bio.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/blktrace_api.h>
  29. #include <scsi/sg.h> /* for struct sg_iovec */
  30. #define BIO_POOL_SIZE 2
  31. static struct kmem_cache *bio_slab __read_mostly;
  32. #define BIOVEC_NR_POOLS 6
  33. /*
  34. * a small number of entries is fine, not going to be performance critical.
  35. * basically we just need to survive
  36. */
  37. #define BIO_SPLIT_ENTRIES 2
  38. mempool_t *bio_split_pool __read_mostly;
  39. struct biovec_slab {
  40. int nr_vecs;
  41. char *name;
  42. struct kmem_cache *slab;
  43. };
  44. /*
  45. * if you change this list, also change bvec_alloc or things will
  46. * break badly! cannot be bigger than what you can fit into an
  47. * unsigned short
  48. */
  49. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  50. static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  51. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  52. };
  53. #undef BV
  54. /*
  55. * bio_set is used to allow other portions of the IO system to
  56. * allocate their own private memory pools for bio and iovec structures.
  57. * These memory pools in turn all allocate from the bio_slab
  58. * and the bvec_slabs[].
  59. */
  60. struct bio_set {
  61. mempool_t *bio_pool;
  62. mempool_t *bvec_pools[BIOVEC_NR_POOLS];
  63. };
  64. /*
  65. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  66. * IO code that does not need private memory pools.
  67. */
  68. static struct bio_set *fs_bio_set;
  69. static inline struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
  70. {
  71. struct bio_vec *bvl;
  72. /*
  73. * see comment near bvec_array define!
  74. */
  75. switch (nr) {
  76. case 1 : *idx = 0; break;
  77. case 2 ... 4: *idx = 1; break;
  78. case 5 ... 16: *idx = 2; break;
  79. case 17 ... 64: *idx = 3; break;
  80. case 65 ... 128: *idx = 4; break;
  81. case 129 ... BIO_MAX_PAGES: *idx = 5; break;
  82. default:
  83. return NULL;
  84. }
  85. /*
  86. * idx now points to the pool we want to allocate from
  87. */
  88. bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
  89. if (bvl) {
  90. struct biovec_slab *bp = bvec_slabs + *idx;
  91. memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
  92. }
  93. return bvl;
  94. }
  95. void bio_free(struct bio *bio, struct bio_set *bio_set)
  96. {
  97. const int pool_idx = BIO_POOL_IDX(bio);
  98. BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
  99. mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
  100. mempool_free(bio, bio_set->bio_pool);
  101. }
  102. /*
  103. * default destructor for a bio allocated with bio_alloc_bioset()
  104. */
  105. static void bio_fs_destructor(struct bio *bio)
  106. {
  107. bio_free(bio, fs_bio_set);
  108. }
  109. void bio_init(struct bio *bio)
  110. {
  111. memset(bio, 0, sizeof(*bio));
  112. bio->bi_flags = 1 << BIO_UPTODATE;
  113. atomic_set(&bio->bi_cnt, 1);
  114. }
  115. /**
  116. * bio_alloc_bioset - allocate a bio for I/O
  117. * @gfp_mask: the GFP_ mask given to the slab allocator
  118. * @nr_iovecs: number of iovecs to pre-allocate
  119. * @bs: the bio_set to allocate from
  120. *
  121. * Description:
  122. * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
  123. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  124. * for a &struct bio to become free.
  125. *
  126. * allocate bio and iovecs from the memory pools specified by the
  127. * bio_set structure.
