pid.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 William Irwin, IBM
  5. * (C) 2004 William Irwin, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/bootmem.h>
  33. #include <linux/hash.h>
  34. #include <linux/pid_namespace.h>
  35. #include <linux/init_task.h>
  36. #include <linux/syscalls.h>
  37. #define pid_hashfn(nr, ns) \
  38. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  39. static struct hlist_head *pid_hash;
  40. static int pidhash_shift;
  41. struct pid init_struct_pid = INIT_STRUCT_PID;
  42. int pid_max = PID_MAX_DEFAULT;
  43. #define RESERVED_PIDS 300
  44. int pid_max_min = RESERVED_PIDS + 1;
  45. int pid_max_max = PID_MAX_LIMIT;
  46. #define BITS_PER_PAGE (PAGE_SIZE*8)
  47. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  48. static inline int mk_pid(struct pid_namespace *pid_ns,
  49. struct pidmap *map, int off)
  50. {
  51. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  52. }
  53. #define find_next_offset(map, off) \
  54. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  55. /*
  56. * PID-map pages start out as NULL, they get allocated upon
  57. * first use and are never deallocated. This way a low pid_max
  58. * value does not cause lots of bitmaps to be allocated, but
  59. * the scheme scales to up to 4 million PIDs, runtime.
  60. */
  61. struct pid_namespace init_pid_ns = {
  62. .kref = {
  63. .refcount = ATOMIC_INIT(2),
  64. },
  65. .pidmap = {
  66. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  67. },
  68. .last_pid = 0,
  69. .level = 0,
  70. .child_reaper = &init_task,
  71. };
  72. EXPORT_SYMBOL_GPL(init_pid_ns);
  73. int is_container_init(struct task_struct *tsk)
  74. {
  75. int ret = 0;
  76. struct pid *pid;
  77. rcu_read_lock();
  78. pid = task_pid(tsk);
  79. if (pid != NULL && pid->numbers[pid->level].nr == 1)
  80. ret = 1;
  81. rcu_read_unlock();
  82. return ret;
  83. }
  84. EXPORT_SYMBOL(is_container_init);
  85. /*
  86. * Note: disable interrupts while the pidmap_lock is held as an
  87. * interrupt might come in and do read_lock(&tasklist_lock).
  88. *
  89. * If we don't disable interrupts there is a nasty deadlock between
  90. * detach_pid()->free_pid() and another cpu that does
  91. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  92. * read_lock(&tasklist_lock);
  93. *
  94. * After we clean up the tasklist_lock and know there are no
  95. * irq handlers that take it we can leave the interrupts enabled.
  96. * For now it is easier to be safe than to prove it can't happen.
  97. */
  98. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  99. static void free_pidmap(struct upid *upid)
  100. {
  101. int nr = upid->nr;
  102. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  103. int offset = nr & BITS_PER_PAGE_MASK;
  104. clear_bit(offset, map->page);
  105. atomic_inc(&map->nr_free);
  106. }
  107. static int alloc_pidmap(struct pid_namespace *pid_ns)
  108. {
  109. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  110. struct pidmap *map;
  111. pid = last + 1;
  112. if (pid >= pid_max)
  113. pid = RESERVED_PIDS;
  114. offset = pid & BITS_PER_PAGE_MASK;
  115. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  116. max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
  117. for (i = 0; i <= max_scan; ++i) {
  118. if (unlikely(!map->page)) {
  119. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  120. /*
  121. * Free the page if someone raced with us
  122. * installing it:
  123. */
  124. spin_lock_irq(&pidmap_lock);
  125. if (map->page)
  126. kfree(page);
  127. else
  128. map->page = page;
  129. spin_unlock_irq(&pidmap_lock);
  130. if (unlikely(!map->page))
  131. break;
  132. }
  133. if (likely(atomic_read(&map->nr_free))) {
  134. do {
  135. if (!test_and_set_bit(offset, map->page)) {
  136. atomic_dec(&map->nr_free);
  137. pid_ns->last_pid = pid;
  138. return pid;
  139. }
  140. offset = find_next_offset(map, offset);
  141. pid = mk_pid(pid_ns, map, offset);
  142. /*
  143. * find_next_offset() found a bit, the pid from it
  144. * is in-bounds, and if we fell back to the last
  145. * bitmap block and the final block was the same
  146. * as the starting point, pid is before last_pid.
