audit.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503
  1. /* audit.c -- Auditing support
  2. * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
  3. * System-call specific features have moved to auditsc.c
  4. *
  5. * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
  6. * All Rights Reserved.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. *
  22. * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23. *
  24. * Goals: 1) Integrate fully with Security Modules.
  25. * 2) Minimal run-time overhead:
  26. * a) Minimal when syscall auditing is disabled (audit_enable=0).
  27. * b) Small when syscall auditing is enabled and no audit record
  28. * is generated (defer as much work as possible to record
  29. * generation time):
  30. * i) context is allocated,
  31. * ii) names from getname are stored without a copy, and
  32. * iii) inode information stored from path_lookup.
  33. * 3) Ability to disable syscall auditing at boot time (audit=0).
  34. * 4) Usable by other parts of the kernel (if audit_log* is called,
  35. * then a syscall record will be generated automatically for the
  36. * current syscall).
  37. * 5) Netlink interface to user-space.
  38. * 6) Support low-overhead kernel-based filtering to minimize the
  39. * information that must be passed to user-space.
  40. *
  41. * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
  42. */
  43. #include <linux/init.h>
  44. #include <asm/types.h>
  45. #include <asm/atomic.h>
  46. #include <linux/mm.h>
  47. #include <linux/module.h>
  48. #include <linux/err.h>
  49. #include <linux/kthread.h>
  50. #include <linux/audit.h>
  51. #include <net/sock.h>
  52. #include <net/netlink.h>
  53. #include <linux/skbuff.h>
  54. #include <linux/netlink.h>
  55. #include <linux/inotify.h>
  56. #include <linux/freezer.h>
  57. #include <linux/tty.h>
  58. #include "audit.h"
  59. /* No auditing will take place until audit_initialized != 0.
  60. * (Initialization happens after skb_init is called.) */
  61. static int audit_initialized;
  62. #define AUDIT_OFF 0
  63. #define AUDIT_ON 1
  64. #define AUDIT_LOCKED 2
  65. int audit_enabled;
  66. int audit_ever_enabled;
  67. /* Default state when kernel boots without any parameters. */
  68. static int audit_default;
  69. /* If auditing cannot proceed, audit_failure selects what happens. */
  70. static int audit_failure = AUDIT_FAIL_PRINTK;
  71. /*
  72. * If audit records are to be written to the netlink socket, audit_pid
  73. * contains the pid of the auditd process and audit_nlk_pid contains
  74. * the pid to use to send netlink messages to that process.
  75. */
  76. int audit_pid;
  77. static int audit_nlk_pid;
  78. /* If audit_rate_limit is non-zero, limit the rate of sending audit records
  79. * to that number per second. This prevents DoS attacks, but results in
  80. * audit records being dropped. */
  81. static int audit_rate_limit;
  82. /* Number of outstanding audit_buffers allowed. */
  83. static int audit_backlog_limit = 64;
  84. static int audit_backlog_wait_time = 60 * HZ;
  85. static int audit_backlog_wait_overflow = 0;
  86. /* The identity of the user shutting down the audit system. */
  87. uid_t audit_sig_uid = -1;
  88. pid_t audit_sig_pid = -1;
  89. u32 audit_sig_sid = 0;
  90. /* Records can be lost in several ways:
  91. 0) [suppressed in audit_alloc]
  92. 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
  93. 2) out of memory in audit_log_move [alloc_skb]
  94. 3) suppressed due to audit_rate_limit
  95. 4) suppressed due to audit_backlog_limit
  96. */
  97. static atomic_t audit_lost = ATOMIC_INIT(0);
  98. /* The netlink socket. */
  99. static struct sock *audit_sock;
  100. /* Inotify handle. */
  101. struct inotify_handle *audit_ih;
  102. /* Hash for inode-based rules */
  103. struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
  104. /* The audit_freelist is a list of pre-allocated audit buffers (if more
  105. * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
  106. * being placed on the freelist). */
  107. static DEFINE_SPINLOCK(audit_freelist_lock);
  108. static int audit_freelist_count;
  109. static LIST_HEAD(audit_freelist);
  110. static struct sk_buff_head audit_skb_queue;
  111. /* queue of skbs to send to auditd when/if it comes back */
  112. static struct sk_buff_head audit_skb_hold_queue;
  113. static struct task_struct *kauditd_task;
  114. static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
  115. static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
  116. /* Serialize requests from userspace. */
  117. static DEFINE_MUTEX(audit_cmd_mutex);
  118. /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
  119. * audit records. Since printk uses a 1024 byte buffer, this buffer
  120. * should be at least that large. */
  121. #define AUDIT_BUFSIZ 1024
  122. /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
  123. * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
  124. #define AUDIT_MAXFREE (2*NR_CPUS)
  125. /* The audit_buffer is used when formatting an audit record. The caller
  126. * locks briefly to get the record off the freelist or to allocate the
  127. * buffer, and locks briefly to send the buffer to the netlink layer or
  128. * to place it on a transmit queue. Multiple audit_buffers can be in
  129. * use simultaneously. */
  130. struct audit_buffer {
  131. struct list_head list;
  132. struct sk_buff *skb; /* formatted skb ready to send */
  133. struct audit_context *ctx; /* NULL or associated context */
  134. gfp_t gfp_mask;
  135. };
  136. struct audit_reply {
  137. int pid;
  138. struct sk_buff *skb;
  139. };
  140. static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
  141. {
  142. if (ab) {
  143. struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
  144. nlh->nlmsg_pid = pid;
  145. }
  146. }
  147. void audit_panic(const char *message)
  148. {
  149. switch (audit_failure)
  150. {
  151. case AUDIT_FAIL_SILENT:
  152. break;
  153. case AUDIT_FAIL_PRINTK:
  154. if (printk_ratelimit())
  155. printk(KERN_ERR "audit: %s\n", message);
  156. break;
  157. case AUDIT_FAIL_PANIC:
  158. /* test audit_pid since printk is always losey, why bother? */
  159. if (audit_pid)
  160. panic("audit: %s\n", message);
  161. break;
  162. }
  163. }
  164. static inline int audit_rate_check(void)
  165. {
  166. static unsigned long last_check = 0;
  167. static int messages = 0;
  168. static DEFINE_SPINLOCK(lock);
  169. unsigned long flags;
  170. unsigned long now;
  171. unsigned long elapsed;
  172. int retval = 0;
  173. if (!audit_rate_limit) return 1;
  174. spin_lock_irqsave(&lock, flags);
  175. if (++messages < audit_rate_limit) {
  176. retval = 1;
  177. } else {
  178. now = jiffies;
  179. elapsed = now - last_check;
  180. if (elapsed > HZ) {
  181. last_check = now;
  182. messages = 0;
  183. retval = 1;
  184. }
  185. }
  186. spin_unlock_irqrestore(&lock, flags);
  187. return retval;
  188. }
  189. /**
  190. * audit_log_lost - conditionally log lost audit message event
  191. * @message: the message stating reason for lost audit message
  192. *
  193. * Emit at least 1 message per second, even if audit_rate_check is
  194. * throttling.
