audit_tree.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902
  1. #include "audit.h"
  2. #include <linux/inotify.h>
  3. #include <linux/namei.h>
  4. #include <linux/mount.h>
  5. struct audit_tree;
  6. struct audit_chunk;
  7. struct audit_tree {
  8. atomic_t count;
  9. int goner;
  10. struct audit_chunk *root;
  11. struct list_head chunks;
  12. struct list_head rules;
  13. struct list_head list;
  14. struct list_head same_root;
  15. struct rcu_head head;
  16. char pathname[];
  17. };
  18. struct audit_chunk {
  19. struct list_head hash;
  20. struct inotify_watch watch;
  21. struct list_head trees; /* with root here */
  22. int dead;
  23. int count;
  24. struct rcu_head head;
  25. struct node {
  26. struct list_head list;
  27. struct audit_tree *owner;
  28. unsigned index; /* index; upper bit indicates 'will prune' */
  29. } owners[];
  30. };
  31. static LIST_HEAD(tree_list);
  32. static LIST_HEAD(prune_list);
  33. /*
  34. * One struct chunk is attached to each inode of interest.
  35. * We replace struct chunk on tagging/untagging.
  36. * Rules have pointer to struct audit_tree.
  37. * Rules have struct list_head rlist forming a list of rules over
  38. * the same tree.
  39. * References to struct chunk are collected at audit_inode{,_child}()
  40. * time and used in AUDIT_TREE rule matching.
  41. * These references are dropped at the same time we are calling
  42. * audit_free_names(), etc.
  43. *
  44. * Cyclic lists galore:
  45. * tree.chunks anchors chunk.owners[].list hash_lock
  46. * tree.rules anchors rule.rlist audit_filter_mutex
  47. * chunk.trees anchors tree.same_root hash_lock
  48. * chunk.hash is a hash with middle bits of watch.inode as
  49. * a hash function. RCU, hash_lock
  50. *
  51. * tree is refcounted; one reference for "some rules on rules_list refer to
  52. * it", one for each chunk with pointer to it.
  53. *
  54. * chunk is refcounted by embedded inotify_watch.
  55. *
  56. * node.index allows to get from node.list to containing chunk.
  57. * MSB of that sucker is stolen to mark taggings that we might have to
  58. * revert - several operations have very unpleasant cleanup logics and
  59. * that makes a difference. Some.
  60. */
  61. static struct inotify_handle *rtree_ih;
  62. static struct audit_tree *alloc_tree(const char *s)
  63. {
  64. struct audit_tree *tree;
  65. tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
  66. if (tree) {
  67. atomic_set(&tree->count, 1);
  68. tree->goner = 0;
  69. INIT_LIST_HEAD(&tree->chunks);
  70. INIT_LIST_HEAD(&tree->rules);
  71. INIT_LIST_HEAD(&tree->list);
  72. INIT_LIST_HEAD(&tree->same_root);
  73. tree->root = NULL;
  74. strcpy(tree->pathname, s);
  75. }
  76. return tree;
  77. }
  78. static inline void get_tree(struct audit_tree *tree)
  79. {
  80. atomic_inc(&tree->count);
  81. }
  82. static void __put_tree(struct rcu_head *rcu)
  83. {
  84. struct audit_tree *tree = container_of(rcu, struct audit_tree, head);
  85. kfree(tree);
  86. }
  87. static inline void put_tree(struct audit_tree *tree)
  88. {
  89. if (atomic_dec_and_test(&tree->count))
  90. call_rcu(&tree->head, __put_tree);
  91. }
  92. /* to avoid bringing the entire thing in audit.h */
  93. const char *audit_tree_path(struct audit_tree *tree)
  94. {
  95. return tree->pathname;
  96. }
  97. static struct audit_chunk *alloc_chunk(int count)
  98. {
  99. struct audit_chunk *chunk;
  100. size_t size;
  101. int i;
  102. size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
  103. chunk = kzalloc(size, GFP_KERNEL);
