perf_event.c 120 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/file.h>
  16. #include <linux/poll.h>
  17. #include <linux/sysfs.h>
  18. #include <linux/dcache.h>
  19. #include <linux/percpu.h>
  20. #include <linux/ptrace.h>
  21. #include <linux/vmstat.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/hardirq.h>
  24. #include <linux/rculist.h>
  25. #include <linux/uaccess.h>
  26. #include <linux/syscalls.h>
  27. #include <linux/anon_inodes.h>
  28. #include <linux/kernel_stat.h>
  29. #include <linux/perf_event.h>
  30. #include <linux/ftrace_event.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <asm/irq_regs.h>
  33. /*
  34. * Each CPU has a list of per CPU events:
  35. */
  36. DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
  37. int perf_max_events __read_mostly = 1;
  38. static int perf_reserved_percpu __read_mostly;
  39. static int perf_overcommit __read_mostly = 1;
  40. static atomic_t nr_events __read_mostly;
  41. static atomic_t nr_mmap_events __read_mostly;
  42. static atomic_t nr_comm_events __read_mostly;
  43. static atomic_t nr_task_events __read_mostly;
  44. /*
  45. * perf event paranoia level:
  46. * -1 - not paranoid at all
  47. * 0 - disallow raw tracepoint access for unpriv
  48. * 1 - disallow cpu events for unpriv
  49. * 2 - disallow kernel profiling for unpriv
  50. */
  51. int sysctl_perf_event_paranoid __read_mostly = 1;
  52. static inline bool perf_paranoid_tracepoint_raw(void)
  53. {
  54. return sysctl_perf_event_paranoid > -1;
  55. }
  56. static inline bool perf_paranoid_cpu(void)
  57. {
  58. return sysctl_perf_event_paranoid > 0;
  59. }
  60. static inline bool perf_paranoid_kernel(void)
  61. {
  62. return sysctl_perf_event_paranoid > 1;
  63. }
  64. int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
  65. /*
  66. * max perf event sample rate
  67. */
  68. int sysctl_perf_event_sample_rate __read_mostly = 100000;
  69. static atomic64_t perf_event_id;
  70. /*
  71. * Lock for (sysadmin-configurable) event reservations:
  72. */
  73. static DEFINE_SPINLOCK(perf_resource_lock);
  74. /*
  75. * Architecture provided APIs - weak aliases:
  76. */
  77. extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
  78. {
  79. return NULL;
  80. }
  81. void __weak hw_perf_disable(void) { barrier(); }
  82. void __weak hw_perf_enable(void) { barrier(); }
  83. void __weak hw_perf_event_setup(int cpu) { barrier(); }
  84. void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
  85. int __weak
  86. hw_perf_group_sched_in(struct perf_event *group_leader,
  87. struct perf_cpu_context *cpuctx,
  88. struct perf_event_context *ctx, int cpu)
  89. {
  90. return 0;
  91. }
  92. void __weak perf_event_print_debug(void) { }
  93. static DEFINE_PER_CPU(int, perf_disable_count);
  94. void __perf_disable(void)
  95. {
  96. __get_cpu_var(perf_disable_count)++;
  97. }
  98. bool __perf_enable(void)
  99. {
  100. return !--__get_cpu_var(perf_disable_count);
  101. }
  102. void perf_disable(void)
  103. {
  104. __perf_disable();
  105. hw_perf_disable();
  106. }
  107. void perf_enable(void)
  108. {
  109. if (__perf_enable())
  110. hw_perf_enable();
  111. }
  112. static void get_ctx(struct perf_event_context *ctx)
  113. {
  114. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  115. }
  116. static void free_ctx(struct rcu_head *head)
  117. {
  118. struct perf_event_context *ctx;
  119. ctx = container_of(head, struct perf_event_context, rcu_head);
  120. kfree(ctx);
  121. }
  122. static void put_ctx(struct perf_event_context *ctx)
  123. {
  124. if (atomic_dec_and_test(&ctx->refcount)) {
  125. if (ctx->parent_ctx)
  126. put_ctx(ctx->parent_ctx);
  127. if (ctx->task)
  128. put_task_struct(ctx->task);
  129. call_rcu(&ctx->rcu_head, free_ctx);
  130. }
  131. }
  132. static void unclone_ctx(struct perf_event_context *ctx)
  133. {
  134. if (ctx->parent_ctx) {
  135. put_ctx(ctx->parent_ctx);
  136. ctx->parent_ctx = NULL;
  137. }
  138. }
  139. /*
  140. * If we inherit events we want to return the parent event id
  141. * to userspace.
  142. */
  143. static u64 primary_event_id(struct perf_event *event)
  144. {
  145. u64 id = event->id;
  146. if (event->parent)
  147. id = event->parent->id;
  148. return id;
  149. }
  150. /*
  151. * Get the perf_event_context for a task and lock it.
  152. * This has to cope with with the fact that until it is locked,
  153. * the context could get moved to another task.
  154. */
  155. static struct perf_event_context *
  156. perf_lock_task_context(struct task_struct *task, unsigned long *flags)
  157. {
  158. struct perf_event_context *ctx;
  159. rcu_read_lock();
  160. retry:
  161. ctx = rcu_dereference(task->perf_event_ctxp);
  162. if (ctx) {
  163. /*
  164. * If this context is a clone of another, it might
  165. * get swapped for another underneath us by
  166. * perf_event_task_sched_out, though the
  167. * rcu_read_lock() protects us from any context
  168. * getting freed. Lock the context and check if it
  169. * got swapped before we could get the lock, and retry
  170. * if so. If we locked the right context, then it
  171. * can't get swapped on us any more.
  172. */
  173. spin_lock_irqsave(&ctx->lock, *flags);
  174. if (ctx != rcu_dereference(task->perf_event_ctxp)) {
  175. spin_unlock_irqrestore(&ctx->lock, *flags);
  176. goto retry;
  177. }
  178. if (!atomic_inc_not_zero(&ctx->refcount)) {
  179. spin_unlock_irqrestore(&ctx->lock, *flags);
  180. ctx = NULL;
  181. }
  182. }
  183. rcu_read_unlock();
  184. return ctx;
  185. }
  186. /*
  187. * Get the context for a task and increment its pin_count so it
  188. * can't get swapped to another task. This also increments its
  189. * reference count so that the context can't get freed.
  190. */
  191. static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
  192. {
  193. struct perf_event_context *ctx;
  194. unsigned long flags;
  195. ctx = perf_lock_task_context(task, &flags);
  196. if (ctx) {
  197. ++ctx->pin_count;
  198. spin_unlock_irqrestore(&ctx->lock, flags);
  199. }
  200. return ctx;
  201. }
  202. static void perf_unpin_context(struct perf_event_context *ctx)
  203. {
  204. unsigned long flags;
  205. spin_lock_irqsave(&ctx->lock, flags);
  206. --ctx->pin_count;
  207. spin_unlock_irqrestore(&ctx->lock, flags);
  208. put_ctx(ctx);
  209. }
  210. /*
  211. * Add a event from the lists for its context.
  212. * Must be called with ctx->mutex and ctx->lock held.
  213. */
  214. static void
  215. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  216. {
  217. struct perf_event *group_leader = event->group_leader;
  218. /*
  219. * Depending on whether it is a standalone or sibling event,
  220. * add it straight to the context's event list, or to the group
  221. * leader's sibling list:
  222. */
  223. if (group_leader == event)
  224. list_add_tail(&event->group_entry, &ctx->group_list);
  225. else {
  226. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  227. group_leader->nr_siblings++;
  228. }
  229. list_add_rcu(&event->event_entry, &ctx->event_list);
  230. ctx->nr_events++;
  231. if (event->attr.inherit_stat)
  232. ctx->nr_stat++;
  233. }
  234. /*
  235. * Remove a event from the lists for its context.
  236. * Must be called with ctx->mutex and ctx->lock held.
  237. */
  238. static void
  239. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  240. {
  241. struct perf_event *sibling, *tmp;
  242. if (list_empty(&event->group_entry))
  243. return;
  244. ctx->nr_events--;
  245. if (event->attr.inherit_stat)
  246. ctx->nr_stat--;
  247. list_del_init(&event->group_entry);
  248. list_del_rcu(&event->event_entry);
  249. if (event->group_leader != event)
  250. event->group_leader->nr_siblings--;
  251. /*
  252. * If this was a group event with sibling events then
  253. * upgrade the siblings to singleton events by adding them
  254. * to the context list directly:
  255. */
  256. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  257. list_move_tail(&sibling->group_entry, &ctx->group_list);
  258. sibling->group_leader = sibling;
  259. }
  260. }
  261. static void
  262. event_sched_out(struct perf_event *event,
  263. struct perf_cpu_context *cpuctx,
  264. struct perf_event_context *ctx)
  265. {
  266. if (event->state != PERF_EVENT_STATE_ACTIVE)
  267. return;
  268. event->state = PERF_EVENT_STATE_INACTIVE;
  269. if (event->pending_disable) {
  270. event->pending_disable = 0;
  271. event->state = PERF_EVENT_STATE_OFF;
  272. }
  273. event->tstamp_stopped = ctx->time;
  274. event->pmu->disable(event);
  275. event->oncpu = -1;
  276. if (!is_software_event(event))
  277. cpuctx->active_oncpu--;
  278. ctx->nr_active--;
  279. if (event->attr.exclusive || !cpuctx->active_oncpu)
  280. cpuctx->exclusive = 0;
  281. }
  282. static void
  283. group_sched_out(struct perf_event *group_event,
  284. struct perf_cpu_context *cpuctx,
  285. struct perf_event_context *ctx)
  286. {
  287. struct perf_event *event;
  288. if (group_event->state != PERF_EVENT_STATE_ACTIVE)
  289. return;
  290. event_sched_out(group_event, cpuctx, ctx);
  291. /*
  292. * Schedule out siblings (if any):
  293. */
  294. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  295. event_sched_out(event, cpuctx, ctx);
  296. if (group_event->attr.exclusive)
  297. cpuctx->exclusive = 0;
  298. }
  299. /*
  300. * Cross CPU call to remove a performance event
  301. *
  302. * We disable the event on the hardware level first. After that we
  303. * remove it from the context list.
  304. */
  305. static void __perf_event_remove_from_context(void *info)
  306. {
  307. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  308. struct perf_event *event = info;
  309. struct perf_event_context *ctx = event->ctx;
  310. /*
  311. * If this is a task context, we need to check whether it is
  312. * the current task context of this cpu. If not it has been
  313. * scheduled out before the smp call arrived.
  314. */
  315. if (ctx->task && cpuctx->task_ctx != ctx)
  316. return;
  317. spin_lock(&ctx->lock);
  318. /*
  319. * Protect the list operation against NMI by disabling the
  320. * events on a global level.
  321. */
  322. perf_disable();
  323. event_sched_out(event, cpuctx, ctx);
  324. list_del_event(event, ctx);
  325. if (!ctx->task) {
  326. /*
  327. * Allow more per task events with respect to the
  328. * reservation:
  329. */
  330. cpuctx->max_pertask =
  331. min(perf_max_events - ctx->nr_events,
  332. perf_max_events - perf_reserved_percpu);
  333. }
  334. perf_enable();
  335. spin_unlock(&ctx->lock);
  336. }
  337. /*
  338. * Remove the event from a task's (or a CPU's) list of events.
  339. *
  340. * Must be called with ctx->mutex held.
  341. *
  342. * CPU events are removed with a smp call. For task events we only
  343. * call when the task is on a CPU.
  344. *
  345. * If event->ctx is a cloned context, callers must make sure that
  346. * every task struct that event->ctx->task could possibly point to
  347. * remains valid. This is OK when called from perf_release since
  348. * that only calls us on the top-level context, which can't be a clone.
  349. * When called from perf_event_exit_task, it's OK because the
  350. * context has been detached from its task.
  351. */
  352. static void perf_event_remove_from_context(struct perf_event *event)
  353. {
  354. struct perf_event_context *ctx = event->ctx;
  355. struct task_struct *task = ctx->task;
  356. if (!task) {
  357. /*
  358. * Per cpu events are removed via an smp call and
  359. * the removal is always sucessful.
  360. */
  361. smp_call_function_single(event->cpu,
  362. __perf_event_remove_from_context,
  363. event, 1);
  364. return;
  365. }
  366. retry:
  367. task_oncpu_function_call(task, __perf_event_remove_from_context,
  368. event);
  369. spin_lock_irq(&ctx->lock);
  370. /*
  371. * If the context is active we need to retry the smp call.
  372. */
  373. if (ctx->nr_active && !list_empty(&event->group_entry)) {
  374. spin_unlock_irq(&ctx->lock);
  375. goto retry;
  376. }
  377. /*
  378. * The lock prevents that this context is scheduled in so we
  379. * can remove the event safely, if the call above did not
  380. * succeed.
  381. */
  382. if (!list_empty(&event->group_entry)) {
  383. list_del_event(event, ctx);
  384. }
  385. spin_unlock_irq(&ctx->lock);
  386. }
  387. static inline u64 perf_clock(void)
  388. {
  389. return cpu_clock(smp_processor_id());
  390. }
  391. /*
  392. * Update the record of the current time in a context.
  393. */
  394. static void update_context_time(struct perf_event_context *ctx)
  395. {
  396. u64 now = perf_clock();
  397. ctx->time += now - ctx->timestamp;
  398. ctx->timestamp = now;
  399. }
  400. /*
  401. * Update the total_time_enabled and total_time_running fields for a event.
  402. */
  403. static void update_event_times(struct perf_event *event)
  404. {
  405. struct perf_event_context *ctx = event->ctx;
  406. u64 run_end;
  407. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  408. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  409. return;
  410. event->total_time_enabled = ctx->time - event->tstamp_enabled;
  411. if (event->state == PERF_EVENT_STATE_INACTIVE)
  412. run_end = event->tstamp_stopped;
  413. else
  414. run_end = ctx->time;
  415. event->total_time_running = run_end - event->tstamp_running;
  416. }
  417. /*
  418. * Update total_time_enabled and total_time_running for all events in a group.
  419. */
  420. static void update_group_times(struct perf_event *leader)
  421. {
  422. struct perf_event *event;
  423. update_event_times(leader);
  424. list_for_each_entry(event, &leader->sibling_list, group_entry)
  425. update_event_times(event);
  426. }
  427. /*
  428. * Cross CPU call to disable a performance event
  429. */
  430. static void __perf_event_disable(void *info)
  431. {
  432. struct perf_event *event = info;
  433. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  434. struct perf_event_context *ctx = event->ctx;
  435. /*
  436. * If this is a per-task event, need to check whether this
  437. * event's task is the current task on this cpu.
  438. */
  439. if (ctx->task && cpuctx->task_ctx != ctx)
  440. return;
  441. spin_lock(&ctx->lock);
  442. /*
  443. * If the event is on, turn it off.
  444. * If it is in error state, leave it in error state.
  445. */
  446. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  447. update_context_time(ctx);
  448. update_group_times(event);
  449. if (event == event->group_leader)
  450. group_sched_out(event, cpuctx, ctx);
  451. else
  452. event_sched_out(event, cpuctx, ctx);
  453. event->state = PERF_EVENT_STATE_OFF;
  454. }
  455. spin_unlock(&ctx->lock);
  456. }
  457. /*
  458. * Disable a event.
  459. *
  460. * If event->ctx is a cloned context, callers must make sure that
  461. * every task struct that event->ctx->task could possibly point to
  462. * remains valid. This condition is satisifed when called through
  463. * perf_event_for_each_child or perf_event_for_each because they
  464. * hold the top-level event's child_mutex, so any descendant that
  465. * goes to exit will block in sync_child_event.
  466. * When called from perf_pending_event it's OK because event->ctx
  467. * is the current context on this CPU and preemption is disabled,
  468. * hence we can't get into perf_event_task_sched_out for this context.
  469. */
  470. static void perf_event_disable(struct perf_event *event)
  471. {
  472. struct perf_event_context *ctx = event->ctx;
  473. struct task_struct *task = ctx->task;
  474. if (!task) {
  475. /*
  476. * Disable the event on the cpu that it's on
  477. */
  478. smp_call_function_single(event->cpu, __perf_event_disable,
  479. event, 1);
  480. return;
  481. }
  482. retry:
  483. task_oncpu_function_call(task, __perf_event_disable, event);
  484. spin_lock_irq(&ctx->lock);
  485. /*
  486. * If the event is still active, we need to retry the cross-call.
  487. */
  488. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  489. spin_unlock_irq(&ctx->lock);
  490. goto retry;
  491. }
  492. /*
  493. * Since we have the lock this context can't be scheduled
  494. * in, so we can change the state safely.
  495. */
  496. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  497. update_group_times(event);
  498. event->state = PERF_EVENT_STATE_OFF;
  499. }
  500. spin_unlock_irq(&ctx->lock);
  501. }
  502. static int
  503. event_sched_in(struct perf_event *event,
  504. struct perf_cpu_context *cpuctx,
  505. struct perf_event_context *ctx,
  506. int cpu)
  507. {
  508. if (event->state <= PERF_EVENT_STATE_OFF)
  509. return 0;
  510. event->state = PERF_EVENT_STATE_ACTIVE;
  511. event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
  512. /*
  513. * The new state must be visible before we turn it on in the hardware:
  514. */
  515. smp_wmb();
  516. if (event->pmu->enable(event)) {
  517. event->state = PERF_EVENT_STATE_INACTIVE;
  518. event->oncpu = -1;
  519. return -EAGAIN;
  520. }
  521. event->tstamp_running += ctx->time - event->tstamp_stopped;
  522. if (!is_software_event(event))
  523. cpuctx->active_oncpu++;
  524. ctx->nr_active++;
  525. if (event->attr.exclusive)
  526. cpuctx->exclusive = 1;
  527. return 0;
  528. }
  529. static int
  530. group_sched_in(struct perf_event *group_event,
  531. struct perf_cpu_context *cpuctx,
  532. struct perf_event_context *ctx,
  533. int cpu)
  534. {
  535. struct perf_event *event, *partial_group;
  536. int ret;
  537. if (group_event->state == PERF_EVENT_STATE_OFF)
  538. return 0;
  539. ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
  540. if (ret)
  541. return ret < 0 ? ret : 0;
  542. if (event_sched_in(group_event, cpuctx, ctx, cpu))
  543. return -EAGAIN;
  544. /*
  545. * Schedule in siblings as one group (if any):
  546. */
  547. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  548. if (event_sched_in(event, cpuctx, ctx, cpu)) {
  549. partial_group = event;
  550. goto group_error;
  551. }
  552. }
  553. return 0;
  554. group_error:
  555. /*
  556. * Groups can be scheduled in as one unit only, so undo any
  557. * partial group before returning:
  558. */
  559. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  560. if (event == partial_group)
  561. break;
  562. event_sched_out(event, cpuctx, ctx);
  563. }
  564. event_sched_out(group_event, cpuctx, ctx);
  565. return -EAGAIN;
  566. }
  567. /*
  568. * Return 1 for a group consisting entirely of software events,
  569. * 0 if the group contains any hardware events.
  570. */
  571. static int is_software_only_group(struct perf_event *leader)
  572. {
  573. struct perf_event *event;
  574. if (!is_software_event(leader))
  575. return 0;
  576. list_for_each_entry(event, &leader->sibling_list, group_entry)
  577. if (!is_software_event(event))
  578. return 0;
  579. return 1;
  580. }
  581. /*
  582. * Work out whether we can put this event group on the CPU now.
  583. */
  584. static int group_can_go_on(struct perf_event *event,
  585. struct perf_cpu_context *cpuctx,
  586. int can_add_hw)
  587. {
  588. /*
  589. * Groups consisting entirely of software events can always go on.