  128. **/
  129. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  130. {
  131. struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
  132. if (likely(bio)) {
  133. struct bio_vec *bvl = NULL;
  134. bio_init(bio);
  135. if (likely(nr_iovecs)) {
  136. unsigned long idx = 0; /* shut up gcc */
  137. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  138. if (unlikely(!bvl)) {
  139. mempool_free(bio, bs->bio_pool);
  140. bio = NULL;
  141. goto out;
  142. }
  143. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  144. bio->bi_max_vecs = bvec_slabs[idx].nr_vecs;
  145. }
  146. bio->bi_io_vec = bvl;
  147. }
  148. out:
  149. return bio;
  150. }
  151. struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
  152. {
  153. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  154. if (bio)
  155. bio->bi_destructor = bio_fs_destructor;
  156. return bio;
  157. }
  158. void zero_fill_bio(struct bio *bio)
  159. {
  160. unsigned long flags;
  161. struct bio_vec *bv;
  162. int i;
  163. bio_for_each_segment(bv, bio, i) {
  164. char *data = bvec_kmap_irq(bv, &flags);
  165. memset(data, 0, bv->bv_len);
  166. flush_dcache_page(bv->bv_page);
  167. bvec_kunmap_irq(data, &flags);
  168. }
  169. }
  170. EXPORT_SYMBOL(zero_fill_bio);
  171. /**
  172. * bio_put - release a reference to a bio
  173. * @bio: bio to release reference to
  174. *
  175. * Description:
  176. * Put a reference to a &struct bio, either one you have gotten with
  177. * bio_alloc or bio_get. The last put of a bio will free it.
  178. **/
  179. void bio_put(struct bio *bio)
  180. {
  181. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  182. /*
  183. * last put frees it
  184. */
  185. if (atomic_dec_and_test(&bio->bi_cnt)) {
  186. bio->bi_next = NULL;
  187. bio->bi_destructor(bio);
  188. }
  189. }
  190. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  191. {
  192. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  193. blk_recount_segments(q, bio);
  194. return bio->bi_phys_segments;
  195. }
  196. inline int bio_hw_segments(struct request_queue *q, struct bio *bio)
  197. {
  198. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  199. blk_recount_segments(q, bio);
  200. return bio->bi_hw_segments;
  201. }
  202. /**
  203. * __bio_clone - clone a bio
  204. * @bio: destination bio
  205. * @bio_src: bio to clone
  206. *
  207. * Clone a &bio. Caller will own the returned bio, but not
  208. * the actual data it points to. Reference count of returned
  209. * bio will be one.
  210. */
  211. void __bio_clone(struct bio *bio, struct bio *bio_src)
  212. {
  213. struct request_queue *q = bdev_get_queue(bio_src->bi_bdev);
  214. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  215. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  216. bio->bi_sector = bio_src->bi_sector;
  217. bio->bi_bdev = bio_src->bi_bdev;
  218. bio->bi_flags |= 1 << BIO_CLONED;
  219. bio->bi_rw = bio_src->bi_rw;
  220. bio->bi_vcnt = bio_src->bi_vcnt;
  221. bio->bi_size = bio_src->bi_size;
  222. bio->bi_idx = bio_src->bi_idx;
  223. bio_phys_segments(q, bio);
  224. bio_hw_segments(q, bio);
  225. }
  226. /**
  227. * bio_clone - clone a bio
  228. * @bio: bio to clone
  229. * @gfp_mask: allocation priority
  230. *
  231. * Like __bio_clone, only also allocates the returned bio
  232. */
  233. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  234. {
  235. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  236. if (b) {
  237. b->bi_destructor = bio_fs_destructor;
  238. __bio_clone(b, bio);
  239. }
  240. return b;
  241. }
  242. /**
  243. * bio_get_nr_vecs - return approx number of vecs
  244. * @bdev: I/O target
  245. *
  246. * Return the approximate number of pages we can send to this target.
  247. * There's no guarantee that you will be able to fit this number of pages
  248. * into a bio, it does not account for dynamic restrictions that vary
  249. * on offset.
  250. */
  251. int bio_get_nr_vecs(struct block_device *bdev)
  252. {
  253. struct request_queue *q = bdev_get_queue(bdev);
  254. int nr_pages;
  255. nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  256. if (nr_pages > q->max_phys_segments)
  257. nr_pages = q->max_phys_segments;
  258. if (nr_pages > q->max_hw_segments)
  259. nr_pages = q->max_hw_segments;
  260. return nr_pages;
  261. }
  262. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  263. *page, unsigned int len, unsigned int offset,
  264. unsigned short max_sectors)
  265. {
  266. int retried_segments = 0;
  267. struct bio_vec *bvec;
  268. /*
  269. * cloned bio must not modify vec list
  270. */
  271. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  272. return 0;
  273. if (((bio->bi_size + len) >> 9) > max_sectors)
  274. return 0;
  275. /*
  276. * For filesystems with a blocksize smaller than the pagesize
  277. * we will often be called with the same page as last time and
  278. * a consecutive offset. Optimize this special case.