  195. * Always increment the lost messages counter.
  196. */
  197. void audit_log_lost(const char *message)
  198. {
  199. static unsigned long last_msg = 0;
  200. static DEFINE_SPINLOCK(lock);
  201. unsigned long flags;
  202. unsigned long now;
  203. int print;
  204. atomic_inc(&audit_lost);
  205. print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
  206. if (!print) {
  207. spin_lock_irqsave(&lock, flags);
  208. now = jiffies;
  209. if (now - last_msg > HZ) {
  210. print = 1;
  211. last_msg = now;
  212. }
  213. spin_unlock_irqrestore(&lock, flags);
  214. }
  215. if (print) {
  216. if (printk_ratelimit())
  217. printk(KERN_WARNING
  218. "audit: audit_lost=%d audit_rate_limit=%d "
  219. "audit_backlog_limit=%d\n",
  220. atomic_read(&audit_lost),
  221. audit_rate_limit,
  222. audit_backlog_limit);
  223. audit_panic(message);
  224. }
  225. }
  226. static int audit_log_config_change(char *function_name, int new, int old,
  227. uid_t loginuid, u32 sessionid, u32 sid,
  228. int allow_changes)
  229. {
  230. struct audit_buffer *ab;
  231. int rc = 0;
  232. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
  233. audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
  234. old, loginuid, sessionid);
  235. if (sid) {
  236. char *ctx = NULL;
  237. u32 len;
  238. rc = security_secid_to_secctx(sid, &ctx, &len);
  239. if (rc) {
  240. audit_log_format(ab, " sid=%u", sid);
  241. allow_changes = 0; /* Something weird, deny request */
  242. } else {
  243. audit_log_format(ab, " subj=%s", ctx);
  244. security_release_secctx(ctx, len);
  245. }
  246. }
  247. audit_log_format(ab, " res=%d", allow_changes);
  248. audit_log_end(ab);
  249. return rc;
  250. }
  251. static int audit_do_config_change(char *function_name, int *to_change,
  252. int new, uid_t loginuid, u32 sessionid,
  253. u32 sid)
  254. {
  255. int allow_changes, rc = 0, old = *to_change;
  256. /* check if we are locked */
  257. if (audit_enabled == AUDIT_LOCKED)
  258. allow_changes = 0;
  259. else
  260. allow_changes = 1;
  261. if (audit_enabled != AUDIT_OFF) {
  262. rc = audit_log_config_change(function_name, new, old, loginuid,
  263. sessionid, sid, allow_changes);
  264. if (rc)
  265. allow_changes = 0;
  266. }
  267. /* If we are allowed, make the change */
  268. if (allow_changes == 1)
  269. *to_change = new;
  270. /* Not allowed, update reason */
  271. else if (rc == 0)
  272. rc = -EPERM;
  273. return rc;
  274. }
  275. static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
  276. u32 sid)
  277. {
  278. return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
  279. limit, loginuid, sessionid, sid);
  280. }
  281. static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
  282. u32 sid)
  283. {
  284. return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
  285. limit, loginuid, sessionid, sid);
  286. }
  287. static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
  288. {
  289. int rc;
  290. if (state < AUDIT_OFF || state > AUDIT_LOCKED)
  291. return -EINVAL;
  292. rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
  293. loginuid, sessionid, sid);
  294. if (!rc)
  295. audit_ever_enabled |= !!state;
  296. return rc;
  297. }
  298. static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
  299. {
  300. if (state != AUDIT_FAIL_SILENT
  301. && state != AUDIT_FAIL_PRINTK
  302. && state != AUDIT_FAIL_PANIC)
  303. return -EINVAL;
  304. return audit_do_config_change("audit_failure", &audit_failure, state,
  305. loginuid, sessionid, sid);
  306. }
  307. /*
  308. * Queue skbs to be sent to auditd when/if it comes back. These skbs should
  309. * already have been sent via prink/syslog and so if these messages are dropped
  310. * it is not a huge concern since we already passed the audit_log_lost()
  311. * notification and stuff. This is just nice to get audit messages during
  312. * boot before auditd is running or messages generated while auditd is stopped.
  313. * This only holds messages is audit_default is set, aka booting with audit=1
  314. * or building your kernel that way.
  315. */
  316. static void audit_hold_skb(struct sk_buff *skb)
  317. {
  318. if (audit_default &&
  319. skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
  320. skb_queue_tail(&audit_skb_hold_queue, skb);
  321. else
  322. kfree_skb(skb);
  323. }
  324. static void kauditd_send_skb(struct sk_buff *skb)
  325. {
  326. int err;
  327. /* take a reference in case we can't send it and we want to hold it */
  328. skb_get(skb);
  329. err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
  330. if (err < 0) {
  331. BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
  332. printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
  333. audit_log_lost("auditd dissapeared\n");
  334. audit_pid = 0;
  335. /* we might get lucky and get this in the next auditd */
  336. audit_hold_skb(skb);
  337. } else
  338. /* drop the extra reference if sent ok */
  339. kfree_skb(skb);
  340. }
  341. static int kauditd_thread(void *dummy)
  342. {
  343. struct sk_buff *skb;
  344. set_freezable();
  345. while (!kthread_should_stop()) {
  346. /*
  347. * if auditd just started drain the queue of messages already
  348. * sent to syslog/printk. remember loss here is ok. we already
  349. * called audit_log_lost() if it didn't go out normally. so the
  350. * race between the skb_dequeue and the next check for audit_pid
  351. * doesn't matter.