  104. if (!chunk)
  105. return NULL;
  106. INIT_LIST_HEAD(&chunk->hash);
  107. INIT_LIST_HEAD(&chunk->trees);
  108. chunk->count = count;
  109. for (i = 0; i < count; i++) {
  110. INIT_LIST_HEAD(&chunk->owners[i].list);
  111. chunk->owners[i].index = i;
  112. }
  113. inotify_init_watch(&chunk->watch);
  114. return chunk;
  115. }
  116. static void __free_chunk(struct rcu_head *rcu)
  117. {
  118. struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
  119. int i;
  120. for (i = 0; i < chunk->count; i++) {
  121. if (chunk->owners[i].owner)
  122. put_tree(chunk->owners[i].owner);
  123. }
  124. kfree(chunk);
  125. }
  126. static inline void free_chunk(struct audit_chunk *chunk)
  127. {
  128. call_rcu(&chunk->head, __free_chunk);
  129. }
  130. void audit_put_chunk(struct audit_chunk *chunk)
  131. {
  132. put_inotify_watch(&chunk->watch);
  133. }
  134. enum {HASH_SIZE = 128};
  135. static struct list_head chunk_hash_heads[HASH_SIZE];
  136. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
  137. static inline struct list_head *chunk_hash(const struct inode *inode)
  138. {
  139. unsigned long n = (unsigned long)inode / L1_CACHE_BYTES;
  140. return chunk_hash_heads + n % HASH_SIZE;
  141. }
  142. /* hash_lock is held by caller */
  143. static void insert_hash(struct audit_chunk *chunk)
  144. {
  145. struct list_head *list = chunk_hash(chunk->watch.inode);
  146. list_add_rcu(&chunk->hash, list);
  147. }
  148. /* called under rcu_read_lock */
  149. struct audit_chunk *audit_tree_lookup(const struct inode *inode)
  150. {
  151. struct list_head *list = chunk_hash(inode);
  152. struct audit_chunk *p;
  153. list_for_each_entry_rcu(p, list, hash) {
  154. if (p->watch.inode == inode) {
  155. get_inotify_watch(&p->watch);
  156. return p;
  157. }
  158. }
  159. return NULL;
  160. }
  161. int audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
  162. {
  163. int n;
  164. for (n = 0; n < chunk->count; n++)
  165. if (chunk->owners[n].owner == tree)
  166. return 1;
  167. return 0;
  168. }
  169. /* tagging and untagging inodes with trees */
  170. static void untag_chunk(struct audit_chunk *chunk, struct node *p)
  171. {
  172. struct audit_chunk *new;
  173. struct audit_tree *owner;
  174. int size = chunk->count - 1;
  175. int i, j;
  176. mutex_lock(&chunk->watch.inode->inotify_mutex);
  177. if (chunk->dead) {
  178. mutex_unlock(&chunk->watch.inode->inotify_mutex);
  179. return;
  180. }
  181. owner = p->owner;
  182. if (!size) {
  183. chunk->dead = 1;
  184. spin_lock(&hash_lock);
  185. list_del_init(&chunk->trees);
  186. if (owner->root == chunk)
  187. owner->root = NULL;
  188. list_del_init(&p->list);
  189. list_del_rcu(&chunk->hash);
  190. spin_unlock(&hash_lock);
  191. inotify_evict_watch(&chunk->watch);
  192. mutex_unlock(&chunk->watch.inode->inotify_mutex);
  193. put_inotify_watch(&chunk->watch);
  194. return;
  195. }
  196. new = alloc_chunk(size);
  197. if (!new)
  198. goto Fallback;
  199. if (inotify_clone_watch(&chunk->watch, &new->watch) < 0) {
  200. free_chunk(new);
  201. goto Fallback;
  202. }
  203. chunk->dead = 1;
  204. spin_lock(&hash_lock);
  205. list_replace_init(&chunk->trees, &new->trees);
  206. if (owner->root == chunk) {
  207. list_del_init(&owner->same_root);
  208. owner->root = NULL;
  209. }
  210. for (i = j = 0; i < size; i++, j++) {
  211. struct audit_tree *s;
  212. if (&chunk->owners[j] == p) {
  213. list_del_init(&p->list);
  214. i--;
  215. continue;
  216. }
  217. s = chunk->owners[j].owner;
