12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352 |
- /*
- * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
- * policies)
- */
- #ifdef CONFIG_SMP
- static inline int rt_overloaded(struct rq *rq)
- {
- return atomic_read(&rq->rd->rto_count);
- }
- static inline void rt_set_overload(struct rq *rq)
- {
- cpu_set(rq->cpu, rq->rd->rto_mask);
- /*
- * Make sure the mask is visible before we set
- * the overload count. That is checked to determine
- * if we should look at the mask. It would be a shame
- * if we looked at the mask, but the mask was not
- * updated yet.
- */
- wmb();
- atomic_inc(&rq->rd->rto_count);
- }
- static inline void rt_clear_overload(struct rq *rq)
- {
- /* the order here really doesn't matter */
- atomic_dec(&rq->rd->rto_count);
- cpu_clear(rq->cpu, rq->rd->rto_mask);
- }
- static void update_rt_migration(struct rq *rq)
- {
- if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
- if (!rq->rt.overloaded) {
- rt_set_overload(rq);
- rq->rt.overloaded = 1;
- }
- } else if (rq->rt.overloaded) {
- rt_clear_overload(rq);
- rq->rt.overloaded = 0;
- }
- }
- #endif /* CONFIG_SMP */
- static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
- {
- return container_of(rt_se, struct task_struct, rt);
- }
- static inline int on_rt_rq(struct sched_rt_entity *rt_se)
- {
- return !list_empty(&rt_se->run_list);
- }
- #ifdef CONFIG_RT_GROUP_SCHED
- static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
- {
- if (!rt_rq->tg)
- return RUNTIME_INF;
- return rt_rq->rt_runtime;
- }
- static inline u64 sched_rt_period(struct rt_rq *rt_rq)
- {
- return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
- }
- #define for_each_leaf_rt_rq(rt_rq, rq) \
- list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
- static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
- {
- return rt_rq->rq;
- }
- static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
- {
- return rt_se->rt_rq;
- }
- #define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = rt_se->parent)
- static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
- {
- return rt_se->my_q;
- }
- static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
- static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
- static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
- {
- struct sched_rt_entity *rt_se = rt_rq->rt_se;
- if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
- struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
- enqueue_rt_entity(rt_se);
- if (rt_rq->highest_prio < curr->prio)
- resched_task(curr);
- }
- }
- static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
- {
- struct sched_rt_entity *rt_se = rt_rq->rt_se;
- if (rt_se && on_rt_rq(rt_se))
- dequeue_rt_entity(rt_se);
- }
- static inline int rt_rq_throttled(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
- }
- static int rt_se_boosted(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- struct task_struct *p;
- if (rt_rq)
- return !!rt_rq->rt_nr_boosted;
- p = rt_task_of(rt_se);
- return p->prio != p->normal_prio;
- }
- #ifdef CONFIG_SMP
- static inline cpumask_t sched_rt_period_mask(void)
- {
- return cpu_rq(smp_processor_id())->rd->span;
- }
- #else
- static inline cpumask_t sched_rt_period_mask(void)
- {
- return cpu_online_map;
- }
- #endif
- static inline
- struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
- {
- return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
- }
- static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
- {
- return &rt_rq->tg->rt_bandwidth;
- }
- #else
- static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_runtime;
- }
- static inline u64 sched_rt_period(struct rt_rq *rt_rq)
- {
- return ktime_to_ns(def_rt_bandwidth.rt_period);
- }
- #define for_each_leaf_rt_rq(rt_rq, rq) \
- for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
- static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
- {
- return container_of(rt_rq, struct rq, rt);
- }
- static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
- {
- struct task_struct *p = rt_task_of(rt_se);
