sh_eth.c 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2009 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/delay.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/mdio-bitbang.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/phy.h>
  34. #include <linux/cache.h>
  35. #include <linux/io.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/slab.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/sh_eth.h>
  41. #include "sh_eth.h"
  42. #define SH_ETH_DEF_MSG_ENABLE \
  43. (NETIF_MSG_LINK | \
  44. NETIF_MSG_TIMER | \
  45. NETIF_MSG_RX_ERR| \
  46. NETIF_MSG_TX_ERR)
  47. /* There is CPU dependent code */
  48. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  49. #define SH_ETH_RESET_DEFAULT 1
  50. static void sh_eth_set_duplex(struct net_device *ndev)
  51. {
  52. struct sh_eth_private *mdp = netdev_priv(ndev);
  53. if (mdp->duplex) /* Full */
  54. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  55. else /* Half */
  56. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  57. }
  58. static void sh_eth_set_rate(struct net_device *ndev)
  59. {
  60. struct sh_eth_private *mdp = netdev_priv(ndev);
  61. switch (mdp->speed) {
  62. case 10: /* 10BASE */
  63. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_RTM, ECMR);
  64. break;
  65. case 100:/* 100BASE */
  66. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_RTM, ECMR);
  67. break;
  68. default:
  69. break;
  70. }
  71. }
  72. /* SH7724 */
  73. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  74. .set_duplex = sh_eth_set_duplex,
  75. .set_rate = sh_eth_set_rate,
  76. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  77. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  78. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  79. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  80. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  81. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  82. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  83. .apr = 1,
  84. .mpr = 1,
  85. .tpauser = 1,
  86. .hw_swap = 1,
  87. .rpadir = 1,
  88. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  89. };
  90. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  91. #define SH_ETH_HAS_BOTH_MODULES 1
  92. #define SH_ETH_HAS_TSU 1
  93. static void sh_eth_set_duplex(struct net_device *ndev)
  94. {
  95. struct sh_eth_private *mdp = netdev_priv(ndev);
  96. if (mdp->duplex) /* Full */
  97. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  98. else /* Half */
  99. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  100. }
  101. static void sh_eth_set_rate(struct net_device *ndev)
  102. {
  103. struct sh_eth_private *mdp = netdev_priv(ndev);
  104. switch (mdp->speed) {
  105. case 10: /* 10BASE */
  106. sh_eth_write(ndev, 0, RTRATE);
  107. break;
  108. case 100:/* 100BASE */
  109. sh_eth_write(ndev, 1, RTRATE);
  110. break;
  111. default:
  112. break;
  113. }
  114. }
  115. /* SH7757 */
  116. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  117. .set_duplex = sh_eth_set_duplex,
  118. .set_rate = sh_eth_set_rate,
  119. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  120. .rmcr_value = 0x00000001,
  121. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  122. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  123. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  124. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  125. .apr = 1,
  126. .mpr = 1,
  127. .tpauser = 1,
  128. .hw_swap = 1,
  129. .no_ade = 1,
  130. .rpadir = 1,
  131. .rpadir_value = 2 << 16,
  132. };
  133. #define SH_GIGA_ETH_BASE 0xfee00000
  134. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  135. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  136. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  137. {
  138. int i;
  139. unsigned long mahr[2], malr[2];
  140. /* save MAHR and MALR */
  141. for (i = 0; i < 2; i++) {
  142. malr[i] = ioread32((void *)GIGA_MALR(i));
  143. mahr[i] = ioread32((void *)GIGA_MAHR(i));
  144. }
  145. /* reset device */
  146. iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
  147. mdelay(1);
  148. /* restore MAHR and MALR */
  149. for (i = 0; i < 2; i++) {
  150. iowrite32(malr[i], (void *)GIGA_MALR(i));
  151. iowrite32(mahr[i], (void *)GIGA_MAHR(i));
  152. }
  153. }
  154. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  155. static void sh_eth_reset(struct net_device *ndev)
  156. {
  157. struct sh_eth_private *mdp = netdev_priv(ndev);
  158. int cnt = 100;
  159. if (sh_eth_is_gether(mdp)) {
  160. sh_eth_write(ndev, 0x03, EDSR);
  161. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  162. EDMR);
  163. while (cnt > 0) {
  164. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  165. break;
  166. mdelay(1);
  167. cnt--;
  168. }
  169. if (cnt < 0)
  170. printk(KERN_ERR "Device reset fail\n");
  171. /* Table Init */