  218. new->owners[i].owner = s;
  219. new->owners[i].index = chunk->owners[j].index - j + i;
  220. if (!s) /* result of earlier fallback */
  221. continue;
  222. get_tree(s);
  223. list_replace_init(&chunk->owners[i].list, &new->owners[j].list);
  224. }
  225. list_replace_rcu(&chunk->hash, &new->hash);
  226. list_for_each_entry(owner, &new->trees, same_root)
  227. owner->root = new;
  228. spin_unlock(&hash_lock);
  229. inotify_evict_watch(&chunk->watch);
  230. mutex_unlock(&chunk->watch.inode->inotify_mutex);
  231. put_inotify_watch(&chunk->watch);
  232. return;
  233. Fallback:
  234. // do the best we can
  235. spin_lock(&hash_lock);
  236. if (owner->root == chunk) {
  237. list_del_init(&owner->same_root);
  238. owner->root = NULL;
  239. }
  240. list_del_init(&p->list);
  241. p->owner = NULL;
  242. put_tree(owner);
  243. spin_unlock(&hash_lock);
  244. mutex_unlock(&chunk->watch.inode->inotify_mutex);
  245. }
  246. static int create_chunk(struct inode *inode, struct audit_tree *tree)
  247. {
  248. struct audit_chunk *chunk = alloc_chunk(1);
  249. if (!chunk)
  250. return -ENOMEM;
  251. if (inotify_add_watch(rtree_ih, &chunk->watch, inode, IN_IGNORED | IN_DELETE_SELF) < 0) {
  252. free_chunk(chunk);
  253. return -ENOSPC;
  254. }
  255. mutex_lock(&inode->inotify_mutex);
  256. spin_lock(&hash_lock);
  257. if (tree->goner) {
  258. spin_unlock(&hash_lock);
  259. chunk->dead = 1;
  260. inotify_evict_watch(&chunk->watch);
  261. mutex_unlock(&inode->inotify_mutex);
  262. put_inotify_watch(&chunk->watch);
  263. return 0;
  264. }
  265. chunk->owners[0].index = (1U << 31);
  266. chunk->owners[0].owner = tree;
  267. get_tree(tree);
  268. list_add(&chunk->owners[0].list, &tree->chunks);
  269. if (!tree->root) {
  270. tree->root = chunk;
  271. list_add(&tree->same_root, &chunk->trees);
  272. }
  273. insert_hash(chunk);
  274. spin_unlock(&hash_lock);
  275. mutex_unlock(&inode->inotify_mutex);
  276. return 0;
  277. }
  278. /* the first tagged inode becomes root of tree */
  279. static int tag_chunk(struct inode *inode, struct audit_tree *tree)
  280. {
  281. struct inotify_watch *watch;
  282. struct audit_tree *owner;
  283. struct audit_chunk *chunk, *old;
  284. struct node *p;
  285. int n;
  286. if (inotify_find_watch(rtree_ih, inode, &watch) < 0)
  287. return create_chunk(inode, tree);
  288. old = container_of(watch, struct audit_chunk, watch);
  289. /* are we already there? */
  290. spin_lock(&hash_lock);
  291. for (n = 0; n < old->count; n++) {
  292. if (old->owners[n].owner == tree) {
  293. spin_unlock(&hash_lock);
  294. put_inotify_watch(watch);
  295. return 0;
  296. }
  297. }
  298. spin_unlock(&hash_lock);
  299. chunk = alloc_chunk(old->count + 1);
  300. if (!chunk)
  301. return -ENOMEM;
  302. mutex_lock(&inode->inotify_mutex);
  303. if (inotify_clone_watch(&old->watch, &chunk->watch) < 0) {
  304. mutex_unlock(&inode->inotify_mutex);
  305. free_chunk(chunk);
  306. return -ENOSPC;
  307. }
  308. spin_lock(&hash_lock);
  309. if (tree->goner) {
  310. spin_unlock(&hash_lock);
  311. chunk->dead = 1;
  312. inotify_evict_watch(&chunk->watch);
  313. mutex_unlock(&inode->inotify_mutex);
  314. put_inotify_watch(&chunk->watch);
  315. return 0;
  316. }
  317. list_replace_init(&old->trees, &chunk->trees);
  318. for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
  319. struct audit_tree *s = old->owners[n].owner;
  320. p->owner = s;
  321. p->index = old->owners[n].index;
  322. if (!s) /* result of fallback in untag */
  323. continue;
  324. get_tree(s);