- struct rq *rq = task_rq(p);
- return &rq->rt;
- }
- #define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = NULL)
- static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
- {
- return NULL;
- }
- static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
- {
- }
- static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
- {
- }
- static inline int rt_rq_throttled(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_throttled;
- }
- static inline cpumask_t sched_rt_period_mask(void)
- {
- return cpu_online_map;
- }
- static inline
- struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
- {
- return &cpu_rq(cpu)->rt;
- }
- static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
- {
- return &def_rt_bandwidth;
- }
- #endif
- static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
- {
- int i, idle = 1;
- cpumask_t span;
- if (rt_b->rt_runtime == RUNTIME_INF)
- return 1;
- span = sched_rt_period_mask();
- for_each_cpu_mask(i, span) {
- int enqueue = 0;
- struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
- struct rq *rq = rq_of_rt_rq(rt_rq);
- spin_lock(&rq->lock);
- if (rt_rq->rt_time) {
- u64 runtime;
- spin_lock(&rt_rq->rt_runtime_lock);
- runtime = rt_rq->rt_runtime;
- rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
- if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
- rt_rq->rt_throttled = 0;
- enqueue = 1;
- }
- if (rt_rq->rt_time || rt_rq->rt_nr_running)
- idle = 0;
- spin_unlock(&rt_rq->rt_runtime_lock);
- } else if (rt_rq->rt_nr_running)
- idle = 0;
- if (enqueue)
- sched_rt_rq_enqueue(rt_rq);
- spin_unlock(&rq->lock);
- }
- return idle;
- }
- #ifdef CONFIG_SMP
- static int balance_runtime(struct rt_rq *rt_rq)
- {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
- int i, weight, more = 0;
- u64 rt_period;
- weight = cpus_weight(rd->span);
- spin_lock(&rt_b->rt_runtime_lock);
- rt_period = ktime_to_ns(rt_b->rt_period);
- for_each_cpu_mask(i, rd->span) {
- struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
- s64 diff;
- if (iter == rt_rq)
- continue;
- spin_lock(&iter->rt_runtime_lock);
- diff = iter->rt_runtime - iter->rt_time;
- if (diff > 0) {
- do_div(diff, weight);
- if (rt_rq->rt_runtime + diff > rt_period)
- diff = rt_period - rt_rq->rt_runtime;
- iter->rt_runtime -= diff;
- rt_rq->rt_runtime += diff;
- more = 1;
- if (rt_rq->rt_runtime == rt_period) {
- spin_unlock(&iter->rt_runtime_lock);
- break;
- }
- }
- spin_unlock(&iter->rt_runtime_lock);
- }
- spin_unlock(&rt_b->rt_runtime_lock);
- return more;
- }
- #endif
- static inline int rt_se_prio(struct sched_rt_entity *rt_se)
- {
- #ifdef CONFIG_RT_GROUP_SCHED
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- if (rt_rq)
- return rt_rq->highest_prio;
- #endif
- return rt_task_of(rt_se)->prio;
- }
- static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
- {
- u64 runtime = sched_rt_runtime(rt_rq);
- if (runtime == RUNTIME_INF)
- return 0;
- if (rt_rq->rt_throttled)
- return rt_rq_throttled(rt_rq);
- if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
- return 0;
- #ifdef CONFIG_SMP
- if (rt_rq->rt_time > runtime) {
- int more;
- spin_unlock(&rt_rq->rt_runtime_lock);
- more = balance_runtime(rt_rq);
- spin_lock(&rt_rq->rt_runtime_lock);
- if (more)
- runtime = sched_rt_runtime(rt_rq);
- }
- #endif
- if (rt_rq->rt_time > runtime) {
- rt_rq->rt_throttled = 1;
- if (rt_rq_throttled(rt_rq)) {
- sched_rt_rq_dequeue(rt_rq);
- return 1;
- }
- }
- return 0;
- }
- /*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
- static void update_curr_rt(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- struct sched_rt_entity *rt_se = &curr->rt;
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- u64 delta_exec;
- if (!task_has_rt_policy(curr))
- return;
- delta_exec = rq->clock - curr->se.exec_start;
- if (unlikely((s64)delta_exec < 0))
- delta_exec = 0;
- schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
- curr->se.sum_exec_runtime += delta_exec;
- curr->se.exec_start = rq->clock;
- cpuacct_charge(curr, delta_exec);
- for_each_sched_rt_entity(rt_se) {