  352. *
  353. * if you ever find kauditd to be too slow we can get a perf win
  354. * by doing our own locking and keeping better track if there
  355. * are messages in this queue. I don't see the need now, but
  356. * in 5 years when I want to play with this again I'll see this
  357. * note and still have no friggin idea what i'm thinking today.
  358. */
  359. if (audit_default && audit_pid) {
  360. skb = skb_dequeue(&audit_skb_hold_queue);
  361. if (unlikely(skb)) {
  362. while (skb && audit_pid) {
  363. kauditd_send_skb(skb);
  364. skb = skb_dequeue(&audit_skb_hold_queue);
  365. }
  366. }
  367. }
  368. skb = skb_dequeue(&audit_skb_queue);
  369. wake_up(&audit_backlog_wait);
  370. if (skb) {
  371. if (audit_pid)
  372. kauditd_send_skb(skb);
  373. else {
  374. if (printk_ratelimit())
  375. printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
  376. else
  377. audit_log_lost("printk limit exceeded\n");
  378. audit_hold_skb(skb);
  379. }
  380. } else {
  381. DECLARE_WAITQUEUE(wait, current);
  382. set_current_state(TASK_INTERRUPTIBLE);
  383. add_wait_queue(&kauditd_wait, &wait);
  384. if (!skb_queue_len(&audit_skb_queue)) {
  385. try_to_freeze();
  386. schedule();
  387. }
  388. __set_current_state(TASK_RUNNING);
  389. remove_wait_queue(&kauditd_wait, &wait);
  390. }
  391. }
  392. return 0;
  393. }
  394. static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
  395. {
  396. struct task_struct *tsk;
  397. int err;
  398. read_lock(&tasklist_lock);
  399. tsk = find_task_by_vpid(pid);
  400. err = -ESRCH;
  401. if (!tsk)
  402. goto out;
  403. err = 0;
  404. spin_lock_irq(&tsk->sighand->siglock);
  405. if (!tsk->signal->audit_tty)
  406. err = -EPERM;
  407. spin_unlock_irq(&tsk->sighand->siglock);
  408. if (err)
  409. goto out;
  410. tty_audit_push_task(tsk, loginuid, sessionid);
  411. out:
  412. read_unlock(&tasklist_lock);
  413. return err;
  414. }
  415. int audit_send_list(void *_dest)
  416. {
  417. struct audit_netlink_list *dest = _dest;
  418. int pid = dest->pid;
  419. struct sk_buff *skb;
  420. /* wait for parent to finish and send an ACK */
  421. mutex_lock(&audit_cmd_mutex);
  422. mutex_unlock(&audit_cmd_mutex);
  423. while ((skb = __skb_dequeue(&dest->q)) != NULL)
  424. netlink_unicast(audit_sock, skb, pid, 0);
  425. kfree(dest);
  426. return 0;
  427. }
  428. #ifdef CONFIG_AUDIT_TREE
  429. static int prune_tree_thread(void *unused)
  430. {
  431. mutex_lock(&audit_cmd_mutex);
  432. audit_prune_trees();
  433. mutex_unlock(&audit_cmd_mutex);
  434. return 0;
  435. }
  436. void audit_schedule_prune(void)
  437. {
  438. kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
  439. }
  440. #endif
  441. struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
  442. int multi, void *payload, int size)
  443. {
  444. struct sk_buff *skb;
  445. struct nlmsghdr *nlh;
  446. int len = NLMSG_SPACE(size);
  447. void *data;
  448. int flags = multi ? NLM_F_MULTI : 0;
  449. int t = done ? NLMSG_DONE : type;
  450. skb = alloc_skb(len, GFP_KERNEL);
  451. if (!skb)
  452. return NULL;
  453. nlh = NLMSG_PUT(skb, pid, seq, t, size);
  454. nlh->nlmsg_flags = flags;
  455. data = NLMSG_DATA(nlh);
  456. memcpy(data, payload, size);
  457. return skb;
  458. nlmsg_failure: /* Used by NLMSG_PUT */
  459. if (skb)
  460. kfree_skb(skb);
  461. return NULL;
  462. }
  463. static int audit_send_reply_thread(void *arg)
  464. {
  465. struct audit_reply *reply = (struct audit_reply *)arg;
  466. mutex_lock(&audit_cmd_mutex);
  467. mutex_unlock(&audit_cmd_mutex);
  468. /* Ignore failure. It'll only happen if the sender goes away,
  469. because our timeout is set to infinite. */
  470. netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
  471. kfree(reply);
  472. return 0;
  473. }
  474. /**
  475. * audit_send_reply - send an audit reply message via netlink
  476. * @pid: process id to send reply to
  477. * @seq: sequence number
  478. * @type: audit message type
  479. * @done: done (last) flag
  480. * @multi: multi-part message flag
  481. * @payload: payload data
  482. * @size: payload size
  483. *
  484. * Allocates an skb, builds the netlink message, and sends it to the pid.
  485. * No failure notifications.
  486. */
  487. void audit_send_reply(int pid, int seq, int type, int done, int multi,
  488. void *payload, int size)
  489. {
  490. struct sk_buff *skb;
  491. struct task_struct *tsk;
  492. struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
  493. GFP_KERNEL);
  494. if (!reply)
  495. return;
  496. skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
  497. if (!skb)
  498. goto out;
  499. reply->pid = pid;
  500. reply->skb = skb;
  501. tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
  502. if (!IS_ERR(tsk))
  503. return;
  504. kfree_skb(skb);
  505. out:
  506. kfree(reply);
  507. }
  508. /*
  509. * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
  510. * control messages.