  590. */
  591. if (is_software_only_group(event))
  592. return 1;
  593. /*
  594. * If an exclusive group is already on, no other hardware
  595. * events can go on.
  596. */
  597. if (cpuctx->exclusive)
  598. return 0;
  599. /*
  600. * If this group is exclusive and there are already
  601. * events on the CPU, it can't go on.
  602. */
  603. if (event->attr.exclusive && cpuctx->active_oncpu)
  604. return 0;
  605. /*
  606. * Otherwise, try to add it if all previous groups were able
  607. * to go on.
  608. */
  609. return can_add_hw;
  610. }
  611. static void add_event_to_ctx(struct perf_event *event,
  612. struct perf_event_context *ctx)
  613. {
  614. list_add_event(event, ctx);
  615. event->tstamp_enabled = ctx->time;
  616. event->tstamp_running = ctx->time;
  617. event->tstamp_stopped = ctx->time;
  618. }
  619. /*
  620. * Cross CPU call to install and enable a performance event
  621. *
  622. * Must be called with ctx->mutex held
  623. */
  624. static void __perf_install_in_context(void *info)
  625. {
  626. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  627. struct perf_event *event = info;
  628. struct perf_event_context *ctx = event->ctx;
  629. struct perf_event *leader = event->group_leader;
  630. int cpu = smp_processor_id();
  631. int err;
  632. /*
  633. * If this is a task context, we need to check whether it is
  634. * the current task context of this cpu. If not it has been
  635. * scheduled out before the smp call arrived.
  636. * Or possibly this is the right context but it isn't
  637. * on this cpu because it had no events.
  638. */
  639. if (ctx->task && cpuctx->task_ctx != ctx) {
  640. if (cpuctx->task_ctx || ctx->task != current)
  641. return;
  642. cpuctx->task_ctx = ctx;
  643. }
  644. spin_lock(&ctx->lock);
  645. ctx->is_active = 1;
  646. update_context_time(ctx);
  647. /*
  648. * Protect the list operation against NMI by disabling the
  649. * events on a global level. NOP for non NMI based events.
  650. */
  651. perf_disable();
  652. add_event_to_ctx(event, ctx);
  653. /*
  654. * Don't put the event on if it is disabled or if
  655. * it is in a group and the group isn't on.
  656. */
  657. if (event->state != PERF_EVENT_STATE_INACTIVE ||
  658. (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
  659. goto unlock;
  660. /*
  661. * An exclusive event can't go on if there are already active
  662. * hardware events, and no hardware event can go on if there
  663. * is already an exclusive event on.
  664. */
  665. if (!group_can_go_on(event, cpuctx, 1))
  666. err = -EEXIST;
  667. else
  668. err = event_sched_in(event, cpuctx, ctx, cpu);
  669. if (err) {
  670. /*
  671. * This event couldn't go on. If it is in a group
  672. * then we have to pull the whole group off.
  673. * If the event group is pinned then put it in error state.
  674. */
  675. if (leader != event)
  676. group_sched_out(leader, cpuctx, ctx);
  677. if (leader->attr.pinned) {
  678. update_group_times(leader);
  679. leader->state = PERF_EVENT_STATE_ERROR;
  680. }
  681. }
  682. if (!err && !ctx->task && cpuctx->max_pertask)
  683. cpuctx->max_pertask--;
  684. unlock:
  685. perf_enable();
  686. spin_unlock(&ctx->lock);
  687. }
  688. /*
  689. * Attach a performance event to a context
  690. *
  691. * First we add the event to the list with the hardware enable bit
  692. * in event->hw_config cleared.
  693. *
  694. * If the event is attached to a task which is on a CPU we use a smp
  695. * call to enable it in the task context. The task might have been
  696. * scheduled away, but we check this in the smp call again.
  697. *
  698. * Must be called with ctx->mutex held.
  699. */
  700. static void
  701. perf_install_in_context(struct perf_event_context *ctx,
  702. struct perf_event *event,
  703. int cpu)
  704. {
  705. struct task_struct *task = ctx->task;
  706. if (!task) {
  707. /*
  708. * Per cpu events are installed via an smp call and
  709. * the install is always sucessful.
  710. */
  711. smp_call_function_single(cpu, __perf_install_in_context,
  712. event, 1);
  713. return;
  714. }
  715. retry:
  716. task_oncpu_function_call(task, __perf_install_in_context,
  717. event);
  718. spin_lock_irq(&ctx->lock);
  719. /*
  720. * we need to retry the smp call.
  721. */
  722. if (ctx->is_active && list_empty(&event->group_entry)) {
  723. spin_unlock_irq(&ctx->lock);
  724. goto retry;
  725. }
  726. /*
  727. * The lock prevents that this context is scheduled in so we
  728. * can add the event safely, if it the call above did not
  729. * succeed.
  730. */
  731. if (list_empty(&event->group_entry))
  732. add_event_to_ctx(event, ctx);
  733. spin_unlock_irq(&ctx->lock);
  734. }
  735. /*
  736. * Put a event into inactive state and update time fields.
  737. * Enabling the leader of a group effectively enables all
  738. * the group members that aren't explicitly disabled, so we
  739. * have to update their ->tstamp_enabled also.
  740. * Note: this works for group members as well as group leaders
  741. * since the non-leader members' sibling_lists will be empty.
  742. */
  743. static void __perf_event_mark_enabled(struct perf_event *event,
  744. struct perf_event_context *ctx)
  745. {
  746. struct perf_event *sub;
  747. event->state = PERF_EVENT_STATE_INACTIVE;
  748. event->tstamp_enabled = ctx->time - event->total_time_enabled;
  749. list_for_each_entry(sub, &event->sibling_list, group_entry)
  750. if (sub->state >= PERF_EVENT_STATE_INACTIVE)
  751. sub->tstamp_enabled =
  752. ctx->time - sub->total_time_enabled;
  753. }
  754. /*
  755. * Cross CPU call to enable a performance event
  756. */
  757. static void __perf_event_enable(void *info)
  758. {
  759. struct perf_event *event = info;
  760. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  761. struct perf_event_context *ctx = event->ctx;
  762. struct perf_event *leader = event->group_leader;
  763. int err;
  764. /*
  765. * If this is a per-task event, need to check whether this
  766. * event's task is the current task on this cpu.
  767. */
  768. if (ctx->task && cpuctx->task_ctx != ctx) {
  769. if (cpuctx->task_ctx || ctx->task != current)
  770. return;
  771. cpuctx->task_ctx = ctx;
  772. }
  773. spin_lock(&ctx->lock);
  774. ctx->is_active = 1;
  775. update_context_time(ctx);
  776. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  777. goto unlock;
  778. __perf_event_mark_enabled(event, ctx);
  779. /*
  780. * If the event is in a group and isn't the group leader,
  781. * then don't put it on unless the group is on.
  782. */
  783. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  784. goto unlock;
  785. if (!group_can_go_on(event, cpuctx, 1)) {
  786. err = -EEXIST;
  787. } else {
  788. perf_disable();
  789. if (event == leader)
  790. err = group_sched_in(event, cpuctx, ctx,
  791. smp_processor_id());
  792. else
  793. err = event_sched_in(event, cpuctx, ctx,
  794. smp_processor_id());
  795. perf_enable();
  796. }
  797. if (err) {
  798. /*
  799. * If this event can't go on and it's part of a
  800. * group, then the whole group has to come off.
  801. */
  802. if (leader != event)
  803. group_sched_out(leader, cpuctx, ctx);
  804. if (leader->attr.pinned) {
  805. update_group_times(leader);
  806. leader->state = PERF_EVENT_STATE_ERROR;
  807. }
  808. }
  809. unlock:
  810. spin_unlock(&ctx->lock);
  811. }
  812. /*
  813. * Enable a event.
  814. *
  815. * If event->ctx is a cloned context, callers must make sure that
  816. * every task struct that event->ctx->task could possibly point to
  817. * remains valid. This condition is satisfied when called through
  818. * perf_event_for_each_child or perf_event_for_each as described
  819. * for perf_event_disable.
  820. */
  821. static void perf_event_enable(struct perf_event *event)
  822. {
  823. struct perf_event_context *ctx = event->ctx;
  824. struct task_struct *task = ctx->task;
  825. if (!task) {
  826. /*
  827. * Enable the event on the cpu that it's on
  828. */
  829. smp_call_function_single(event->cpu, __perf_event_enable,
  830. event, 1);
  831. return;
  832. }
  833. spin_lock_irq(&ctx->lock);
  834. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  835. goto out;
  836. /*
  837. * If the event is in error state, clear that first.
  838. * That way, if we see the event in error state below, we
  839. * know that it has gone back into error state, as distinct
  840. * from the task having been scheduled away before the
  841. * cross-call arrived.
  842. */
  843. if (event->state == PERF_EVENT_STATE_ERROR)
  844. event->state = PERF_EVENT_STATE_OFF;
  845. retry:
  846. spin_unlock_irq(&ctx->lock);
  847. task_oncpu_function_call(task, __perf_event_enable, event);
  848. spin_lock_irq(&ctx->lock);
  849. /*
  850. * If the context is active and the event is still off,
  851. * we need to retry the cross-call.
  852. */
  853. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
  854. goto retry;
  855. /*
  856. * Since we have the lock this context can't be scheduled
  857. * in, so we can change the state safely.
  858. */
  859. if (event->state == PERF_EVENT_STATE_OFF)
  860. __perf_event_mark_enabled(event, ctx);
  861. out:
  862. spin_unlock_irq(&ctx->lock);
  863. }
  864. static int perf_event_refresh(struct perf_event *event, int refresh)
  865. {
  866. /*
  867. * not supported on inherited events
  868. */
  869. if (event->attr.inherit)
  870. return -EINVAL;
  871. atomic_add(refresh, &event->event_limit);
  872. perf_event_enable(event);
  873. return 0;
  874. }
  875. void __perf_event_sched_out(struct perf_event_context *ctx,
  876. struct perf_cpu_context *cpuctx)
  877. {
  878. struct perf_event *event;
  879. spin_lock(&ctx->lock);
  880. ctx->is_active = 0;
  881. if (likely(!ctx->nr_events))
  882. goto out;
  883. update_context_time(ctx);
  884. perf_disable();
  885. if (ctx->nr_active)
  886. list_for_each_entry(event, &ctx->group_list, group_entry)
  887. group_sched_out(event, cpuctx, ctx);
  888. perf_enable();
  889. out:
  890. spin_unlock(&ctx->lock);
  891. }
  892. /*
  893. * Test whether two contexts are equivalent, i.e. whether they
  894. * have both been cloned from the same version of the same context
  895. * and they both have the same number of enabled events.
  896. * If the number of enabled events is the same, then the set
  897. * of enabled events should be the same, because these are both
  898. * inherited contexts, therefore we can't access individual events
  899. * in them directly with an fd; we can only enable/disable all
  900. * events via prctl, or enable/disable all events in a family
  901. * via ioctl, which will have the same effect on both contexts.
  902. */
  903. static int context_equiv(struct perf_event_context *ctx1,
  904. struct perf_event_context *ctx2)
  905. {
  906. return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
  907. && ctx1->parent_gen == ctx2->parent_gen
  908. && !ctx1->pin_count && !ctx2->pin_count;
  909. }
  910. static void __perf_event_sync_stat(struct perf_event *event,
  911. struct perf_event *next_event)
  912. {
  913. u64 value;
  914. if (!event->attr.inherit_stat)
  915. return;
  916. /*
  917. * Update the event value, we cannot use perf_event_read()
  918. * because we're in the middle of a context switch and have IRQs
  919. * disabled, which upsets smp_call_function_single(), however
  920. * we know the event must be on the current CPU, therefore we
  921. * don't need to use it.
  922. */
  923. switch (event->state) {
  924. case PERF_EVENT_STATE_ACTIVE:
  925. event->pmu->read(event);
  926. /* fall-through */
  927. case PERF_EVENT_STATE_INACTIVE:
  928. update_event_times(event);
  929. break;
  930. default:
  931. break;
  932. }
  933. /*
  934. * In order to keep per-task stats reliable we need to flip the event
  935. * values when we flip the contexts.
  936. */
  937. value = atomic64_read(&next_event->count);
  938. value = atomic64_xchg(&event->count, value);
  939. atomic64_set(&next_event->count, value);
  940. swap(event->total_time_enabled, next_event->total_time_enabled);
  941. swap(event->total_time_running, next_event->total_time_running);
  942. /*
  943. * Since we swizzled the values, update the user visible data too.
  944. */
  945. perf_event_update_userpage(event);
  946. perf_event_update_userpage(next_event);
  947. }
  948. #define list_next_entry(pos, member) \
  949. list_entry(pos->member.next, typeof(*pos), member)
  950. static void perf_event_sync_stat(struct perf_event_context *ctx,
  951. struct perf_event_context *next_ctx)
  952. {
  953. struct perf_event *event, *next_event;
  954. if (!ctx->nr_stat)
  955. return;
  956. update_context_time(ctx);
  957. event = list_first_entry(&ctx->event_list,
  958. struct perf_event, event_entry);
  959. next_event = list_first_entry(&next_ctx->event_list,
  960. struct perf_event, event_entry);
  961. while (&event->event_entry != &ctx->event_list &&
  962. &next_event->event_entry != &next_ctx->event_list) {
  963. __perf_event_sync_stat(event, next_event);
  964. event = list_next_entry(event, event_entry);
  965. next_event = list_next_entry(next_event, event_entry);
  966. }
  967. }
  968. /*
  969. * Called from scheduler to remove the events of the current task,
  970. * with interrupts disabled.
  971. *
  972. * We stop each event and update the event value in event->count.
  973. *
  974. * This does not protect us against NMI, but disable()
  975. * sets the disabled bit in the control field of event _before_
  976. * accessing the event control register. If a NMI hits, then it will
  977. * not restart the event.
  978. */
  979. void perf_event_task_sched_out(struct task_struct *task,
  980. struct task_struct *next, int cpu)
  981. {
  982. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  983. struct perf_event_context *ctx = task->perf_event_ctxp;
  984. struct perf_event_context *next_ctx;
  985. struct perf_event_context *parent;
  986. struct pt_regs *regs;
  987. int do_switch = 1;
  988. regs = task_pt_regs(task);
  989. perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
  990. if (likely(!ctx || !cpuctx->task_ctx))
  991. return;
  992. rcu_read_lock();
  993. parent = rcu_dereference(ctx->parent_ctx);
  994. next_ctx = next->perf_event_ctxp;
  995. if (parent && next_ctx &&
  996. rcu_dereference(next_ctx->parent_ctx) == parent) {
  997. /*
  998. * Looks like the two contexts are clones, so we might be
  999. * able to optimize the context switch. We lock both
  1000. * contexts and check that they are clones under the
  1001. * lock (including re-checking that neither has been
  1002. * uncloned in the meantime). It doesn't matter which
  1003. * order we take the locks because no other cpu could
  1004. * be trying to lock both of these tasks.
  1005. */
  1006. spin_lock(&ctx->lock);
  1007. spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  1008. if (context_equiv(ctx, next_ctx)) {
  1009. /*
  1010. * XXX do we need a memory barrier of sorts
  1011. * wrt to rcu_dereference() of perf_event_ctxp
  1012. */
  1013. task->perf_event_ctxp = next_ctx;
  1014. next->perf_event_ctxp = ctx;
  1015. ctx->task = next;
  1016. next_ctx->task = task;
  1017. do_switch = 0;
  1018. perf_event_sync_stat(ctx, next_ctx);
  1019. }
  1020. spin_unlock(&next_ctx->lock);
  1021. spin_unlock(&ctx->lock);
  1022. }
  1023. rcu_read_unlock();
  1024. if (do_switch) {
  1025. __perf_event_sched_out(ctx, cpuctx);
  1026. cpuctx->task_ctx = NULL;
  1027. }
  1028. }
  1029. /*
  1030. * Called with IRQs disabled
  1031. */
  1032. static void __perf_event_task_sched_out(struct perf_event_context *ctx)
  1033. {
  1034. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  1035. if (!cpuctx->task_ctx)
  1036. return;
  1037. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  1038. return;
  1039. __perf_event_sched_out(ctx, cpuctx);
  1040. cpuctx->task_ctx = NULL;
  1041. }
  1042. /*
  1043. * Called with IRQs disabled
  1044. */
  1045. static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
  1046. {
  1047. __perf_event_sched_out(&cpuctx->ctx, cpuctx);
  1048. }
  1049. static void
  1050. __perf_event_sched_in(struct perf_event_context *ctx,
  1051. struct perf_cpu_context *cpuctx, int cpu)
  1052. {
  1053. struct perf_event *event;
  1054. int can_add_hw = 1;
  1055. spin_lock(&ctx->lock);
  1056. ctx->is_active = 1;
  1057. if (likely(!ctx->nr_events))
  1058. goto out;
  1059. ctx->timestamp = perf_clock();
  1060. perf_disable();
  1061. /*
  1062. * First go through the list and put on any pinned groups
  1063. * in order to give them the best chance of going on.
  1064. */
  1065. list_for_each_entry(event, &ctx->group_list, group_entry) {
  1066. if (event->state <= PERF_EVENT_STATE_OFF ||
  1067. !event->attr.pinned)
  1068. continue;
  1069. if (event->cpu != -1 && event->cpu != cpu)
  1070. continue;
  1071. if (group_can_go_on(event, cpuctx, 1))
  1072. group_sched_in(event, cpuctx, ctx, cpu);
  1073. /*
  1074. * If this pinned group hasn't been scheduled,
  1075. * put it in error state.
  1076. */
  1077. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1078. update_group_times(event);
  1079. event->state = PERF_EVENT_STATE_ERROR;
  1080. }
  1081. }
  1082. list_for_each_entry(event, &ctx->group_list, group_entry) {
  1083. /*
  1084. * Ignore events in OFF or ERROR state, and
  1085. * ignore pinned events since we did them already.
  1086. */
  1087. if (event->state <= PERF_EVENT_STATE_OFF ||
  1088. event->attr.pinned)
  1089. continue;
  1090. /*
  1091. * Listen to the 'cpu' scheduling filter constraint
  1092. * of events:
  1093. */
  1094. if (event->cpu != -1 && event->cpu != cpu)
  1095. continue;
  1096. if (group_can_go_on(event, cpuctx, can_add_hw))
  1097. if (group_sched_in(event, cpuctx, ctx, cpu))
  1098. can_add_hw = 0;
  1099. }
  1100. perf_enable();
  1101. out:
  1102. spin_unlock(&ctx->lock);
  1103. }
  1104. /*
  1105. * Called from scheduler to add the events of the current task
  1106. * with interrupts disabled.
  1107. *
  1108. * We restore the event value and then enable it.
  1109. *
  1110. * This does not protect us against NMI, but enable()
  1111. * sets the enabled bit in the control field of event _before_
  1112. * accessing the event control register. If a NMI hits, then it will
  1113. * keep the event running.