- rt_rq = rt_rq_of_se(rt_se);
- spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_time += delta_exec;
- if (sched_rt_runtime_exceeded(rt_rq))
- resched_task(curr);
- spin_unlock(&rt_rq->rt_runtime_lock);
- }
- }
- static inline
- void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- WARN_ON(!rt_prio(rt_se_prio(rt_se)));
- rt_rq->rt_nr_running++;
- #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
- if (rt_se_prio(rt_se) < rt_rq->highest_prio)
- rt_rq->highest_prio = rt_se_prio(rt_se);
- #endif
- #ifdef CONFIG_SMP
- if (rt_se->nr_cpus_allowed > 1) {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- rq->rt.rt_nr_migratory++;
- }
- update_rt_migration(rq_of_rt_rq(rt_rq));
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- if (rt_se_boosted(rt_se))
- rt_rq->rt_nr_boosted++;
- if (rt_rq->tg)
- start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
- #else
- start_rt_bandwidth(&def_rt_bandwidth);
- #endif
- }
- static inline
- void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- WARN_ON(!rt_prio(rt_se_prio(rt_se)));
- WARN_ON(!rt_rq->rt_nr_running);
- rt_rq->rt_nr_running--;
- #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
- if (rt_rq->rt_nr_running) {
- struct rt_prio_array *array;
- WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
- if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
- /* recalculate */
- array = &rt_rq->active;
- rt_rq->highest_prio =
- sched_find_first_bit(array->bitmap);
- } /* otherwise leave rq->highest prio alone */
- } else
- rt_rq->highest_prio = MAX_RT_PRIO;
- #endif
- #ifdef CONFIG_SMP
- if (rt_se->nr_cpus_allowed > 1) {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- rq->rt.rt_nr_migratory--;
- }
- update_rt_migration(rq_of_rt_rq(rt_rq));
- #endif /* CONFIG_SMP */
- #ifdef CONFIG_RT_GROUP_SCHED
- if (rt_se_boosted(rt_se))
- rt_rq->rt_nr_boosted--;
- WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
- #endif
- }
- static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- struct rt_prio_array *array = &rt_rq->active;
- struct rt_rq *group_rq = group_rt_rq(rt_se);
- /*
- * Don't enqueue the group if its throttled, or when empty.
- * The latter is a consequence of the former when a child group
- * get throttled and the current group doesn't have any other
- * active members.
- */
- if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
- return;
- list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
- __set_bit(rt_se_prio(rt_se), array->bitmap);
- inc_rt_tasks(rt_se, rt_rq);
- }
- static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- struct rt_prio_array *array = &rt_rq->active;
- list_del_init(&rt_se->run_list);
- if (list_empty(array->queue + rt_se_prio(rt_se)))
- __clear_bit(rt_se_prio(rt_se), array->bitmap);
- dec_rt_tasks(rt_se, rt_rq);
- }
- /*
- * Because the prio of an upper entry depends on the lower
- * entries, we must remove entries top - down.
- */
- static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
- {
- struct sched_rt_entity *back = NULL;
- for_each_sched_rt_entity(rt_se) {
- rt_se->back = back;
- back = rt_se;
- }
- for (rt_se = back; rt_se; rt_se = rt_se->back) {
- if (on_rt_rq(rt_se))
- __dequeue_rt_entity(rt_se);
- }
- }
- static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
- {
- dequeue_rt_stack(rt_se);
- for_each_sched_rt_entity(rt_se)
- __enqueue_rt_entity(rt_se);
- }
- static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
- {
- dequeue_rt_stack(rt_se);
- for_each_sched_rt_entity(rt_se) {
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- if (rt_rq && rt_rq->rt_nr_running)
- __enqueue_rt_entity(rt_se);
- }
- }
- /*
- * Adding/removing a task to/from a priority array:
- */
- static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- if (wakeup)
- rt_se->timeout = 0;
- enqueue_rt_entity(rt_se);
- }
- static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- update_curr_rt(rq);
- dequeue_rt_entity(rt_se);
- }
- /*
- * Put task to the end of the run list without the overhead of dequeue
- * followed by enqueue.