  325. list_replace_init(&old->owners[n].list, &p->list);
  326. }
  327. p->index = (chunk->count - 1) | (1U<<31);
  328. p->owner = tree;
  329. get_tree(tree);
  330. list_add(&p->list, &tree->chunks);
  331. list_replace_rcu(&old->hash, &chunk->hash);
  332. list_for_each_entry(owner, &chunk->trees, same_root)
  333. owner->root = chunk;
  334. old->dead = 1;
  335. if (!tree->root) {
  336. tree->root = chunk;
  337. list_add(&tree->same_root, &chunk->trees);
  338. }
  339. spin_unlock(&hash_lock);
  340. inotify_evict_watch(&old->watch);
  341. mutex_unlock(&inode->inotify_mutex);
  342. put_inotify_watch(&old->watch);
  343. return 0;
  344. }
  345. static struct audit_chunk *find_chunk(struct node *p)
  346. {
  347. int index = p->index & ~(1U<<31);
  348. p -= index;
  349. return container_of(p, struct audit_chunk, owners[0]);
  350. }
  351. static void kill_rules(struct audit_tree *tree)
  352. {
  353. struct audit_krule *rule, *next;
  354. struct audit_entry *entry;
  355. struct audit_buffer *ab;
  356. list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
  357. entry = container_of(rule, struct audit_entry, rule);
  358. list_del_init(&rule->rlist);
  359. if (rule->tree) {
  360. /* not a half-baked one */
  361. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
  362. audit_log_format(ab, "op=remove rule dir=");
  363. audit_log_untrustedstring(ab, rule->tree->pathname);
  364. if (rule->filterkey) {
  365. audit_log_format(ab, " key=");
  366. audit_log_untrustedstring(ab, rule->filterkey);
  367. } else
  368. audit_log_format(ab, " key=(null)");
  369. audit_log_format(ab, " list=%d res=1", rule->listnr);
  370. audit_log_end(ab);
  371. rule->tree = NULL;
  372. list_del_rcu(&entry->list);
  373. call_rcu(&entry->rcu, audit_free_rule_rcu);
  374. }
  375. }
  376. }
  377. /*
  378. * finish killing struct audit_tree
  379. */
  380. static void prune_one(struct audit_tree *victim)
  381. {
  382. spin_lock(&hash_lock);
  383. while (!list_empty(&victim->chunks)) {
  384. struct node *p;
  385. struct audit_chunk *chunk;
  386. p = list_entry(victim->chunks.next, struct node, list);
  387. chunk = find_chunk(p);
  388. get_inotify_watch(&chunk->watch);
  389. spin_unlock(&hash_lock);
  390. untag_chunk(chunk, p);
  391. put_inotify_watch(&chunk->watch);
  392. spin_lock(&hash_lock);
  393. }
  394. spin_unlock(&hash_lock);
  395. put_tree(victim);
  396. }
  397. /* trim the uncommitted chunks from tree */
  398. static void trim_marked(struct audit_tree *tree)
  399. {
  400. struct list_head *p, *q;
  401. spin_lock(&hash_lock);
  402. if (tree->goner) {
  403. spin_unlock(&hash_lock);
  404. return;
  405. }
  406. /* reorder */
  407. for (p = tree->chunks.next; p != &tree->chunks; p = q) {
  408. struct node *node = list_entry(p, struct node, list);
  409. q = p->next;
  410. if (node->index & (1U<<31)) {
  411. list_del_init(p);
  412. list_add(p, &tree->chunks);
  413. }
  414. }
  415. while (!list_empty(&tree->chunks)) {
  416. struct node *node;
  417. struct audit_chunk *chunk;
  418. node = list_entry(tree->chunks.next, struct node, list);
  419. /* have we run out of marked? */
  420. if (!(node->index & (1U<<31)))
  421. break;
  422. chunk = find_chunk(node);
  423. get_inotify_watch(&chunk->watch);
  424. spin_unlock(&hash_lock);
  425. untag_chunk(chunk, node);
  426. put_inotify_watch(&chunk->watch);
  427. spin_lock(&hash_lock);
  428. }
  429. if (!tree->root && !tree->goner) {
  430. tree->goner = 1;
  431. spin_unlock(&hash_lock);
  432. mutex_lock(&audit_filter_mutex);