  1114. */
  1115. void perf_event_task_sched_in(struct task_struct *task, int cpu)
  1116. {
  1117. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  1118. struct perf_event_context *ctx = task->perf_event_ctxp;
  1119. if (likely(!ctx))
  1120. return;
  1121. if (cpuctx->task_ctx == ctx)
  1122. return;
  1123. __perf_event_sched_in(ctx, cpuctx, cpu);
  1124. cpuctx->task_ctx = ctx;
  1125. }
  1126. static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
  1127. {
  1128. struct perf_event_context *ctx = &cpuctx->ctx;
  1129. __perf_event_sched_in(ctx, cpuctx, cpu);
  1130. }
  1131. #define MAX_INTERRUPTS (~0ULL)
  1132. static void perf_log_throttle(struct perf_event *event, int enable);
  1133. static void perf_adjust_period(struct perf_event *event, u64 events)
  1134. {
  1135. struct hw_perf_event *hwc = &event->hw;
  1136. u64 period, sample_period;
  1137. s64 delta;
  1138. events *= hwc->sample_period;
  1139. period = div64_u64(events, event->attr.sample_freq);
  1140. delta = (s64)(period - hwc->sample_period);
  1141. delta = (delta + 7) / 8; /* low pass filter */
  1142. sample_period = hwc->sample_period + delta;
  1143. if (!sample_period)
  1144. sample_period = 1;
  1145. hwc->sample_period = sample_period;
  1146. }
  1147. static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
  1148. {
  1149. struct perf_event *event;
  1150. struct hw_perf_event *hwc;
  1151. u64 interrupts, freq;
  1152. spin_lock(&ctx->lock);
  1153. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  1154. if (event->state != PERF_EVENT_STATE_ACTIVE)
  1155. continue;
  1156. hwc = &event->hw;
  1157. interrupts = hwc->interrupts;
  1158. hwc->interrupts = 0;
  1159. /*
  1160. * unthrottle events on the tick
  1161. */
  1162. if (interrupts == MAX_INTERRUPTS) {
  1163. perf_log_throttle(event, 1);
  1164. event->pmu->unthrottle(event);
  1165. interrupts = 2*sysctl_perf_event_sample_rate/HZ;
  1166. }
  1167. if (!event->attr.freq || !event->attr.sample_freq)
  1168. continue;
  1169. /*
  1170. * if the specified freq < HZ then we need to skip ticks
  1171. */
  1172. if (event->attr.sample_freq < HZ) {
  1173. freq = event->attr.sample_freq;
  1174. hwc->freq_count += freq;
  1175. hwc->freq_interrupts += interrupts;
  1176. if (hwc->freq_count < HZ)
  1177. continue;
  1178. interrupts = hwc->freq_interrupts;
  1179. hwc->freq_interrupts = 0;
  1180. hwc->freq_count -= HZ;
  1181. } else
  1182. freq = HZ;
  1183. perf_adjust_period(event, freq * interrupts);
  1184. /*
  1185. * In order to avoid being stalled by an (accidental) huge
  1186. * sample period, force reset the sample period if we didn't
  1187. * get any events in this freq period.
  1188. */
  1189. if (!interrupts) {
  1190. perf_disable();
  1191. event->pmu->disable(event);
  1192. atomic64_set(&hwc->period_left, 0);
  1193. event->pmu->enable(event);
  1194. perf_enable();
  1195. }
  1196. }
  1197. spin_unlock(&ctx->lock);
  1198. }
  1199. /*
  1200. * Round-robin a context's events:
  1201. */
  1202. static void rotate_ctx(struct perf_event_context *ctx)
  1203. {
  1204. struct perf_event *event;
  1205. if (!ctx->nr_events)
  1206. return;
  1207. spin_lock(&ctx->lock);
  1208. /*
  1209. * Rotate the first entry last (works just fine for group events too):
  1210. */
  1211. perf_disable();
  1212. list_for_each_entry(event, &ctx->group_list, group_entry) {
  1213. list_move_tail(&event->group_entry, &ctx->group_list);
  1214. break;
  1215. }
  1216. perf_enable();
  1217. spin_unlock(&ctx->lock);
  1218. }
  1219. void perf_event_task_tick(struct task_struct *curr, int cpu)
  1220. {
  1221. struct perf_cpu_context *cpuctx;
  1222. struct perf_event_context *ctx;
  1223. if (!atomic_read(&nr_events))
  1224. return;
  1225. cpuctx = &per_cpu(perf_cpu_context, cpu);
  1226. ctx = curr->perf_event_ctxp;
  1227. perf_ctx_adjust_freq(&cpuctx->ctx);
  1228. if (ctx)
  1229. perf_ctx_adjust_freq(ctx);
  1230. perf_event_cpu_sched_out(cpuctx);
  1231. if (ctx)
  1232. __perf_event_task_sched_out(ctx);
  1233. rotate_ctx(&cpuctx->ctx);
  1234. if (ctx)
  1235. rotate_ctx(ctx);
  1236. perf_event_cpu_sched_in(cpuctx, cpu);
  1237. if (ctx)
  1238. perf_event_task_sched_in(curr, cpu);
  1239. }
  1240. /*
  1241. * Enable all of a task's events that have been marked enable-on-exec.
  1242. * This expects task == current.
  1243. */
  1244. static void perf_event_enable_on_exec(struct task_struct *task)
  1245. {
  1246. struct perf_event_context *ctx;
  1247. struct perf_event *event;
  1248. unsigned long flags;
  1249. int enabled = 0;
  1250. local_irq_save(flags);
  1251. ctx = task->perf_event_ctxp;
  1252. if (!ctx || !ctx->nr_events)
  1253. goto out;
  1254. __perf_event_task_sched_out(ctx);
  1255. spin_lock(&ctx->lock);
  1256. list_for_each_entry(event, &ctx->group_list, group_entry) {
  1257. if (!event->attr.enable_on_exec)
  1258. continue;
  1259. event->attr.enable_on_exec = 0;
  1260. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1261. continue;
  1262. __perf_event_mark_enabled(event, ctx);
  1263. enabled = 1;
  1264. }
  1265. /*
  1266. * Unclone this context if we enabled any event.
  1267. */
  1268. if (enabled)
  1269. unclone_ctx(ctx);
  1270. spin_unlock(&ctx->lock);
  1271. perf_event_task_sched_in(task, smp_processor_id());
  1272. out:
  1273. local_irq_restore(flags);
  1274. }
  1275. /*
  1276. * Cross CPU call to read the hardware event
  1277. */
  1278. static void __perf_event_read(void *info)
  1279. {
  1280. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  1281. struct perf_event *event = info;
  1282. struct perf_event_context *ctx = event->ctx;
  1283. /*
  1284. * If this is a task context, we need to check whether it is
  1285. * the current task context of this cpu. If not it has been
  1286. * scheduled out before the smp call arrived. In that case
  1287. * event->count would have been updated to a recent sample
  1288. * when the event was scheduled out.
  1289. */
  1290. if (ctx->task && cpuctx->task_ctx != ctx)
  1291. return;
  1292. spin_lock(&ctx->lock);
  1293. update_context_time(ctx);
  1294. update_event_times(event);
  1295. spin_unlock(&ctx->lock);
  1296. event->pmu->read(event);
  1297. }
  1298. static u64 perf_event_read(struct perf_event *event)
  1299. {
  1300. /*
  1301. * If event is enabled and currently active on a CPU, update the
  1302. * value in the event structure:
  1303. */
  1304. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1305. smp_call_function_single(event->oncpu,
  1306. __perf_event_read, event, 1);
  1307. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1308. struct perf_event_context *ctx = event->ctx;
  1309. unsigned long flags;
  1310. spin_lock_irqsave(&ctx->lock, flags);
  1311. update_context_time(ctx);
  1312. update_event_times(event);
  1313. spin_unlock_irqrestore(&ctx->lock, flags);
  1314. }
  1315. return atomic64_read(&event->count);
  1316. }
  1317. /*
  1318. * Initialize the perf_event context in a task_struct:
  1319. */
  1320. static void
  1321. __perf_event_init_context(struct perf_event_context *ctx,
  1322. struct task_struct *task)
  1323. {
  1324. memset(ctx, 0, sizeof(*ctx));
  1325. spin_lock_init(&ctx->lock);
  1326. mutex_init(&ctx->mutex);
  1327. INIT_LIST_HEAD(&ctx->group_list);
  1328. INIT_LIST_HEAD(&ctx->event_list);
  1329. atomic_set(&ctx->refcount, 1);
  1330. ctx->task = task;
  1331. }
  1332. static struct perf_event_context *find_get_context(pid_t pid, int cpu)
  1333. {
  1334. struct perf_event_context *ctx;
  1335. struct perf_cpu_context *cpuctx;
  1336. struct task_struct *task;
  1337. unsigned long flags;
  1338. int err;
  1339. /*
  1340. * If cpu is not a wildcard then this is a percpu event:
  1341. */
  1342. if (cpu != -1) {
  1343. /* Must be root to operate on a CPU event: */
  1344. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  1345. return ERR_PTR(-EACCES);
  1346. if (cpu < 0 || cpu > num_possible_cpus())
  1347. return ERR_PTR(-EINVAL);
  1348. /*
  1349. * We could be clever and allow to attach a event to an
  1350. * offline CPU and activate it when the CPU comes up, but
  1351. * that's for later.
  1352. */
  1353. if (!cpu_isset(cpu, cpu_online_map))
  1354. return ERR_PTR(-ENODEV);
  1355. cpuctx = &per_cpu(perf_cpu_context, cpu);
  1356. ctx = &cpuctx->ctx;
  1357. get_ctx(ctx);
  1358. return ctx;
  1359. }
  1360. rcu_read_lock();
  1361. if (!pid)
  1362. task = current;
  1363. else
  1364. task = find_task_by_vpid(pid);
  1365. if (task)
  1366. get_task_struct(task);
  1367. rcu_read_unlock();
  1368. if (!task)
  1369. return ERR_PTR(-ESRCH);
  1370. /*
  1371. * Can't attach events to a dying task.
  1372. */
  1373. err = -ESRCH;
  1374. if (task->flags & PF_EXITING)
  1375. goto errout;
  1376. /* Reuse ptrace permission checks for now. */
  1377. err = -EACCES;
  1378. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  1379. goto errout;
  1380. retry:
  1381. ctx = perf_lock_task_context(task, &flags);
  1382. if (ctx) {
  1383. unclone_ctx(ctx);
  1384. spin_unlock_irqrestore(&ctx->lock, flags);
  1385. }
  1386. if (!ctx) {
  1387. ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  1388. err = -ENOMEM;
  1389. if (!ctx)
  1390. goto errout;
  1391. __perf_event_init_context(ctx, task);
  1392. get_ctx(ctx);
  1393. if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
  1394. /*
  1395. * We raced with some other task; use
  1396. * the context they set.
  1397. */
  1398. kfree(ctx);
  1399. goto retry;
  1400. }
  1401. get_task_struct(task);
  1402. }
  1403. put_task_struct(task);
  1404. return ctx;
  1405. errout:
  1406. put_task_struct(task);
  1407. return ERR_PTR(err);
  1408. }
  1409. static void perf_event_free_filter(struct perf_event *event);
  1410. static void free_event_rcu(struct rcu_head *head)
  1411. {
  1412. struct perf_event *event;
  1413. event = container_of(head, struct perf_event, rcu_head);
  1414. if (event->ns)
  1415. put_pid_ns(event->ns);
  1416. perf_event_free_filter(event);
  1417. kfree(event);
  1418. }
  1419. static void perf_pending_sync(struct perf_event *event);
  1420. static void free_event(struct perf_event *event)
  1421. {
  1422. perf_pending_sync(event);
  1423. if (!event->parent) {
  1424. atomic_dec(&nr_events);
  1425. if (event->attr.mmap)
  1426. atomic_dec(&nr_mmap_events);
  1427. if (event->attr.comm)
  1428. atomic_dec(&nr_comm_events);
  1429. if (event->attr.task)
  1430. atomic_dec(&nr_task_events);
  1431. }
  1432. if (event->output) {
  1433. fput(event->output->filp);
  1434. event->output = NULL;
  1435. }
  1436. if (event->destroy)
  1437. event->destroy(event);
  1438. put_ctx(event->ctx);
  1439. call_rcu(&event->rcu_head, free_event_rcu);
  1440. }
  1441. /*
  1442. * Called when the last reference to the file is gone.
  1443. */
  1444. static int perf_release(struct inode *inode, struct file *file)
  1445. {
  1446. struct perf_event *event = file->private_data;
  1447. struct perf_event_context *ctx = event->ctx;
  1448. file->private_data = NULL;
  1449. WARN_ON_ONCE(ctx->parent_ctx);
  1450. mutex_lock(&ctx->mutex);
  1451. perf_event_remove_from_context(event);
  1452. mutex_unlock(&ctx->mutex);
  1453. mutex_lock(&event->owner->perf_event_mutex);
  1454. list_del_init(&event->owner_entry);
  1455. mutex_unlock(&event->owner->perf_event_mutex);
  1456. put_task_struct(event->owner);
  1457. free_event(event);
  1458. return 0;
  1459. }
  1460. int perf_event_release_kernel(struct perf_event *event)
  1461. {
  1462. struct perf_event_context *ctx = event->ctx;
  1463. WARN_ON_ONCE(ctx->parent_ctx);
  1464. mutex_lock(&ctx->mutex);
  1465. perf_event_remove_from_context(event);
  1466. mutex_unlock(&ctx->mutex);
  1467. mutex_lock(&event->owner->perf_event_mutex);
  1468. list_del_init(&event->owner_entry);
  1469. mutex_unlock(&event->owner->perf_event_mutex);
  1470. put_task_struct(event->owner);
  1471. free_event(event);
  1472. return 0;
  1473. }
  1474. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  1475. static int perf_event_read_size(struct perf_event *event)
  1476. {
  1477. int entry = sizeof(u64); /* value */
  1478. int size = 0;
  1479. int nr = 1;
  1480. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1481. size += sizeof(u64);
  1482. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1483. size += sizeof(u64);
  1484. if (event->attr.read_format & PERF_FORMAT_ID)
  1485. entry += sizeof(u64);
  1486. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  1487. nr += event->group_leader->nr_siblings;
  1488. size += sizeof(u64);
  1489. }
  1490. size += entry * nr;
  1491. return size;
  1492. }
  1493. u64 perf_event_read_value(struct perf_event *event)
  1494. {
  1495. struct perf_event *child;
  1496. u64 total = 0;
  1497. total += perf_event_read(event);
  1498. list_for_each_entry(child, &event->child_list, child_list)
  1499. total += perf_event_read(child);
  1500. return total;
  1501. }
  1502. EXPORT_SYMBOL_GPL(perf_event_read_value);
  1503. static int perf_event_read_group(struct perf_event *event,
  1504. u64 read_format, char __user *buf)
  1505. {
  1506. struct perf_event *leader = event->group_leader, *sub;
  1507. int n = 0, size = 0, ret = 0;
  1508. u64 values[5];
  1509. u64 count;
  1510. count = perf_event_read_value(leader);
  1511. values[n++] = 1 + leader->nr_siblings;
  1512. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  1513. values[n++] = leader->total_time_enabled +
  1514. atomic64_read(&leader->child_total_time_enabled);
  1515. }
  1516. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  1517. values[n++] = leader->total_time_running +
  1518. atomic64_read(&leader->child_total_time_running);
  1519. }
  1520. values[n++] = count;
  1521. if (read_format & PERF_FORMAT_ID)
  1522. values[n++] = primary_event_id(leader);
  1523. size = n * sizeof(u64);
  1524. if (copy_to_user(buf, values, size))
  1525. return -EFAULT;
  1526. ret += size;
  1527. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1528. n = 0;
  1529. values[n++] = perf_event_read_value(sub);
  1530. if (read_format & PERF_FORMAT_ID)
  1531. values[n++] = primary_event_id(sub);
  1532. size = n * sizeof(u64);
  1533. if (copy_to_user(buf + size, values, size))
  1534. return -EFAULT;
  1535. ret += size;
  1536. }
  1537. return ret;
  1538. }
  1539. static int perf_event_read_one(struct perf_event *event,
  1540. u64 read_format, char __user *buf)
  1541. {
  1542. u64 values[4];
  1543. int n = 0;
  1544. values[n++] = perf_event_read_value(event);
  1545. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  1546. values[n++] = event->total_time_enabled +
  1547. atomic64_read(&event->child_total_time_enabled);
  1548. }
  1549. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  1550. values[n++] = event->total_time_running +
  1551. atomic64_read(&event->child_total_time_running);
  1552. }
  1553. if (read_format & PERF_FORMAT_ID)
  1554. values[n++] = primary_event_id(event);
  1555. if (copy_to_user(buf, values, n * sizeof(u64)))
  1556. return -EFAULT;
  1557. return n * sizeof(u64);
  1558. }
  1559. /*
  1560. * Read the performance event - simple non blocking version for now
  1561. */
  1562. static ssize_t
  1563. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  1564. {
  1565. u64 read_format = event->attr.read_format;
  1566. int ret;
  1567. /*
  1568. * Return end-of-file for a read on a event that is in
  1569. * error state (i.e. because it was pinned but it couldn't be
  1570. * scheduled on to the CPU at some point).
  1571. */
  1572. if (event->state == PERF_EVENT_STATE_ERROR)
  1573. return 0;
  1574. if (count < perf_event_read_size(event))
  1575. return -ENOSPC;
  1576. WARN_ON_ONCE(event->ctx->parent_ctx);
  1577. mutex_lock(&event->child_mutex);
  1578. if (read_format & PERF_FORMAT_GROUP)
  1579. ret = perf_event_read_group(event, read_format, buf);
  1580. else
  1581. ret = perf_event_read_one(event, read_format, buf);
  1582. mutex_unlock(&event->child_mutex);
  1583. return ret;
  1584. }
  1585. static ssize_t
  1586. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  1587. {
  1588. struct perf_event *event = file->private_data;
  1589. return perf_read_hw(event, buf, count);
  1590. }
  1591. static unsigned int perf_poll(struct file *file, poll_table *wait)
  1592. {
  1593. struct perf_event *event = file->private_data;
  1594. struct perf_mmap_data *data;
  1595. unsigned int events = POLL_HUP;
  1596. rcu_read_lock();
  1597. data = rcu_dereference(event->data);
  1598. if (data)
  1599. events = atomic_xchg(&data->poll, 0);
  1600. rcu_read_unlock();
  1601. poll_wait(file, &event->waitq, wait);
  1602. return events;
  1603. }
  1604. static void perf_event_reset(struct perf_event *event)
  1605. {
  1606. (void)perf_event_read(event);
  1607. atomic64_set(&event->count, 0);
  1608. perf_event_update_userpage(event);
  1609. }
  1610. /*
  1611. * Holding the top-level event's child_mutex means that any
  1612. * descendant process that has inherited this event will block
  1613. * in sync_child_event if it goes to exit, thus satisfying the
  1614. * task existence requirements of perf_event_enable/disable.