  172. sh_eth_write(ndev, 0x0, TDLAR);
  173. sh_eth_write(ndev, 0x0, TDFAR);
  174. sh_eth_write(ndev, 0x0, TDFXR);
  175. sh_eth_write(ndev, 0x0, TDFFR);
  176. sh_eth_write(ndev, 0x0, RDLAR);
  177. sh_eth_write(ndev, 0x0, RDFAR);
  178. sh_eth_write(ndev, 0x0, RDFXR);
  179. sh_eth_write(ndev, 0x0, RDFFR);
  180. } else {
  181. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  182. EDMR);
  183. mdelay(3);
  184. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  185. EDMR);
  186. }
  187. }
  188. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  189. {
  190. struct sh_eth_private *mdp = netdev_priv(ndev);
  191. if (mdp->duplex) /* Full */
  192. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  193. else /* Half */
  194. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  195. }
  196. static void sh_eth_set_rate_giga(struct net_device *ndev)
  197. {
  198. struct sh_eth_private *mdp = netdev_priv(ndev);
  199. switch (mdp->speed) {
  200. case 10: /* 10BASE */
  201. sh_eth_write(ndev, 0x00000000, GECMR);
  202. break;
  203. case 100:/* 100BASE */
  204. sh_eth_write(ndev, 0x00000010, GECMR);
  205. break;
  206. case 1000: /* 1000BASE */
  207. sh_eth_write(ndev, 0x00000020, GECMR);
  208. break;
  209. default:
  210. break;
  211. }
  212. }
  213. /* SH7757(GETHERC) */
  214. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  215. .chip_reset = sh_eth_chip_reset_giga,
  216. .set_duplex = sh_eth_set_duplex_giga,
  217. .set_rate = sh_eth_set_rate_giga,
  218. .ecsr_value = ECSR_ICD | ECSR_MPD,
  219. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  220. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  221. .tx_check = EESR_TC1 | EESR_FTC,
  222. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  223. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  224. EESR_ECI,
  225. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  226. EESR_TFE,
  227. .fdr_value = 0x0000072f,
  228. .rmcr_value = 0x00000001,
  229. .apr = 1,
  230. .mpr = 1,
  231. .tpauser = 1,
  232. .bculr = 1,
  233. .hw_swap = 1,
  234. .rpadir = 1,
  235. .rpadir_value = 2 << 16,
  236. .no_trimd = 1,
  237. .no_ade = 1,
  238. .tsu = 1,
  239. };
  240. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  241. {
  242. if (sh_eth_is_gether(mdp))
  243. return &sh_eth_my_cpu_data_giga;
  244. else
  245. return &sh_eth_my_cpu_data;
  246. }
  247. #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
  248. #define SH_ETH_HAS_TSU 1
  249. static void sh_eth_chip_reset(struct net_device *ndev)
  250. {
  251. struct sh_eth_private *mdp = netdev_priv(ndev);
  252. /* reset device */
  253. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  254. mdelay(1);
  255. }
  256. static void sh_eth_reset(struct net_device *ndev)
  257. {
  258. int cnt = 100;
  259. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  260. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  261. while (cnt > 0) {
  262. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  263. break;
  264. mdelay(1);
  265. cnt--;
  266. }
  267. if (cnt == 0)
  268. printk(KERN_ERR "Device reset fail\n");
  269. /* Table Init */
  270. sh_eth_write(ndev, 0x0, TDLAR);
  271. sh_eth_write(ndev, 0x0, TDFAR);
  272. sh_eth_write(ndev, 0x0, TDFXR);
  273. sh_eth_write(ndev, 0x0, TDFFR);
  274. sh_eth_write(ndev, 0x0, RDLAR);
  275. sh_eth_write(ndev, 0x0, RDFAR);
  276. sh_eth_write(ndev, 0x0, RDFXR);
  277. sh_eth_write(ndev, 0x0, RDFFR);
  278. }
  279. static void sh_eth_set_duplex(struct net_device *ndev)
  280. {
  281. struct sh_eth_private *mdp = netdev_priv(ndev);
  282. if (mdp->duplex) /* Full */
  283. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  284. else /* Half */
  285. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  286. }
  287. static void sh_eth_set_rate(struct net_device *ndev)
  288. {
  289. struct sh_eth_private *mdp = netdev_priv(ndev);
  290. switch (mdp->speed) {
  291. case 10: /* 10BASE */
  292. sh_eth_write(ndev, GECMR_10, GECMR);
  293. break;
  294. case 100:/* 100BASE */
  295. sh_eth_write(ndev, GECMR_100, GECMR);
  296. break;
  297. case 1000: /* 1000BASE */
  298. sh_eth_write(ndev, GECMR_1000, GECMR);
  299. break;
  300. default:
  301. break;
  302. }
  303. }
  304. /* sh7763 */
  305. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  306. .chip_reset = sh_eth_chip_reset,
  307. .set_duplex = sh_eth_set_duplex,
  308. .set_rate = sh_eth_set_rate,
  309. .ecsr_value = ECSR_ICD | ECSR_MPD,
  310. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  311. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  312. .tx_check = EESR_TC1 | EESR_FTC,
  313. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  314. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  315. EESR_ECI,
  316. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  317. EESR_TFE,
  318. .apr = 1,
  319. .mpr = 1,
  320. .tpauser = 1,