  147. */
  148. } while (offset < BITS_PER_PAGE && pid < pid_max &&
  149. (i != max_scan || pid < last ||
  150. !((last+1) & BITS_PER_PAGE_MASK)));
  151. }
  152. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  153. ++map;
  154. offset = 0;
  155. } else {
  156. map = &pid_ns->pidmap[0];
  157. offset = RESERVED_PIDS;
  158. if (unlikely(last == offset))
  159. break;
  160. }
  161. pid = mk_pid(pid_ns, map, offset);
  162. }
  163. return -1;
  164. }
  165. int next_pidmap(struct pid_namespace *pid_ns, int last)
  166. {
  167. int offset;
  168. struct pidmap *map, *end;
  169. offset = (last + 1) & BITS_PER_PAGE_MASK;
  170. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  171. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  172. for (; map < end; map++, offset = 0) {
  173. if (unlikely(!map->page))
  174. continue;
  175. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  176. if (offset < BITS_PER_PAGE)
  177. return mk_pid(pid_ns, map, offset);
  178. }
  179. return -1;
  180. }
  181. void put_pid(struct pid *pid)
  182. {
  183. struct pid_namespace *ns;
  184. if (!pid)
  185. return;
  186. ns = pid->numbers[pid->level].ns;
  187. if ((atomic_read(&pid->count) == 1) ||
  188. atomic_dec_and_test(&pid->count)) {
  189. kmem_cache_free(ns->pid_cachep, pid);
  190. put_pid_ns(ns);
  191. }
  192. }
  193. EXPORT_SYMBOL_GPL(put_pid);
  194. static void delayed_put_pid(struct rcu_head *rhp)
  195. {
  196. struct pid *pid = container_of(rhp, struct pid, rcu);
  197. put_pid(pid);
  198. }
  199. void free_pid(struct pid *pid)
  200. {
  201. /* We can be called with write_lock_irq(&tasklist_lock) held */
  202. int i;
  203. unsigned long flags;
  204. spin_lock_irqsave(&pidmap_lock, flags);
  205. for (i = 0; i <= pid->level; i++)
  206. hlist_del_rcu(&pid->numbers[i].pid_chain);
  207. spin_unlock_irqrestore(&pidmap_lock, flags);
  208. for (i = 0; i <= pid->level; i++)
  209. free_pidmap(pid->numbers + i);
  210. call_rcu(&pid->rcu, delayed_put_pid);
  211. }
  212. struct pid *alloc_pid(struct pid_namespace *ns)
  213. {
  214. struct pid *pid;
  215. enum pid_type type;
  216. int i, nr;
  217. struct pid_namespace *tmp;
  218. struct upid *upid;
  219. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  220. if (!pid)
  221. goto out;
  222. tmp = ns;
  223. for (i = ns->level; i >= 0; i--) {
  224. nr = alloc_pidmap(tmp);
  225. if (nr < 0)
  226. goto out_free;
  227. pid->numbers[i].nr = nr;
  228. pid->numbers[i].ns = tmp;
  229. tmp = tmp->parent;
  230. }
  231. get_pid_ns(ns);
  232. pid->level = ns->level;
  233. atomic_set(&pid->count, 1);
  234. for (type = 0; type < PIDTYPE_MAX; ++type)
  235. INIT_HLIST_HEAD(&pid->tasks[type]);
  236. spin_lock_irq(&pidmap_lock);
  237. for (i = ns->level; i >= 0; i--) {
  238. upid = &pid->numbers[i];
  239. hlist_add_head_rcu(&upid->pid_chain,
  240. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  241. }
  242. spin_unlock_irq(&pidmap_lock);
  243. out:
  244. return pid;
  245. out_free:
  246. while (++i <= ns->level)
  247. free_pidmap(pid->numbers + i);
  248. kmem_cache_free(ns->pid_cachep, pid);
  249. pid = NULL;
  250. goto out;
  251. }
  252. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  253. {
  254. struct hlist_node *elem;
  255. struct upid *pnr;
  256. hlist_for_each_entry_rcu(pnr, elem,
  257. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  258. if (pnr->nr == nr && pnr->ns == ns)
  259. return container_of(pnr, struct pid,
  260. numbers[ns->level]);
  261. return NULL;
  262. }
  263. EXPORT_SYMBOL_GPL(find_pid_ns);
  264. struct pid *find_vpid(int nr)
  265. {
  266. return find_pid_ns(nr, current->nsproxy->pid_ns);
  267. }
  268. EXPORT_SYMBOL_GPL(find_vpid);
  269. struct pid *find_pid(int nr)
  270. {
  271. return find_pid_ns(nr, &init_pid_ns);
  272. }
  273. EXPORT_SYMBOL_GPL(find_pid);
  274. /*
  275. * attach_pid() must be called with the tasklist_lock write-held.