  1615. */
  1616. static void perf_event_for_each_child(struct perf_event *event,
  1617. void (*func)(struct perf_event *))
  1618. {
  1619. struct perf_event *child;
  1620. WARN_ON_ONCE(event->ctx->parent_ctx);
  1621. mutex_lock(&event->child_mutex);
  1622. func(event);
  1623. list_for_each_entry(child, &event->child_list, child_list)
  1624. func(child);
  1625. mutex_unlock(&event->child_mutex);
  1626. }
  1627. static void perf_event_for_each(struct perf_event *event,
  1628. void (*func)(struct perf_event *))
  1629. {
  1630. struct perf_event_context *ctx = event->ctx;
  1631. struct perf_event *sibling;
  1632. WARN_ON_ONCE(ctx->parent_ctx);
  1633. mutex_lock(&ctx->mutex);
  1634. event = event->group_leader;
  1635. perf_event_for_each_child(event, func);
  1636. func(event);
  1637. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  1638. perf_event_for_each_child(event, func);
  1639. mutex_unlock(&ctx->mutex);
  1640. }
  1641. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  1642. {
  1643. struct perf_event_context *ctx = event->ctx;
  1644. unsigned long size;
  1645. int ret = 0;
  1646. u64 value;
  1647. if (!event->attr.sample_period)
  1648. return -EINVAL;
  1649. size = copy_from_user(&value, arg, sizeof(value));
  1650. if (size != sizeof(value))
  1651. return -EFAULT;
  1652. if (!value)
  1653. return -EINVAL;
  1654. spin_lock_irq(&ctx->lock);
  1655. if (event->attr.freq) {
  1656. if (value > sysctl_perf_event_sample_rate) {
  1657. ret = -EINVAL;
  1658. goto unlock;
  1659. }
  1660. event->attr.sample_freq = value;
  1661. } else {
  1662. event->attr.sample_period = value;
  1663. event->hw.sample_period = value;
  1664. }
  1665. unlock:
  1666. spin_unlock_irq(&ctx->lock);
  1667. return ret;
  1668. }
  1669. static int perf_event_set_output(struct perf_event *event, int output_fd);
  1670. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  1671. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1672. {
  1673. struct perf_event *event = file->private_data;
  1674. void (*func)(struct perf_event *);
  1675. u32 flags = arg;
  1676. switch (cmd) {
  1677. case PERF_EVENT_IOC_ENABLE:
  1678. func = perf_event_enable;
  1679. break;
  1680. case PERF_EVENT_IOC_DISABLE:
  1681. func = perf_event_disable;
  1682. break;
  1683. case PERF_EVENT_IOC_RESET:
  1684. func = perf_event_reset;
  1685. break;
  1686. case PERF_EVENT_IOC_REFRESH:
  1687. return perf_event_refresh(event, arg);
  1688. case PERF_EVENT_IOC_PERIOD:
  1689. return perf_event_period(event, (u64 __user *)arg);
  1690. case PERF_EVENT_IOC_SET_OUTPUT:
  1691. return perf_event_set_output(event, arg);
  1692. case PERF_EVENT_IOC_SET_FILTER:
  1693. return perf_event_set_filter(event, (void __user *)arg);
  1694. default:
  1695. return -ENOTTY;
  1696. }
  1697. if (flags & PERF_IOC_FLAG_GROUP)
  1698. perf_event_for_each(event, func);
  1699. else
  1700. perf_event_for_each_child(event, func);
  1701. return 0;
  1702. }
  1703. int perf_event_task_enable(void)
  1704. {
  1705. struct perf_event *event;
  1706. mutex_lock(&current->perf_event_mutex);
  1707. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  1708. perf_event_for_each_child(event, perf_event_enable);
  1709. mutex_unlock(&current->perf_event_mutex);
  1710. return 0;
  1711. }
  1712. int perf_event_task_disable(void)
  1713. {
  1714. struct perf_event *event;
  1715. mutex_lock(&current->perf_event_mutex);
  1716. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  1717. perf_event_for_each_child(event, perf_event_disable);
  1718. mutex_unlock(&current->perf_event_mutex);
  1719. return 0;
  1720. }
  1721. #ifndef PERF_EVENT_INDEX_OFFSET
  1722. # define PERF_EVENT_INDEX_OFFSET 0
  1723. #endif
  1724. static int perf_event_index(struct perf_event *event)
  1725. {
  1726. if (event->state != PERF_EVENT_STATE_ACTIVE)
  1727. return 0;
  1728. return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
  1729. }
  1730. /*
  1731. * Callers need to ensure there can be no nesting of this function, otherwise
  1732. * the seqlock logic goes bad. We can not serialize this because the arch
  1733. * code calls this from NMI context.
  1734. */
  1735. void perf_event_update_userpage(struct perf_event *event)
  1736. {
  1737. struct perf_event_mmap_page *userpg;
  1738. struct perf_mmap_data *data;
  1739. rcu_read_lock();
  1740. data = rcu_dereference(event->data);
  1741. if (!data)
  1742. goto unlock;
  1743. userpg = data->user_page;
  1744. /*
  1745. * Disable preemption so as to not let the corresponding user-space
  1746. * spin too long if we get preempted.
  1747. */
  1748. preempt_disable();
  1749. ++userpg->lock;
  1750. barrier();
  1751. userpg->index = perf_event_index(event);
  1752. userpg->offset = atomic64_read(&event->count);
  1753. if (event->state == PERF_EVENT_STATE_ACTIVE)
  1754. userpg->offset -= atomic64_read(&event->hw.prev_count);
  1755. userpg->time_enabled = event->total_time_enabled +
  1756. atomic64_read(&event->child_total_time_enabled);
  1757. userpg->time_running = event->total_time_running +
  1758. atomic64_read(&event->child_total_time_running);
  1759. barrier();
  1760. ++userpg->lock;
  1761. preempt_enable();
  1762. unlock:
  1763. rcu_read_unlock();
  1764. }
  1765. static unsigned long perf_data_size(struct perf_mmap_data *data)
  1766. {
  1767. return data->nr_pages << (PAGE_SHIFT + data->data_order);
  1768. }
  1769. #ifndef CONFIG_PERF_USE_VMALLOC
  1770. /*
  1771. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  1772. */
  1773. static struct page *
  1774. perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
  1775. {
  1776. if (pgoff > data->nr_pages)
  1777. return NULL;
  1778. if (pgoff == 0)
  1779. return virt_to_page(data->user_page);
  1780. return virt_to_page(data->data_pages[pgoff - 1]);
  1781. }
  1782. static struct perf_mmap_data *
  1783. perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
  1784. {
  1785. struct perf_mmap_data *data;
  1786. unsigned long size;
  1787. int i;
  1788. WARN_ON(atomic_read(&event->mmap_count));
  1789. size = sizeof(struct perf_mmap_data);
  1790. size += nr_pages * sizeof(void *);
  1791. data = kzalloc(size, GFP_KERNEL);
  1792. if (!data)
  1793. goto fail;
  1794. data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
  1795. if (!data->user_page)
  1796. goto fail_user_page;
  1797. for (i = 0; i < nr_pages; i++) {
  1798. data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
  1799. if (!data->data_pages[i])
  1800. goto fail_data_pages;
  1801. }
  1802. data->data_order = 0;
  1803. data->nr_pages = nr_pages;
  1804. return data;
  1805. fail_data_pages:
  1806. for (i--; i >= 0; i--)
  1807. free_page((unsigned long)data->data_pages[i]);
  1808. free_page((unsigned long)data->user_page);
  1809. fail_user_page:
  1810. kfree(data);
  1811. fail:
  1812. return NULL;
  1813. }
  1814. static void perf_mmap_free_page(unsigned long addr)
  1815. {
  1816. struct page *page = virt_to_page((void *)addr);
  1817. page->mapping = NULL;
  1818. __free_page(page);
  1819. }
  1820. static void perf_mmap_data_free(struct perf_mmap_data *data)
  1821. {
  1822. int i;
  1823. perf_mmap_free_page((unsigned long)data->user_page);
  1824. for (i = 0; i < data->nr_pages; i++)
  1825. perf_mmap_free_page((unsigned long)data->data_pages[i]);
  1826. }
  1827. #else
  1828. /*
  1829. * Back perf_mmap() with vmalloc memory.
  1830. *
  1831. * Required for architectures that have d-cache aliasing issues.
  1832. */
  1833. static struct page *
  1834. perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
  1835. {
  1836. if (pgoff > (1UL << data->data_order))
  1837. return NULL;
  1838. return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
  1839. }
  1840. static void perf_mmap_unmark_page(void *addr)
  1841. {
  1842. struct page *page = vmalloc_to_page(addr);
  1843. page->mapping = NULL;
  1844. }
  1845. static void perf_mmap_data_free_work(struct work_struct *work)
  1846. {
  1847. struct perf_mmap_data *data;
  1848. void *base;
  1849. int i, nr;
  1850. data = container_of(work, struct perf_mmap_data, work);
  1851. nr = 1 << data->data_order;
  1852. base = data->user_page;
  1853. for (i = 0; i < nr + 1; i++)
  1854. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  1855. vfree(base);
  1856. }
  1857. static void perf_mmap_data_free(struct perf_mmap_data *data)
  1858. {
  1859. schedule_work(&data->work);
  1860. }
  1861. static struct perf_mmap_data *
  1862. perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
  1863. {
  1864. struct perf_mmap_data *data;
  1865. unsigned long size;
  1866. void *all_buf;
  1867. WARN_ON(atomic_read(&event->mmap_count));
  1868. size = sizeof(struct perf_mmap_data);
  1869. size += sizeof(void *);
  1870. data = kzalloc(size, GFP_KERNEL);
  1871. if (!data)
  1872. goto fail;
  1873. INIT_WORK(&data->work, perf_mmap_data_free_work);
  1874. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  1875. if (!all_buf)
  1876. goto fail_all_buf;
  1877. data->user_page = all_buf;
  1878. data->data_pages[0] = all_buf + PAGE_SIZE;
  1879. data->data_order = ilog2(nr_pages);
  1880. data->nr_pages = 1;
  1881. return data;
  1882. fail_all_buf:
  1883. kfree(data);
  1884. fail:
  1885. return NULL;
  1886. }
  1887. #endif
  1888. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1889. {
  1890. struct perf_event *event = vma->vm_file->private_data;
  1891. struct perf_mmap_data *data;
  1892. int ret = VM_FAULT_SIGBUS;
  1893. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  1894. if (vmf->pgoff == 0)
  1895. ret = 0;
  1896. return ret;
  1897. }
  1898. rcu_read_lock();
  1899. data = rcu_dereference(event->data);
  1900. if (!data)
  1901. goto unlock;
  1902. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  1903. goto unlock;
  1904. vmf->page = perf_mmap_to_page(data, vmf->pgoff);
  1905. if (!vmf->page)
  1906. goto unlock;
  1907. get_page(vmf->page);
  1908. vmf->page->mapping = vma->vm_file->f_mapping;
  1909. vmf->page->index = vmf->pgoff;
  1910. ret = 0;
  1911. unlock:
  1912. rcu_read_unlock();
  1913. return ret;
  1914. }
  1915. static void
  1916. perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
  1917. {
  1918. long max_size = perf_data_size(data);
  1919. atomic_set(&data->lock, -1);
  1920. if (event->attr.watermark) {
  1921. data->watermark = min_t(long, max_size,
  1922. event->attr.wakeup_watermark);
  1923. }
  1924. if (!data->watermark)
  1925. data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
  1926. rcu_assign_pointer(event->data, data);
  1927. }
  1928. static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
  1929. {
  1930. struct perf_mmap_data *data;
  1931. data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
  1932. perf_mmap_data_free(data);
  1933. kfree(data);
  1934. }
  1935. static void perf_mmap_data_release(struct perf_event *event)
  1936. {
  1937. struct perf_mmap_data *data = event->data;
  1938. WARN_ON(atomic_read(&event->mmap_count));
  1939. rcu_assign_pointer(event->data, NULL);
  1940. call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
  1941. }
  1942. static void perf_mmap_open(struct vm_area_struct *vma)
  1943. {
  1944. struct perf_event *event = vma->vm_file->private_data;
  1945. atomic_inc(&event->mmap_count);
  1946. }
  1947. static void perf_mmap_close(struct vm_area_struct *vma)
  1948. {
  1949. struct perf_event *event = vma->vm_file->private_data;
  1950. WARN_ON_ONCE(event->ctx->parent_ctx);
  1951. if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
  1952. unsigned long size = perf_data_size(event->data);
  1953. struct user_struct *user = current_user();
  1954. atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
  1955. vma->vm_mm->locked_vm -= event->data->nr_locked;
  1956. perf_mmap_data_release(event);
  1957. mutex_unlock(&event->mmap_mutex);
  1958. }
  1959. }
  1960. static const struct vm_operations_struct perf_mmap_vmops = {
  1961. .open = perf_mmap_open,
  1962. .close = perf_mmap_close,
  1963. .fault = perf_mmap_fault,
  1964. .page_mkwrite = perf_mmap_fault,
  1965. };
  1966. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  1967. {
  1968. struct perf_event *event = file->private_data;
  1969. unsigned long user_locked, user_lock_limit;
  1970. struct user_struct *user = current_user();
  1971. unsigned long locked, lock_limit;
  1972. struct perf_mmap_data *data;
  1973. unsigned long vma_size;
  1974. unsigned long nr_pages;
  1975. long user_extra, extra;
  1976. int ret = 0;
  1977. if (!(vma->vm_flags & VM_SHARED))
  1978. return -EINVAL;
  1979. vma_size = vma->vm_end - vma->vm_start;
  1980. nr_pages = (vma_size / PAGE_SIZE) - 1;
  1981. /*
  1982. * If we have data pages ensure they're a power-of-two number, so we
  1983. * can do bitmasks instead of modulo.
  1984. */
  1985. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  1986. return -EINVAL;
  1987. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  1988. return -EINVAL;
  1989. if (vma->vm_pgoff != 0)
  1990. return -EINVAL;
  1991. WARN_ON_ONCE(event->ctx->parent_ctx);
  1992. mutex_lock(&event->mmap_mutex);
  1993. if (event->output) {
  1994. ret = -EINVAL;
  1995. goto unlock;
  1996. }
  1997. if (atomic_inc_not_zero(&event->mmap_count)) {
  1998. if (nr_pages != event->data->nr_pages)
  1999. ret = -EINVAL;
  2000. goto unlock;
  2001. }
  2002. user_extra = nr_pages + 1;
  2003. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  2004. /*
  2005. * Increase the limit linearly with more CPUs:
  2006. */
  2007. user_lock_limit *= num_online_cpus();
  2008. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  2009. extra = 0;
  2010. if (user_locked > user_lock_limit)
  2011. extra = user_locked - user_lock_limit;
  2012. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  2013. lock_limit >>= PAGE_SHIFT;
  2014. locked = vma->vm_mm->locked_vm + extra;
  2015. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  2016. !capable(CAP_IPC_LOCK)) {
  2017. ret = -EPERM;
  2018. goto unlock;
  2019. }
  2020. WARN_ON(event->data);
  2021. data = perf_mmap_data_alloc(event, nr_pages);
  2022. ret = -ENOMEM;
  2023. if (!data)
  2024. goto unlock;
  2025. ret = 0;
  2026. perf_mmap_data_init(event, data);
  2027. atomic_set(&event->mmap_count, 1);
  2028. atomic_long_add(user_extra, &user->locked_vm);
  2029. vma->vm_mm->locked_vm += extra;
  2030. event->data->nr_locked = extra;
  2031. if (vma->vm_flags & VM_WRITE)
  2032. event->data->writable = 1;
  2033. unlock:
  2034. mutex_unlock(&event->mmap_mutex);
  2035. vma->vm_flags |= VM_RESERVED;
  2036. vma->vm_ops = &perf_mmap_vmops;
  2037. return ret;
  2038. }
  2039. static int perf_fasync(int fd, struct file *filp, int on)
  2040. {
  2041. struct inode *inode = filp->f_path.dentry->d_inode;
  2042. struct perf_event *event = filp->private_data;
  2043. int retval;
  2044. mutex_lock(&inode->i_mutex);
  2045. retval = fasync_helper(fd, filp, on, &event->fasync);
  2046. mutex_unlock(&inode->i_mutex);
  2047. if (retval < 0)
  2048. return retval;
  2049. return 0;
  2050. }
  2051. static const struct file_operations perf_fops = {
  2052. .release = perf_release,
  2053. .read = perf_read,
  2054. .poll = perf_poll,
  2055. .unlocked_ioctl = perf_ioctl,
  2056. .compat_ioctl = perf_ioctl,
  2057. .mmap = perf_mmap,
  2058. .fasync = perf_fasync,
  2059. };
  2060. /*
  2061. * Perf event wakeup
  2062. *
  2063. * If there's data, ensure we set the poll() state and publish everything
  2064. * to user-space before waking everybody up.
  2065. */
  2066. void perf_event_wakeup(struct perf_event *event)
  2067. {
  2068. wake_up_all(&event->waitq);
  2069. if (event->pending_kill) {
  2070. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  2071. event->pending_kill = 0;
  2072. }
  2073. }
  2074. /*
  2075. * Pending wakeups
  2076. *
  2077. * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
  2078. *
  2079. * The NMI bit means we cannot possibly take locks. Therefore, maintain a
  2080. * single linked list and use cmpxchg() to add entries lockless.
  2081. */
  2082. static void perf_pending_event(struct perf_pending_entry *entry)
  2083. {
  2084. struct perf_event *event = container_of(entry,
  2085. struct perf_event, pending);
  2086. if (event->pending_disable) {
  2087. event->pending_disable = 0;
  2088. __perf_event_disable(event);
  2089. }
  2090. if (event->pending_wakeup) {
  2091. event->pending_wakeup = 0;
  2092. perf_event_wakeup(event);
  2093. }
  2094. }
  2095. #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
  2096. static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
  2097. PENDING_TAIL,
  2098. };
  2099. static void perf_pending_queue(struct perf_pending_entry *entry,
  2100. void (*func)(struct perf_pending_entry *))
  2101. {
  2102. struct perf_pending_entry **head;
  2103. if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
  2104. return;
  2105. entry->func = func;
  2106. head = &get_cpu_var(perf_pending_head);
  2107. do {
  2108. entry->next = *head;
  2109. } while (cmpxchg(head, entry->next, entry) != entry->next);
  2110. set_perf_event_pending();
  2111. put_cpu_var(perf_pending_head);
  2112. }
  2113. static int __perf_pending_run(void)
  2114. {
  2115. struct perf_pending_entry *list;
  2116. int nr = 0;
  2117. list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
  2118. while (list != PENDING_TAIL) {
  2119. void (*func)(struct perf_pending_entry *);
  2120. struct perf_pending_entry *entry = list;
  2121. list = list->next;
  2122. func = entry->func;
  2123. entry->next = NULL;
  2124. /*
  2125. * Ensure we observe the unqueue before we issue the wakeup,
  2126. * so that we won't be waiting forever.
  2127. * -- see perf_not_pending().
  2128. */
  2129. smp_wmb();
  2130. func(entry);
  2131. nr++;
  2132. }
  2133. return nr;
  2134. }
  2135. static inline int perf_not_pending(struct perf_event *event)
  2136. {
  2137. /*
  2138. * If we flush on whatever cpu we run, there is a chance we don't
  2139. * need to wait.
  2140. */
  2141. get_cpu();
  2142. __perf_pending_run();
  2143. put_cpu();
  2144. /*
  2145. * Ensure we see the proper queue state before going to sleep
  2146. * so that we do not miss the wakeup. -- see perf_pending_handle()
  2147. */
  2148. smp_rmb();
  2149. return event->pending.next == NULL;
  2150. }
  2151. static void perf_pending_sync(struct perf_event *event)
  2152. {
  2153. wait_event(event->waitq, perf_not_pending(event));
  2154. }
  2155. void perf_event_do_pending(void)
  2156. {
  2157. __perf_pending_run();
  2158. }
  2159. /*
  2160. * Callchain support -- arch specific
  2161. */
  2162. __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  2163. {
  2164. return NULL;
  2165. }
  2166. /*
  2167. * Output
  2168. */
  2169. static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
  2170. unsigned long offset, unsigned long head)
  2171. {
  2172. unsigned long mask;
  2173. if (!data->writable)
  2174. return true;
  2175. mask = perf_data_size(data) - 1;
  2176. offset = (offset - tail) & mask;
  2177. head = (head - tail) & mask;
  2178. if ((int)(head - offset) < 0)
  2179. return false;
  2180. return true;
  2181. }
  2182. static void perf_output_wakeup(struct perf_output_handle *handle)
  2183. {
  2184. atomic_set(&handle->data->poll, POLL_IN);
  2185. if (handle->nmi) {
  2186. handle->event->pending_wakeup = 1;
  2187. perf_pending_queue(&handle->event->pending,
  2188. perf_pending_event);
  2189. } else
  2190. perf_event_wakeup(handle->event);
  2191. }
  2192. /*
  2193. * Curious locking construct.
  2194. *
  2195. * We need to ensure a later event_id doesn't publish a head when a former
  2196. * event_id isn't done writing. However since we need to deal with NMIs we
  2197. * cannot fully serialize things.