  321. .bculr = 1,
  322. .hw_swap = 1,
  323. .no_trimd = 1,
  324. .no_ade = 1,
  325. .tsu = 1,
  326. };
  327. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  328. #define SH_ETH_RESET_DEFAULT 1
  329. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  330. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  331. .apr = 1,
  332. .mpr = 1,
  333. .tpauser = 1,
  334. .hw_swap = 1,
  335. };
  336. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  337. #define SH_ETH_RESET_DEFAULT 1
  338. #define SH_ETH_HAS_TSU 1
  339. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  340. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  341. .tsu = 1,
  342. };
  343. #endif
  344. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  345. {
  346. if (!cd->ecsr_value)
  347. cd->ecsr_value = DEFAULT_ECSR_INIT;
  348. if (!cd->ecsipr_value)
  349. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  350. if (!cd->fcftr_value)
  351. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  352. DEFAULT_FIFO_F_D_RFD;
  353. if (!cd->fdr_value)
  354. cd->fdr_value = DEFAULT_FDR_INIT;
  355. if (!cd->rmcr_value)
  356. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  357. if (!cd->tx_check)
  358. cd->tx_check = DEFAULT_TX_CHECK;
  359. if (!cd->eesr_err_check)
  360. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  361. if (!cd->tx_error_check)
  362. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  363. }
  364. #if defined(SH_ETH_RESET_DEFAULT)
  365. /* Chip Reset */
  366. static void sh_eth_reset(struct net_device *ndev)
  367. {
  368. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  369. mdelay(3);
  370. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  371. }
  372. #endif
  373. #if defined(CONFIG_CPU_SH4)
  374. static void sh_eth_set_receive_align(struct sk_buff *skb)
  375. {
  376. int reserve;
  377. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  378. if (reserve)
  379. skb_reserve(skb, reserve);
  380. }
  381. #else
  382. static void sh_eth_set_receive_align(struct sk_buff *skb)
  383. {
  384. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  385. }
  386. #endif
  387. /* CPU <-> EDMAC endian convert */
  388. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  389. {
  390. switch (mdp->edmac_endian) {
  391. case EDMAC_LITTLE_ENDIAN:
  392. return cpu_to_le32(x);
  393. case EDMAC_BIG_ENDIAN:
  394. return cpu_to_be32(x);
  395. }
  396. return x;
  397. }
  398. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  399. {
  400. switch (mdp->edmac_endian) {
  401. case EDMAC_LITTLE_ENDIAN:
  402. return le32_to_cpu(x);
  403. case EDMAC_BIG_ENDIAN:
  404. return be32_to_cpu(x);
  405. }
  406. return x;
  407. }
  408. /*
  409. * Program the hardware MAC address from dev->dev_addr.
  410. */
  411. static void update_mac_address(struct net_device *ndev)
  412. {
  413. sh_eth_write(ndev,
  414. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  415. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  416. sh_eth_write(ndev,
  417. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  418. }
  419. /*
  420. * Get MAC address from SuperH MAC address register
  421. *
  422. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  423. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  424. * When you want use this device, you must set MAC address in bootloader.
  425. *
  426. */
  427. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  428. {
  429. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  430. memcpy(ndev->dev_addr, mac, 6);
  431. } else {
  432. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  433. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  434. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  435. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  436. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  437. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  438. }
  439. }
  440. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  441. {
  442. if (mdp->reg_offset == sh_eth_offset_gigabit)
  443. return 1;
  444. else
  445. return 0;
  446. }
  447. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  448. {
  449. if (sh_eth_is_gether(mdp))
  450. return EDTRR_TRNS_GETHER;
  451. else
  452. return EDTRR_TRNS_ETHER;
  453. }
  454. struct bb_info {
  455. void (*set_gate)(void *addr);
  456. struct mdiobb_ctrl ctrl;
  457. void *addr;
  458. u32 mmd_msk;/* MMD */
  459. u32 mdo_msk;
  460. u32 mdi_msk;
  461. u32 mdc_msk;
  462. };
  463. /* PHY bit set */
  464. static void bb_set(void *addr, u32 msk)
  465. {
  466. iowrite32(ioread32(addr) | msk, addr);
  467. }
  468. /* PHY bit clear */
  469. static void bb_clr(void *addr, u32 msk)
  470. {
  471. iowrite32((ioread32(addr) & ~msk), addr);
  472. }
  473. /* PHY bit read */
  474. static int bb_read(void *addr, u32 msk)
  475. {
  476. return (ioread32(addr) & msk) != 0;