  433. kill_rules(tree);
  434. list_del_init(&tree->list);
  435. mutex_unlock(&audit_filter_mutex);
  436. prune_one(tree);
  437. } else {
  438. spin_unlock(&hash_lock);
  439. }
  440. }
  441. /* called with audit_filter_mutex */
  442. int audit_remove_tree_rule(struct audit_krule *rule)
  443. {
  444. struct audit_tree *tree;
  445. tree = rule->tree;
  446. if (tree) {
  447. spin_lock(&hash_lock);
  448. list_del_init(&rule->rlist);
  449. if (list_empty(&tree->rules) && !tree->goner) {
  450. tree->root = NULL;
  451. list_del_init(&tree->same_root);
  452. tree->goner = 1;
  453. list_move(&tree->list, &prune_list);
  454. rule->tree = NULL;
  455. spin_unlock(&hash_lock);
  456. audit_schedule_prune();
  457. return 1;
  458. }
  459. rule->tree = NULL;
  460. spin_unlock(&hash_lock);
  461. return 1;
  462. }
  463. return 0;
  464. }
  465. void audit_trim_trees(void)
  466. {
  467. struct list_head cursor;
  468. mutex_lock(&audit_filter_mutex);
  469. list_add(&cursor, &tree_list);
  470. while (cursor.next != &tree_list) {
  471. struct audit_tree *tree;
  472. struct nameidata nd;
  473. struct vfsmount *root_mnt;
  474. struct node *node;
  475. struct list_head list;
  476. int err;
  477. tree = container_of(cursor.next, struct audit_tree, list);
  478. get_tree(tree);
  479. list_del(&cursor);
  480. list_add(&cursor, &tree->list);
  481. mutex_unlock(&audit_filter_mutex);
  482. err = path_lookup(tree->pathname, 0, &nd);
  483. if (err)
  484. goto skip_it;
  485. root_mnt = collect_mounts(nd.path.mnt, nd.path.dentry);
  486. path_put(&nd.path);
  487. if (!root_mnt)
  488. goto skip_it;
  489. list_add_tail(&list, &root_mnt->mnt_list);
  490. spin_lock(&hash_lock);
  491. list_for_each_entry(node, &tree->chunks, list) {
  492. struct audit_chunk *chunk = find_chunk(node);
  493. struct inode *inode = chunk->watch.inode;
  494. struct vfsmount *mnt;
  495. node->index |= 1U<<31;
  496. list_for_each_entry(mnt, &list, mnt_list) {
  497. if (mnt->mnt_root->d_inode == inode) {
  498. node->index &= ~(1U<<31);
  499. break;
  500. }
  501. }
  502. }
  503. spin_unlock(&hash_lock);
  504. trim_marked(tree);
  505. put_tree(tree);
  506. list_del_init(&list);
  507. drop_collected_mounts(root_mnt);
  508. skip_it:
  509. mutex_lock(&audit_filter_mutex);
  510. }
  511. list_del(&cursor);
  512. mutex_unlock(&audit_filter_mutex);
  513. }
  514. static int is_under(struct vfsmount *mnt, struct dentry *dentry,
  515. struct nameidata *nd)
  516. {
  517. if (mnt != nd->path.mnt) {
  518. for (;;) {
  519. if (mnt->mnt_parent == mnt)
  520. return 0;
  521. if (mnt->mnt_parent == nd->path.mnt)
  522. break;
  523. mnt = mnt->mnt_parent;
  524. }
  525. dentry = mnt->mnt_mountpoint;
  526. }
  527. return is_subdir(dentry, nd->path.dentry);
  528. }
  529. int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
  530. {
  531. if (pathname[0] != '/' ||
  532. rule->listnr != AUDIT_FILTER_EXIT ||
  533. op & ~AUDIT_EQUAL ||
  534. rule->inode_f || rule->watch || rule->tree)
  535. return -EINVAL;
  536. rule->tree = alloc_tree(pathname);
  537. if (!rule->tree)
  538. return -ENOMEM;
  539. return 0;
  540. }
  541. void audit_put_tree(struct audit_tree *tree)
  542. {
  543. put_tree(tree);
  544. }
  545. /* called with audit_filter_mutex */
  546. int audit_add_tree_rule(struct audit_krule *rule)
  547. {
  548. struct audit_tree *seed = rule->tree, *tree;
  549. struct nameidata nd;
  550. struct vfsmount *mnt, *p;
  551. struct list_head list;
  552. int err;
  553. list_for_each_entry(tree, &tree_list, list) {