  2198. *
  2199. * What we do is serialize between CPUs so we only have to deal with NMI
  2200. * nesting on a single CPU.
  2201. *
  2202. * We only publish the head (and generate a wakeup) when the outer-most
  2203. * event_id completes.
  2204. */
  2205. static void perf_output_lock(struct perf_output_handle *handle)
  2206. {
  2207. struct perf_mmap_data *data = handle->data;
  2208. int cur, cpu = get_cpu();
  2209. handle->locked = 0;
  2210. for (;;) {
  2211. cur = atomic_cmpxchg(&data->lock, -1, cpu);
  2212. if (cur == -1) {
  2213. handle->locked = 1;
  2214. break;
  2215. }
  2216. if (cur == cpu)
  2217. break;
  2218. cpu_relax();
  2219. }
  2220. }
  2221. static void perf_output_unlock(struct perf_output_handle *handle)
  2222. {
  2223. struct perf_mmap_data *data = handle->data;
  2224. unsigned long head;
  2225. int cpu;
  2226. data->done_head = data->head;
  2227. if (!handle->locked)
  2228. goto out;
  2229. again:
  2230. /*
  2231. * The xchg implies a full barrier that ensures all writes are done
  2232. * before we publish the new head, matched by a rmb() in userspace when
  2233. * reading this position.
  2234. */
  2235. while ((head = atomic_long_xchg(&data->done_head, 0)))
  2236. data->user_page->data_head = head;
  2237. /*
  2238. * NMI can happen here, which means we can miss a done_head update.
  2239. */
  2240. cpu = atomic_xchg(&data->lock, -1);
  2241. WARN_ON_ONCE(cpu != smp_processor_id());
  2242. /*
  2243. * Therefore we have to validate we did not indeed do so.
  2244. */
  2245. if (unlikely(atomic_long_read(&data->done_head))) {
  2246. /*
  2247. * Since we had it locked, we can lock it again.
  2248. */
  2249. while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
  2250. cpu_relax();
  2251. goto again;
  2252. }
  2253. if (atomic_xchg(&data->wakeup, 0))
  2254. perf_output_wakeup(handle);
  2255. out:
  2256. put_cpu();
  2257. }
  2258. void perf_output_copy(struct perf_output_handle *handle,
  2259. const void *buf, unsigned int len)
  2260. {
  2261. unsigned int pages_mask;
  2262. unsigned long offset;
  2263. unsigned int size;
  2264. void **pages;
  2265. offset = handle->offset;
  2266. pages_mask = handle->data->nr_pages - 1;
  2267. pages = handle->data->data_pages;
  2268. do {
  2269. unsigned long page_offset;
  2270. unsigned long page_size;
  2271. int nr;
  2272. nr = (offset >> PAGE_SHIFT) & pages_mask;
  2273. page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
  2274. page_offset = offset & (page_size - 1);
  2275. size = min_t(unsigned int, page_size - page_offset, len);
  2276. memcpy(pages[nr] + page_offset, buf, size);
  2277. len -= size;
  2278. buf += size;
  2279. offset += size;
  2280. } while (len);
  2281. handle->offset = offset;
  2282. /*
  2283. * Check we didn't copy past our reservation window, taking the
  2284. * possible unsigned int wrap into account.
  2285. */
  2286. WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
  2287. }
  2288. int perf_output_begin(struct perf_output_handle *handle,
  2289. struct perf_event *event, unsigned int size,
  2290. int nmi, int sample)
  2291. {
  2292. struct perf_event *output_event;
  2293. struct perf_mmap_data *data;
  2294. unsigned long tail, offset, head;
  2295. int have_lost;
  2296. struct {
  2297. struct perf_event_header header;
  2298. u64 id;
  2299. u64 lost;
  2300. } lost_event;
  2301. rcu_read_lock();
  2302. /*
  2303. * For inherited events we send all the output towards the parent.
  2304. */
  2305. if (event->parent)
  2306. event = event->parent;
  2307. output_event = rcu_dereference(event->output);
  2308. if (output_event)
  2309. event = output_event;
  2310. data = rcu_dereference(event->data);
  2311. if (!data)
  2312. goto out;
  2313. handle->data = data;
  2314. handle->event = event;
  2315. handle->nmi = nmi;
  2316. handle->sample = sample;
  2317. if (!data->nr_pages)
  2318. goto fail;
  2319. have_lost = atomic_read(&data->lost);
  2320. if (have_lost)
  2321. size += sizeof(lost_event);
  2322. perf_output_lock(handle);
  2323. do {
  2324. /*
  2325. * Userspace could choose to issue a mb() before updating the
  2326. * tail pointer. So that all reads will be completed before the
  2327. * write is issued.
  2328. */
  2329. tail = ACCESS_ONCE(data->user_page->data_tail);
  2330. smp_rmb();
  2331. offset = head = atomic_long_read(&data->head);
  2332. head += size;
  2333. if (unlikely(!perf_output_space(data, tail, offset, head)))
  2334. goto fail;
  2335. } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
  2336. handle->offset = offset;
  2337. handle->head = head;
  2338. if (head - tail > data->watermark)
  2339. atomic_set(&data->wakeup, 1);
  2340. if (have_lost) {
  2341. lost_event.header.type = PERF_RECORD_LOST;
  2342. lost_event.header.misc = 0;
  2343. lost_event.header.size = sizeof(lost_event);
  2344. lost_event.id = event->id;
  2345. lost_event.lost = atomic_xchg(&data->lost, 0);
  2346. perf_output_put(handle, lost_event);
  2347. }
  2348. return 0;
  2349. fail:
  2350. atomic_inc(&data->lost);
  2351. perf_output_unlock(handle);
  2352. out:
  2353. rcu_read_unlock();
  2354. return -ENOSPC;
  2355. }
  2356. void perf_output_end(struct perf_output_handle *handle)
  2357. {
  2358. struct perf_event *event = handle->event;
  2359. struct perf_mmap_data *data = handle->data;
  2360. int wakeup_events = event->attr.wakeup_events;
  2361. if (handle->sample && wakeup_events) {
  2362. int events = atomic_inc_return(&data->events);
  2363. if (events >= wakeup_events) {
  2364. atomic_sub(wakeup_events, &data->events);
  2365. atomic_set(&data->wakeup, 1);
  2366. }
  2367. }
  2368. perf_output_unlock(handle);
  2369. rcu_read_unlock();
  2370. }
  2371. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  2372. {
  2373. /*
  2374. * only top level events have the pid namespace they were created in
  2375. */
  2376. if (event->parent)
  2377. event = event->parent;
  2378. return task_tgid_nr_ns(p, event->ns);
  2379. }
  2380. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  2381. {
  2382. /*
  2383. * only top level events have the pid namespace they were created in
  2384. */
  2385. if (event->parent)
  2386. event = event->parent;
  2387. return task_pid_nr_ns(p, event->ns);
  2388. }
  2389. static void perf_output_read_one(struct perf_output_handle *handle,
  2390. struct perf_event *event)
  2391. {
  2392. u64 read_format = event->attr.read_format;
  2393. u64 values[4];
  2394. int n = 0;
  2395. values[n++] = atomic64_read(&event->count);
  2396. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  2397. values[n++] = event->total_time_enabled +
  2398. atomic64_read(&event->child_total_time_enabled);
  2399. }
  2400. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  2401. values[n++] = event->total_time_running +
  2402. atomic64_read(&event->child_total_time_running);
  2403. }
  2404. if (read_format & PERF_FORMAT_ID)
  2405. values[n++] = primary_event_id(event);
  2406. perf_output_copy(handle, values, n * sizeof(u64));
  2407. }
  2408. /*
  2409. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  2410. */
  2411. static void perf_output_read_group(struct perf_output_handle *handle,
  2412. struct perf_event *event)
  2413. {
  2414. struct perf_event *leader = event->group_leader, *sub;
  2415. u64 read_format = event->attr.read_format;
  2416. u64 values[5];
  2417. int n = 0;
  2418. values[n++] = 1 + leader->nr_siblings;
  2419. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2420. values[n++] = leader->total_time_enabled;
  2421. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2422. values[n++] = leader->total_time_running;
  2423. if (leader != event)
  2424. leader->pmu->read(leader);
  2425. values[n++] = atomic64_read(&leader->count);
  2426. if (read_format & PERF_FORMAT_ID)
  2427. values[n++] = primary_event_id(leader);
  2428. perf_output_copy(handle, values, n * sizeof(u64));
  2429. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  2430. n = 0;
  2431. if (sub != event)
  2432. sub->pmu->read(sub);
  2433. values[n++] = atomic64_read(&sub->count);
  2434. if (read_format & PERF_FORMAT_ID)
  2435. values[n++] = primary_event_id(sub);
  2436. perf_output_copy(handle, values, n * sizeof(u64));
  2437. }
  2438. }
  2439. static void perf_output_read(struct perf_output_handle *handle,
  2440. struct perf_event *event)
  2441. {
  2442. if (event->attr.read_format & PERF_FORMAT_GROUP)
  2443. perf_output_read_group(handle, event);
  2444. else
  2445. perf_output_read_one(handle, event);
  2446. }
  2447. void perf_output_sample(struct perf_output_handle *handle,
  2448. struct perf_event_header *header,
  2449. struct perf_sample_data *data,
  2450. struct perf_event *event)
  2451. {
  2452. u64 sample_type = data->type;
  2453. perf_output_put(handle, *header);
  2454. if (sample_type & PERF_SAMPLE_IP)
  2455. perf_output_put(handle, data->ip);
  2456. if (sample_type & PERF_SAMPLE_TID)
  2457. perf_output_put(handle, data->tid_entry);
  2458. if (sample_type & PERF_SAMPLE_TIME)
  2459. perf_output_put(handle, data->time);
  2460. if (sample_type & PERF_SAMPLE_ADDR)
  2461. perf_output_put(handle, data->addr);
  2462. if (sample_type & PERF_SAMPLE_ID)
  2463. perf_output_put(handle, data->id);
  2464. if (sample_type & PERF_SAMPLE_STREAM_ID)
  2465. perf_output_put(handle, data->stream_id);
  2466. if (sample_type & PERF_SAMPLE_CPU)
  2467. perf_output_put(handle, data->cpu_entry);
  2468. if (sample_type & PERF_SAMPLE_PERIOD)
  2469. perf_output_put(handle, data->period);
  2470. if (sample_type & PERF_SAMPLE_READ)
  2471. perf_output_read(handle, event);
  2472. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  2473. if (data->callchain) {
  2474. int size = 1;
  2475. if (data->callchain)
  2476. size += data->callchain->nr;
  2477. size *= sizeof(u64);
  2478. perf_output_copy(handle, data->callchain, size);
  2479. } else {
  2480. u64 nr = 0;
  2481. perf_output_put(handle, nr);
  2482. }
  2483. }
  2484. if (sample_type & PERF_SAMPLE_RAW) {
  2485. if (data->raw) {
  2486. perf_output_put(handle, data->raw->size);
  2487. perf_output_copy(handle, data->raw->data,
  2488. data->raw->size);
  2489. } else {
  2490. struct {
  2491. u32 size;
  2492. u32 data;
  2493. } raw = {
  2494. .size = sizeof(u32),
  2495. .data = 0,
  2496. };
  2497. perf_output_put(handle, raw);
  2498. }
  2499. }
  2500. }
  2501. void perf_prepare_sample(struct perf_event_header *header,
  2502. struct perf_sample_data *data,
  2503. struct perf_event *event,
  2504. struct pt_regs *regs)
  2505. {
  2506. u64 sample_type = event->attr.sample_type;
  2507. data->type = sample_type;
  2508. header->type = PERF_RECORD_SAMPLE;
  2509. header->size = sizeof(*header);
  2510. header->misc = 0;
  2511. header->misc |= perf_misc_flags(regs);
  2512. if (sample_type & PERF_SAMPLE_IP) {
  2513. data->ip = perf_instruction_pointer(regs);
  2514. header->size += sizeof(data->ip);
  2515. }
  2516. if (sample_type & PERF_SAMPLE_TID) {
  2517. /* namespace issues */
  2518. data->tid_entry.pid = perf_event_pid(event, current);
  2519. data->tid_entry.tid = perf_event_tid(event, current);
  2520. header->size += sizeof(data->tid_entry);
  2521. }
  2522. if (sample_type & PERF_SAMPLE_TIME) {
  2523. data->time = perf_clock();
  2524. header->size += sizeof(data->time);
  2525. }
  2526. if (sample_type & PERF_SAMPLE_ADDR)
  2527. header->size += sizeof(data->addr);
  2528. if (sample_type & PERF_SAMPLE_ID) {
  2529. data->id = primary_event_id(event);
  2530. header->size += sizeof(data->id);
  2531. }
  2532. if (sample_type & PERF_SAMPLE_STREAM_ID) {
  2533. data->stream_id = event->id;
  2534. header->size += sizeof(data->stream_id);
  2535. }
  2536. if (sample_type & PERF_SAMPLE_CPU) {
  2537. data->cpu_entry.cpu = raw_smp_processor_id();
  2538. data->cpu_entry.reserved = 0;
  2539. header->size += sizeof(data->cpu_entry);
  2540. }
  2541. if (sample_type & PERF_SAMPLE_PERIOD)
  2542. header->size += sizeof(data->period);
  2543. if (sample_type & PERF_SAMPLE_READ)
  2544. header->size += perf_event_read_size(event);
  2545. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  2546. int size = 1;
  2547. data->callchain = perf_callchain(regs);
  2548. if (data->callchain)
  2549. size += data->callchain->nr;
  2550. header->size += size * sizeof(u64);
  2551. }
  2552. if (sample_type & PERF_SAMPLE_RAW) {
  2553. int size = sizeof(u32);
  2554. if (data->raw)
  2555. size += data->raw->size;
  2556. else
  2557. size += sizeof(u32);
  2558. WARN_ON_ONCE(size & (sizeof(u64)-1));
  2559. header->size += size;
  2560. }
  2561. }
  2562. static void perf_event_output(struct perf_event *event, int nmi,
  2563. struct perf_sample_data *data,
  2564. struct pt_regs *regs)
  2565. {
  2566. struct perf_output_handle handle;
  2567. struct perf_event_header header;
  2568. perf_prepare_sample(&header, data, event, regs);
  2569. if (perf_output_begin(&handle, event, header.size, nmi, 1))
  2570. return;
  2571. perf_output_sample(&handle, &header, data, event);
  2572. perf_output_end(&handle);
  2573. }
  2574. /*
  2575. * read event_id
  2576. */
  2577. struct perf_read_event {
  2578. struct perf_event_header header;
  2579. u32 pid;
  2580. u32 tid;
  2581. };
  2582. static void
  2583. perf_event_read_event(struct perf_event *event,
  2584. struct task_struct *task)
  2585. {
  2586. struct perf_output_handle handle;
  2587. struct perf_read_event read_event = {
  2588. .header = {
  2589. .type = PERF_RECORD_READ,
  2590. .misc = 0,
  2591. .size = sizeof(read_event) + perf_event_read_size(event),
  2592. },
  2593. .pid = perf_event_pid(event, task),
  2594. .tid = perf_event_tid(event, task),
  2595. };
  2596. int ret;
  2597. ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
  2598. if (ret)
  2599. return;
  2600. perf_output_put(&handle, read_event);
  2601. perf_output_read(&handle, event);
  2602. perf_output_end(&handle);
  2603. }
  2604. /*
  2605. * task tracking -- fork/exit
  2606. *
  2607. * enabled by: attr.comm | attr.mmap | attr.task
  2608. */
  2609. struct perf_task_event {
  2610. struct task_struct *task;
  2611. struct perf_event_context *task_ctx;
  2612. struct {
  2613. struct perf_event_header header;
  2614. u32 pid;
  2615. u32 ppid;
  2616. u32 tid;
  2617. u32 ptid;
  2618. u64 time;
  2619. } event_id;
  2620. };
  2621. static void perf_event_task_output(struct perf_event *event,
  2622. struct perf_task_event *task_event)
  2623. {
  2624. struct perf_output_handle handle;
  2625. int size;
  2626. struct task_struct *task = task_event->task;
  2627. int ret;
  2628. size = task_event->event_id.header.size;
  2629. ret = perf_output_begin(&handle, event, size, 0, 0);
  2630. if (ret)
  2631. return;
  2632. task_event->event_id.pid = perf_event_pid(event, task);
  2633. task_event->event_id.ppid = perf_event_pid(event, current);
  2634. task_event->event_id.tid = perf_event_tid(event, task);
  2635. task_event->event_id.ptid = perf_event_tid(event, current);
  2636. task_event->event_id.time = perf_clock();
  2637. perf_output_put(&handle, task_event->event_id);
  2638. perf_output_end(&handle);
  2639. }
  2640. static int perf_event_task_match(struct perf_event *event)
  2641. {
  2642. if (event->attr.comm || event->attr.mmap || event->attr.task)
  2643. return 1;
  2644. return 0;
  2645. }
  2646. static void perf_event_task_ctx(struct perf_event_context *ctx,
  2647. struct perf_task_event *task_event)
  2648. {
  2649. struct perf_event *event;
  2650. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2651. if (perf_event_task_match(event))
  2652. perf_event_task_output(event, task_event);
  2653. }
  2654. }
  2655. static void perf_event_task_event(struct perf_task_event *task_event)
  2656. {
  2657. struct perf_cpu_context *cpuctx;
  2658. struct perf_event_context *ctx = task_event->task_ctx;
  2659. rcu_read_lock();
  2660. cpuctx = &get_cpu_var(perf_cpu_context);
  2661. perf_event_task_ctx(&cpuctx->ctx, task_event);
  2662. put_cpu_var(perf_cpu_context);
  2663. if (!ctx)
  2664. ctx = rcu_dereference(task_event->task->perf_event_ctxp);
  2665. if (ctx)
  2666. perf_event_task_ctx(ctx, task_event);
  2667. rcu_read_unlock();
  2668. }
  2669. static void perf_event_task(struct task_struct *task,
  2670. struct perf_event_context *task_ctx,
  2671. int new)
  2672. {
  2673. struct perf_task_event task_event;
  2674. if (!atomic_read(&nr_comm_events) &&
  2675. !atomic_read(&nr_mmap_events) &&
  2676. !atomic_read(&nr_task_events))
  2677. return;
  2678. task_event = (struct perf_task_event){
  2679. .task = task,
  2680. .task_ctx = task_ctx,
  2681. .event_id = {
  2682. .header = {
  2683. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  2684. .misc = 0,
  2685. .size = sizeof(task_event.event_id),
  2686. },
  2687. /* .pid */
  2688. /* .ppid */
  2689. /* .tid */
  2690. /* .ptid */
  2691. },
  2692. };
  2693. perf_event_task_event(&task_event);
  2694. }
  2695. void perf_event_fork(struct task_struct *task)
  2696. {
  2697. perf_event_task(task, NULL, 1);
  2698. }
  2699. /*
  2700. * comm tracking
  2701. */
  2702. struct perf_comm_event {
  2703. struct task_struct *task;
  2704. char *comm;
  2705. int comm_size;
  2706. struct {
  2707. struct perf_event_header header;
  2708. u32 pid;
  2709. u32 tid;
  2710. } event_id;
  2711. };
  2712. static void perf_event_comm_output(struct perf_event *event,
  2713. struct perf_comm_event *comm_event)
  2714. {
  2715. struct perf_output_handle handle;
  2716. int size = comm_event->event_id.header.size;
  2717. int ret = perf_output_begin(&handle, event, size, 0, 0);
  2718. if (ret)
  2719. return;
  2720. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  2721. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  2722. perf_output_put(&handle, comm_event->event_id);
  2723. perf_output_copy(&handle, comm_event->comm,
  2724. comm_event->comm_size);
  2725. perf_output_end(&handle);
  2726. }
  2727. static int perf_event_comm_match(struct perf_event *event)
  2728. {
  2729. if (event->attr.comm)
  2730. return 1;
  2731. return 0;
  2732. }
  2733. static void perf_event_comm_ctx(struct perf_event_context *ctx,
  2734. struct perf_comm_event *comm_event)
  2735. {
  2736. struct perf_event *event;
  2737. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2738. if (perf_event_comm_match(event))
  2739. perf_event_comm_output(event, comm_event);
  2740. }
  2741. }
  2742. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  2743. {
  2744. struct perf_cpu_context *cpuctx;
  2745. struct perf_event_context *ctx;
  2746. unsigned int size;
  2747. char comm[TASK_COMM_LEN];
  2748. memset(comm, 0, sizeof(comm));
  2749. strncpy(comm, comm_event->task->comm, sizeof(comm));
  2750. size = ALIGN(strlen(comm)+1, sizeof(u64));
  2751. comm_event->comm = comm;
  2752. comm_event->comm_size = size;
  2753. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  2754. rcu_read_lock();
  2755. cpuctx = &get_cpu_var(perf_cpu_context);
  2756. perf_event_comm_ctx(&cpuctx->ctx, comm_event);
  2757. put_cpu_var(perf_cpu_context);
  2758. /*
  2759. * doesn't really matter which of the child contexts the
  2760. * events ends up in.
