time.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/module.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/clocksource.h>
  33. #include <linux/errno.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <linux/slab.h>
  38. #include <linux/math64.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/unistd.h>
  41. #include "timeconst.h"
  42. /*
  43. * The timezone where the local system is located. Used as a default by some
  44. * programs who obtain this value by using gettimeofday.
  45. */
  46. struct timezone sys_tz;
  47. EXPORT_SYMBOL(sys_tz);
  48. #ifdef __ARCH_WANT_SYS_TIME
  49. /*
  50. * sys_time() can be implemented in user-level using
  51. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  52. * why not move it into the appropriate arch directory (for those
  53. * architectures that need it).
  54. */
  55. asmlinkage long sys_time(time_t __user * tloc)
  56. {
  57. time_t i = get_seconds();
  58. if (tloc) {
  59. if (put_user(i,tloc))
  60. i = -EFAULT;
  61. }
  62. return i;
  63. }
  64. /*
  65. * sys_stime() can be implemented in user-level using
  66. * sys_settimeofday(). Is this for backwards compatibility? If so,
  67. * why not move it into the appropriate arch directory (for those
  68. * architectures that need it).
  69. */
  70. asmlinkage long sys_stime(time_t __user *tptr)
  71. {
  72. struct timespec tv;
  73. int err;
  74. if (get_user(tv.tv_sec, tptr))
  75. return -EFAULT;
  76. tv.tv_nsec = 0;
  77. err = security_settime(&tv, NULL);
  78. if (err)
  79. return err;
  80. do_settimeofday(&tv);
  81. return 0;
  82. }
  83. #endif /* __ARCH_WANT_SYS_TIME */
  84. asmlinkage long sys_gettimeofday(struct timeval __user *tv,
  85. struct timezone __user *tz)
  86. {
  87. if (likely(tv != NULL)) {
  88. struct timeval ktv;
  89. do_gettimeofday(&ktv);
  90. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  91. return -EFAULT;
  92. }
  93. if (unlikely(tz != NULL)) {
  94. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  95. return -EFAULT;
  96. }
  97. return 0;
  98. }
  99. /*
  100. * Adjust the time obtained from the CMOS to be UTC time instead of
  101. * local time.
  102. *
  103. * This is ugly, but preferable to the alternatives. Otherwise we
  104. * would either need to write a program to do it in /etc/rc (and risk
  105. * confusion if the program gets run more than once; it would also be
  106. * hard to make the program warp the clock precisely n hours) or
  107. * compile in the timezone information into the kernel. Bad, bad....
  108. *
  109. * - TYT, 1992-01-01
  110. *
  111. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  112. * as real UNIX machines always do it. This avoids all headaches about
  113. * daylight saving times and warping kernel clocks.
  114. */
  115. static inline void warp_clock(void)
  116. {
  117. write_seqlock_irq(&xtime_lock);
  118. wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
  119. xtime.tv_sec += sys_tz.tz_minuteswest * 60;
  120. update_xtime_cache(0);
  121. write_sequnlock_irq(&xtime_lock);
  122. clock_was_set();
  123. }
  124. /*
  125. * In case for some reason the CMOS clock has not already been running
  126. * in UTC, but in some local time: The first time we set the timezone,
  127. * we will warp the clock so that it is ticking UTC time instead of
  128. * local time. Presumably, if someone is setting the timezone then we
  129. * are running in an environment where the programs understand about
  130. * timezones. This should be done at boot time in the /etc/rc script,
  131. * as soon as possible, so that the clock can be set right. Otherwise,
  132. * various programs will get confused when the clock gets warped.
  133. */
  134. int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
  135. {
  136. static int firsttime = 1;
  137. int error = 0;
  138. if (tv && !timespec_valid(tv))
  139. return -EINVAL;
  140. error = security_settime(tv, tz);
  141. if (error)
  142. return error;
  143. if (tz) {
  144. /* SMP safe, global irq locking makes it work. */
  145. sys_tz = *tz;
  146. update_vsyscall_tz();
  147. if (firsttime) {
  148. firsttime = 0;
  149. if (!tv)
  150. warp_clock();
  151. }
  152. }
  153. if (tv)
  154. {
  155. /* SMP safe, again the code in arch/foo/time.c should
  156. * globally block out interrupts when it runs.