  279. */
  280. if (bio->bi_vcnt > 0) {
  281. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  282. if (page == prev->bv_page &&
  283. offset == prev->bv_offset + prev->bv_len) {
  284. prev->bv_len += len;
  285. if (q->merge_bvec_fn &&
  286. q->merge_bvec_fn(q, bio, prev) < len) {
  287. prev->bv_len -= len;
  288. return 0;
  289. }
  290. goto done;
  291. }
  292. }
  293. if (bio->bi_vcnt >= bio->bi_max_vecs)
  294. return 0;
  295. /*
  296. * we might lose a segment or two here, but rather that than
  297. * make this too complex.
  298. */
  299. while (bio->bi_phys_segments >= q->max_phys_segments
  300. || bio->bi_hw_segments >= q->max_hw_segments
  301. || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
  302. if (retried_segments)
  303. return 0;
  304. retried_segments = 1;
  305. blk_recount_segments(q, bio);
  306. }
  307. /*
  308. * setup the new entry, we might clear it again later if we
  309. * cannot add the page
  310. */
  311. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  312. bvec->bv_page = page;
  313. bvec->bv_len = len;
  314. bvec->bv_offset = offset;
  315. /*
  316. * if queue has other restrictions (eg varying max sector size
  317. * depending on offset), it can specify a merge_bvec_fn in the
  318. * queue to get further control
  319. */
  320. if (q->merge_bvec_fn) {
  321. /*
  322. * merge_bvec_fn() returns number of bytes it can accept
  323. * at this offset
  324. */
  325. if (q->merge_bvec_fn(q, bio, bvec) < len) {
  326. bvec->bv_page = NULL;
  327. bvec->bv_len = 0;
  328. bvec->bv_offset = 0;
  329. return 0;
  330. }
  331. }
  332. /* If we may be able to merge these biovecs, force a recount */
  333. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
  334. BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
  335. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  336. bio->bi_vcnt++;
  337. bio->bi_phys_segments++;
  338. bio->bi_hw_segments++;
  339. done:
  340. bio->bi_size += len;
  341. return len;
  342. }
  343. /**
  344. * bio_add_pc_page - attempt to add page to bio
  345. * @q: the target queue
  346. * @bio: destination bio
  347. * @page: page to add
  348. * @len: vec entry length
  349. * @offset: vec entry offset
  350. *
  351. * Attempt to add a page to the bio_vec maplist. This can fail for a
  352. * number of reasons, such as the bio being full or target block
  353. * device limitations. The target block device must allow bio's
  354. * smaller than PAGE_SIZE, so it is always possible to add a single
  355. * page to an empty bio. This should only be used by REQ_PC bios.
  356. */
  357. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  358. unsigned int len, unsigned int offset)
  359. {
  360. return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
  361. }
  362. /**
  363. * bio_add_page - attempt to add page to bio
  364. * @bio: destination bio
  365. * @page: page to add
  366. * @len: vec entry length
  367. * @offset: vec entry offset
  368. *
  369. * Attempt to add a page to the bio_vec maplist. This can fail for a
  370. * number of reasons, such as the bio being full or target block
  371. * device limitations. The target block device must allow bio's
  372. * smaller than PAGE_SIZE, so it is always possible to add a single
  373. * page to an empty bio.
  374. */
  375. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  376. unsigned int offset)
  377. {
  378. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  379. return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
  380. }
  381. struct bio_map_data {
  382. struct bio_vec *iovecs;
  383. void __user *userptr;
  384. };
  385. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio)
  386. {
  387. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  388. bio->bi_private = bmd;
  389. }
  390. static void bio_free_map_data(struct bio_map_data *bmd)
  391. {
  392. kfree(bmd->iovecs);
  393. kfree(bmd);
  394. }
  395. static struct bio_map_data *bio_alloc_map_data(int nr_segs)
  396. {
  397. struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
  398. if (!bmd)
  399. return NULL;
  400. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
  401. if (bmd->iovecs)
  402. return bmd;
  403. kfree(bmd);
  404. return NULL;
  405. }
  406. /**
  407. * bio_uncopy_user - finish previously mapped bio
  408. * @bio: bio being terminated
  409. *
  410. * Free pages allocated from bio_copy_user() and write back data
  411. * to user space in case of a read.