  2761. */
  2762. ctx = rcu_dereference(current->perf_event_ctxp);
  2763. if (ctx)
  2764. perf_event_comm_ctx(ctx, comm_event);
  2765. rcu_read_unlock();
  2766. }
  2767. void perf_event_comm(struct task_struct *task)
  2768. {
  2769. struct perf_comm_event comm_event;
  2770. if (task->perf_event_ctxp)
  2771. perf_event_enable_on_exec(task);
  2772. if (!atomic_read(&nr_comm_events))
  2773. return;
  2774. comm_event = (struct perf_comm_event){
  2775. .task = task,
  2776. /* .comm */
  2777. /* .comm_size */
  2778. .event_id = {
  2779. .header = {
  2780. .type = PERF_RECORD_COMM,
  2781. .misc = 0,
  2782. /* .size */
  2783. },
  2784. /* .pid */
  2785. /* .tid */
  2786. },
  2787. };
  2788. perf_event_comm_event(&comm_event);
  2789. }
  2790. /*
  2791. * mmap tracking
  2792. */
  2793. struct perf_mmap_event {
  2794. struct vm_area_struct *vma;
  2795. const char *file_name;
  2796. int file_size;
  2797. struct {
  2798. struct perf_event_header header;
  2799. u32 pid;
  2800. u32 tid;
  2801. u64 start;
  2802. u64 len;
  2803. u64 pgoff;
  2804. } event_id;
  2805. };
  2806. static void perf_event_mmap_output(struct perf_event *event,
  2807. struct perf_mmap_event *mmap_event)
  2808. {
  2809. struct perf_output_handle handle;
  2810. int size = mmap_event->event_id.header.size;
  2811. int ret = perf_output_begin(&handle, event, size, 0, 0);
  2812. if (ret)
  2813. return;
  2814. mmap_event->event_id.pid = perf_event_pid(event, current);
  2815. mmap_event->event_id.tid = perf_event_tid(event, current);
  2816. perf_output_put(&handle, mmap_event->event_id);
  2817. perf_output_copy(&handle, mmap_event->file_name,
  2818. mmap_event->file_size);
  2819. perf_output_end(&handle);
  2820. }
  2821. static int perf_event_mmap_match(struct perf_event *event,
  2822. struct perf_mmap_event *mmap_event)
  2823. {
  2824. if (event->attr.mmap)
  2825. return 1;
  2826. return 0;
  2827. }
  2828. static void perf_event_mmap_ctx(struct perf_event_context *ctx,
  2829. struct perf_mmap_event *mmap_event)
  2830. {
  2831. struct perf_event *event;
  2832. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  2833. if (perf_event_mmap_match(event, mmap_event))
  2834. perf_event_mmap_output(event, mmap_event);
  2835. }
  2836. }
  2837. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  2838. {
  2839. struct perf_cpu_context *cpuctx;
  2840. struct perf_event_context *ctx;
  2841. struct vm_area_struct *vma = mmap_event->vma;
  2842. struct file *file = vma->vm_file;
  2843. unsigned int size;
  2844. char tmp[16];
  2845. char *buf = NULL;
  2846. const char *name;
  2847. memset(tmp, 0, sizeof(tmp));
  2848. if (file) {
  2849. /*
  2850. * d_path works from the end of the buffer backwards, so we
  2851. * need to add enough zero bytes after the string to handle
  2852. * the 64bit alignment we do later.
  2853. */
  2854. buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
  2855. if (!buf) {
  2856. name = strncpy(tmp, "//enomem", sizeof(tmp));
  2857. goto got_name;
  2858. }
  2859. name = d_path(&file->f_path, buf, PATH_MAX);
  2860. if (IS_ERR(name)) {
  2861. name = strncpy(tmp, "//toolong", sizeof(tmp));
  2862. goto got_name;
  2863. }
  2864. } else {
  2865. if (arch_vma_name(mmap_event->vma)) {
  2866. name = strncpy(tmp, arch_vma_name(mmap_event->vma),
  2867. sizeof(tmp));
  2868. goto got_name;
  2869. }
  2870. if (!vma->vm_mm) {
  2871. name = strncpy(tmp, "[vdso]", sizeof(tmp));
  2872. goto got_name;
  2873. }
  2874. name = strncpy(tmp, "//anon", sizeof(tmp));
  2875. goto got_name;
  2876. }
  2877. got_name:
  2878. size = ALIGN(strlen(name)+1, sizeof(u64));
  2879. mmap_event->file_name = name;
  2880. mmap_event->file_size = size;
  2881. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  2882. rcu_read_lock();
  2883. cpuctx = &get_cpu_var(perf_cpu_context);
  2884. perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
  2885. put_cpu_var(perf_cpu_context);
  2886. /*
  2887. * doesn't really matter which of the child contexts the
  2888. * events ends up in.
  2889. */
  2890. ctx = rcu_dereference(current->perf_event_ctxp);
  2891. if (ctx)
  2892. perf_event_mmap_ctx(ctx, mmap_event);
  2893. rcu_read_unlock();
  2894. kfree(buf);
  2895. }
  2896. void __perf_event_mmap(struct vm_area_struct *vma)
  2897. {
  2898. struct perf_mmap_event mmap_event;
  2899. if (!atomic_read(&nr_mmap_events))
  2900. return;
  2901. mmap_event = (struct perf_mmap_event){
  2902. .vma = vma,
  2903. /* .file_name */
  2904. /* .file_size */
  2905. .event_id = {
  2906. .header = {
  2907. .type = PERF_RECORD_MMAP,
  2908. .misc = 0,
  2909. /* .size */
  2910. },
  2911. /* .pid */
  2912. /* .tid */
  2913. .start = vma->vm_start,
  2914. .len = vma->vm_end - vma->vm_start,
  2915. .pgoff = vma->vm_pgoff,
  2916. },
  2917. };
  2918. perf_event_mmap_event(&mmap_event);
  2919. }
  2920. /*
  2921. * IRQ throttle logging
  2922. */
  2923. static void perf_log_throttle(struct perf_event *event, int enable)
  2924. {
  2925. struct perf_output_handle handle;
  2926. int ret;
  2927. struct {
  2928. struct perf_event_header header;
  2929. u64 time;
  2930. u64 id;
  2931. u64 stream_id;
  2932. } throttle_event = {
  2933. .header = {
  2934. .type = PERF_RECORD_THROTTLE,
  2935. .misc = 0,
  2936. .size = sizeof(throttle_event),
  2937. },
  2938. .time = perf_clock(),
  2939. .id = primary_event_id(event),
  2940. .stream_id = event->id,
  2941. };
  2942. if (enable)
  2943. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  2944. ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
  2945. if (ret)
  2946. return;
  2947. perf_output_put(&handle, throttle_event);
  2948. perf_output_end(&handle);
  2949. }
  2950. /*
  2951. * Generic event overflow handling, sampling.
  2952. */
  2953. static int __perf_event_overflow(struct perf_event *event, int nmi,
  2954. int throttle, struct perf_sample_data *data,
  2955. struct pt_regs *regs)
  2956. {
  2957. int events = atomic_read(&event->event_limit);
  2958. struct hw_perf_event *hwc = &event->hw;
  2959. int ret = 0;
  2960. throttle = (throttle && event->pmu->unthrottle != NULL);
  2961. if (!throttle) {
  2962. hwc->interrupts++;
  2963. } else {
  2964. if (hwc->interrupts != MAX_INTERRUPTS) {
  2965. hwc->interrupts++;
  2966. if (HZ * hwc->interrupts >
  2967. (u64)sysctl_perf_event_sample_rate) {
  2968. hwc->interrupts = MAX_INTERRUPTS;
  2969. perf_log_throttle(event, 0);
  2970. ret = 1;
  2971. }
  2972. } else {
  2973. /*
  2974. * Keep re-disabling events even though on the previous
  2975. * pass we disabled it - just in case we raced with a
  2976. * sched-in and the event got enabled again:
  2977. */
  2978. ret = 1;
  2979. }
  2980. }
  2981. if (event->attr.freq) {
  2982. u64 now = perf_clock();
  2983. s64 delta = now - hwc->freq_stamp;
  2984. hwc->freq_stamp = now;
  2985. if (delta > 0 && delta < TICK_NSEC)
  2986. perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
  2987. }
  2988. /*
  2989. * XXX event_limit might not quite work as expected on inherited
  2990. * events
  2991. */
  2992. event->pending_kill = POLL_IN;
  2993. if (events && atomic_dec_and_test(&event->event_limit)) {
  2994. ret = 1;
  2995. event->pending_kill = POLL_HUP;
  2996. if (nmi) {
  2997. event->pending_disable = 1;
  2998. perf_pending_queue(&event->pending,
  2999. perf_pending_event);
  3000. } else
  3001. perf_event_disable(event);
  3002. }
  3003. if (event->overflow_handler)
  3004. event->overflow_handler(event, nmi, data, regs);
  3005. else
  3006. perf_event_output(event, nmi, data, regs);
  3007. return ret;
  3008. }
  3009. int perf_event_overflow(struct perf_event *event, int nmi,
  3010. struct perf_sample_data *data,
  3011. struct pt_regs *regs)
  3012. {
  3013. return __perf_event_overflow(event, nmi, 1, data, regs);
  3014. }
  3015. /*
  3016. * Generic software event infrastructure
  3017. */
  3018. /*
  3019. * We directly increment event->count and keep a second value in
  3020. * event->hw.period_left to count intervals. This period event
  3021. * is kept in the range [-sample_period, 0] so that we can use the
  3022. * sign as trigger.
  3023. */
  3024. static u64 perf_swevent_set_period(struct perf_event *event)
  3025. {
  3026. struct hw_perf_event *hwc = &event->hw;
  3027. u64 period = hwc->last_period;
  3028. u64 nr, offset;
  3029. s64 old, val;
  3030. hwc->last_period = hwc->sample_period;
  3031. again:
  3032. old = val = atomic64_read(&hwc->period_left);
  3033. if (val < 0)
  3034. return 0;
  3035. nr = div64_u64(period + val, period);
  3036. offset = nr * period;
  3037. val -= offset;
  3038. if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
  3039. goto again;
  3040. return nr;
  3041. }
  3042. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  3043. int nmi, struct perf_sample_data *data,
  3044. struct pt_regs *regs)
  3045. {
  3046. struct hw_perf_event *hwc = &event->hw;
  3047. int throttle = 0;
  3048. data->period = event->hw.last_period;
  3049. if (!overflow)
  3050. overflow = perf_swevent_set_period(event);
  3051. if (hwc->interrupts == MAX_INTERRUPTS)
  3052. return;
  3053. for (; overflow; overflow--) {
  3054. if (__perf_event_overflow(event, nmi, throttle,
  3055. data, regs)) {
  3056. /*
  3057. * We inhibit the overflow from happening when
  3058. * hwc->interrupts == MAX_INTERRUPTS.
  3059. */
  3060. break;
  3061. }
  3062. throttle = 1;
  3063. }
  3064. }
  3065. static void perf_swevent_unthrottle(struct perf_event *event)
  3066. {
  3067. /*
  3068. * Nothing to do, we already reset hwc->interrupts.
  3069. */
  3070. }
  3071. static void perf_swevent_add(struct perf_event *event, u64 nr,
  3072. int nmi, struct perf_sample_data *data,
  3073. struct pt_regs *regs)
  3074. {
  3075. struct hw_perf_event *hwc = &event->hw;
  3076. atomic64_add(nr, &event->count);
  3077. if (!regs)
  3078. return;
  3079. if (!hwc->sample_period)
  3080. return;
  3081. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  3082. return perf_swevent_overflow(event, 1, nmi, data, regs);
  3083. if (atomic64_add_negative(nr, &hwc->period_left))
  3084. return;
  3085. perf_swevent_overflow(event, 0, nmi, data, regs);
  3086. }
  3087. static int perf_swevent_is_counting(struct perf_event *event)
  3088. {
  3089. /*
  3090. * The event is active, we're good!
  3091. */
  3092. if (event->state == PERF_EVENT_STATE_ACTIVE)
  3093. return 1;
  3094. /*
  3095. * The event is off/error, not counting.
  3096. */
  3097. if (event->state != PERF_EVENT_STATE_INACTIVE)
  3098. return 0;
  3099. /*
  3100. * The event is inactive, if the context is active
  3101. * we're part of a group that didn't make it on the 'pmu',
  3102. * not counting.
  3103. */
  3104. if (event->ctx->is_active)
  3105. return 0;
  3106. /*
  3107. * We're inactive and the context is too, this means the
  3108. * task is scheduled out, we're counting events that happen
  3109. * to us, like migration events.
  3110. */
  3111. return 1;
  3112. }
  3113. static int perf_tp_event_match(struct perf_event *event,
  3114. struct perf_sample_data *data);
  3115. static int perf_swevent_match(struct perf_event *event,
  3116. enum perf_type_id type,
  3117. u32 event_id,
  3118. struct perf_sample_data *data,
  3119. struct pt_regs *regs)
  3120. {
  3121. if (!perf_swevent_is_counting(event))
  3122. return 0;
  3123. if (event->attr.type != type)
  3124. return 0;
  3125. if (event->attr.config != event_id)
  3126. return 0;
  3127. if (regs) {
  3128. if (event->attr.exclude_user && user_mode(regs))
  3129. return 0;
  3130. if (event->attr.exclude_kernel && !user_mode(regs))
  3131. return 0;
  3132. }
  3133. if (event->attr.type == PERF_TYPE_TRACEPOINT &&
  3134. !perf_tp_event_match(event, data))
  3135. return 0;
  3136. return 1;
  3137. }
  3138. static void perf_swevent_ctx_event(struct perf_event_context *ctx,
  3139. enum perf_type_id type,
  3140. u32 event_id, u64 nr, int nmi,
  3141. struct perf_sample_data *data,
  3142. struct pt_regs *regs)
  3143. {
  3144. struct perf_event *event;
  3145. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3146. if (perf_swevent_match(event, type, event_id, data, regs))
  3147. perf_swevent_add(event, nr, nmi, data, regs);
  3148. }
  3149. }
  3150. static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
  3151. {
  3152. if (in_nmi())
  3153. return &cpuctx->recursion[3];
  3154. if (in_irq())
  3155. return &cpuctx->recursion[2];
  3156. if (in_softirq())
  3157. return &cpuctx->recursion[1];
  3158. return &cpuctx->recursion[0];
  3159. }
  3160. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  3161. u64 nr, int nmi,
  3162. struct perf_sample_data *data,
  3163. struct pt_regs *regs)
  3164. {
  3165. struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
  3166. int *recursion = perf_swevent_recursion_context(cpuctx);
  3167. struct perf_event_context *ctx;
  3168. if (*recursion)
  3169. goto out;
  3170. (*recursion)++;
  3171. barrier();
  3172. rcu_read_lock();
  3173. perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
  3174. nr, nmi, data, regs);
  3175. /*
  3176. * doesn't really matter which of the child contexts the
  3177. * events ends up in.
  3178. */
  3179. ctx = rcu_dereference(current->perf_event_ctxp);
  3180. if (ctx)
  3181. perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
  3182. rcu_read_unlock();
  3183. barrier();
  3184. (*recursion)--;
  3185. out:
  3186. put_cpu_var(perf_cpu_context);
  3187. }
  3188. void __perf_sw_event(u32 event_id, u64 nr, int nmi,
  3189. struct pt_regs *regs, u64 addr)
  3190. {
  3191. struct perf_sample_data data = {
  3192. .addr = addr,
  3193. };
  3194. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
  3195. &data, regs);
  3196. }
  3197. static void perf_swevent_read(struct perf_event *event)
  3198. {
  3199. }
  3200. static int perf_swevent_enable(struct perf_event *event)
  3201. {
  3202. struct hw_perf_event *hwc = &event->hw;
  3203. if (hwc->sample_period) {
  3204. hwc->last_period = hwc->sample_period;
  3205. perf_swevent_set_period(event);
  3206. }
  3207. return 0;
  3208. }
  3209. static void perf_swevent_disable(struct perf_event *event)
  3210. {
  3211. }
  3212. static const struct pmu perf_ops_generic = {
  3213. .enable = perf_swevent_enable,
  3214. .disable = perf_swevent_disable,
  3215. .read = perf_swevent_read,
  3216. .unthrottle = perf_swevent_unthrottle,
  3217. };
  3218. /*
  3219. * hrtimer based swevent callback
  3220. */
  3221. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  3222. {
  3223. enum hrtimer_restart ret = HRTIMER_RESTART;
  3224. struct perf_sample_data data;
  3225. struct pt_regs *regs;
  3226. struct perf_event *event;
  3227. u64 period;
  3228. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  3229. event->pmu->read(event);
  3230. data.addr = 0;
  3231. regs = get_irq_regs();
  3232. /*
  3233. * In case we exclude kernel IPs or are somehow not in interrupt
  3234. * context, provide the next best thing, the user IP.