  157. */
  158. return do_settimeofday(tv);
  159. }
  160. return 0;
  161. }
  162. asmlinkage long sys_settimeofday(struct timeval __user *tv,
  163. struct timezone __user *tz)
  164. {
  165. struct timeval user_tv;
  166. struct timespec new_ts;
  167. struct timezone new_tz;
  168. if (tv) {
  169. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  170. return -EFAULT;
  171. new_ts.tv_sec = user_tv.tv_sec;
  172. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  173. }
  174. if (tz) {
  175. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  176. return -EFAULT;
  177. }
  178. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  179. }
  180. asmlinkage long sys_adjtimex(struct timex __user *txc_p)
  181. {
  182. struct timex txc; /* Local copy of parameter */
  183. int ret;
  184. /* Copy the user data space into the kernel copy
  185. * structure. But bear in mind that the structures
  186. * may change
  187. */
  188. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  189. return -EFAULT;
  190. ret = do_adjtimex(&txc);
  191. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  192. }
  193. /**
  194. * current_fs_time - Return FS time
  195. * @sb: Superblock.
  196. *
  197. * Return the current time truncated to the time granularity supported by
  198. * the fs.
  199. */
  200. struct timespec current_fs_time(struct super_block *sb)
  201. {
  202. struct timespec now = current_kernel_time();
  203. return timespec_trunc(now, sb->s_time_gran);
  204. }
  205. EXPORT_SYMBOL(current_fs_time);
  206. /*
  207. * Convert jiffies to milliseconds and back.
  208. *
  209. * Avoid unnecessary multiplications/divisions in the
  210. * two most common HZ cases:
  211. */
  212. unsigned int inline jiffies_to_msecs(const unsigned long j)
  213. {
  214. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  215. return (MSEC_PER_SEC / HZ) * j;
  216. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  217. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  218. #else
  219. # if BITS_PER_LONG == 32
  220. return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
  221. # else
  222. return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
  223. # endif
  224. #endif
  225. }
  226. EXPORT_SYMBOL(jiffies_to_msecs);
  227. unsigned int inline jiffies_to_usecs(const unsigned long j)
  228. {
  229. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  230. return (USEC_PER_SEC / HZ) * j;
  231. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  232. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  233. #else
  234. # if BITS_PER_LONG == 32
  235. return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  236. # else
  237. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  238. # endif
  239. #endif
  240. }
  241. EXPORT_SYMBOL(jiffies_to_usecs);
  242. /**
  243. * timespec_trunc - Truncate timespec to a granularity
  244. * @t: Timespec
  245. * @gran: Granularity in ns.
  246. *
  247. * Truncate a timespec to a granularity. gran must be smaller than a second.
  248. * Always rounds down.
  249. *
  250. * This function should be only used for timestamps returned by
  251. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  252. * it doesn't handle the better resolution of the latter.
  253. */
  254. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  255. {
  256. /*
  257. * Division is pretty slow so avoid it for common cases.
  258. * Currently current_kernel_time() never returns better than
  259. * jiffies resolution. Exploit that.
  260. */
  261. if (gran <= jiffies_to_usecs(1) * 1000) {
  262. /* nothing */
  263. } else if (gran == 1000000000) {
  264. t.tv_nsec = 0;
  265. } else {
  266. t.tv_nsec -= t.tv_nsec % gran;
  267. }
  268. return t;
  269. }
  270. EXPORT_SYMBOL(timespec_trunc);
  271. #ifndef CONFIG_GENERIC_TIME
  272. /*
  273. * Simulate gettimeofday using do_gettimeofday which only allows a timeval
  274. * and therefore only yields usec accuracy
  275. */
  276. void getnstimeofday(struct timespec *tv)
  277. {
  278. struct timeval x;
  279. do_gettimeofday(&x);
  280. tv->tv_sec = x.tv_sec;
  281. tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
  282. }
  283. EXPORT_SYMBOL_GPL(getnstimeofday);
  284. #endif
  285. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  286. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  287. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  288. *
  289. * [For the Julian calendar (which was used in Russia before 1917,
  290. * Britain & colonies before 1752, anywhere else before 1582,
  291. * and is still in use by some communities) leave out the
  292. * -year/100+year/400 terms, and add 10.]
  293. *
  294. * This algorithm was first published by Gauss (I think).
  295. *
  296. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  297. * machines where long is 32-bit! (However, as time_t is signed, we
  298. * will already get problems at other places on 2038-01-19 03:14:08)
  299. */
  300. unsigned long
  301. mktime(const unsigned int year0, const unsigned int mon0,
  302. const unsigned int day, const unsigned int hour,
  303. const unsigned int min, const unsigned int sec)
  304. {
  305. unsigned int mon = mon0, year = year0;
  306. /* 1..12 -> 11,12,1..10 */
  307. if (0 >= (int) (mon -= 2)) {
  308. mon += 12; /* Puts Feb last since it has leap day */
  309. year -= 1;
  310. }
  311. return ((((unsigned long)
  312. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  313. year*365 - 719499
  314. )*24 + hour /* now have hours */
  315. )*60 + min /* now have minutes */
  316. )*60 + sec; /* finally seconds */
  317. }
  318. EXPORT_SYMBOL(mktime);
  319. /**
  320. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  321. *
  322. * @ts: pointer to timespec variable to be set
  323. * @sec: seconds to set
  324. * @nsec: nanoseconds to set
  325. *
  326. * Set seconds and nanoseconds field of a timespec variable and
  327. * normalize to the timespec storage format
  328. *
  329. * Note: The tv_nsec part is always in the range of
  330. * 0 <= tv_nsec < NSEC_PER_SEC
  331. * For negative values only the tv_sec field is negative !