  477. }
  478. /* Data I/O pin control */
  479. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  480. {
  481. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  482. if (bitbang->set_gate)
  483. bitbang->set_gate(bitbang->addr);
  484. if (bit)
  485. bb_set(bitbang->addr, bitbang->mmd_msk);
  486. else
  487. bb_clr(bitbang->addr, bitbang->mmd_msk);
  488. }
  489. /* Set bit data*/
  490. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  491. {
  492. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  493. if (bitbang->set_gate)
  494. bitbang->set_gate(bitbang->addr);
  495. if (bit)
  496. bb_set(bitbang->addr, bitbang->mdo_msk);
  497. else
  498. bb_clr(bitbang->addr, bitbang->mdo_msk);
  499. }
  500. /* Get bit data*/
  501. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  502. {
  503. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  504. if (bitbang->set_gate)
  505. bitbang->set_gate(bitbang->addr);
  506. return bb_read(bitbang->addr, bitbang->mdi_msk);
  507. }
  508. /* MDC pin control */
  509. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  510. {
  511. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  512. if (bitbang->set_gate)
  513. bitbang->set_gate(bitbang->addr);
  514. if (bit)
  515. bb_set(bitbang->addr, bitbang->mdc_msk);
  516. else
  517. bb_clr(bitbang->addr, bitbang->mdc_msk);
  518. }
  519. /* mdio bus control struct */
  520. static struct mdiobb_ops bb_ops = {
  521. .owner = THIS_MODULE,
  522. .set_mdc = sh_mdc_ctrl,
  523. .set_mdio_dir = sh_mmd_ctrl,
  524. .set_mdio_data = sh_set_mdio,
  525. .get_mdio_data = sh_get_mdio,
  526. };
  527. /* free skb and descriptor buffer */
  528. static void sh_eth_ring_free(struct net_device *ndev)
  529. {
  530. struct sh_eth_private *mdp = netdev_priv(ndev);
  531. int i;
  532. /* Free Rx skb ringbuffer */
  533. if (mdp->rx_skbuff) {
  534. for (i = 0; i < RX_RING_SIZE; i++) {
  535. if (mdp->rx_skbuff[i])
  536. dev_kfree_skb(mdp->rx_skbuff[i]);
  537. }
  538. }
  539. kfree(mdp->rx_skbuff);
  540. /* Free Tx skb ringbuffer */
  541. if (mdp->tx_skbuff) {
  542. for (i = 0; i < TX_RING_SIZE; i++) {
  543. if (mdp->tx_skbuff[i])
  544. dev_kfree_skb(mdp->tx_skbuff[i]);
  545. }
  546. }
  547. kfree(mdp->tx_skbuff);
  548. }
  549. /* format skb and descriptor buffer */
  550. static void sh_eth_ring_format(struct net_device *ndev)
  551. {
  552. struct sh_eth_private *mdp = netdev_priv(ndev);
  553. int i;
  554. struct sk_buff *skb;
  555. struct sh_eth_rxdesc *rxdesc = NULL;
  556. struct sh_eth_txdesc *txdesc = NULL;
  557. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  558. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  559. mdp->cur_rx = mdp->cur_tx = 0;
  560. mdp->dirty_rx = mdp->dirty_tx = 0;
  561. memset(mdp->rx_ring, 0, rx_ringsize);
  562. /* build Rx ring buffer */
  563. for (i = 0; i < RX_RING_SIZE; i++) {
  564. /* skb */
  565. mdp->rx_skbuff[i] = NULL;
  566. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  567. mdp->rx_skbuff[i] = skb;
  568. if (skb == NULL)
  569. break;
  570. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  571. DMA_FROM_DEVICE);
  572. sh_eth_set_receive_align(skb);
  573. /* RX descriptor */
  574. rxdesc = &mdp->rx_ring[i];
  575. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  576. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  577. /* The size of the buffer is 16 byte boundary. */
  578. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  579. /* Rx descriptor address set */
  580. if (i == 0) {
  581. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  582. if (sh_eth_is_gether(mdp))
  583. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  584. }
  585. }
  586. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  587. /* Mark the last entry as wrapping the ring. */
  588. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  589. memset(mdp->tx_ring, 0, tx_ringsize);
  590. /* build Tx ring buffer */
  591. for (i = 0; i < TX_RING_SIZE; i++) {
  592. mdp->tx_skbuff[i] = NULL;
  593. txdesc = &mdp->tx_ring[i];
  594. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  595. txdesc->buffer_length = 0;
  596. if (i == 0) {
  597. /* Tx descriptor address set */
  598. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  599. if (sh_eth_is_gether(mdp))
  600. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  601. }
  602. }
  603. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  604. }
  605. /* Get skb and descriptor buffer */
  606. static int sh_eth_ring_init(struct net_device *ndev)
  607. {
  608. struct sh_eth_private *mdp = netdev_priv(ndev);
  609. int rx_ringsize, tx_ringsize, ret = 0;
  610. /*
  611. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  612. * card needs room to do 8 byte alignment, +2 so we can reserve
  613. * the first 2 bytes, and +16 gets room for the status word from the
  614. * card.