  3235. */
  3236. if ((event->attr.exclude_kernel || !regs) &&
  3237. !event->attr.exclude_user)
  3238. regs = task_pt_regs(current);
  3239. if (regs) {
  3240. if (!(event->attr.exclude_idle && current->pid == 0))
  3241. if (perf_event_overflow(event, 0, &data, regs))
  3242. ret = HRTIMER_NORESTART;
  3243. }
  3244. period = max_t(u64, 10000, event->hw.sample_period);
  3245. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  3246. return ret;
  3247. }
  3248. static void perf_swevent_start_hrtimer(struct perf_event *event)
  3249. {
  3250. struct hw_perf_event *hwc = &event->hw;
  3251. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  3252. hwc->hrtimer.function = perf_swevent_hrtimer;
  3253. if (hwc->sample_period) {
  3254. u64 period;
  3255. if (hwc->remaining) {
  3256. if (hwc->remaining < 0)
  3257. period = 10000;
  3258. else
  3259. period = hwc->remaining;
  3260. hwc->remaining = 0;
  3261. } else {
  3262. period = max_t(u64, 10000, hwc->sample_period);
  3263. }
  3264. __hrtimer_start_range_ns(&hwc->hrtimer,
  3265. ns_to_ktime(period), 0,
  3266. HRTIMER_MODE_REL, 0);
  3267. }
  3268. }
  3269. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  3270. {
  3271. struct hw_perf_event *hwc = &event->hw;
  3272. if (hwc->sample_period) {
  3273. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  3274. hwc->remaining = ktime_to_ns(remaining);
  3275. hrtimer_cancel(&hwc->hrtimer);
  3276. }
  3277. }
  3278. /*
  3279. * Software event: cpu wall time clock
  3280. */
  3281. static void cpu_clock_perf_event_update(struct perf_event *event)
  3282. {
  3283. int cpu = raw_smp_processor_id();
  3284. s64 prev;
  3285. u64 now;
  3286. now = cpu_clock(cpu);
  3287. prev = atomic64_read(&event->hw.prev_count);
  3288. atomic64_set(&event->hw.prev_count, now);
  3289. atomic64_add(now - prev, &event->count);
  3290. }
  3291. static int cpu_clock_perf_event_enable(struct perf_event *event)
  3292. {
  3293. struct hw_perf_event *hwc = &event->hw;
  3294. int cpu = raw_smp_processor_id();
  3295. atomic64_set(&hwc->prev_count, cpu_clock(cpu));
  3296. perf_swevent_start_hrtimer(event);
  3297. return 0;
  3298. }
  3299. static void cpu_clock_perf_event_disable(struct perf_event *event)
  3300. {
  3301. perf_swevent_cancel_hrtimer(event);
  3302. cpu_clock_perf_event_update(event);
  3303. }
  3304. static void cpu_clock_perf_event_read(struct perf_event *event)
  3305. {
  3306. cpu_clock_perf_event_update(event);
  3307. }
  3308. static const struct pmu perf_ops_cpu_clock = {
  3309. .enable = cpu_clock_perf_event_enable,
  3310. .disable = cpu_clock_perf_event_disable,
  3311. .read = cpu_clock_perf_event_read,
  3312. };
  3313. /*
  3314. * Software event: task time clock
  3315. */
  3316. static void task_clock_perf_event_update(struct perf_event *event, u64 now)
  3317. {
  3318. u64 prev;
  3319. s64 delta;
  3320. prev = atomic64_xchg(&event->hw.prev_count, now);
  3321. delta = now - prev;
  3322. atomic64_add(delta, &event->count);
  3323. }
  3324. static int task_clock_perf_event_enable(struct perf_event *event)
  3325. {
  3326. struct hw_perf_event *hwc = &event->hw;
  3327. u64 now;
  3328. now = event->ctx->time;
  3329. atomic64_set(&hwc->prev_count, now);
  3330. perf_swevent_start_hrtimer(event);
  3331. return 0;
  3332. }
  3333. static void task_clock_perf_event_disable(struct perf_event *event)
  3334. {
  3335. perf_swevent_cancel_hrtimer(event);
  3336. task_clock_perf_event_update(event, event->ctx->time);
  3337. }
  3338. static void task_clock_perf_event_read(struct perf_event *event)
  3339. {
  3340. u64 time;
  3341. if (!in_nmi()) {
  3342. update_context_time(event->ctx);
  3343. time = event->ctx->time;
  3344. } else {
  3345. u64 now = perf_clock();
  3346. u64 delta = now - event->ctx->timestamp;
  3347. time = event->ctx->time + delta;
  3348. }
  3349. task_clock_perf_event_update(event, time);
  3350. }
  3351. static const struct pmu perf_ops_task_clock = {
  3352. .enable = task_clock_perf_event_enable,
  3353. .disable = task_clock_perf_event_disable,
  3354. .read = task_clock_perf_event_read,
  3355. };
  3356. #ifdef CONFIG_EVENT_PROFILE
  3357. void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
  3358. int entry_size)
  3359. {
  3360. struct perf_raw_record raw = {
  3361. .size = entry_size,
  3362. .data = record,
  3363. };
  3364. struct perf_sample_data data = {
  3365. .addr = addr,
  3366. .raw = &raw,
  3367. };
  3368. struct pt_regs *regs = get_irq_regs();
  3369. if (!regs)
  3370. regs = task_pt_regs(current);
  3371. do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
  3372. &data, regs);
  3373. }
  3374. EXPORT_SYMBOL_GPL(perf_tp_event);
  3375. static int perf_tp_event_match(struct perf_event *event,
  3376. struct perf_sample_data *data)
  3377. {
  3378. void *record = data->raw->data;
  3379. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  3380. return 1;
  3381. return 0;
  3382. }
  3383. static void tp_perf_event_destroy(struct perf_event *event)
  3384. {
  3385. ftrace_profile_disable(event->attr.config);
  3386. }
  3387. static const struct pmu *tp_perf_event_init(struct perf_event *event)
  3388. {
  3389. /*
  3390. * Raw tracepoint data is a severe data leak, only allow root to
  3391. * have these.
  3392. */
  3393. if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
  3394. perf_paranoid_tracepoint_raw() &&
  3395. !capable(CAP_SYS_ADMIN))
  3396. return ERR_PTR(-EPERM);
  3397. if (ftrace_profile_enable(event->attr.config))
  3398. return NULL;
  3399. event->destroy = tp_perf_event_destroy;
  3400. return &perf_ops_generic;
  3401. }
  3402. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  3403. {
  3404. char *filter_str;
  3405. int ret;
  3406. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  3407. return -EINVAL;
  3408. filter_str = strndup_user(arg, PAGE_SIZE);
  3409. if (IS_ERR(filter_str))
  3410. return PTR_ERR(filter_str);
  3411. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  3412. kfree(filter_str);
  3413. return ret;
  3414. }
  3415. static void perf_event_free_filter(struct perf_event *event)
  3416. {
  3417. ftrace_profile_free_filter(event);
  3418. }
  3419. #else
  3420. static int perf_tp_event_match(struct perf_event *event,
  3421. struct perf_sample_data *data)
  3422. {
  3423. return 1;
  3424. }
  3425. static const struct pmu *tp_perf_event_init(struct perf_event *event)
  3426. {
  3427. return NULL;
  3428. }
  3429. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  3430. {
  3431. return -ENOENT;
  3432. }
  3433. static void perf_event_free_filter(struct perf_event *event)
  3434. {
  3435. }
  3436. #endif /* CONFIG_EVENT_PROFILE */
  3437. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  3438. static void bp_perf_event_destroy(struct perf_event *event)
  3439. {
  3440. release_bp_slot(event);
  3441. }
  3442. static const struct pmu *bp_perf_event_init(struct perf_event *bp)
  3443. {
  3444. int err;
  3445. /*
  3446. * The breakpoint is already filled if we haven't created the counter
  3447. * through perf syscall
  3448. * FIXME: manage to get trigerred to NULL if it comes from syscalls
  3449. */
  3450. if (!bp->callback)
  3451. err = register_perf_hw_breakpoint(bp);
  3452. else
  3453. err = __register_perf_hw_breakpoint(bp);
  3454. if (err)
  3455. return ERR_PTR(err);
  3456. bp->destroy = bp_perf_event_destroy;
  3457. return &perf_ops_bp;
  3458. }
  3459. void perf_bp_event(struct perf_event *bp, void *regs)
  3460. {
  3461. /* TODO */
  3462. }
  3463. #else
  3464. static void bp_perf_event_destroy(struct perf_event *event)
  3465. {
  3466. }
  3467. static const struct pmu *bp_perf_event_init(struct perf_event *bp)
  3468. {
  3469. return NULL;
  3470. }
  3471. void perf_bp_event(struct perf_event *bp, void *regs)
  3472. {
  3473. }
  3474. #endif
  3475. atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
  3476. static void sw_perf_event_destroy(struct perf_event *event)
  3477. {
  3478. u64 event_id = event->attr.config;
  3479. WARN_ON(event->parent);
  3480. atomic_dec(&perf_swevent_enabled[event_id]);
  3481. }
  3482. static const struct pmu *sw_perf_event_init(struct perf_event *event)
  3483. {
  3484. const struct pmu *pmu = NULL;
  3485. u64 event_id = event->attr.config;
  3486. /*
  3487. * Software events (currently) can't in general distinguish
  3488. * between user, kernel and hypervisor events.
  3489. * However, context switches and cpu migrations are considered
  3490. * to be kernel events, and page faults are never hypervisor
  3491. * events.
  3492. */
  3493. switch (event_id) {
  3494. case PERF_COUNT_SW_CPU_CLOCK:
  3495. pmu = &perf_ops_cpu_clock;
  3496. break;
  3497. case PERF_COUNT_SW_TASK_CLOCK:
  3498. /*
  3499. * If the user instantiates this as a per-cpu event,
  3500. * use the cpu_clock event instead.
  3501. */
  3502. if (event->ctx->task)
  3503. pmu = &perf_ops_task_clock;
  3504. else
  3505. pmu = &perf_ops_cpu_clock;
  3506. break;
  3507. case PERF_COUNT_SW_PAGE_FAULTS:
  3508. case PERF_COUNT_SW_PAGE_FAULTS_MIN:
  3509. case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
  3510. case PERF_COUNT_SW_CONTEXT_SWITCHES:
  3511. case PERF_COUNT_SW_CPU_MIGRATIONS:
  3512. case PERF_COUNT_SW_ALIGNMENT_FAULTS:
  3513. case PERF_COUNT_SW_EMULATION_FAULTS:
  3514. if (!event->parent) {
  3515. atomic_inc(&perf_swevent_enabled[event_id]);
  3516. event->destroy = sw_perf_event_destroy;
  3517. }
  3518. pmu = &perf_ops_generic;
  3519. break;
  3520. }
  3521. return pmu;
  3522. }
  3523. /*
  3524. * Allocate and initialize a event structure
  3525. */
  3526. static struct perf_event *
  3527. perf_event_alloc(struct perf_event_attr *attr,
  3528. int cpu,
  3529. struct perf_event_context *ctx,
  3530. struct perf_event *group_leader,
  3531. struct perf_event *parent_event,
  3532. perf_callback_t callback,
  3533. gfp_t gfpflags)
  3534. {
  3535. const struct pmu *pmu;
  3536. struct perf_event *event;
  3537. struct hw_perf_event *hwc;
  3538. long err;
  3539. event = kzalloc(sizeof(*event), gfpflags);
  3540. if (!event)
  3541. return ERR_PTR(-ENOMEM);
  3542. /*
  3543. * Single events are their own group leaders, with an
  3544. * empty sibling list:
  3545. */
  3546. if (!group_leader)
  3547. group_leader = event;
  3548. mutex_init(&event->child_mutex);
  3549. INIT_LIST_HEAD(&event->child_list);
  3550. INIT_LIST_HEAD(&event->group_entry);
  3551. INIT_LIST_HEAD(&event->event_entry);
  3552. INIT_LIST_HEAD(&event->sibling_list);
  3553. init_waitqueue_head(&event->waitq);
  3554. mutex_init(&event->mmap_mutex);
  3555. event->cpu = cpu;
  3556. event->attr = *attr;
  3557. event->group_leader = group_leader;
  3558. event->pmu = NULL;
  3559. event->ctx = ctx;
  3560. event->oncpu = -1;
  3561. event->parent = parent_event;
  3562. event->ns = get_pid_ns(current->nsproxy->pid_ns);
  3563. event->id = atomic64_inc_return(&perf_event_id);
  3564. event->state = PERF_EVENT_STATE_INACTIVE;
  3565. if (!callback && parent_event)
  3566. callback = parent_event->callback;
  3567. event->callback = callback;
  3568. if (attr->disabled)
  3569. event->state = PERF_EVENT_STATE_OFF;
  3570. pmu = NULL;
  3571. hwc = &event->hw;
  3572. hwc->sample_period = attr->sample_period;
  3573. if (attr->freq && attr->sample_freq)
  3574. hwc->sample_period = 1;
  3575. hwc->last_period = hwc->sample_period;
  3576. atomic64_set(&hwc->period_left, hwc->sample_period);
  3577. /*
  3578. * we currently do not support PERF_FORMAT_GROUP on inherited events
  3579. */
  3580. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  3581. goto done;
  3582. switch (attr->type) {
  3583. case PERF_TYPE_RAW:
  3584. case PERF_TYPE_HARDWARE:
  3585. case PERF_TYPE_HW_CACHE:
  3586. pmu = hw_perf_event_init(event);
  3587. break;
  3588. case PERF_TYPE_SOFTWARE:
  3589. pmu = sw_perf_event_init(event);
  3590. break;
  3591. case PERF_TYPE_TRACEPOINT:
  3592. pmu = tp_perf_event_init(event);
  3593. break;
  3594. case PERF_TYPE_BREAKPOINT:
  3595. pmu = bp_perf_event_init(event);
  3596. break;
  3597. default:
  3598. break;
  3599. }
  3600. done:
  3601. err = 0;
  3602. if (!pmu)
  3603. err = -EINVAL;
  3604. else if (IS_ERR(pmu))
  3605. err = PTR_ERR(pmu);
  3606. if (err) {
  3607. if (event->ns)
  3608. put_pid_ns(event->ns);
  3609. kfree(event);
  3610. return ERR_PTR(err);
  3611. }
  3612. event->pmu = pmu;
  3613. if (!event->parent) {
  3614. atomic_inc(&nr_events);
  3615. if (event->attr.mmap)
  3616. atomic_inc(&nr_mmap_events);
  3617. if (event->attr.comm)
  3618. atomic_inc(&nr_comm_events);
  3619. if (event->attr.task)
  3620. atomic_inc(&nr_task_events);
  3621. }
  3622. return event;
  3623. }
  3624. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  3625. struct perf_event_attr *attr)
  3626. {
  3627. u32 size;
  3628. int ret;
  3629. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  3630. return -EFAULT;
  3631. /*
  3632. * zero the full structure, so that a short copy will be nice.
  3633. */
  3634. memset(attr, 0, sizeof(*attr));
  3635. ret = get_user(size, &uattr->size);
  3636. if (ret)
  3637. return ret;
  3638. if (size > PAGE_SIZE) /* silly large */
  3639. goto err_size;
  3640. if (!size) /* abi compat */
  3641. size = PERF_ATTR_SIZE_VER0;
  3642. if (size < PERF_ATTR_SIZE_VER0)
  3643. goto err_size;
  3644. /*
  3645. * If we're handed a bigger struct than we know of,
  3646. * ensure all the unknown bits are 0 - i.e. new
  3647. * user-space does not rely on any kernel feature
  3648. * extensions we dont know about yet.
  3649. */
  3650. if (size > sizeof(*attr)) {
  3651. unsigned char __user *addr;
  3652. unsigned char __user *end;
  3653. unsigned char val;
  3654. addr = (void __user *)uattr + sizeof(*attr);
  3655. end = (void __user *)uattr + size;
  3656. for (; addr < end; addr++) {
  3657. ret = get_user(val, addr);
  3658. if (ret)
  3659. return ret;
  3660. if (val)
  3661. goto err_size;
  3662. }
  3663. size = sizeof(*attr);
  3664. }
  3665. ret = copy_from_user(attr, uattr, size);
  3666. if (ret)
  3667. return -EFAULT;
  3668. /*
  3669. * If the type exists, the corresponding creation will verify
  3670. * the attr->config.
  3671. */
  3672. if (attr->type >= PERF_TYPE_MAX)
  3673. return -EINVAL;
  3674. if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
  3675. return -EINVAL;
  3676. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  3677. return -EINVAL;
  3678. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  3679. return -EINVAL;
  3680. out:
  3681. return ret;
  3682. err_size:
  3683. put_user(sizeof(*attr), &uattr->size);
  3684. ret = -E2BIG;
  3685. goto out;
  3686. }
  3687. static int perf_event_set_output(struct perf_event *event, int output_fd)
  3688. {
  3689. struct perf_event *output_event = NULL;
  3690. struct file *output_file = NULL;
  3691. struct perf_event *old_output;
  3692. int fput_needed = 0;
  3693. int ret = -EINVAL;
  3694. if (!output_fd)
  3695. goto set;
  3696. output_file = fget_light(output_fd, &fput_needed);
  3697. if (!output_file)
  3698. return -EBADF;
  3699. if (output_file->f_op != &perf_fops)
  3700. goto out;
  3701. output_event = output_file->private_data;
  3702. /* Don't chain output fds */
  3703. if (output_event->output)
  3704. goto out;
  3705. /* Don't set an output fd when we already have an output channel */
  3706. if (event->data)
  3707. goto out;
  3708. atomic_long_inc(&output_file->f_count);
  3709. set:
  3710. mutex_lock(&event->mmap_mutex);
  3711. old_output = event->output;
  3712. rcu_assign_pointer(event->output, output_event);
  3713. mutex_unlock(&event->mmap_mutex);
  3714. if (old_output) {
  3715. /*
  3716. * we need to make sure no existing perf_output_*()
  3717. * is still referencing this event.