  554. if (!strcmp(seed->pathname, tree->pathname)) {
  555. put_tree(seed);
  556. rule->tree = tree;
  557. list_add(&rule->rlist, &tree->rules);
  558. return 0;
  559. }
  560. }
  561. tree = seed;
  562. list_add(&tree->list, &tree_list);
  563. list_add(&rule->rlist, &tree->rules);
  564. /* do not set rule->tree yet */
  565. mutex_unlock(&audit_filter_mutex);
  566. err = path_lookup(tree->pathname, 0, &nd);
  567. if (err)
  568. goto Err;
  569. mnt = collect_mounts(nd.path.mnt, nd.path.dentry);
  570. path_put(&nd.path);
  571. if (!mnt) {
  572. err = -ENOMEM;
  573. goto Err;
  574. }
  575. list_add_tail(&list, &mnt->mnt_list);
  576. get_tree(tree);
  577. list_for_each_entry(p, &list, mnt_list) {
  578. err = tag_chunk(p->mnt_root->d_inode, tree);
  579. if (err)
  580. break;
  581. }
  582. list_del(&list);
  583. drop_collected_mounts(mnt);
  584. if (!err) {
  585. struct node *node;
  586. spin_lock(&hash_lock);
  587. list_for_each_entry(node, &tree->chunks, list)
  588. node->index &= ~(1U<<31);
  589. spin_unlock(&hash_lock);
  590. } else {
  591. trim_marked(tree);
  592. goto Err;
  593. }
  594. mutex_lock(&audit_filter_mutex);
  595. if (list_empty(&rule->rlist)) {
  596. put_tree(tree);
  597. return -ENOENT;
  598. }
  599. rule->tree = tree;
  600. put_tree(tree);
  601. return 0;
  602. Err:
  603. mutex_lock(&audit_filter_mutex);
  604. list_del_init(&tree->list);
  605. list_del_init(&tree->rules);
  606. put_tree(tree);
  607. return err;
  608. }
  609. int audit_tag_tree(char *old, char *new)
  610. {
  611. struct list_head cursor, barrier;
  612. int failed = 0;
  613. struct nameidata nd;
  614. struct vfsmount *tagged;
  615. struct list_head list;
  616. struct vfsmount *mnt;
  617. struct dentry *dentry;
  618. int err;
  619. err = path_lookup(new, 0, &nd);
  620. if (err)
  621. return err;
  622. tagged = collect_mounts(nd.path.mnt, nd.path.dentry);
  623. path_put(&nd.path);
  624. if (!tagged)
  625. return -ENOMEM;
  626. err = path_lookup(old, 0, &nd);
  627. if (err) {
  628. drop_collected_mounts(tagged);
  629. return err;
  630. }
  631. mnt = mntget(nd.path.mnt);
  632. dentry = dget(nd.path.dentry);
  633. path_put(&nd.path);
  634. if (dentry == tagged->mnt_root && dentry == mnt->mnt_root)
  635. follow_up(&mnt, &dentry);
  636. list_add_tail(&list, &tagged->mnt_list);
  637. mutex_lock(&audit_filter_mutex);
  638. list_add(&barrier, &tree_list);
  639. list_add(&cursor, &barrier);
  640. while (cursor.next != &tree_list) {
  641. struct audit_tree *tree;
  642. struct vfsmount *p;
  643. tree = container_of(cursor.next, struct audit_tree, list);
  644. get_tree(tree);
  645. list_del(&cursor);
  646. list_add(&cursor, &tree->list);
  647. mutex_unlock(&audit_filter_mutex);
  648. err = path_lookup(tree->pathname, 0, &nd);
  649. if (err) {
  650. put_tree(tree);
  651. mutex_lock(&audit_filter_mutex);
  652. continue;
  653. }
  654. spin_lock(&vfsmount_lock);
  655. if (!is_under(mnt, dentry, &nd)) {
  656. spin_unlock(&vfsmount_lock);
  657. path_put(&nd.path);
  658. put_tree(tree);
  659. mutex_lock(&audit_filter_mutex);
  660. continue;
  661. }
  662. spin_unlock(&vfsmount_lock);
  663. path_put(&nd.path);
  664. list_for_each_entry(p, &list, mnt_list) {
  665. failed = tag_chunk(p->mnt_root->d_inode, tree);
  666. if (failed)
  667. break;
  668. }
  669. if (failed) {
  670. put_tree(tree);
  671. mutex_lock(&audit_filter_mutex);
  672. break;
  673. }
  674. mutex_lock(&audit_filter_mutex);
  675. spin_lock(&hash_lock);
  676. if (!tree->goner) {