  412. */
  413. int bio_uncopy_user(struct bio *bio)
  414. {
  415. struct bio_map_data *bmd = bio->bi_private;
  416. const int read = bio_data_dir(bio) == READ;
  417. struct bio_vec *bvec;
  418. int i, ret = 0;
  419. __bio_for_each_segment(bvec, bio, i, 0) {
  420. char *addr = page_address(bvec->bv_page);
  421. unsigned int len = bmd->iovecs[i].bv_len;
  422. if (read && !ret && copy_to_user(bmd->userptr, addr, len))
  423. ret = -EFAULT;
  424. __free_page(bvec->bv_page);
  425. bmd->userptr += len;
  426. }
  427. bio_free_map_data(bmd);
  428. bio_put(bio);
  429. return ret;
  430. }
  431. /**
  432. * bio_copy_user - copy user data to bio
  433. * @q: destination block queue
  434. * @uaddr: start of user address
  435. * @len: length in bytes
  436. * @write_to_vm: bool indicating writing to pages or not
  437. *
  438. * Prepares and returns a bio for indirect user io, bouncing data
  439. * to/from kernel pages as necessary. Must be paired with
  440. * call bio_uncopy_user() on io completion.
  441. */
  442. struct bio *bio_copy_user(struct request_queue *q, unsigned long uaddr,
  443. unsigned int len, int write_to_vm)
  444. {
  445. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  446. unsigned long start = uaddr >> PAGE_SHIFT;
  447. struct bio_map_data *bmd;
  448. struct bio_vec *bvec;
  449. struct page *page;
  450. struct bio *bio;
  451. int i, ret;
  452. bmd = bio_alloc_map_data(end - start);
  453. if (!bmd)
  454. return ERR_PTR(-ENOMEM);
  455. bmd->userptr = (void __user *) uaddr;
  456. ret = -ENOMEM;
  457. bio = bio_alloc(GFP_KERNEL, end - start);
  458. if (!bio)
  459. goto out_bmd;
  460. bio->bi_rw |= (!write_to_vm << BIO_RW);
  461. ret = 0;
  462. while (len) {
  463. unsigned int bytes = PAGE_SIZE;
  464. if (bytes > len)
  465. bytes = len;
  466. page = alloc_page(q->bounce_gfp | GFP_KERNEL);
  467. if (!page) {
  468. ret = -ENOMEM;
  469. break;
  470. }
  471. if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
  472. break;
  473. len -= bytes;
  474. }
  475. if (ret)
  476. goto cleanup;
  477. /*
  478. * success
  479. */
  480. if (!write_to_vm) {
  481. char __user *p = (char __user *) uaddr;
  482. /*
  483. * for a write, copy in data to kernel pages
  484. */
  485. ret = -EFAULT;
  486. bio_for_each_segment(bvec, bio, i) {
  487. char *addr = page_address(bvec->bv_page);
  488. if (copy_from_user(addr, p, bvec->bv_len))
  489. goto cleanup;
  490. p += bvec->bv_len;
  491. }
  492. }
  493. bio_set_map_data(bmd, bio);
  494. return bio;
  495. cleanup:
  496. bio_for_each_segment(bvec, bio, i)
  497. __free_page(bvec->bv_page);
  498. bio_put(bio);
  499. out_bmd:
  500. bio_free_map_data(bmd);
  501. return ERR_PTR(ret);
  502. }
  503. static struct bio *__bio_map_user_iov(struct request_queue *q,
  504. struct block_device *bdev,
  505. struct sg_iovec *iov, int iov_count,
  506. int write_to_vm)
  507. {
  508. int i, j;
  509. int nr_pages = 0;
  510. struct page **pages;
  511. struct bio *bio;
  512. int cur_page = 0;
  513. int ret, offset;
  514. for (i = 0; i < iov_count; i++) {
  515. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  516. unsigned long len = iov[i].iov_len;
  517. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  518. unsigned long start = uaddr >> PAGE_SHIFT;
  519. nr_pages += end - start;
  520. /*
  521. * buffer must be aligned to at least hardsector size for now
  522. */
  523. if (uaddr & queue_dma_alignment(q))
  524. return ERR_PTR(-EINVAL);
  525. }
  526. if (!nr_pages)
  527. return ERR_PTR(-EINVAL);
  528. bio = bio_alloc(GFP_KERNEL, nr_pages);
  529. if (!bio)
  530. return ERR_PTR(-ENOMEM);
  531. ret = -ENOMEM;
  532. pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
  533. if (!pages)
  534. goto out;
  535. for (i = 0; i < iov_count; i++) {
  536. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  537. unsigned long len = iov[i].iov_len;