  332. */
  333. void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
  334. {
  335. while (nsec >= NSEC_PER_SEC) {
  336. nsec -= NSEC_PER_SEC;
  337. ++sec;
  338. }
  339. while (nsec < 0) {
  340. nsec += NSEC_PER_SEC;
  341. --sec;
  342. }
  343. ts->tv_sec = sec;
  344. ts->tv_nsec = nsec;
  345. }
  346. EXPORT_SYMBOL(set_normalized_timespec);
  347. /**
  348. * ns_to_timespec - Convert nanoseconds to timespec
  349. * @nsec: the nanoseconds value to be converted
  350. *
  351. * Returns the timespec representation of the nsec parameter.
  352. */
  353. struct timespec ns_to_timespec(const s64 nsec)
  354. {
  355. struct timespec ts;
  356. s32 rem;
  357. if (!nsec)
  358. return (struct timespec) {0, 0};
  359. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  360. if (unlikely(rem < 0)) {
  361. ts.tv_sec--;
  362. rem += NSEC_PER_SEC;
  363. }
  364. ts.tv_nsec = rem;
  365. return ts;
  366. }
  367. EXPORT_SYMBOL(ns_to_timespec);
  368. /**
  369. * ns_to_timeval - Convert nanoseconds to timeval
  370. * @nsec: the nanoseconds value to be converted
  371. *
  372. * Returns the timeval representation of the nsec parameter.
  373. */
  374. struct timeval ns_to_timeval(const s64 nsec)
  375. {
  376. struct timespec ts = ns_to_timespec(nsec);
  377. struct timeval tv;
  378. tv.tv_sec = ts.tv_sec;
  379. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  380. return tv;
  381. }
  382. EXPORT_SYMBOL(ns_to_timeval);
  383. /*
  384. * When we convert to jiffies then we interpret incoming values
  385. * the following way:
  386. *
  387. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  388. *
  389. * - 'too large' values [that would result in larger than
  390. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  391. *
  392. * - all other values are converted to jiffies by either multiplying
  393. * the input value by a factor or dividing it with a factor
  394. *
  395. * We must also be careful about 32-bit overflows.
  396. */
  397. unsigned long msecs_to_jiffies(const unsigned int m)
  398. {
  399. /*
  400. * Negative value, means infinite timeout:
  401. */
  402. if ((int)m < 0)
  403. return MAX_JIFFY_OFFSET;
  404. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  405. /*
  406. * HZ is equal to or smaller than 1000, and 1000 is a nice
  407. * round multiple of HZ, divide with the factor between them,
  408. * but round upwards:
  409. */
  410. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  411. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  412. /*
  413. * HZ is larger than 1000, and HZ is a nice round multiple of
  414. * 1000 - simply multiply with the factor between them.
  415. *
  416. * But first make sure the multiplication result cannot
  417. * overflow:
  418. */
  419. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  420. return MAX_JIFFY_OFFSET;
  421. return m * (HZ / MSEC_PER_SEC);
  422. #else
  423. /*
  424. * Generic case - multiply, round and divide. But first
  425. * check that if we are doing a net multiplication, that
  426. * we wouldn't overflow:
  427. */
  428. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  429. return MAX_JIFFY_OFFSET;
  430. return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
  431. >> MSEC_TO_HZ_SHR32;
  432. #endif
  433. }
  434. EXPORT_SYMBOL(msecs_to_jiffies);
  435. unsigned long usecs_to_jiffies(const unsigned int u)
  436. {
  437. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  438. return MAX_JIFFY_OFFSET;
  439. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  440. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  441. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  442. return u * (HZ / USEC_PER_SEC);
  443. #else
  444. return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
  445. >> USEC_TO_HZ_SHR32;
  446. #endif
  447. }
  448. EXPORT_SYMBOL(usecs_to_jiffies);
  449. /*
  450. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  451. * that a remainder subtract here would not do the right thing as the
  452. * resolution values don't fall on second boundries. I.e. the line:
  453. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  454. *
  455. * Rather, we just shift the bits off the right.
  456. *
  457. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  458. * value to a scaled second value.