  511. */
  512. static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
  513. {
  514. int err = 0;
  515. switch (msg_type) {
  516. case AUDIT_GET:
  517. case AUDIT_LIST:
  518. case AUDIT_LIST_RULES:
  519. case AUDIT_SET:
  520. case AUDIT_ADD:
  521. case AUDIT_ADD_RULE:
  522. case AUDIT_DEL:
  523. case AUDIT_DEL_RULE:
  524. case AUDIT_SIGNAL_INFO:
  525. case AUDIT_TTY_GET:
  526. case AUDIT_TTY_SET:
  527. case AUDIT_TRIM:
  528. case AUDIT_MAKE_EQUIV:
  529. if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
  530. err = -EPERM;
  531. break;
  532. case AUDIT_USER:
  533. case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
  534. case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
  535. if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
  536. err = -EPERM;
  537. break;
  538. default: /* bad msg */
  539. err = -EINVAL;
  540. }
  541. return err;
  542. }
  543. static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
  544. u32 pid, u32 uid, uid_t auid, u32 ses,
  545. u32 sid)
  546. {
  547. int rc = 0;
  548. char *ctx = NULL;
  549. u32 len;
  550. if (!audit_enabled) {
  551. *ab = NULL;
  552. return rc;
  553. }
  554. *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
  555. audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u",
  556. pid, uid, auid, ses);
  557. if (sid) {
  558. rc = security_secid_to_secctx(sid, &ctx, &len);
  559. if (rc)
  560. audit_log_format(*ab, " ssid=%u", sid);
  561. else {
  562. audit_log_format(*ab, " subj=%s", ctx);
  563. security_release_secctx(ctx, len);
  564. }
  565. }
  566. return rc;
  567. }
  568. static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  569. {
  570. u32 uid, pid, seq, sid;
  571. void *data;
  572. struct audit_status *status_get, status_set;
  573. int err;
  574. struct audit_buffer *ab;
  575. u16 msg_type = nlh->nlmsg_type;
  576. uid_t loginuid; /* loginuid of sender */
  577. u32 sessionid;
  578. struct audit_sig_info *sig_data;
  579. char *ctx = NULL;
  580. u32 len;
  581. err = audit_netlink_ok(skb, msg_type);
  582. if (err)
  583. return err;
  584. /* As soon as there's any sign of userspace auditd,
  585. * start kauditd to talk to it */
  586. if (!kauditd_task)
  587. kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
  588. if (IS_ERR(kauditd_task)) {
  589. err = PTR_ERR(kauditd_task);
  590. kauditd_task = NULL;
  591. return err;
  592. }
  593. pid = NETLINK_CREDS(skb)->pid;
  594. uid = NETLINK_CREDS(skb)->uid;
  595. loginuid = NETLINK_CB(skb).loginuid;
  596. sessionid = NETLINK_CB(skb).sessionid;
  597. sid = NETLINK_CB(skb).sid;
  598. seq = nlh->nlmsg_seq;
  599. data = NLMSG_DATA(nlh);
  600. switch (msg_type) {
  601. case AUDIT_GET:
  602. status_set.enabled = audit_enabled;
  603. status_set.failure = audit_failure;
  604. status_set.pid = audit_pid;
  605. status_set.rate_limit = audit_rate_limit;
  606. status_set.backlog_limit = audit_backlog_limit;
  607. status_set.lost = atomic_read(&audit_lost);
  608. status_set.backlog = skb_queue_len(&audit_skb_queue);
  609. audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
  610. &status_set, sizeof(status_set));
  611. break;
  612. case AUDIT_SET:
  613. if (nlh->nlmsg_len < sizeof(struct audit_status))
  614. return -EINVAL;
  615. status_get = (struct audit_status *)data;
  616. if (status_get->mask & AUDIT_STATUS_ENABLED) {
  617. err = audit_set_enabled(status_get->enabled,
  618. loginuid, sessionid, sid);
  619. if (err < 0) return err;
  620. }
  621. if (status_get->mask & AUDIT_STATUS_FAILURE) {
  622. err = audit_set_failure(status_get->failure,
  623. loginuid, sessionid, sid);
  624. if (err < 0) return err;
  625. }
  626. if (status_get->mask & AUDIT_STATUS_PID) {
  627. int new_pid = status_get->pid;
  628. if (audit_enabled != AUDIT_OFF)
  629. audit_log_config_change("audit_pid", new_pid,
  630. audit_pid, loginuid,
  631. sessionid, sid, 1);
  632. audit_pid = new_pid;
  633. audit_nlk_pid = NETLINK_CB(skb).pid;
  634. }
  635. if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
  636. err = audit_set_rate_limit(status_get->rate_limit,
  637. loginuid, sessionid, sid);
  638. if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
  639. err = audit_set_backlog_limit(status_get->backlog_limit,
  640. loginuid, sessionid, sid);
  641. break;
  642. case AUDIT_USER:
  643. case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
  644. case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
  645. if (!audit_enabled && msg_type != AUDIT_USER_AVC)
  646. return 0;
  647. err = audit_filter_user(&NETLINK_CB(skb));
  648. if (err == 1) {
  649. err = 0;
  650. if (msg_type == AUDIT_USER_TTY) {
  651. err = audit_prepare_user_tty(pid, loginuid,
  652. sessionid);
  653. if (err)
  654. break;
  655. }
  656. audit_log_common_recv_msg(&ab, msg_type, pid, uid,
  657. loginuid, sessionid, sid);