- */
- static
- void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
- {
- struct rt_prio_array *array = &rt_rq->active;
- struct list_head *queue = array->queue + rt_se_prio(rt_se);
- if (on_rt_rq(rt_se))
- list_move_tail(&rt_se->run_list, queue);
- }
- static void requeue_task_rt(struct rq *rq, struct task_struct *p)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- struct rt_rq *rt_rq;
- for_each_sched_rt_entity(rt_se) {
- rt_rq = rt_rq_of_se(rt_se);
- requeue_rt_entity(rt_rq, rt_se);
- }
- }
- static void yield_task_rt(struct rq *rq)
- {
- requeue_task_rt(rq, rq->curr);
- }
- #ifdef CONFIG_SMP
- static int find_lowest_rq(struct task_struct *task);
- static int select_task_rq_rt(struct task_struct *p, int sync)
- {
- struct rq *rq = task_rq(p);
- /*
- * If the current task is an RT task, then
- * try to see if we can wake this RT task up on another
- * runqueue. Otherwise simply start this RT task
- * on its current runqueue.
- *
- * We want to avoid overloading runqueues. Even if
- * the RT task is of higher priority than the current RT task.
- * RT tasks behave differently than other tasks. If
- * one gets preempted, we try to push it off to another queue.
- * So trying to keep a preempting RT task on the same
- * cache hot CPU will force the running RT task to
- * a cold CPU. So we waste all the cache for the lower
- * RT task in hopes of saving some of a RT task
- * that is just being woken and probably will have
- * cold cache anyway.
- */
- if (unlikely(rt_task(rq->curr)) &&
- (p->rt.nr_cpus_allowed > 1)) {
- int cpu = find_lowest_rq(p);
- return (cpu == -1) ? task_cpu(p) : cpu;
- }
- /*
- * Otherwise, just let it ride on the affined RQ and the
- * post-schedule router will push the preempted task away
- */
- return task_cpu(p);
- }
- #endif /* CONFIG_SMP */
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
- {
- if (p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
- struct rt_rq *rt_rq)
- {
- struct rt_prio_array *array = &rt_rq->active;
- struct sched_rt_entity *next = NULL;
- struct list_head *queue;
- int idx;
- idx = sched_find_first_bit(array->bitmap);
- BUG_ON(idx >= MAX_RT_PRIO);
- queue = array->queue + idx;
- next = list_entry(queue->next, struct sched_rt_entity, run_list);
- return next;
- }
- static struct task_struct *pick_next_task_rt(struct rq *rq)
- {
- struct sched_rt_entity *rt_se;
- struct task_struct *p;
- struct rt_rq *rt_rq;
- rt_rq = &rq->rt;
- if (unlikely(!rt_rq->rt_nr_running))
- return NULL;
- if (rt_rq_throttled(rt_rq))
- return NULL;
- do {
- rt_se = pick_next_rt_entity(rq, rt_rq);
- BUG_ON(!rt_se);
- rt_rq = group_rt_rq(rt_se);
- } while (rt_rq);
- p = rt_task_of(rt_se);
- p->se.exec_start = rq->clock;
- return p;
- }
- static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
- {
- update_curr_rt(rq);
- p->se.exec_start = 0;
- }
- #ifdef CONFIG_SMP
- /* Only try algorithms three times */
- #define RT_MAX_TRIES 3
- static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
- static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
- static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
- {
- if (!task_running(rq, p) &&
- (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
- (p->rt.nr_cpus_allowed > 1))
- return 1;
- return 0;
- }
- /* Return the second highest RT task, NULL otherwise */
- static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
- {
- struct task_struct *next = NULL;
- struct sched_rt_entity *rt_se;
- struct rt_prio_array *array;
- struct rt_rq *rt_rq;
- int idx;
- for_each_leaf_rt_rq(rt_rq, rq) {
- array = &rt_rq->active;
- idx = sched_find_first_bit(array->bitmap);
- next_idx:
- if (idx >= MAX_RT_PRIO)
- continue;
- if (next && next->prio < idx)
- continue;
- list_for_each_entry(rt_se, array->queue + idx, run_list) {
- struct task_struct *p = rt_task_of(rt_se);
- if (pick_rt_task(rq, p, cpu)) {
- next = p;
- break;
- }
- }
- if (!next) {
- idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
- goto next_idx;
- }
- }
- return next;
- }
- static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
- static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
- {
- int lowest_prio = -1;
- int lowest_cpu = -1;
- int count = 0;
- int cpu;
- cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
- /*
- * Scan each rq for the lowest prio.