  538. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  539. unsigned long start = uaddr >> PAGE_SHIFT;
  540. const int local_nr_pages = end - start;
  541. const int page_limit = cur_page + local_nr_pages;
  542. down_read(&current->mm->mmap_sem);
  543. ret = get_user_pages(current, current->mm, uaddr,
  544. local_nr_pages,
  545. write_to_vm, 0, &pages[cur_page], NULL);
  546. up_read(&current->mm->mmap_sem);
  547. if (ret < local_nr_pages) {
  548. ret = -EFAULT;
  549. goto out_unmap;
  550. }
  551. offset = uaddr & ~PAGE_MASK;
  552. for (j = cur_page; j < page_limit; j++) {
  553. unsigned int bytes = PAGE_SIZE - offset;
  554. if (len <= 0)
  555. break;
  556. if (bytes > len)
  557. bytes = len;
  558. /*
  559. * sorry...
  560. */
  561. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  562. bytes)
  563. break;
  564. len -= bytes;
  565. offset = 0;
  566. }
  567. cur_page = j;
  568. /*
  569. * release the pages we didn't map into the bio, if any
  570. */
  571. while (j < page_limit)
  572. page_cache_release(pages[j++]);
  573. }
  574. kfree(pages);
  575. /*
  576. * set data direction, and check if mapped pages need bouncing
  577. */
  578. if (!write_to_vm)
  579. bio->bi_rw |= (1 << BIO_RW);
  580. bio->bi_bdev = bdev;
  581. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  582. return bio;
  583. out_unmap:
  584. for (i = 0; i < nr_pages; i++) {
  585. if(!pages[i])
  586. break;
  587. page_cache_release(pages[i]);
  588. }
  589. out:
  590. kfree(pages);
  591. bio_put(bio);
  592. return ERR_PTR(ret);
  593. }
  594. /**
  595. * bio_map_user - map user address into bio
  596. * @q: the struct request_queue for the bio
  597. * @bdev: destination block device
  598. * @uaddr: start of user address
  599. * @len: length in bytes
  600. * @write_to_vm: bool indicating writing to pages or not
  601. *
  602. * Map the user space address into a bio suitable for io to a block
  603. * device. Returns an error pointer in case of error.
  604. */
  605. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  606. unsigned long uaddr, unsigned int len, int write_to_vm)
  607. {
  608. struct sg_iovec iov;
  609. iov.iov_base = (void __user *)uaddr;
  610. iov.iov_len = len;
  611. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm);
  612. }
  613. /**
  614. * bio_map_user_iov - map user sg_iovec table into bio
  615. * @q: the struct request_queue for the bio
  616. * @bdev: destination block device
  617. * @iov: the iovec.
  618. * @iov_count: number of elements in the iovec
  619. * @write_to_vm: bool indicating writing to pages or not
  620. *
  621. * Map the user space address into a bio suitable for io to a block
  622. * device. Returns an error pointer in case of error.
  623. */
  624. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  625. struct sg_iovec *iov, int iov_count,
  626. int write_to_vm)
  627. {
  628. struct bio *bio;
  629. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm);
  630. if (IS_ERR(bio))
  631. return bio;
  632. /*
  633. * subtle -- if __bio_map_user() ended up bouncing a bio,
  634. * it would normally disappear when its bi_end_io is run.
  635. * however, we need it for the unmap, so grab an extra
  636. * reference to it
  637. */
  638. bio_get(bio);
  639. return bio;
  640. }
  641. static void __bio_unmap_user(struct bio *bio)
  642. {
  643. struct bio_vec *bvec;
  644. int i;
  645. /*
  646. * make sure we dirty pages we wrote to
  647. */
  648. __bio_for_each_segment(bvec, bio, i, 0) {
  649. if (bio_data_dir(bio) == READ)
  650. set_page_dirty_lock(bvec->bv_page);
  651. page_cache_release(bvec->bv_page);
  652. }
  653. bio_put(bio);
  654. }
  655. /**
  656. * bio_unmap_user - unmap a bio
  657. * @bio: the bio being unmapped
  658. *
  659. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  660. * a process context.