  276. */
  277. void attach_pid(struct task_struct *task, enum pid_type type,
  278. struct pid *pid)
  279. {
  280. struct pid_link *link;
  281. link = &task->pids[type];
  282. link->pid = pid;
  283. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  284. }
  285. static void __change_pid(struct task_struct *task, enum pid_type type,
  286. struct pid *new)
  287. {
  288. struct pid_link *link;
  289. struct pid *pid;
  290. int tmp;
  291. link = &task->pids[type];
  292. pid = link->pid;
  293. hlist_del_rcu(&link->node);
  294. link->pid = new;
  295. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  296. if (!hlist_empty(&pid->tasks[tmp]))
  297. return;
  298. free_pid(pid);
  299. }
  300. void detach_pid(struct task_struct *task, enum pid_type type)
  301. {
  302. __change_pid(task, type, NULL);
  303. }
  304. void change_pid(struct task_struct *task, enum pid_type type,
  305. struct pid *pid)
  306. {
  307. __change_pid(task, type, pid);
  308. attach_pid(task, type, pid);
  309. }
  310. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  311. void transfer_pid(struct task_struct *old, struct task_struct *new,
  312. enum pid_type type)
  313. {
  314. new->pids[type].pid = old->pids[type].pid;
  315. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  316. }
  317. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  318. {
  319. struct task_struct *result = NULL;
  320. if (pid) {
  321. struct hlist_node *first;
  322. first = rcu_dereference(pid->tasks[type].first);
  323. if (first)
  324. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  325. }
  326. return result;
  327. }
  328. EXPORT_SYMBOL(pid_task);
  329. /*
  330. * Must be called under rcu_read_lock() or with tasklist_lock read-held.
  331. */
  332. struct task_struct *find_task_by_pid_type_ns(int type, int nr,
  333. struct pid_namespace *ns)
  334. {
  335. return pid_task(find_pid_ns(nr, ns), type);
  336. }
  337. EXPORT_SYMBOL(find_task_by_pid_type_ns);
  338. struct task_struct *find_task_by_vpid(pid_t vnr)
  339. {
  340. return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
  341. current->nsproxy->pid_ns);
  342. }
  343. EXPORT_SYMBOL(find_task_by_vpid);
  344. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  345. {
  346. return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
  347. }
  348. EXPORT_SYMBOL(find_task_by_pid_ns);
  349. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  350. {
  351. struct pid *pid;
  352. rcu_read_lock();
  353. pid = get_pid(task->pids[type].pid);
  354. rcu_read_unlock();
  355. return pid;
  356. }
  357. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  358. {
  359. struct task_struct *result;
  360. rcu_read_lock();
  361. result = pid_task(pid, type);
  362. if (result)
  363. get_task_struct(result);
  364. rcu_read_unlock();
  365. return result;
  366. }
  367. struct pid *find_get_pid(pid_t nr)
  368. {
  369. struct pid *pid;
  370. rcu_read_lock();
  371. pid = get_pid(find_vpid(nr));
  372. rcu_read_unlock();
  373. return pid;
  374. }
  375. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  376. {
  377. struct upid *upid;
  378. pid_t nr = 0;
  379. if (pid && ns->level <= pid->level) {
  380. upid = &pid->numbers[ns->level];
  381. if (upid->ns == ns)
  382. nr = upid->nr;
  383. }
  384. return nr;
  385. }
  386. pid_t pid_vnr(struct pid *pid)
  387. {
  388. return pid_nr_ns(pid, current->nsproxy->pid_ns);
  389. }
  390. EXPORT_SYMBOL_GPL(pid_vnr);
  391. pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  392. {
  393. return pid_nr_ns(task_pid(tsk), ns);
  394. }
  395. EXPORT_SYMBOL(task_pid_nr_ns);
  396. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  397. {
  398. return pid_nr_ns(task_tgid(tsk), ns);
  399. }
  400. EXPORT_SYMBOL(task_tgid_nr_ns);
  401. pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  402. {
  403. return pid_nr_ns(task_pgrp(tsk), ns);
  404. }
  405. EXPORT_SYMBOL(task_pgrp_nr_ns);
  406. pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  407. {
  408. return pid_nr_ns(task_session(tsk), ns);
  409. }
  410. EXPORT_SYMBOL(task_session_nr_ns);
  411. /*
  412. * Used by proc to find the first pid that is greater then or equal to nr.
  413. *
  414. * If there is a pid at nr this function is exactly the same as find_pid.
  415. */
  416. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  417. {
  418. struct pid *pid;
  419. do {
  420. pid = find_pid_ns(nr, ns);
  421. if (pid)
  422. break;
  423. nr = next_pidmap(ns, nr);
  424. } while (nr > 0);
  425. return pid;
  426. }
  427. EXPORT_SYMBOL_GPL(find_get_pid);
  428. /*
  429. * The pid hash table is scaled according to the amount of memory in the
  430. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  431. * more.
  432. */
  433. void __init pidhash_init(void)
  434. {
  435. int i, pidhash_size;
  436. unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
  437. pidhash_shift = max(4, fls(megabytes * 4));
  438. pidhash_shift = min(12, pidhash_shift);
  439. pidhash_size = 1 << pidhash_shift;
  440. printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
  441. pidhash_size, pidhash_shift,
  442. pidhash_size * sizeof(struct hlist_head));
  443. pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
  444. if (!pid_hash)
  445. panic("Could not alloc pidhash!\n");
  446. for (i = 0; i < pidhash_size; i++)
  447. INIT_HLIST_HEAD(&pid_hash[i]);
  448. }
  449. void __init pidmap_init(void)
  450. {
  451. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  452. /* Reserve PID 0. We never call free_pidmap(0) */
  453. set_bit(0, init_pid_ns.pidmap[0].page);
  454. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  455. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  456. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  457. }