  677. list_del(&tree->list);
  678. list_add(&tree->list, &tree_list);
  679. }
  680. spin_unlock(&hash_lock);
  681. put_tree(tree);
  682. }
  683. while (barrier.prev != &tree_list) {
  684. struct audit_tree *tree;
  685. tree = container_of(barrier.prev, struct audit_tree, list);
  686. get_tree(tree);
  687. list_del(&tree->list);
  688. list_add(&tree->list, &barrier);
  689. mutex_unlock(&audit_filter_mutex);
  690. if (!failed) {
  691. struct node *node;
  692. spin_lock(&hash_lock);
  693. list_for_each_entry(node, &tree->chunks, list)
  694. node->index &= ~(1U<<31);
  695. spin_unlock(&hash_lock);
  696. } else {
  697. trim_marked(tree);
  698. }
  699. put_tree(tree);
  700. mutex_lock(&audit_filter_mutex);
  701. }
  702. list_del(&barrier);
  703. list_del(&cursor);
  704. list_del(&list);
  705. mutex_unlock(&audit_filter_mutex);
  706. dput(dentry);
  707. mntput(mnt);
  708. drop_collected_mounts(tagged);
  709. return failed;
  710. }
  711. /*
  712. * That gets run when evict_chunk() ends up needing to kill audit_tree.
  713. * Runs from a separate thread, with audit_cmd_mutex held.
  714. */
  715. void audit_prune_trees(void)
  716. {
  717. mutex_lock(&audit_filter_mutex);
  718. while (!list_empty(&prune_list)) {
  719. struct audit_tree *victim;
  720. victim = list_entry(prune_list.next, struct audit_tree, list);
  721. list_del_init(&victim->list);
  722. mutex_unlock(&audit_filter_mutex);
  723. prune_one(victim);
  724. mutex_lock(&audit_filter_mutex);
  725. }
  726. mutex_unlock(&audit_filter_mutex);
  727. }
  728. /*
  729. * Here comes the stuff asynchronous to auditctl operations
  730. */
  731. /* inode->inotify_mutex is locked */
  732. static void evict_chunk(struct audit_chunk *chunk)
  733. {
  734. struct audit_tree *owner;
  735. int n;
  736. if (chunk->dead)
  737. return;
  738. chunk->dead = 1;
  739. mutex_lock(&audit_filter_mutex);
  740. spin_lock(&hash_lock);
  741. while (!list_empty(&chunk->trees)) {
  742. owner = list_entry(chunk->trees.next,
  743. struct audit_tree, same_root);
  744. owner->goner = 1;
  745. owner->root = NULL;
  746. list_del_init(&owner->same_root);
  747. spin_unlock(&hash_lock);
  748. kill_rules(owner);
  749. list_move(&owner->list, &prune_list);
  750. audit_schedule_prune();
  751. spin_lock(&hash_lock);
  752. }
  753. list_del_rcu(&chunk->hash);
  754. for (n = 0; n < chunk->count; n++)
  755. list_del_init(&chunk->owners[n].list);
  756. spin_unlock(&hash_lock);
  757. mutex_unlock(&audit_filter_mutex);
  758. }
  759. static void handle_event(struct inotify_watch *watch, u32 wd, u32 mask,
  760. u32 cookie, const char *dname, struct inode *inode)
  761. {
  762. struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
  763. if (mask & IN_IGNORED) {
  764. evict_chunk(chunk);
  765. put_inotify_watch(watch);
  766. }
  767. }
  768. static void destroy_watch(struct inotify_watch *watch)
  769. {
  770. struct audit_chunk *chunk = container_of(watch, struct audit_chunk, watch);
  771. free_chunk(chunk);
  772. }
  773. static const struct inotify_operations rtree_inotify_ops = {
  774. .handle_event = handle_event,
  775. .destroy_watch = destroy_watch,
  776. };
  777. static int __init audit_tree_init(void)
  778. {
  779. int i;
  780. rtree_ih = inotify_init(&rtree_inotify_ops);
  781. if (IS_ERR(rtree_ih))
  782. audit_panic("cannot initialize inotify handle for rectree watches");
  783. for (i = 0; i < HASH_SIZE; i++)
  784. INIT_LIST_HEAD(&chunk_hash_heads[i]);
  785. return 0;
  786. }
  787. __initcall(audit_tree_init);