  615. */
  616. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  617. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  618. if (mdp->cd->rpadir)
  619. mdp->rx_buf_sz += NET_IP_ALIGN;
  620. /* Allocate RX and TX skb rings */
  621. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  622. GFP_KERNEL);
  623. if (!mdp->rx_skbuff) {
  624. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  625. ret = -ENOMEM;
  626. return ret;
  627. }
  628. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  629. GFP_KERNEL);
  630. if (!mdp->tx_skbuff) {
  631. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  632. ret = -ENOMEM;
  633. goto skb_ring_free;
  634. }
  635. /* Allocate all Rx descriptors. */
  636. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  637. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  638. GFP_KERNEL);
  639. if (!mdp->rx_ring) {
  640. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  641. rx_ringsize);
  642. ret = -ENOMEM;
  643. goto desc_ring_free;
  644. }
  645. mdp->dirty_rx = 0;
  646. /* Allocate all Tx descriptors. */
  647. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  648. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  649. GFP_KERNEL);
  650. if (!mdp->tx_ring) {
  651. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  652. tx_ringsize);
  653. ret = -ENOMEM;
  654. goto desc_ring_free;
  655. }
  656. return ret;
  657. desc_ring_free:
  658. /* free DMA buffer */
  659. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  660. skb_ring_free:
  661. /* Free Rx and Tx skb ring buffer */
  662. sh_eth_ring_free(ndev);
  663. return ret;
  664. }
  665. static int sh_eth_dev_init(struct net_device *ndev)
  666. {
  667. int ret = 0;
  668. struct sh_eth_private *mdp = netdev_priv(ndev);
  669. u_int32_t rx_int_var, tx_int_var;
  670. u32 val;
  671. /* Soft Reset */
  672. sh_eth_reset(ndev);
  673. /* Descriptor format */
  674. sh_eth_ring_format(ndev);
  675. if (mdp->cd->rpadir)
  676. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  677. /* all sh_eth int mask */
  678. sh_eth_write(ndev, 0, EESIPR);
  679. #if defined(__LITTLE_ENDIAN__)
  680. if (mdp->cd->hw_swap)
  681. sh_eth_write(ndev, EDMR_EL, EDMR);
  682. else
  683. #endif
  684. sh_eth_write(ndev, 0, EDMR);
  685. /* FIFO size set */
  686. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  687. sh_eth_write(ndev, 0, TFTR);
  688. /* Frame recv control */
  689. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  690. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  691. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  692. sh_eth_write(ndev, rx_int_var | tx_int_var, TRSCER);
  693. if (mdp->cd->bculr)
  694. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  695. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  696. if (!mdp->cd->no_trimd)
  697. sh_eth_write(ndev, 0, TRIMD);
  698. /* Recv frame limit set register */
  699. sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
  700. RFLR);
  701. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  702. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  703. /* PAUSE Prohibition */
  704. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  705. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  706. sh_eth_write(ndev, val, ECMR);
  707. if (mdp->cd->set_rate)
  708. mdp->cd->set_rate(ndev);
  709. /* E-MAC Status Register clear */
  710. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  711. /* E-MAC Interrupt Enable register */
  712. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  713. /* Set MAC address */
  714. update_mac_address(ndev);
  715. /* mask reset */
  716. if (mdp->cd->apr)
  717. sh_eth_write(ndev, APR_AP, APR);
  718. if (mdp->cd->mpr)
  719. sh_eth_write(ndev, MPR_MP, MPR);
  720. if (mdp->cd->tpauser)
  721. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  722. /* Setting the Rx mode will start the Rx process. */
  723. sh_eth_write(ndev, EDRRR_R, EDRRR);
  724. netif_start_queue(ndev);
  725. return ret;
  726. }
  727. /* free Tx skb function */
  728. static int sh_eth_txfree(struct net_device *ndev)
  729. {
  730. struct sh_eth_private *mdp = netdev_priv(ndev);
  731. struct sh_eth_txdesc *txdesc;
  732. int freeNum = 0;
  733. int entry = 0;
  734. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  735. entry = mdp->dirty_tx % TX_RING_SIZE;
  736. txdesc = &mdp->tx_ring[entry];
  737. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  738. break;
  739. /* Free the original skb. */
  740. if (mdp->tx_skbuff[entry]) {
  741. dma_unmap_single(&ndev->dev, txdesc->addr,