  661. *
  662. * bio_unmap_user() may sleep.
  663. */
  664. void bio_unmap_user(struct bio *bio)
  665. {
  666. __bio_unmap_user(bio);
  667. bio_put(bio);
  668. }
  669. static void bio_map_kern_endio(struct bio *bio, int err)
  670. {
  671. bio_put(bio);
  672. }
  673. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  674. unsigned int len, gfp_t gfp_mask)
  675. {
  676. unsigned long kaddr = (unsigned long)data;
  677. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  678. unsigned long start = kaddr >> PAGE_SHIFT;
  679. const int nr_pages = end - start;
  680. int offset, i;
  681. struct bio *bio;
  682. bio = bio_alloc(gfp_mask, nr_pages);
  683. if (!bio)
  684. return ERR_PTR(-ENOMEM);
  685. offset = offset_in_page(kaddr);
  686. for (i = 0; i < nr_pages; i++) {
  687. unsigned int bytes = PAGE_SIZE - offset;
  688. if (len <= 0)
  689. break;
  690. if (bytes > len)
  691. bytes = len;
  692. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  693. offset) < bytes)
  694. break;
  695. data += bytes;
  696. len -= bytes;
  697. offset = 0;
  698. }
  699. bio->bi_end_io = bio_map_kern_endio;
  700. return bio;
  701. }
  702. /**
  703. * bio_map_kern - map kernel address into bio
  704. * @q: the struct request_queue for the bio
  705. * @data: pointer to buffer to map
  706. * @len: length in bytes
  707. * @gfp_mask: allocation flags for bio allocation
  708. *
  709. * Map the kernel address into a bio suitable for io to a block
  710. * device. Returns an error pointer in case of error.
  711. */
  712. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  713. gfp_t gfp_mask)
  714. {
  715. struct bio *bio;
  716. bio = __bio_map_kern(q, data, len, gfp_mask);
  717. if (IS_ERR(bio))
  718. return bio;
  719. if (bio->bi_size == len)
  720. return bio;
  721. /*
  722. * Don't support partial mappings.
  723. */
  724. bio_put(bio);
  725. return ERR_PTR(-EINVAL);
  726. }
  727. /*
  728. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  729. * for performing direct-IO in BIOs.
  730. *
  731. * The problem is that we cannot run set_page_dirty() from interrupt context
  732. * because the required locks are not interrupt-safe. So what we can do is to
  733. * mark the pages dirty _before_ performing IO. And in interrupt context,
  734. * check that the pages are still dirty. If so, fine. If not, redirty them
  735. * in process context.
  736. *
  737. * We special-case compound pages here: normally this means reads into hugetlb
  738. * pages. The logic in here doesn't really work right for compound pages
  739. * because the VM does not uniformly chase down the head page in all cases.
  740. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  741. * handle them at all. So we skip compound pages here at an early stage.
  742. *
  743. * Note that this code is very hard to test under normal circumstances because
  744. * direct-io pins the pages with get_user_pages(). This makes
  745. * is_page_cache_freeable return false, and the VM will not clean the pages.
  746. * But other code (eg, pdflush) could clean the pages if they are mapped
  747. * pagecache.
  748. *
  749. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  750. * deferred bio dirtying paths.
  751. */
  752. /*
  753. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  754. */
  755. void bio_set_pages_dirty(struct bio *bio)
  756. {
  757. struct bio_vec *bvec = bio->bi_io_vec;
  758. int i;
  759. for (i = 0; i < bio->bi_vcnt; i++) {
  760. struct page *page = bvec[i].bv_page;
  761. if (page && !PageCompound(page))
  762. set_page_dirty_lock(page);
  763. }
  764. }
  765. void bio_release_pages(struct bio *bio)
  766. {
  767. struct bio_vec *bvec = bio->bi_io_vec;
  768. int i;
  769. for (i = 0; i < bio->bi_vcnt; i++) {
  770. struct page *page = bvec[i].bv_page;
  771. if (page)
  772. put_page(page);
  773. }
  774. }
  775. /*
  776. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  777. * If they are, then fine. If, however, some pages are clean then they must
  778. * have been written out during the direct-IO read. So we take another ref on
  779. * the BIO and the offending pages and re-dirty the pages in process context.