  658. if (msg_type != AUDIT_USER_TTY)
  659. audit_log_format(ab, " msg='%.1024s'",
  660. (char *)data);
  661. else {
  662. int size;
  663. audit_log_format(ab, " msg=");
  664. size = nlmsg_len(nlh);
  665. audit_log_n_untrustedstring(ab, data, size);
  666. }
  667. audit_set_pid(ab, pid);
  668. audit_log_end(ab);
  669. }
  670. break;
  671. case AUDIT_ADD:
  672. case AUDIT_DEL:
  673. if (nlmsg_len(nlh) < sizeof(struct audit_rule))
  674. return -EINVAL;
  675. if (audit_enabled == AUDIT_LOCKED) {
  676. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  677. uid, loginuid, sessionid, sid);
  678. audit_log_format(ab, " audit_enabled=%d res=0",
  679. audit_enabled);
  680. audit_log_end(ab);
  681. return -EPERM;
  682. }
  683. /* fallthrough */
  684. case AUDIT_LIST:
  685. err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
  686. uid, seq, data, nlmsg_len(nlh),
  687. loginuid, sessionid, sid);
  688. break;
  689. case AUDIT_ADD_RULE:
  690. case AUDIT_DEL_RULE:
  691. if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
  692. return -EINVAL;
  693. if (audit_enabled == AUDIT_LOCKED) {
  694. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  695. uid, loginuid, sessionid, sid);
  696. audit_log_format(ab, " audit_enabled=%d res=0",
  697. audit_enabled);
  698. audit_log_end(ab);
  699. return -EPERM;
  700. }
  701. /* fallthrough */
  702. case AUDIT_LIST_RULES:
  703. err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
  704. uid, seq, data, nlmsg_len(nlh),
  705. loginuid, sessionid, sid);
  706. break;
  707. case AUDIT_TRIM:
  708. audit_trim_trees();
  709. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  710. uid, loginuid, sessionid, sid);
  711. audit_log_format(ab, " op=trim res=1");
  712. audit_log_end(ab);
  713. break;
  714. case AUDIT_MAKE_EQUIV: {
  715. void *bufp = data;
  716. u32 sizes[2];
  717. size_t msglen = nlmsg_len(nlh);
  718. char *old, *new;
  719. err = -EINVAL;
  720. if (msglen < 2 * sizeof(u32))
  721. break;
  722. memcpy(sizes, bufp, 2 * sizeof(u32));
  723. bufp += 2 * sizeof(u32);
  724. msglen -= 2 * sizeof(u32);
  725. old = audit_unpack_string(&bufp, &msglen, sizes[0]);
  726. if (IS_ERR(old)) {
  727. err = PTR_ERR(old);
  728. break;
  729. }
  730. new = audit_unpack_string(&bufp, &msglen, sizes[1]);
  731. if (IS_ERR(new)) {
  732. err = PTR_ERR(new);
  733. kfree(old);
  734. break;
  735. }
  736. /* OK, here comes... */
  737. err = audit_tag_tree(old, new);
  738. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  739. uid, loginuid, sessionid, sid);
  740. audit_log_format(ab, " op=make_equiv old=");
  741. audit_log_untrustedstring(ab, old);
  742. audit_log_format(ab, " new=");
  743. audit_log_untrustedstring(ab, new);
  744. audit_log_format(ab, " res=%d", !err);
  745. audit_log_end(ab);
  746. kfree(old);
  747. kfree(new);
  748. break;
  749. }
  750. case AUDIT_SIGNAL_INFO:
  751. err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
  752. if (err)
  753. return err;
  754. sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
  755. if (!sig_data) {
  756. security_release_secctx(ctx, len);
  757. return -ENOMEM;
  758. }
  759. sig_data->uid = audit_sig_uid;
  760. sig_data->pid = audit_sig_pid;
  761. memcpy(sig_data->ctx, ctx, len);
  762. security_release_secctx(ctx, len);
  763. audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
  764. 0, 0, sig_data, sizeof(*sig_data) + len);
  765. kfree(sig_data);
  766. break;
  767. case AUDIT_TTY_GET: {
  768. struct audit_tty_status s;
  769. struct task_struct *tsk;
  770. read_lock(&tasklist_lock);
  771. tsk = find_task_by_vpid(pid);
  772. if (!tsk)
  773. err = -ESRCH;
  774. else {
  775. spin_lock_irq(&tsk->sighand->siglock);
  776. s.enabled = tsk->signal->audit_tty != 0;
  777. spin_unlock_irq(&tsk->sighand->siglock);
  778. }
  779. read_unlock(&tasklist_lock);
  780. audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0,
  781. &s, sizeof(s));
  782. break;
  783. }
  784. case AUDIT_TTY_SET: {
  785. struct audit_tty_status *s;
  786. struct task_struct *tsk;
  787. if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
  788. return -EINVAL;
  789. s = data;
  790. if (s->enabled != 0 && s->enabled != 1)
  791. return -EINVAL;
  792. read_lock(&tasklist_lock);
  793. tsk = find_task_by_vpid(pid);
  794. if (!tsk)
  795. err = -ESRCH;
  796. else {
  797. spin_lock_irq(&tsk->sighand->siglock);
  798. tsk->signal->audit_tty = s->enabled != 0;
  799. spin_unlock_irq(&tsk->sighand->siglock);
  800. }
  801. read_unlock(&tasklist_lock);
  802. break;
  803. }
  804. default:
  805. err = -EINVAL;
  806. break;
  807. }
  808. return err < 0 ? err : 0;
  809. }
  810. /*
  811. * Get message from skb (based on rtnetlink_rcv_skb). Each message is
  812. * processed by audit_receive_msg. Malformed skbs with wrong length are
  813. * discarded silently.