  742. txdesc->buffer_length, DMA_TO_DEVICE);
  743. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  744. mdp->tx_skbuff[entry] = NULL;
  745. freeNum++;
  746. }
  747. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  748. if (entry >= TX_RING_SIZE - 1)
  749. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  750. ndev->stats.tx_packets++;
  751. ndev->stats.tx_bytes += txdesc->buffer_length;
  752. }
  753. return freeNum;
  754. }
  755. /* Packet receive function */
  756. static int sh_eth_rx(struct net_device *ndev)
  757. {
  758. struct sh_eth_private *mdp = netdev_priv(ndev);
  759. struct sh_eth_rxdesc *rxdesc;
  760. int entry = mdp->cur_rx % RX_RING_SIZE;
  761. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  762. struct sk_buff *skb;
  763. u16 pkt_len = 0;
  764. u32 desc_status;
  765. rxdesc = &mdp->rx_ring[entry];
  766. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  767. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  768. pkt_len = rxdesc->frame_length;
  769. if (--boguscnt < 0)
  770. break;
  771. if (!(desc_status & RDFEND))
  772. ndev->stats.rx_length_errors++;
  773. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  774. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  775. ndev->stats.rx_errors++;
  776. if (desc_status & RD_RFS1)
  777. ndev->stats.rx_crc_errors++;
  778. if (desc_status & RD_RFS2)
  779. ndev->stats.rx_frame_errors++;
  780. if (desc_status & RD_RFS3)
  781. ndev->stats.rx_length_errors++;
  782. if (desc_status & RD_RFS4)
  783. ndev->stats.rx_length_errors++;
  784. if (desc_status & RD_RFS6)
  785. ndev->stats.rx_missed_errors++;
  786. if (desc_status & RD_RFS10)
  787. ndev->stats.rx_over_errors++;
  788. } else {
  789. if (!mdp->cd->hw_swap)
  790. sh_eth_soft_swap(
  791. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  792. pkt_len + 2);
  793. skb = mdp->rx_skbuff[entry];
  794. mdp->rx_skbuff[entry] = NULL;
  795. if (mdp->cd->rpadir)
  796. skb_reserve(skb, NET_IP_ALIGN);
  797. skb_put(skb, pkt_len);
  798. skb->protocol = eth_type_trans(skb, ndev);
  799. netif_rx(skb);
  800. ndev->stats.rx_packets++;
  801. ndev->stats.rx_bytes += pkt_len;
  802. }
  803. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  804. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  805. rxdesc = &mdp->rx_ring[entry];
  806. }
  807. /* Refill the Rx ring buffers. */
  808. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  809. entry = mdp->dirty_rx % RX_RING_SIZE;
  810. rxdesc = &mdp->rx_ring[entry];
  811. /* The size of the buffer is 16 byte boundary. */
  812. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  813. if (mdp->rx_skbuff[entry] == NULL) {
  814. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  815. mdp->rx_skbuff[entry] = skb;
  816. if (skb == NULL)
  817. break; /* Better luck next round. */
  818. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  819. DMA_FROM_DEVICE);
  820. sh_eth_set_receive_align(skb);
  821. skb_checksum_none_assert(skb);
  822. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  823. }
  824. if (entry >= RX_RING_SIZE - 1)
  825. rxdesc->status |=
  826. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  827. else
  828. rxdesc->status |=
  829. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  830. }
  831. /* Restart Rx engine if stopped. */
  832. /* If we don't need to check status, don't. -KDU */
  833. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R))
  834. sh_eth_write(ndev, EDRRR_R, EDRRR);
  835. return 0;
  836. }
  837. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  838. {
  839. /* disable tx and rx */
  840. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  841. ~(ECMR_RE | ECMR_TE), ECMR);
  842. }
  843. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  844. {
  845. /* enable tx and rx */
  846. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  847. (ECMR_RE | ECMR_TE), ECMR);
  848. }
  849. /* error control function */
  850. static void sh_eth_error(struct net_device *ndev, int intr_status)
  851. {
  852. struct sh_eth_private *mdp = netdev_priv(ndev);
  853. u32 felic_stat;
  854. u32 link_stat;
  855. u32 mask;
  856. if (intr_status & EESR_ECI) {
  857. felic_stat = sh_eth_read(ndev, ECSR);
  858. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  859. if (felic_stat & ECSR_ICD)
  860. ndev->stats.tx_carrier_errors++;
  861. if (felic_stat & ECSR_LCHNG) {
  862. /* Link Changed */
  863. if (mdp->cd->no_psr || mdp->no_ether_link) {
  864. if (mdp->link == PHY_DOWN)
  865. link_stat = 0;
  866. else