  780. *
  781. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  782. * here on. It will run one page_cache_release() against each page and will
  783. * run one bio_put() against the BIO.
  784. */
  785. static void bio_dirty_fn(struct work_struct *work);
  786. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  787. static DEFINE_SPINLOCK(bio_dirty_lock);
  788. static struct bio *bio_dirty_list;
  789. /*
  790. * This runs in process context
  791. */
  792. static void bio_dirty_fn(struct work_struct *work)
  793. {
  794. unsigned long flags;
  795. struct bio *bio;
  796. spin_lock_irqsave(&bio_dirty_lock, flags);
  797. bio = bio_dirty_list;
  798. bio_dirty_list = NULL;
  799. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  800. while (bio) {
  801. struct bio *next = bio->bi_private;
  802. bio_set_pages_dirty(bio);
  803. bio_release_pages(bio);
  804. bio_put(bio);
  805. bio = next;
  806. }
  807. }
  808. void bio_check_pages_dirty(struct bio *bio)
  809. {
  810. struct bio_vec *bvec = bio->bi_io_vec;
  811. int nr_clean_pages = 0;
  812. int i;
  813. for (i = 0; i < bio->bi_vcnt; i++) {
  814. struct page *page = bvec[i].bv_page;
  815. if (PageDirty(page) || PageCompound(page)) {
  816. page_cache_release(page);
  817. bvec[i].bv_page = NULL;
  818. } else {
  819. nr_clean_pages++;
  820. }
  821. }
  822. if (nr_clean_pages) {
  823. unsigned long flags;
  824. spin_lock_irqsave(&bio_dirty_lock, flags);
  825. bio->bi_private = bio_dirty_list;
  826. bio_dirty_list = bio;
  827. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  828. schedule_work(&bio_dirty_work);
  829. } else {
  830. bio_put(bio);
  831. }
  832. }
  833. /**
  834. * bio_endio - end I/O on a bio
  835. * @bio: bio
  836. * @error: error, if any
  837. *
  838. * Description:
  839. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  840. * preferred way to end I/O on a bio, it takes care of clearing
  841. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  842. * established -Exxxx (-EIO, for instance) error values in case
  843. * something went wrong. Noone should call bi_end_io() directly on a
  844. * bio unless they own it and thus know that it has an end_io
  845. * function.
  846. **/
  847. void bio_endio(struct bio *bio, int error)
  848. {
  849. if (error)
  850. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  851. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  852. error = -EIO;
  853. if (bio->bi_end_io)
  854. bio->bi_end_io(bio, error);
  855. }
  856. void bio_pair_release(struct bio_pair *bp)
  857. {
  858. if (atomic_dec_and_test(&bp->cnt)) {
  859. struct bio *master = bp->bio1.bi_private;
  860. bio_endio(master, bp->error);
  861. mempool_free(bp, bp->bio2.bi_private);
  862. }
  863. }
  864. static void bio_pair_end_1(struct bio *bi, int err)
  865. {
  866. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  867. if (err)
  868. bp->error = err;
  869. bio_pair_release(bp);
  870. }
  871. static void bio_pair_end_2(struct bio *bi, int err)
  872. {
  873. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  874. if (err)
  875. bp->error = err;
  876. bio_pair_release(bp);
  877. }
  878. /*
  879. * split a bio - only worry about a bio with a single page
  880. * in it's iovec
  881. */
  882. struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
  883. {
  884. struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
  885. if (!bp)
  886. return bp;
  887. blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
  888. bi->bi_sector + first_sectors);
  889. BUG_ON(bi->bi_vcnt != 1);
  890. BUG_ON(bi->bi_idx != 0);
  891. atomic_set(&bp->cnt, 3);
  892. bp->error = 0;
  893. bp->bio1 = *bi;
  894. bp->bio2 = *bi;
  895. bp->bio2.bi_sector += first_sectors;
  896. bp->bio2.bi_size -= first_sectors << 9;
  897. bp->bio1.bi_size = first_sectors << 9;
  898. bp->bv1 = bi->bi_io_vec[0];
  899. bp->bv2 = bi->bi_io_vec[0];
  900. bp->bv2.bv_offset += first_sectors << 9;
  901. bp->bv2.bv_len -= first_sectors << 9;
  902. bp->bv1.bv_len = first_sectors << 9;
  903. bp->bio1.bi_io_vec = &bp->bv1;
  904. bp->bio2.bi_io_vec = &bp->bv2;
  905. bp->bio1.bi_max_vecs = 1;
  906. bp->bio2.bi_max_vecs = 1;
  907. bp->bio1.bi_end_io = bio_pair_end_1;
  908. bp->bio2.bi_end_io = bio_pair_end_2;
  909. bp->bio1.bi_private = bi;
  910. bp->bio2.bi_private = pool;
  911. return bp;
  912. }
  913. /*
  914. * create memory pools for biovec's in a bio_set.