- */
- for_each_cpu_mask(cpu, *lowest_mask) {
- struct rq *rq = cpu_rq(cpu);
- /* We look for lowest RT prio or non-rt CPU */
- if (rq->rt.highest_prio >= MAX_RT_PRIO) {
- /*
- * if we already found a low RT queue
- * and now we found this non-rt queue
- * clear the mask and set our bit.
- * Otherwise just return the queue as is
- * and the count==1 will cause the algorithm
- * to use the first bit found.
- */
- if (lowest_cpu != -1) {
- cpus_clear(*lowest_mask);
- cpu_set(rq->cpu, *lowest_mask);
- }
- return 1;
- }
- /* no locking for now */
- if ((rq->rt.highest_prio > task->prio)
- && (rq->rt.highest_prio >= lowest_prio)) {
- if (rq->rt.highest_prio > lowest_prio) {
- /* new low - clear old data */
- lowest_prio = rq->rt.highest_prio;
- lowest_cpu = cpu;
- count = 0;
- }
- count++;
- } else
- cpu_clear(cpu, *lowest_mask);
- }
- /*
- * Clear out all the set bits that represent
- * runqueues that were of higher prio than
- * the lowest_prio.
- */
- if (lowest_cpu > 0) {
- /*
- * Perhaps we could add another cpumask op to
- * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
- * Then that could be optimized to use memset and such.
- */
- for_each_cpu_mask(cpu, *lowest_mask) {
- if (cpu >= lowest_cpu)
- break;
- cpu_clear(cpu, *lowest_mask);
- }
- }
- return count;
- }
- static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
- {
- int first;
- /* "this_cpu" is cheaper to preempt than a remote processor */
- if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
- return this_cpu;
- first = first_cpu(*mask);
- if (first != NR_CPUS)
- return first;
- return -1;
- }
- static int find_lowest_rq(struct task_struct *task)
- {
- struct sched_domain *sd;
- cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
- int this_cpu = smp_processor_id();
- int cpu = task_cpu(task);
- int count = find_lowest_cpus(task, lowest_mask);
- if (!count)
- return -1; /* No targets found */
- /*
- * There is no sense in performing an optimal search if only one
- * target is found.
- */
- if (count == 1)
- return first_cpu(*lowest_mask);
- /*
- * At this point we have built a mask of cpus representing the
- * lowest priority tasks in the system. Now we want to elect
- * the best one based on our affinity and topology.
- *
- * We prioritize the last cpu that the task executed on since
- * it is most likely cache-hot in that location.
- */
- if (cpu_isset(cpu, *lowest_mask))
- return cpu;
- /*
- * Otherwise, we consult the sched_domains span maps to figure
- * out which cpu is logically closest to our hot cache data.
- */
- if (this_cpu == cpu)
- this_cpu = -1; /* Skip this_cpu opt if the same */
- for_each_domain(cpu, sd) {
- if (sd->flags & SD_WAKE_AFFINE) {
- cpumask_t domain_mask;
- int best_cpu;
- cpus_and(domain_mask, sd->span, *lowest_mask);
- best_cpu = pick_optimal_cpu(this_cpu,
- &domain_mask);
- if (best_cpu != -1)
- return best_cpu;
- }
- }
- /*
- * And finally, if there were no matches within the domains
- * just give the caller *something* to work with from the compatible
- * locations.
- */
- return pick_optimal_cpu(this_cpu, lowest_mask);
- }
- /* Will lock the rq it finds */
- static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
- {
- struct rq *lowest_rq = NULL;
- int tries;
- int cpu;
- for (tries = 0; tries < RT_MAX_TRIES; tries++) {
- cpu = find_lowest_rq(task);
- if ((cpu == -1) || (cpu == rq->cpu))
- break;
- lowest_rq = cpu_rq(cpu);
- /* if the prio of this runqueue changed, try again */
- if (double_lock_balance(rq, lowest_rq)) {
- /*
- * We had to unlock the run queue. In
- * the mean time, task could have
- * migrated already or had its affinity changed.