  814. */
  815. static void audit_receive_skb(struct sk_buff *skb)
  816. {
  817. int err;
  818. struct nlmsghdr *nlh;
  819. u32 rlen;
  820. while (skb->len >= NLMSG_SPACE(0)) {
  821. nlh = nlmsg_hdr(skb);
  822. if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
  823. return;
  824. rlen = NLMSG_ALIGN(nlh->nlmsg_len);
  825. if (rlen > skb->len)
  826. rlen = skb->len;
  827. if ((err = audit_receive_msg(skb, nlh))) {
  828. netlink_ack(skb, nlh, err);
  829. } else if (nlh->nlmsg_flags & NLM_F_ACK)
  830. netlink_ack(skb, nlh, 0);
  831. skb_pull(skb, rlen);
  832. }
  833. }
  834. /* Receive messages from netlink socket. */
  835. static void audit_receive(struct sk_buff *skb)
  836. {
  837. mutex_lock(&audit_cmd_mutex);
  838. audit_receive_skb(skb);
  839. mutex_unlock(&audit_cmd_mutex);
  840. }
  841. #ifdef CONFIG_AUDITSYSCALL
  842. static const struct inotify_operations audit_inotify_ops = {
  843. .handle_event = audit_handle_ievent,
  844. .destroy_watch = audit_free_parent,
  845. };
  846. #endif
  847. /* Initialize audit support at boot time. */
  848. static int __init audit_init(void)
  849. {
  850. int i;
  851. printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
  852. audit_default ? "enabled" : "disabled");
  853. audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
  854. audit_receive, NULL, THIS_MODULE);
  855. if (!audit_sock)
  856. audit_panic("cannot initialize netlink socket");
  857. else
  858. audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  859. skb_queue_head_init(&audit_skb_queue);
  860. skb_queue_head_init(&audit_skb_hold_queue);
  861. audit_initialized = 1;
  862. audit_enabled = audit_default;
  863. audit_ever_enabled |= !!audit_default;
  864. audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
  865. #ifdef CONFIG_AUDITSYSCALL
  866. audit_ih = inotify_init(&audit_inotify_ops);
  867. if (IS_ERR(audit_ih))
  868. audit_panic("cannot initialize inotify handle");
  869. #endif
  870. for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
  871. INIT_LIST_HEAD(&audit_inode_hash[i]);
  872. return 0;
  873. }
  874. __initcall(audit_init);
  875. /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
  876. static int __init audit_enable(char *str)
  877. {
  878. audit_default = !!simple_strtol(str, NULL, 0);
  879. printk(KERN_INFO "audit: %s%s\n",
  880. audit_default ? "enabled" : "disabled",
  881. audit_initialized ? "" : " (after initialization)");
  882. if (audit_initialized) {
  883. audit_enabled = audit_default;
  884. audit_ever_enabled |= !!audit_default;
  885. }
  886. return 1;
  887. }
  888. __setup("audit=", audit_enable);
  889. static void audit_buffer_free(struct audit_buffer *ab)
  890. {
  891. unsigned long flags;
  892. if (!ab)
  893. return;
  894. if (ab->skb)
  895. kfree_skb(ab->skb);
  896. spin_lock_irqsave(&audit_freelist_lock, flags);
  897. if (audit_freelist_count > AUDIT_MAXFREE)
  898. kfree(ab);
  899. else {
  900. audit_freelist_count++;
  901. list_add(&ab->list, &audit_freelist);
  902. }
  903. spin_unlock_irqrestore(&audit_freelist_lock, flags);
  904. }
  905. static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
  906. gfp_t gfp_mask, int type)
  907. {
  908. unsigned long flags;
  909. struct audit_buffer *ab = NULL;
  910. struct nlmsghdr *nlh;
  911. spin_lock_irqsave(&audit_freelist_lock, flags);
  912. if (!list_empty(&audit_freelist)) {
  913. ab = list_entry(audit_freelist.next,
  914. struct audit_buffer, list);
  915. list_del(&ab->list);
  916. --audit_freelist_count;
  917. }
  918. spin_unlock_irqrestore(&audit_freelist_lock, flags);
  919. if (!ab) {
  920. ab = kmalloc(sizeof(*ab), gfp_mask);
  921. if (!ab)
  922. goto err;
  923. }
  924. ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
  925. if (!ab->skb)
  926. goto err;
  927. ab->ctx = ctx;
  928. ab->gfp_mask = gfp_mask;
  929. nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
  930. nlh->nlmsg_type = type;
  931. nlh->nlmsg_flags = 0;
  932. nlh->nlmsg_pid = 0;
  933. nlh->nlmsg_seq = 0;
  934. return ab;
  935. err:
  936. audit_buffer_free(ab);
  937. return NULL;
  938. }
  939. /**
  940. * audit_serial - compute a serial number for the audit record
  941. *
  942. * Compute a serial number for the audit record. Audit records are
  943. * written to user-space as soon as they are generated, so a complete
  944. * audit record may be written in several pieces. The timestamp of the
  945. * record and this serial number are used by the user-space tools to
  946. * determine which pieces belong to the same audit record. The
  947. * (timestamp,serial) tuple is unique for each syscall and is live from
  948. * syscall entry to syscall exit.
  949. *
  950. * NOTE: Another possibility is to store the formatted records off the
  951. * audit context (for those records that have a context), and emit them
  952. * all at syscall exit. However, this could delay the reporting of
  953. * significant errors until syscall exit (or never, if the system
  954. * halts).
  955. */
  956. unsigned int audit_serial(void)
  957. {
  958. static DEFINE_SPINLOCK(serial_lock);
  959. static unsigned int serial = 0;
  960. unsigned long flags;
  961. unsigned int ret;
  962. spin_lock_irqsave(&serial_lock, flags);
  963. do {
  964. ret = ++serial;
  965. } while (unlikely(!ret));
  966. spin_unlock_irqrestore(&serial_lock, flags);
  967. return ret;
  968. }
  969. static inline void audit_get_stamp(struct audit_context *ctx,
  970. struct timespec *t, unsigned int *serial)
  971. {
  972. if (ctx)
  973. auditsc_get_stamp(ctx, t, serial);
  974. else {
  975. *t = CURRENT_TIME;
  976. *serial = audit_serial();
  977. }
  978. }
  979. /* Obtain an audit buffer. This routine does locking to obtain the
  980. * audit buffer, but then no locking is required for calls to
  981. * audit_log_*format. If the tsk is a task that is currently in a
  982. * syscall, then the syscall is marked as auditable and an audit record
  983. * will be written at syscall exit. If there is no associated task, tsk
  984. * should be NULL. */
  985. /**
  986. * audit_log_start - obtain an audit buffer
  987. * @ctx: audit_context (may be NULL)
  988. * @gfp_mask: type of allocation
  989. * @type: audit message type
  990. *
  991. * Returns audit_buffer pointer on success or NULL on error.
  992. *
  993. * Obtain an audit buffer. This routine does locking to obtain the
  994. * audit buffer, but then no locking is required for calls to
  995. * audit_log_*format. If the task (ctx) is a task that is currently in a
  996. * syscall, then the syscall is marked as auditable and an audit record
  997. * will be written at syscall exit. If there is no associated task, then
  998. * task context (ctx) should be NULL.
