*
  6786. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  6787. */
  6788. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6789. data = *cpuusage;
  6790. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6791. #else
  6792. data = *cpuusage;
  6793. #endif
  6794. return data;
  6795. }
  6796. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  6797. {
  6798. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6799. #ifndef CONFIG_64BIT
  6800. /*
  6801. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  6802. */
  6803. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  6804. *cpuusage = val;
  6805. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  6806. #else
  6807. *cpuusage = val;
  6808. #endif
  6809. }
  6810. /* return total cpu usage (in nanoseconds) of a group */
  6811. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  6812. {
  6813. struct cpuacct *ca = cgroup_ca(cgrp);
  6814. u64 totalcpuusage = 0;
  6815. int i;
  6816. for_each_present_cpu(i)
  6817. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  6818. return totalcpuusage;
  6819. }
  6820. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  6821. u64 reset)
  6822. {
  6823. struct cpuacct *ca = cgroup_ca(cgrp);
  6824. int err = 0;
  6825. int i;
  6826. if (reset) {
  6827. err = -EINVAL;
  6828. goto out;
  6829. }
  6830. for_each_present_cpu(i)
  6831. cpuacct_cpuusage_write(ca, i, 0);
  6832. out:
  6833. return err;
  6834. }
  6835. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  6836. struct seq_file *m)
  6837. {
  6838. struct cpuacct *ca = cgroup_ca(cgroup);
  6839. u64 percpu;
  6840. int i;
  6841. for_each_present_cpu(i) {
  6842. percpu = cpuacct_cpuusage_read(ca, i);
  6843. seq_printf(m, "%llu ", (unsigned long long) percpu);
  6844. }
  6845. seq_printf(m, "\n");
  6846. return 0;
  6847. }
  6848. static const char *cpuacct_stat_desc[] = {
  6849. [CPUACCT_STAT_USER] = "user",
  6850. [CPUACCT_STAT_SYSTEM] = "system",
  6851. };
  6852. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  6853. struct cgroup_map_cb *cb)
  6854. {
  6855. struct cpuacct *ca = cgroup_ca(cgrp);
  6856. int cpu;
  6857. s64 val = 0;
  6858. for_each_online_cpu(cpu) {
  6859. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6860. val += kcpustat->cpustat[CPUTIME_USER];
  6861. val += kcpustat->cpustat[CPUTIME_NICE];
  6862. }
  6863. val = cputime64_to_clock_t(val);
  6864. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
  6865. val = 0;
  6866. for_each_online_cpu(cpu) {
  6867. struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
  6868. val += kcpustat->cpustat[CPUTIME_SYSTEM];
  6869. val += kcpustat->cpustat[CPUTIME_IRQ];
  6870. val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
  6871. }
  6872. val = cputime64_to_clock_t(val);
  6873. cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
  6874. return 0;
  6875. }
  6876. static struct cftype files[] = {
  6877. {
  6878. .name = "usage",
  6879. .read_u64 = cpuusage_read,
  6880. .write_u64 = cpuusage_write,
  6881. },
  6882. {
  6883. .name = "usage_percpu",
  6884. .read_seq_string = cpuacct_percpu_seq_read,
  6885. },
  6886. {
  6887. .name = "stat",
  6888. .read_map = cpuacct_stats_show,
  6889. },
  6890. };
  6891. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6892. {
  6893. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  6894. }
  6895. /*
  6896. * charge this task's execution time to its accounting group.
  6897. *
  6898. * called with rq->lock held.
  6899. */
  6900. void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6901. {
  6902. struct cpuacct *ca;
  6903. int cpu;
  6904. if (unlikely(!cpuacct_subsys.active))
  6905. return;
  6906. cpu = task_cpu(tsk);
  6907. rcu_read_lock();
  6908. ca = task_ca(tsk);
  6909. for (; ca; ca = parent_ca(ca)) {
  6910. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  6911. *cpuusage += cputime;
  6912. }
  6913. rcu_read_unlock();
  6914. }
  6915. struct cgroup_subsys cpuacct_subsys = {
  6916. .name = "cpuacct",
  6917. .create = cpuacct_create,
  6918. .destroy = cpuacct_destroy,
  6919. .populate = cpuacct_populate,
  6920. .subsys_id = cpuacct_subsys_id,
  6921. };
  6922. #endif /* CONFIG_CGROUP_CPUACCT */