- * Also make sure that it wasn't scheduled on its rq.
- */
- if (unlikely(task_rq(task) != rq ||
- !cpu_isset(lowest_rq->cpu,
- task->cpus_allowed) ||
- task_running(rq, task) ||
- !task->se.on_rq)) {
- spin_unlock(&lowest_rq->lock);
- lowest_rq = NULL;
- break;
- }
- }
- /* If this rq is still suitable use it. */
- if (lowest_rq->rt.highest_prio > task->prio)
- break;
- /* try again */
- spin_unlock(&lowest_rq->lock);
- lowest_rq = NULL;
- }
- return lowest_rq;
- }
- /*
- * If the current CPU has more than one RT task, see if the non
- * running task can migrate over to a CPU that is running a task
- * of lesser priority.
- */
- static int push_rt_task(struct rq *rq)
- {
- struct task_struct *next_task;
- struct rq *lowest_rq;
- int ret = 0;
- int paranoid = RT_MAX_TRIES;
- if (!rq->rt.overloaded)
- return 0;
- next_task = pick_next_highest_task_rt(rq, -1);
- if (!next_task)
- return 0;
- retry:
- if (unlikely(next_task == rq->curr)) {
- WARN_ON(1);
- return 0;
- }
- /*
- * It's possible that the next_task slipped in of
- * higher priority than current. If that's the case
- * just reschedule current.
- */
- if (unlikely(next_task->prio < rq->curr->prio)) {
- resched_task(rq->curr);
- return 0;
- }
- /* We might release rq lock */
- get_task_struct(next_task);
- /* find_lock_lowest_rq locks the rq if found */
- lowest_rq = find_lock_lowest_rq(next_task, rq);
- if (!lowest_rq) {
- struct task_struct *task;
- /*
- * find lock_lowest_rq releases rq->lock
- * so it is possible that next_task has changed.
- * If it has, then try again.
- */
- task = pick_next_highest_task_rt(rq, -1);
- if (unlikely(task != next_task) && task && paranoid--) {
- put_task_struct(next_task);
- next_task = task;
- goto retry;
- }
- goto out;
- }
- deactivate_task(rq, next_task, 0);
- set_task_cpu(next_task, lowest_rq->cpu);
- activate_task(lowest_rq, next_task, 0);
- resched_task(lowest_rq->curr);
- spin_unlock(&lowest_rq->lock);
- ret = 1;
- out:
- put_task_struct(next_task);
- return ret;
- }
- /*
- * TODO: Currently we just use the second highest prio task on
- * the queue, and stop when it can't migrate (or there's
- * no more RT tasks). There may be a case where a lower
- * priority RT task has a different affinity than the
- * higher RT task. In this case the lower RT task could
- * possibly be able to migrate where as the higher priority
- * RT task could not. We currently ignore this issue.
- * Enhancements are welcome!
- */
- static void push_rt_tasks(struct rq *rq)
- {
- /* push_rt_task will return true if it moved an RT */
- while (push_rt_task(rq))
- ;
- }
- static int pull_rt_task(struct rq *this_rq)
- {
- int this_cpu = this_rq->cpu, ret = 0, cpu;
- struct task_struct *p, *next;
- struct rq *src_rq;
- if (likely(!rt_overloaded(this_rq)))
- return 0;
- next = pick_next_task_rt(this_rq);
- for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
- if (this_cpu == cpu)
- continue;
- src_rq = cpu_rq(cpu);
- /*
- * We can potentially drop this_rq's lock in
- * double_lock_balance, and another CPU could
- * steal our next task - hence we must cause
- * the caller to recalculate the next task
- * in that case:
- */
- if (double_lock_balance(this_rq, src_rq)) {
- struct task_struct *old_next = next;
- next = pick_next_task_rt(this_rq);
- if (next != old_next)
- ret = 1;
- }
- /*
- * Are there still pullable RT tasks?