  867. link_stat = PHY_ST_LINK;
  868. } else {
  869. link_stat = (sh_eth_read(ndev, PSR));
  870. if (mdp->ether_link_active_low)
  871. link_stat = ~link_stat;
  872. }
  873. if (!(link_stat & PHY_ST_LINK))
  874. sh_eth_rcv_snd_disable(ndev);
  875. else {
  876. /* Link Up */
  877. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  878. ~DMAC_M_ECI, EESIPR);
  879. /*clear int */
  880. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  881. ECSR);
  882. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  883. DMAC_M_ECI, EESIPR);
  884. /* enable tx and rx */
  885. sh_eth_rcv_snd_enable(ndev);
  886. }
  887. }
  888. }
  889. if (intr_status & EESR_TWB) {
  890. /* Write buck end. unused write back interrupt */
  891. if (intr_status & EESR_TABT) /* Transmit Abort int */
  892. ndev->stats.tx_aborted_errors++;
  893. if (netif_msg_tx_err(mdp))
  894. dev_err(&ndev->dev, "Transmit Abort\n");
  895. }
  896. if (intr_status & EESR_RABT) {
  897. /* Receive Abort int */
  898. if (intr_status & EESR_RFRMER) {
  899. /* Receive Frame Overflow int */
  900. ndev->stats.rx_frame_errors++;
  901. if (netif_msg_rx_err(mdp))
  902. dev_err(&ndev->dev, "Receive Abort\n");
  903. }
  904. }
  905. if (intr_status & EESR_TDE) {
  906. /* Transmit Descriptor Empty int */
  907. ndev->stats.tx_fifo_errors++;
  908. if (netif_msg_tx_err(mdp))
  909. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  910. }
  911. if (intr_status & EESR_TFE) {
  912. /* FIFO under flow */
  913. ndev->stats.tx_fifo_errors++;
  914. if (netif_msg_tx_err(mdp))
  915. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  916. }
  917. if (intr_status & EESR_RDE) {
  918. /* Receive Descriptor Empty int */
  919. ndev->stats.rx_over_errors++;
  920. if (sh_eth_read(ndev, EDRRR) ^ EDRRR_R)
  921. sh_eth_write(ndev, EDRRR_R, EDRRR);
  922. if (netif_msg_rx_err(mdp))
  923. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  924. }
  925. if (intr_status & EESR_RFE) {
  926. /* Receive FIFO Overflow int */
  927. ndev->stats.rx_fifo_errors++;
  928. if (netif_msg_rx_err(mdp))
  929. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  930. }
  931. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  932. /* Address Error */
  933. ndev->stats.tx_fifo_errors++;
  934. if (netif_msg_tx_err(mdp))
  935. dev_err(&ndev->dev, "Address Error\n");
  936. }
  937. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  938. if (mdp->cd->no_ade)
  939. mask &= ~EESR_ADE;
  940. if (intr_status & mask) {
  941. /* Tx error */
  942. u32 edtrr = sh_eth_read(ndev, EDTRR);
  943. /* dmesg */
  944. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  945. intr_status, mdp->cur_tx);
  946. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  947. mdp->dirty_tx, (u32) ndev->state, edtrr);
  948. /* dirty buffer free */
  949. sh_eth_txfree(ndev);
  950. /* SH7712 BUG */
  951. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  952. /* tx dma start */
  953. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  954. }
  955. /* wakeup */
  956. netif_wake_queue(ndev);
  957. }
  958. }
  959. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  960. {
  961. struct net_device *ndev = netdev;
  962. struct sh_eth_private *mdp = netdev_priv(ndev);
  963. struct sh_eth_cpu_data *cd = mdp->cd;
  964. irqreturn_t ret = IRQ_NONE;
  965. u32 intr_status = 0;
  966. spin_lock(&mdp->lock);
  967. /* Get interrpt stat */
  968. intr_status = sh_eth_read(ndev, EESR);
  969. /* Clear interrupt */
  970. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  971. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  972. cd->tx_check | cd->eesr_err_check)) {
  973. sh_eth_write(ndev, intr_status, EESR);
  974. ret = IRQ_HANDLED;
  975. } else
  976. goto other_irq;
  977. if (intr_status & (EESR_FRC | /* Frame recv*/
  978. EESR_RMAF | /* Multi cast address recv*/
  979. EESR_RRF | /* Bit frame recv */
  980. EESR_RTLF | /* Long frame recv*/
  981. EESR_RTSF | /* short frame recv */
  982. EESR_PRE | /* PHY-LSI recv error */
  983. EESR_CERF)){ /* recv frame CRC error */
  984. sh_eth_rx(ndev);
  985. }
  986. /* Tx Check */
  987. if (intr_status & cd->tx_check) {
  988. sh_eth_txfree(ndev);
  989. netif_wake_queue(ndev);
  990. }
  991. if (intr_status & cd->eesr_err_check)
  992. sh_eth_error(ndev, intr_status);
  993. other_irq:
  994. spin_unlock(&mdp->lock);
  995. return ret;
  996. }
  997. static void sh_eth_timer(unsigned long data)
  998. {
  999. struct net_device *ndev = (struct net_device *)data;
  1000. struct sh_eth_private *mdp = netdev_priv(ndev);