  915. * use the global biovec slabs created for general use.
  916. */
  917. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  918. {
  919. int i;
  920. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  921. struct biovec_slab *bp = bvec_slabs + i;
  922. mempool_t **bvp = bs->bvec_pools + i;
  923. *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
  924. if (!*bvp)
  925. return -ENOMEM;
  926. }
  927. return 0;
  928. }
  929. static void biovec_free_pools(struct bio_set *bs)
  930. {
  931. int i;
  932. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  933. mempool_t *bvp = bs->bvec_pools[i];
  934. if (bvp)
  935. mempool_destroy(bvp);
  936. }
  937. }
  938. void bioset_free(struct bio_set *bs)
  939. {
  940. if (bs->bio_pool)
  941. mempool_destroy(bs->bio_pool);
  942. biovec_free_pools(bs);
  943. kfree(bs);
  944. }
  945. struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
  946. {
  947. struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  948. if (!bs)
  949. return NULL;
  950. bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
  951. if (!bs->bio_pool)
  952. goto bad;
  953. if (!biovec_create_pools(bs, bvec_pool_size))
  954. return bs;
  955. bad:
  956. bioset_free(bs);
  957. return NULL;
  958. }
  959. static void __init biovec_init_slabs(void)
  960. {
  961. int i;
  962. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  963. int size;
  964. struct biovec_slab *bvs = bvec_slabs + i;
  965. size = bvs->nr_vecs * sizeof(struct bio_vec);
  966. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  967. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  968. }
  969. }
  970. static int __init init_bio(void)
  971. {
  972. bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  973. biovec_init_slabs();
  974. fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
  975. if (!fs_bio_set)
  976. panic("bio: can't allocate bios\n");
  977. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  978. sizeof(struct bio_pair));
  979. if (!bio_split_pool)
  980. panic("bio: can't create split pool\n");
  981. return 0;
  982. }
  983. subsys_initcall(init_bio);
  984. EXPORT_SYMBOL(bio_alloc);
  985. EXPORT_SYMBOL(bio_put);
  986. EXPORT_SYMBOL(bio_free);
  987. EXPORT_SYMBOL(bio_endio);
  988. EXPORT_SYMBOL(bio_init);
  989. EXPORT_SYMBOL(__bio_clone);
  990. EXPORT_SYMBOL(bio_clone);
  991. EXPORT_SYMBOL(bio_phys_segments);
  992. EXPORT_SYMBOL(bio_hw_segments);
  993. EXPORT_SYMBOL(bio_add_page);
  994. EXPORT_SYMBOL(bio_add_pc_page);
  995. EXPORT_SYMBOL(bio_get_nr_vecs);
  996. EXPORT_SYMBOL(bio_map_kern);
  997. EXPORT_SYMBOL(bio_pair_release);
  998. EXPORT_SYMBOL(bio_split);
  999. EXPORT_SYMBOL(bio_split_pool);
  1000. EXPORT_SYMBOL(bio_copy_user);
  1001. EXPORT_SYMBOL(bio_uncopy_user);
  1002. EXPORT_SYMBOL(bioset_create);
  1003. EXPORT_SYMBOL(bioset_free);
  1004. EXPORT_SYMBOL(bio_alloc_bioset);