  459. */
  460. unsigned long
  461. timespec_to_jiffies(const struct timespec *value)
  462. {
  463. unsigned long sec = value->tv_sec;
  464. long nsec = value->tv_nsec + TICK_NSEC - 1;
  465. if (sec >= MAX_SEC_IN_JIFFIES){
  466. sec = MAX_SEC_IN_JIFFIES;
  467. nsec = 0;
  468. }
  469. return (((u64)sec * SEC_CONVERSION) +
  470. (((u64)nsec * NSEC_CONVERSION) >>
  471. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  472. }
  473. EXPORT_SYMBOL(timespec_to_jiffies);
  474. void
  475. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  476. {
  477. /*
  478. * Convert jiffies to nanoseconds and separate with
  479. * one divide.
  480. */
  481. u32 rem;
  482. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  483. NSEC_PER_SEC, &rem);
  484. value->tv_nsec = rem;
  485. }
  486. EXPORT_SYMBOL(jiffies_to_timespec);
  487. /* Same for "timeval"
  488. *
  489. * Well, almost. The problem here is that the real system resolution is
  490. * in nanoseconds and the value being converted is in micro seconds.
  491. * Also for some machines (those that use HZ = 1024, in-particular),
  492. * there is a LARGE error in the tick size in microseconds.
  493. * The solution we use is to do the rounding AFTER we convert the
  494. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  495. * Instruction wise, this should cost only an additional add with carry
  496. * instruction above the way it was done above.
  497. */
  498. unsigned long
  499. timeval_to_jiffies(const struct timeval *value)
  500. {
  501. unsigned long sec = value->tv_sec;
  502. long usec = value->tv_usec;
  503. if (sec >= MAX_SEC_IN_JIFFIES){
  504. sec = MAX_SEC_IN_JIFFIES;
  505. usec = 0;
  506. }
  507. return (((u64)sec * SEC_CONVERSION) +
  508. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  509. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  510. }
  511. EXPORT_SYMBOL(timeval_to_jiffies);
  512. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  513. {
  514. /*
  515. * Convert jiffies to nanoseconds and separate with
  516. * one divide.
  517. */
  518. u32 rem;
  519. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  520. NSEC_PER_SEC, &rem);
  521. value->tv_usec = rem / NSEC_PER_USEC;
  522. }
  523. EXPORT_SYMBOL(jiffies_to_timeval);
  524. /*
  525. * Convert jiffies/jiffies_64 to clock_t and back.
  526. */
  527. clock_t jiffies_to_clock_t(long x)
  528. {
  529. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  530. # if HZ < USER_HZ
  531. return x * (USER_HZ / HZ);
  532. # else
  533. return x / (HZ / USER_HZ);
  534. # endif
  535. #else
  536. return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  537. #endif
  538. }
  539. EXPORT_SYMBOL(jiffies_to_clock_t);
  540. unsigned long clock_t_to_jiffies(unsigned long x)
  541. {
  542. #if (HZ % USER_HZ)==0
  543. if (x >= ~0UL / (HZ / USER_HZ))
  544. return ~0UL;
  545. return x * (HZ / USER_HZ);
  546. #else
  547. /* Don't worry about loss of precision here .. */
  548. if (x >= ~0UL / HZ * USER_HZ)
  549. return ~0UL;
  550. /* .. but do try to contain it here */
  551. return div_u64((u64)x * HZ, USER_HZ);
  552. #endif
  553. }
  554. EXPORT_SYMBOL(clock_t_to_jiffies);
  555. u64 jiffies_64_to_clock_t(u64 x)
  556. {
  557. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  558. # if HZ < USER_HZ
  559. x = div_u64(x * USER_HZ, HZ);
  560. # elif HZ > USER_HZ
  561. x = div_u64(x, HZ / USER_HZ);
  562. # else
  563. /* Nothing to do */
  564. # endif
  565. #else
  566. /*
  567. * There are better ways that don't overflow early,
  568. * but even this doesn't overflow in hundreds of years
  569. * in 64 bits, so..
  570. */
  571. x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  572. #endif
  573. return x;
  574. }
  575. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  576. u64 nsec_to_clock_t(u64 x)
  577. {
  578. #if (NSEC_PER_SEC % USER_HZ) == 0
  579. return div_u64(x, NSEC_PER_SEC / USER_HZ);
  580. #elif (USER_HZ % 512) == 0
  581. return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  582. #else
  583. /*
  584. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  585. * overflow after 64.99 years.
  586. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  587. */
  588. return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  589. #endif
  590. }
  591. #if (BITS_PER_LONG < 64)
  592. u64 get_jiffies_64(void)
  593. {
  594. unsigned long seq;
  595. u64 ret;
  596. do {
  597. seq = read_seqbegin(&xtime_lock);
  598. ret = jiffies_64;
  599. } while (read_seqretry(&xtime_lock, seq));
  600. return ret;
  601. }
  602. EXPORT_SYMBOL(get_jiffies_64);
  603. #endif
  604. EXPORT_SYMBOL(jiffies);