  999. */
  1000. struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
  1001. int type)
  1002. {
  1003. struct audit_buffer *ab = NULL;
  1004. struct timespec t;
  1005. unsigned int uninitialized_var(serial);
  1006. int reserve;
  1007. unsigned long timeout_start = jiffies;
  1008. if (!audit_initialized)
  1009. return NULL;
  1010. if (unlikely(audit_filter_type(type)))
  1011. return NULL;
  1012. if (gfp_mask & __GFP_WAIT)
  1013. reserve = 0;
  1014. else
  1015. reserve = 5; /* Allow atomic callers to go up to five
  1016. entries over the normal backlog limit */
  1017. while (audit_backlog_limit
  1018. && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
  1019. if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
  1020. && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
  1021. /* Wait for auditd to drain the queue a little */
  1022. DECLARE_WAITQUEUE(wait, current);
  1023. set_current_state(TASK_INTERRUPTIBLE);
  1024. add_wait_queue(&audit_backlog_wait, &wait);
  1025. if (audit_backlog_limit &&
  1026. skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
  1027. schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
  1028. __set_current_state(TASK_RUNNING);
  1029. remove_wait_queue(&audit_backlog_wait, &wait);
  1030. continue;
  1031. }
  1032. if (audit_rate_check() && printk_ratelimit())
  1033. printk(KERN_WARNING
  1034. "audit: audit_backlog=%d > "
  1035. "audit_backlog_limit=%d\n",
  1036. skb_queue_len(&audit_skb_queue),
  1037. audit_backlog_limit);
  1038. audit_log_lost("backlog limit exceeded");
  1039. audit_backlog_wait_time = audit_backlog_wait_overflow;
  1040. wake_up(&audit_backlog_wait);
  1041. return NULL;
  1042. }
  1043. ab = audit_buffer_alloc(ctx, gfp_mask, type);
  1044. if (!ab) {
  1045. audit_log_lost("out of memory in audit_log_start");
  1046. return NULL;
  1047. }
  1048. audit_get_stamp(ab->ctx, &t, &serial);
  1049. audit_log_format(ab, "audit(%lu.%03lu:%u): ",
  1050. t.tv_sec, t.tv_nsec/1000000, serial);
  1051. return ab;
  1052. }
  1053. /**
  1054. * audit_expand - expand skb in the audit buffer
  1055. * @ab: audit_buffer
  1056. * @extra: space to add at tail of the skb
  1057. *
  1058. * Returns 0 (no space) on failed expansion, or available space if
  1059. * successful.
  1060. */
  1061. static inline int audit_expand(struct audit_buffer *ab, int extra)
  1062. {
  1063. struct sk_buff *skb = ab->skb;
  1064. int oldtail = skb_tailroom(skb);
  1065. int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
  1066. int newtail = skb_tailroom(skb);
  1067. if (ret < 0) {
  1068. audit_log_lost("out of memory in audit_expand");
  1069. return 0;
  1070. }
  1071. skb->truesize += newtail - oldtail;
  1072. return newtail;
  1073. }
  1074. /*
  1075. * Format an audit message into the audit buffer. If there isn't enough
  1076. * room in the audit buffer, more room will be allocated and vsnprint
  1077. * will be called a second time. Currently, we assume that a printk
  1078. * can't format message larger than 1024 bytes, so we don't either.
  1079. */
  1080. static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
  1081. va_list args)
  1082. {
  1083. int len, avail;
  1084. struct sk_buff *skb;
  1085. va_list args2;
  1086. if (!ab)
  1087. return;
  1088. BUG_ON(!ab->skb);
  1089. skb = ab->skb;
  1090. avail = skb_tailroom(skb);
  1091. if (avail == 0) {
  1092. avail = audit_expand(ab, AUDIT_BUFSIZ);
  1093. if (!avail)
  1094. goto out;
  1095. }
  1096. va_copy(args2, args);
  1097. len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
  1098. if (len >= avail) {
  1099. /* The printk buffer is 1024 bytes long, so if we get
  1100. * here and AUDIT_BUFSIZ is at least 1024, then we can
  1101. * log everything that printk could have logged. */
  1102. avail = audit_expand(ab,
  1103. max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
  1104. if (!avail)
  1105. goto out;
  1106. len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
  1107. }
  1108. va_end(args2);
  1109. if (len > 0)
  1110. skb_put(skb, len);
  1111. out:
  1112. return;
  1113. }
  1114. /**
  1115. * audit_log_format - format a message into the audit buffer.
  1116. * @ab: audit_buffer
  1117. * @fmt: format string
  1118. * @...: optional parameters matching @fmt string
  1119. *
  1120. * All the work is done in audit_log_vformat.
  1121. */
  1122. void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
  1123. {
  1124. va_list args;
  1125. if (!ab)
  1126. return;
  1127. va_start(args, fmt);
  1128. audit_log_vformat(ab, fmt, args);
  1129. va_end(args);
  1130. }
  1131. /**
  1132. * audit_log_hex - convert a buffer to hex and append it to the audit skb
  1133. * @ab: the audit_buffer
  1134. * @buf: buffer to convert to hex
  1135. * @len: length of @buf to be converted
  1136. *
  1137. * No return value; failure to expand is silently ignored.
  1138. *
  1139. * This function will take the passed buf and convert it into a string of
  1140. * ascii hex digits. The new string is placed onto the skb.
  1141. */
  1142. void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
  1143. size_t len)
  1144. {
  1145. int i, avail, new_len;
  1146. unsigned char *ptr;
  1147. struct sk_buff *skb;
  1148. static const unsigned char *hex = "0123456789ABCDEF";
  1149. if (!ab)
  1150. return;
  1151. BUG_ON(!ab->skb);
  1152. skb = ab->skb;
  1153. avail = skb_tailroom(skb);
  1154. new_len = len<<1;
  1155. if (new_len >= avail) {
  1156. /* Round the buffer request up to the next multiple */
  1157. new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
  1158. avail = audit_expand(ab, new_len);
  1159. if (!avail)
  1160. return;
  1161. }
  1162. ptr = skb_tail_pointer(skb);
  1163. for (i=0; i<len; i++) {
  1164. *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
  1165. *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
  1166. }
  1167. *ptr = 0;
  1168. skb_put(skb, len << 1); /* new string is twice the old string */
  1169. }
  1170. /*
  1171. * Format a string of no more than slen characters into the audit buffer,
  1172. * enclosed in quote marks.