- */
- if (src_rq->rt.rt_nr_running <= 1)
- goto skip;
- p = pick_next_highest_task_rt(src_rq, this_cpu);
- /*
- * Do we have an RT task that preempts
- * the to-be-scheduled task?
- */
- if (p && (!next || (p->prio < next->prio))) {
- WARN_ON(p == src_rq->curr);
- WARN_ON(!p->se.on_rq);
- /*
- * There's a chance that p is higher in priority
- * than what's currently running on its cpu.
- * This is just that p is wakeing up and hasn't
- * had a chance to schedule. We only pull
- * p if it is lower in priority than the
- * current task on the run queue or
- * this_rq next task is lower in prio than
- * the current task on that rq.
- */
- if (p->prio < src_rq->curr->prio ||
- (next && next->prio < src_rq->curr->prio))
- goto skip;
- ret = 1;
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
- /*
- * We continue with the search, just in
- * case there's an even higher prio task
- * in another runqueue. (low likelyhood
- * but possible)
- *
- * Update next so that we won't pick a task
- * on another cpu with a priority lower (or equal)
- * than the one we just picked.
- */
- next = p;
- }
- skip:
- spin_unlock(&src_rq->lock);
- }
- return ret;
- }
- static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
- {
- /* Try to pull RT tasks here if we lower this rq's prio */
- if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
- pull_rt_task(rq);
- }
- static void post_schedule_rt(struct rq *rq)
- {
- /*
- * If we have more than one rt_task queued, then
- * see if we can push the other rt_tasks off to other CPUS.
- * Note we may release the rq lock, and since
- * the lock was owned by prev, we need to release it
- * first via finish_lock_switch and then reaquire it here.
- */
- if (unlikely(rq->rt.overloaded)) {
- spin_lock_irq(&rq->lock);
- push_rt_tasks(rq);
- spin_unlock_irq(&rq->lock);
- }
- }
- /*
- * If we are not running and we are not going to reschedule soon, we should
- * try to push tasks away now
- */
- static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
- {
- if (!task_running(rq, p) &&
- !test_tsk_need_resched(rq->curr) &&
- rq->rt.overloaded)
- push_rt_tasks(rq);
- }
- static unsigned long
- load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_load_move,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *all_pinned, int *this_best_prio)
- {
- /* don't touch RT tasks */
- return 0;
- }
- static int
- move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- struct sched_domain *sd, enum cpu_idle_type idle)
- {
- /* don't touch RT tasks */
- return 0;
- }
- static void set_cpus_allowed_rt(struct task_struct *p,
- const cpumask_t *new_mask)
- {
- int weight = cpus_weight(*new_mask);
- BUG_ON(!rt_task(p));
- /*
- * Update the migration status of the RQ if we have an RT task
- * which is running AND changing its weight value.
- */
- if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
- struct rq *rq = task_rq(p);
- if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
- rq->rt.rt_nr_migratory++;
- } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
- BUG_ON(!rq->rt.rt_nr_migratory);
- rq->rt.rt_nr_migratory--;
- }
- update_rt_migration(rq);
- }
- p->cpus_allowed = *new_mask;
- p->rt.nr_cpus_allowed = weight;
- }
- /* Assumes rq->lock is held */
- static void join_domain_rt(struct rq *rq)
- {
- if (rq->rt.overloaded)
- rt_set_overload(rq);
- }
- /* Assumes rq->lock is held */
- static void leave_domain_rt(struct rq *rq)
- {
- if (rq->rt.overloaded)
- rt_clear_overload(rq);
- }
- /*
- * When switch from the rt queue, we bring ourselves to a position
- * that we might want to pull RT tasks from other runqueues.
- */
- static void switched_from_rt(struct rq *rq, struct task_struct *p,
- int running)
- {
- /*
- * If there are other RT tasks then we will reschedule
- * and the scheduling of the other RT tasks will handle
- * the balancing. But if we are the last RT task
- * we may need to handle the pulling of RT tasks
- * now.
- */
- if (!rq->rt.rt_nr_running)
- pull_rt_task(rq);
- }
- #endif /* CONFIG_SMP */
- /*
- * When switching a task to RT, we may overload the runqueue
- * with RT tasks. In this case we try to push them off to
- * other runqueues.