  3718. */
  3719. synchronize_rcu();
  3720. fput(old_output->filp);
  3721. }
  3722. ret = 0;
  3723. out:
  3724. fput_light(output_file, fput_needed);
  3725. return ret;
  3726. }
  3727. /**
  3728. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  3729. *
  3730. * @attr_uptr: event_id type attributes for monitoring/sampling
  3731. * @pid: target pid
  3732. * @cpu: target cpu
  3733. * @group_fd: group leader event fd
  3734. */
  3735. SYSCALL_DEFINE5(perf_event_open,
  3736. struct perf_event_attr __user *, attr_uptr,
  3737. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  3738. {
  3739. struct perf_event *event, *group_leader;
  3740. struct perf_event_attr attr;
  3741. struct perf_event_context *ctx;
  3742. struct file *event_file = NULL;
  3743. struct file *group_file = NULL;
  3744. int fput_needed = 0;
  3745. int fput_needed2 = 0;
  3746. int err;
  3747. /* for future expandability... */
  3748. if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
  3749. return -EINVAL;
  3750. err = perf_copy_attr(attr_uptr, &attr);
  3751. if (err)
  3752. return err;
  3753. if (!attr.exclude_kernel) {
  3754. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  3755. return -EACCES;
  3756. }
  3757. if (attr.freq) {
  3758. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  3759. return -EINVAL;
  3760. }
  3761. /*
  3762. * Get the target context (task or percpu):
  3763. */
  3764. ctx = find_get_context(pid, cpu);
  3765. if (IS_ERR(ctx))
  3766. return PTR_ERR(ctx);
  3767. /*
  3768. * Look up the group leader (we will attach this event to it):
  3769. */
  3770. group_leader = NULL;
  3771. if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
  3772. err = -EINVAL;
  3773. group_file = fget_light(group_fd, &fput_needed);
  3774. if (!group_file)
  3775. goto err_put_context;
  3776. if (group_file->f_op != &perf_fops)
  3777. goto err_put_context;
  3778. group_leader = group_file->private_data;
  3779. /*
  3780. * Do not allow a recursive hierarchy (this new sibling
  3781. * becoming part of another group-sibling):
  3782. */
  3783. if (group_leader->group_leader != group_leader)
  3784. goto err_put_context;
  3785. /*
  3786. * Do not allow to attach to a group in a different
  3787. * task or CPU context:
  3788. */
  3789. if (group_leader->ctx != ctx)
  3790. goto err_put_context;
  3791. /*
  3792. * Only a group leader can be exclusive or pinned
  3793. */
  3794. if (attr.exclusive || attr.pinned)
  3795. goto err_put_context;
  3796. }
  3797. event = perf_event_alloc(&attr, cpu, ctx, group_leader,
  3798. NULL, NULL, GFP_KERNEL);
  3799. err = PTR_ERR(event);
  3800. if (IS_ERR(event))
  3801. goto err_put_context;
  3802. err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
  3803. if (err < 0)
  3804. goto err_free_put_context;
  3805. event_file = fget_light(err, &fput_needed2);
  3806. if (!event_file)
  3807. goto err_free_put_context;
  3808. if (flags & PERF_FLAG_FD_OUTPUT) {
  3809. err = perf_event_set_output(event, group_fd);
  3810. if (err)
  3811. goto err_fput_free_put_context;
  3812. }
  3813. event->filp = event_file;
  3814. WARN_ON_ONCE(ctx->parent_ctx);
  3815. mutex_lock(&ctx->mutex);
  3816. perf_install_in_context(ctx, event, cpu);
  3817. ++ctx->generation;
  3818. mutex_unlock(&ctx->mutex);
  3819. event->owner = current;
  3820. get_task_struct(current);
  3821. mutex_lock(&current->perf_event_mutex);
  3822. list_add_tail(&event->owner_entry, &current->perf_event_list);
  3823. mutex_unlock(&current->perf_event_mutex);
  3824. err_fput_free_put_context:
  3825. fput_light(event_file, fput_needed2);
  3826. err_free_put_context:
  3827. if (err < 0)
  3828. kfree(event);
  3829. err_put_context:
  3830. if (err < 0)
  3831. put_ctx(ctx);
  3832. fput_light(group_file, fput_needed);
  3833. return err;
  3834. }
  3835. /**
  3836. * perf_event_create_kernel_counter
  3837. *
  3838. * @attr: attributes of the counter to create
  3839. * @cpu: cpu in which the counter is bound
  3840. * @pid: task to profile
  3841. */
  3842. struct perf_event *
  3843. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  3844. pid_t pid, perf_callback_t callback)
  3845. {
  3846. struct perf_event *event;
  3847. struct perf_event_context *ctx;
  3848. int err;
  3849. /*
  3850. * Get the target context (task or percpu):
  3851. */
  3852. ctx = find_get_context(pid, cpu);
  3853. if (IS_ERR(ctx))
  3854. return NULL;
  3855. event = perf_event_alloc(attr, cpu, ctx, NULL,
  3856. NULL, callback, GFP_KERNEL);
  3857. err = PTR_ERR(event);
  3858. if (IS_ERR(event))
  3859. goto err_put_context;
  3860. event->filp = NULL;
  3861. WARN_ON_ONCE(ctx->parent_ctx);
  3862. mutex_lock(&ctx->mutex);
  3863. perf_install_in_context(ctx, event, cpu);
  3864. ++ctx->generation;
  3865. mutex_unlock(&ctx->mutex);
  3866. event->owner = current;
  3867. get_task_struct(current);
  3868. mutex_lock(&current->perf_event_mutex);
  3869. list_add_tail(&event->owner_entry, &current->perf_event_list);
  3870. mutex_unlock(&current->perf_event_mutex);
  3871. return event;
  3872. err_put_context:
  3873. if (err < 0)
  3874. put_ctx(ctx);
  3875. return NULL;
  3876. }
  3877. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  3878. /*
  3879. * inherit a event from parent task to child task:
  3880. */
  3881. static struct perf_event *
  3882. inherit_event(struct perf_event *parent_event,
  3883. struct task_struct *parent,
  3884. struct perf_event_context *parent_ctx,
  3885. struct task_struct *child,
  3886. struct perf_event *group_leader,
  3887. struct perf_event_context *child_ctx)
  3888. {
  3889. struct perf_event *child_event;
  3890. /*
  3891. * Instead of creating recursive hierarchies of events,
  3892. * we link inherited events back to the original parent,
  3893. * which has a filp for sure, which we use as the reference
  3894. * count:
  3895. */
  3896. if (parent_event->parent)
  3897. parent_event = parent_event->parent;
  3898. child_event = perf_event_alloc(&parent_event->attr,
  3899. parent_event->cpu, child_ctx,
  3900. group_leader, parent_event,
  3901. NULL, GFP_KERNEL);
  3902. if (IS_ERR(child_event))
  3903. return child_event;
  3904. get_ctx(child_ctx);
  3905. /*
  3906. * Make the child state follow the state of the parent event,
  3907. * not its attr.disabled bit. We hold the parent's mutex,
  3908. * so we won't race with perf_event_{en, dis}able_family.
  3909. */
  3910. if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
  3911. child_event->state = PERF_EVENT_STATE_INACTIVE;
  3912. else
  3913. child_event->state = PERF_EVENT_STATE_OFF;
  3914. if (parent_event->attr.freq)
  3915. child_event->hw.sample_period = parent_event->hw.sample_period;
  3916. child_event->overflow_handler = parent_event->overflow_handler;
  3917. /*
  3918. * Link it up in the child's context:
  3919. */
  3920. add_event_to_ctx(child_event, child_ctx);
  3921. /*
  3922. * Get a reference to the parent filp - we will fput it
  3923. * when the child event exits. This is safe to do because
  3924. * we are in the parent and we know that the filp still
  3925. * exists and has a nonzero count:
  3926. */
  3927. atomic_long_inc(&parent_event->filp->f_count);
  3928. /*
  3929. * Link this into the parent event's child list
  3930. */
  3931. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  3932. mutex_lock(&parent_event->child_mutex);
  3933. list_add_tail(&child_event->child_list, &parent_event->child_list);
  3934. mutex_unlock(&parent_event->child_mutex);
  3935. return child_event;
  3936. }
  3937. static int inherit_group(struct perf_event *parent_event,
  3938. struct task_struct *parent,
  3939. struct perf_event_context *parent_ctx,
  3940. struct task_struct *child,
  3941. struct perf_event_context *child_ctx)
  3942. {
  3943. struct perf_event *leader;
  3944. struct perf_event *sub;
  3945. struct perf_event *child_ctr;
  3946. leader = inherit_event(parent_event, parent, parent_ctx,
  3947. child, NULL, child_ctx);
  3948. if (IS_ERR(leader))
  3949. return PTR_ERR(leader);
  3950. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  3951. child_ctr = inherit_event(sub, parent, parent_ctx,
  3952. child, leader, child_ctx);
  3953. if (IS_ERR(child_ctr))
  3954. return PTR_ERR(child_ctr);
  3955. }
  3956. return 0;
  3957. }
  3958. static void sync_child_event(struct perf_event *child_event,
  3959. struct task_struct *child)
  3960. {
  3961. struct perf_event *parent_event = child_event->parent;
  3962. u64 child_val;
  3963. if (child_event->attr.inherit_stat)
  3964. perf_event_read_event(child_event, child);
  3965. child_val = atomic64_read(&child_event->count);
  3966. /*
  3967. * Add back the child's count to the parent's count:
  3968. */
  3969. atomic64_add(child_val, &parent_event->count);
  3970. atomic64_add(child_event->total_time_enabled,
  3971. &parent_event->child_total_time_enabled);
  3972. atomic64_add(child_event->total_time_running,
  3973. &parent_event->child_total_time_running);
  3974. /*
  3975. * Remove this event from the parent's list
  3976. */
  3977. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  3978. mutex_lock(&parent_event->child_mutex);
  3979. list_del_init(&child_event->child_list);
  3980. mutex_unlock(&parent_event->child_mutex);
  3981. /*
  3982. * Release the parent event, if this was the last
  3983. * reference to it.
  3984. */
  3985. fput(parent_event->filp);
  3986. }
  3987. static void
  3988. __perf_event_exit_task(struct perf_event *child_event,
  3989. struct perf_event_context *child_ctx,
  3990. struct task_struct *child)
  3991. {
  3992. struct perf_event *parent_event;
  3993. update_event_times(child_event);
  3994. perf_event_remove_from_context(child_event);
  3995. parent_event = child_event->parent;
  3996. /*
  3997. * It can happen that parent exits first, and has events
  3998. * that are still around due to the child reference. These
  3999. * events need to be zapped - but otherwise linger.
  4000. */
  4001. if (parent_event) {
  4002. sync_child_event(child_event, child);
  4003. free_event(child_event);
  4004. }
  4005. }
  4006. /*
  4007. * When a child task exits, feed back event values to parent events.
  4008. */
  4009. void perf_event_exit_task(struct task_struct *child)
  4010. {
  4011. struct perf_event *child_event, *tmp;
  4012. struct perf_event_context *child_ctx;
  4013. unsigned long flags;
  4014. if (likely(!child->perf_event_ctxp)) {
  4015. perf_event_task(child, NULL, 0);
  4016. return;
  4017. }
  4018. local_irq_save(flags);
  4019. /*
  4020. * We can't reschedule here because interrupts are disabled,
  4021. * and either child is current or it is a task that can't be
  4022. * scheduled, so we are now safe from rescheduling changing
  4023. * our context.
  4024. */
  4025. child_ctx = child->perf_event_ctxp;
  4026. __perf_event_task_sched_out(child_ctx);
  4027. /*
  4028. * Take the context lock here so that if find_get_context is
  4029. * reading child->perf_event_ctxp, we wait until it has
  4030. * incremented the context's refcount before we do put_ctx below.
  4031. */
  4032. spin_lock(&child_ctx->lock);
  4033. child->perf_event_ctxp = NULL;
  4034. /*
  4035. * If this context is a clone; unclone it so it can't get
  4036. * swapped to another process while we're removing all
  4037. * the events from it.
  4038. */
  4039. unclone_ctx(child_ctx);
  4040. spin_unlock_irqrestore(&child_ctx->lock, flags);
  4041. /*
  4042. * Report the task dead after unscheduling the events so that we
  4043. * won't get any samples after PERF_RECORD_EXIT. We can however still
  4044. * get a few PERF_RECORD_READ events.
  4045. */
  4046. perf_event_task(child, child_ctx, 0);
  4047. /*
  4048. * We can recurse on the same lock type through:
  4049. *
  4050. * __perf_event_exit_task()
  4051. * sync_child_event()
  4052. * fput(parent_event->filp)
  4053. * perf_release()
  4054. * mutex_lock(&ctx->mutex)
  4055. *
  4056. * But since its the parent context it won't be the same instance.
  4057. */
  4058. mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
  4059. again:
  4060. list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
  4061. group_entry)
  4062. __perf_event_exit_task(child_event, child_ctx, child);
  4063. /*
  4064. * If the last event was a group event, it will have appended all
  4065. * its siblings to the list, but we obtained 'tmp' before that which
  4066. * will still point to the list head terminating the iteration.
  4067. */
  4068. if (!list_empty(&child_ctx->group_list))
  4069. goto again;
  4070. mutex_unlock(&child_ctx->mutex);
  4071. put_ctx(child_ctx);
  4072. }
  4073. /*
  4074. * free an unexposed, unused context as created by inheritance by
  4075. * init_task below, used by fork() in case of fail.
  4076. */
  4077. void perf_event_free_task(struct task_struct *task)
  4078. {
  4079. struct perf_event_context *ctx = task->perf_event_ctxp;
  4080. struct perf_event *event, *tmp;
  4081. if (!ctx)
  4082. return;
  4083. mutex_lock(&ctx->mutex);
  4084. again:
  4085. list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
  4086. struct perf_event *parent = event->parent;
  4087. if (WARN_ON_ONCE(!parent))
  4088. continue;
  4089. mutex_lock(&parent->child_mutex);
  4090. list_del_init(&event->child_list);
  4091. mutex_unlock(&parent->child_mutex);
  4092. fput(parent->filp);
  4093. list_del_event(event, ctx);
  4094. free_event(event);
  4095. }
  4096. if (!list_empty(&ctx->group_list))
  4097. goto again;
  4098. mutex_unlock(&ctx->mutex);
  4099. put_ctx(ctx);
  4100. }
  4101. /*
  4102. * Initialize the perf_event context in task_struct
  4103. */
  4104. int perf_event_init_task(struct task_struct *child)
  4105. {
  4106. struct perf_event_context *child_ctx, *parent_ctx;
  4107. struct perf_event_context *cloned_ctx;
  4108. struct perf_event *event;
  4109. struct task_struct *parent = current;
  4110. int inherited_all = 1;
  4111. int ret = 0;
  4112. child->perf_event_ctxp = NULL;
  4113. mutex_init(&child->perf_event_mutex);
  4114. INIT_LIST_HEAD(&child->perf_event_list);
  4115. if (likely(!parent->perf_event_ctxp))
  4116. return 0;
  4117. /*
  4118. * This is executed from the parent task context, so inherit
  4119. * events that have been marked for cloning.
  4120. * First allocate and initialize a context for the child.
  4121. */
  4122. child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  4123. if (!child_ctx)
  4124. return -ENOMEM;
  4125. __perf_event_init_context(child_ctx, child);
  4126. child->perf_event_ctxp = child_ctx;
  4127. get_task_struct(child);
  4128. /*
  4129. * If the parent's context is a clone, pin it so it won't get
  4130. * swapped under us.
  4131. */
  4132. parent_ctx = perf_pin_task_context(parent);
  4133. /*
  4134. * No need to check if parent_ctx != NULL here; since we saw
  4135. * it non-NULL earlier, the only reason for it to become NULL
  4136. * is if we exit, and since we're currently in the middle of
  4137. * a fork we can't be exiting at the same time.
  4138. */
  4139. /*
  4140. * Lock the parent list. No need to lock the child - not PID
  4141. * hashed yet and not running, so nobody can access it.
  4142. */
  4143. mutex_lock(&parent_ctx->mutex);
  4144. /*
  4145. * We dont have to disable NMIs - we are only looking at
  4146. * the list, not manipulating it:
  4147. */
  4148. list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
  4149. if (!event->attr.inherit) {
  4150. inherited_all = 0;
  4151. continue;
  4152. }
  4153. ret = inherit_group(event, parent, parent_ctx,
  4154. child, child_ctx);
  4155. if (ret) {
  4156. inherited_all = 0;
  4157. break;
  4158. }
  4159. }
  4160. if (inherited_all) {
  4161. /*
  4162. * Mark the child context as a clone of the parent
  4163. * context, or of whatever the parent is a clone of.
  4164. * Note that if the parent is a clone, it could get
  4165. * uncloned at any point, but that doesn't matter
  4166. * because the list of events and the generation
  4167. * count can't have changed since we took the mutex.
  4168. */
  4169. cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
  4170. if (cloned_ctx) {
  4171. child_ctx->parent_ctx = cloned_ctx;
  4172. child_ctx->parent_gen = parent_ctx->parent_gen;
  4173. } else {
  4174. child_ctx->parent_ctx = parent_ctx;
  4175. child_ctx->parent_gen = parent_ctx->generation;
  4176. }
  4177. get_ctx(child_ctx->parent_ctx);
  4178. }
  4179. mutex_unlock(&parent_ctx->mutex);
  4180. perf_unpin_context(parent_ctx);
  4181. return ret;
  4182. }
  4183. static void __cpuinit perf_event_init_cpu(int cpu)
  4184. {
  4185. struct perf_cpu_context *cpuctx;
  4186. cpuctx = &per_cpu(perf_cpu_context, cpu);
  4187. __perf_event_init_context(&cpuctx->ctx, NULL);
  4188. spin_lock(&perf_resource_lock);
  4189. cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
  4190. spin_unlock(&perf_resource_lock);
  4191. hw_perf_event_setup(cpu);
  4192. }
  4193. #ifdef CONFIG_HOTPLUG_CPU
  4194. static void __perf_event_exit_cpu(void *info)
  4195. {
  4196. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  4197. struct perf_event_context *ctx = &cpuctx->ctx;
  4198. struct perf_event *event, *tmp;
  4199. list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
  4200. __perf_event_remove_from_context(event);
  4201. }
  4202. static void perf_event_exit_cpu(int cpu)
  4203. {
  4204. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  4205. struct perf_event_context *ctx = &cpuctx->ctx;
  4206. mutex_lock(&ctx->mutex);
  4207. smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
  4208. mutex_unlock(&ctx->mutex);
  4209. }
  4210. #else
  4211. static inline void perf_event_exit_cpu(int cpu) { }
  4212. #endif
  4213. static int __cpuinit
  4214. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  4215. {
  4216. unsigned int cpu = (long)hcpu;
  4217. switch (action) {
  4218. case CPU_UP_PREPARE:
  4219. case CPU_UP_PREPARE_FROZEN:
  4220. perf_event_init_cpu(cpu);
  4221. break;
  4222. case CPU_ONLINE:
  4223. case CPU_ONLINE_FROZEN:
  4224. hw_perf_event_setup_online(cpu);
  4225. break;
  4226. case CPU_DOWN_PREPARE:
  4227. case CPU_DOWN_PREPARE_FROZEN:
  4228. perf_event_exit_cpu(cpu);
  4229. break;
  4230. default:
  4231. break;
  4232. }
  4233. return NOTIFY_OK;
  4234. }
  4235. /*
  4236. * This has to have a higher priority than migration_notifier in sched.c.
  4237. */
  4238. static struct notifier_block __cpuinitdata perf_cpu_nb = {
  4239. .notifier_call = perf_cpu_notify,
  4240. .priority = 20,
  4241. };
  4242. void __init perf_event_init(void)
  4243. {
  4244. perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
  4245. (void *)(long)smp_processor_id());
  4246. perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
  4247. (void *)(long)smp_processor_id());
  4248. register_cpu_notifier(&perf_cpu_nb);
  4249. }
  4250. static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
  4251. {
  4252. return sprintf(buf, "%d\n", perf_reserved_percpu);
  4253. }
  4254. static ssize_t
  4255. perf_set_reserve_percpu(struct sysdev_class *class,
  4256. const char *buf,
  4257. size_t count)
  4258. {
  4259. struct perf_cpu_context *cpuctx;
  4260. unsigned long val;
  4261. int err, cpu, mpt;
  4262. err = strict_strtoul(buf, 10, &val);
  4263. if (err)
  4264. return err;
  4265. if (val > perf_max_events)
  4266. return -EINVAL;
  4267. spin_lock(&perf_resource_lock);
  4268. perf_reserved_percpu = val;
  4269. for_each_online_cpu(cpu) {
  4270. cpuctx = &per_cpu(perf_cpu_context, cpu);
  4271. spin_lock_irq(&cpuctx->ctx.lock);
  4272. mpt = min(perf_max_events - cpuctx->ctx.nr_events,
  4273. perf_max_events - perf_reserved_percpu);
  4274. cpuctx->max_pertask = mpt;
  4275. spin_unlock_irq(&cpuctx->ctx.lock);
  4276. }
  4277. spin_unlock(&perf_resource_lock);
  4278. return count;
  4279. }
  4280. static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
  4281. {
  4282. return sprintf(buf, "%d\n", perf_overcommit);
  4283. }
  4284. static ssize_t
  4285. perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
  4286. {
  4287. unsigned long val;
  4288. int err;
  4289. err = strict_strtoul(buf, 10, &val);
  4290. if (err)
  4291. return err;
  4292. if (val > 1)
  4293. return -EINVAL;
  4294. spin_lock(&perf_resource_lock);
  4295. perf_overcommit = val;
  4296. spin_unlock(&perf_resource_lock);
  4297. return count;
  4298. }
  4299. static SYSDEV_CLASS_ATTR(
  4300. reserve_percpu,
  4301. 0644,
  4302. perf_show_reserve_percpu,
  4303. perf_set_reserve_percpu
  4304. );
  4305. static SYSDEV_CLASS_ATTR(
  4306. overcommit,
  4307. 0644,
  4308. perf_show_overcommit,
  4309. perf_set_overcommit
  4310. );
  4311. static struct attribute *perfclass_attrs[] = {
  4312. &attr_reserve_percpu.attr,
  4313. &attr_overcommit.attr,
  4314. NULL
  4315. };
  4316. static struct attribute_group perfclass_attr_group = {
  4317. .attrs = perfclass_attrs,
  4318. .name = "perf_events",
  4319. };
  4320. static int __init perf_event_sysfs_init(void)
  4321. {
  4322. return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
  4323. &perfclass_attr_group);
  4324. }
  4325. device_initcall(perf_event_sysfs_init);