  1173. */
  1174. void audit_log_n_string(struct audit_buffer *ab, const char *string,
  1175. size_t slen)
  1176. {
  1177. int avail, new_len;
  1178. unsigned char *ptr;
  1179. struct sk_buff *skb;
  1180. if (!ab)
  1181. return;
  1182. BUG_ON(!ab->skb);
  1183. skb = ab->skb;
  1184. avail = skb_tailroom(skb);
  1185. new_len = slen + 3; /* enclosing quotes + null terminator */
  1186. if (new_len > avail) {
  1187. avail = audit_expand(ab, new_len);
  1188. if (!avail)
  1189. return;
  1190. }
  1191. ptr = skb_tail_pointer(skb);
  1192. *ptr++ = '"';
  1193. memcpy(ptr, string, slen);
  1194. ptr += slen;
  1195. *ptr++ = '"';
  1196. *ptr = 0;
  1197. skb_put(skb, slen + 2); /* don't include null terminator */
  1198. }
  1199. /**
  1200. * audit_string_contains_control - does a string need to be logged in hex
  1201. * @string: string to be checked
  1202. * @len: max length of the string to check
  1203. */
  1204. int audit_string_contains_control(const char *string, size_t len)
  1205. {
  1206. const unsigned char *p;
  1207. for (p = string; p < (const unsigned char *)string + len && *p; p++) {
  1208. if (*p == '"' || *p < 0x21 || *p > 0x7f)
  1209. return 1;
  1210. }
  1211. return 0;
  1212. }
  1213. /**
  1214. * audit_log_n_untrustedstring - log a string that may contain random characters
  1215. * @ab: audit_buffer
  1216. * @len: length of string (not including trailing null)
  1217. * @string: string to be logged
  1218. *
  1219. * This code will escape a string that is passed to it if the string
  1220. * contains a control character, unprintable character, double quote mark,
  1221. * or a space. Unescaped strings will start and end with a double quote mark.
  1222. * Strings that are escaped are printed in hex (2 digits per char).
  1223. *
  1224. * The caller specifies the number of characters in the string to log, which may
  1225. * or may not be the entire string.
  1226. */
  1227. void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
  1228. size_t len)
  1229. {
  1230. if (audit_string_contains_control(string, len))
  1231. audit_log_n_hex(ab, string, len);
  1232. else
  1233. audit_log_n_string(ab, string, len);
  1234. }
  1235. /**
  1236. * audit_log_untrustedstring - log a string that may contain random characters
  1237. * @ab: audit_buffer
  1238. * @string: string to be logged
  1239. *
  1240. * Same as audit_log_n_untrustedstring(), except that strlen is used to
  1241. * determine string length.
  1242. */
  1243. void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
  1244. {
  1245. audit_log_n_untrustedstring(ab, string, strlen(string));
  1246. }
  1247. /* This is a helper-function to print the escaped d_path */
  1248. void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
  1249. struct path *path)
  1250. {
  1251. char *p, *pathname;
  1252. if (prefix)
  1253. audit_log_format(ab, " %s", prefix);
  1254. /* We will allow 11 spaces for ' (deleted)' to be appended */
  1255. pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
  1256. if (!pathname) {
  1257. audit_log_format(ab, "<no memory>");
  1258. return;
  1259. }
  1260. p = d_path(path, pathname, PATH_MAX+11);
  1261. if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
  1262. /* FIXME: can we save some information here? */
  1263. audit_log_format(ab, "<too long>");
  1264. } else
  1265. audit_log_untrustedstring(ab, p);
  1266. kfree(pathname);
  1267. }
  1268. /**
  1269. * audit_log_end - end one audit record
  1270. * @ab: the audit_buffer
  1271. *
  1272. * The netlink_* functions cannot be called inside an irq context, so
  1273. * the audit buffer is placed on a queue and a tasklet is scheduled to
  1274. * remove them from the queue outside the irq context. May be called in
  1275. * any context.
  1276. */
  1277. void audit_log_end(struct audit_buffer *ab)
  1278. {
  1279. if (!ab)
  1280. return;
  1281. if (!audit_rate_check()) {
  1282. audit_log_lost("rate limit exceeded");
  1283. } else {
  1284. struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
  1285. nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
  1286. if (audit_pid) {
  1287. skb_queue_tail(&audit_skb_queue, ab->skb);
  1288. wake_up_interruptible(&kauditd_wait);
  1289. } else {
  1290. if (nlh->nlmsg_type != AUDIT_EOE) {
  1291. if (printk_ratelimit()) {
  1292. printk(KERN_NOTICE "type=%d %s\n",
  1293. nlh->nlmsg_type,
  1294. ab->skb->data + NLMSG_SPACE(0));
  1295. } else
  1296. audit_log_lost("printk limit exceeded\n");
  1297. }
  1298. audit_hold_skb(ab->skb);
  1299. }
  1300. ab->skb = NULL;
  1301. }
  1302. audit_buffer_free(ab);
  1303. }
  1304. /**
  1305. * audit_log - Log an audit record
  1306. * @ctx: audit context
  1307. * @gfp_mask: type of allocation
  1308. * @type: audit message type
  1309. * @fmt: format string to use
  1310. * @...: variable parameters matching the format string
  1311. *
  1312. * This is a convenience function that calls audit_log_start,
  1313. * audit_log_vformat, and audit_log_end. It may be called
  1314. * in any context.
  1315. */
  1316. void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
  1317. const char *fmt, ...)
  1318. {
  1319. struct audit_buffer *ab;
  1320. va_list args;
  1321. ab = audit_log_start(ctx, gfp_mask, type);
  1322. if (ab) {
  1323. va_start(args, fmt);
  1324. audit_log_vformat(ab, fmt, args);
  1325. va_end(args);
  1326. audit_log_end(ab);
  1327. }
  1328. }
  1329. EXPORT_SYMBOL(audit_log_start);
  1330. EXPORT_SYMBOL(audit_log_end);
  1331. EXPORT_SYMBOL(audit_log_format);
  1332. EXPORT_SYMBOL(audit_log);