- */
- static void switched_to_rt(struct rq *rq, struct task_struct *p,
- int running)
- {
- int check_resched = 1;
- /*
- * If we are already running, then there's nothing
- * that needs to be done. But if we are not running
- * we may need to preempt the current running task.
- * If that current running task is also an RT task
- * then see if we can move to another run queue.
- */
- if (!running) {
- #ifdef CONFIG_SMP
- if (rq->rt.overloaded && push_rt_task(rq) &&
- /* Don't resched if we changed runqueues */
- rq != task_rq(p))
- check_resched = 0;
- #endif /* CONFIG_SMP */
- if (check_resched && p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- }
- /*
- * Priority of the task has changed. This may cause
- * us to initiate a push or pull.
- */
- static void prio_changed_rt(struct rq *rq, struct task_struct *p,
- int oldprio, int running)
- {
- if (running) {
- #ifdef CONFIG_SMP
- /*
- * If our priority decreases while running, we
- * may need to pull tasks to this runqueue.
- */
- if (oldprio < p->prio)
- pull_rt_task(rq);
- /*
- * If there's a higher priority task waiting to run
- * then reschedule. Note, the above pull_rt_task
- * can release the rq lock and p could migrate.
- * Only reschedule if p is still on the same runqueue.
- */
- if (p->prio > rq->rt.highest_prio && rq->curr == p)
- resched_task(p);
- #else
- /* For UP simply resched on drop of prio */
- if (oldprio < p->prio)
- resched_task(p);
- #endif /* CONFIG_SMP */
- } else {
- /*
- * This task is not running, but if it is
- * greater than the current running task
- * then reschedule.
- */
- if (p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- }
- static void watchdog(struct rq *rq, struct task_struct *p)
- {
- unsigned long soft, hard;
- if (!p->signal)
- return;
- soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
- hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
- if (soft != RLIM_INFINITY) {
- unsigned long next;
- p->rt.timeout++;
- next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
- if (p->rt.timeout > next)
- p->it_sched_expires = p->se.sum_exec_runtime;
- }
- }
- static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
- {
- update_curr_rt(rq);
- watchdog(rq, p);
- /*
- * RR tasks need a special form of timeslice management.
- * FIFO tasks have no timeslices.
- */
- if (p->policy != SCHED_RR)
- return;
- if (--p->rt.time_slice)
- return;
- p->rt.time_slice = DEF_TIMESLICE;
- /*
- * Requeue to the end of queue if we are not the only element
- * on the queue:
- */
- if (p->rt.run_list.prev != p->rt.run_list.next) {
- requeue_task_rt(rq, p);
- set_tsk_need_resched(p);
- }
- }
- static void set_curr_task_rt(struct rq *rq)
- {
- struct task_struct *p = rq->curr;
- p->se.exec_start = rq->clock;
- }
- static const struct sched_class rt_sched_class = {
- .next = &fair_sched_class,
- .enqueue_task = enqueue_task_rt,
- .dequeue_task = dequeue_task_rt,
- .yield_task = yield_task_rt,
- #ifdef CONFIG_SMP
- .select_task_rq = select_task_rq_rt,
- #endif /* CONFIG_SMP */
- .check_preempt_curr = check_preempt_curr_rt,
- .pick_next_task = pick_next_task_rt,
- .put_prev_task = put_prev_task_rt,
- #ifdef CONFIG_SMP
- .load_balance = load_balance_rt,
- .move_one_task = move_one_task_rt,
- .set_cpus_allowed = set_cpus_allowed_rt,
- .join_domain = join_domain_rt,
- .leave_domain = leave_domain_rt,
- .pre_schedule = pre_schedule_rt,
- .post_schedule = post_schedule_rt,
- .task_wake_up = task_wake_up_rt,
- .switched_from = switched_from_rt,
- #endif
- .set_curr_task = set_curr_task_rt,
- .task_tick = task_tick_rt,
- .prio_changed = prio_changed_rt,
- .switched_to = switched_to_rt,
- };
|