  1001. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  1002. }
  1003. /* PHY state control function */
  1004. static void sh_eth_adjust_link(struct net_device *ndev)
  1005. {
  1006. struct sh_eth_private *mdp = netdev_priv(ndev);
  1007. struct phy_device *phydev = mdp->phydev;
  1008. int new_state = 0;
  1009. if (phydev->link != PHY_DOWN) {
  1010. if (phydev->duplex != mdp->duplex) {
  1011. new_state = 1;
  1012. mdp->duplex = phydev->duplex;
  1013. if (mdp->cd->set_duplex)
  1014. mdp->cd->set_duplex(ndev);
  1015. }
  1016. if (phydev->speed != mdp->speed) {
  1017. new_state = 1;
  1018. mdp->speed = phydev->speed;
  1019. if (mdp->cd->set_rate)
  1020. mdp->cd->set_rate(ndev);
  1021. }
  1022. if (mdp->link == PHY_DOWN) {
  1023. sh_eth_write(ndev,
  1024. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1025. new_state = 1;
  1026. mdp->link = phydev->link;
  1027. }
  1028. } else if (mdp->link) {
  1029. new_state = 1;
  1030. mdp->link = PHY_DOWN;
  1031. mdp->speed = 0;
  1032. mdp->duplex = -1;
  1033. }
  1034. if (new_state && netif_msg_link(mdp))
  1035. phy_print_status(phydev);
  1036. }
  1037. /* PHY init function */
  1038. static int sh_eth_phy_init(struct net_device *ndev)
  1039. {
  1040. struct sh_eth_private *mdp = netdev_priv(ndev);
  1041. char phy_id[MII_BUS_ID_SIZE + 3];
  1042. struct phy_device *phydev = NULL;
  1043. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1044. mdp->mii_bus->id , mdp->phy_id);
  1045. mdp->link = PHY_DOWN;
  1046. mdp->speed = 0;
  1047. mdp->duplex = -1;
  1048. /* Try connect to PHY */
  1049. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1050. 0, mdp->phy_interface);
  1051. if (IS_ERR(phydev)) {
  1052. dev_err(&ndev->dev, "phy_connect failed\n");
  1053. return PTR_ERR(phydev);
  1054. }
  1055. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1056. phydev->addr, phydev->drv->name);
  1057. mdp->phydev = phydev;
  1058. return 0;
  1059. }
  1060. /* PHY control start function */
  1061. static int sh_eth_phy_start(struct net_device *ndev)
  1062. {
  1063. struct sh_eth_private *mdp = netdev_priv(ndev);
  1064. int ret;
  1065. ret = sh_eth_phy_init(ndev);
  1066. if (ret)
  1067. return ret;
  1068. /* reset phy - this also wakes it from PDOWN */
  1069. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1070. phy_start(mdp->phydev);
  1071. return 0;
  1072. }
  1073. static int sh_eth_get_settings(struct net_device *ndev,
  1074. struct ethtool_cmd *ecmd)
  1075. {
  1076. struct sh_eth_private *mdp = netdev_priv(ndev);
  1077. unsigned long flags;
  1078. int ret;
  1079. spin_lock_irqsave(&mdp->lock, flags);
  1080. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1081. spin_unlock_irqrestore(&mdp->lock, flags);
  1082. return ret;
  1083. }
  1084. static int sh_eth_set_settings(struct net_device *ndev,
  1085. struct ethtool_cmd *ecmd)
  1086. {
  1087. struct sh_eth_private *mdp = netdev_priv(ndev);
  1088. unsigned long flags;
  1089. int ret;
  1090. spin_lock_irqsave(&mdp->lock, flags);
  1091. /* disable tx and rx */
  1092. sh_eth_rcv_snd_disable(ndev);
  1093. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1094. if (ret)
  1095. goto error_exit;
  1096. if (ecmd->duplex == DUPLEX_FULL)
  1097. mdp->duplex = 1;
  1098. else
  1099. mdp->duplex = 0;
  1100. if (mdp->cd->set_duplex)
  1101. mdp->cd->set_duplex(ndev);
  1102. error_exit:
  1103. mdelay(1);
  1104. /* enable tx and rx */
  1105. sh_eth_rcv_snd_enable(ndev);
  1106. spin_unlock_irqrestore(&mdp->lock, flags);
  1107. return ret;
  1108. }
  1109. static int sh_eth_nway_reset(struct net_device *ndev)
  1110. {
  1111. struct sh_eth_private *mdp = netdev_priv(ndev);
  1112. unsigned long flags;
  1113. int ret;
  1114. spin_lock_irqsave(&mdp->lock, flags);
  1115. ret = phy_start_aneg(mdp->phydev);
  1116. spin_unlock_irqrestore(&mdp->lock, flags);
  1117. return ret;
  1118. }
  1119. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1120. {
  1121. struct sh_eth_private *mdp = netdev_priv(ndev);
  1122. return mdp->msg_enable;
  1123. }
  1124. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1125. {
  1126. struct sh_eth_private *mdp = netdev_priv(ndev);
  1127. mdp->msg_enable = value;
  1128. }
  1129. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1130. "rx_current", "tx_current",
  1131. "rx_dirty", "tx_dirty",
  1132. };
  1133. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1134. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1135. {
  1136. switch (sset) {
  1137. case ETH_SS_STATS:
  1138. return SH_ETH_STATS_LEN;
  1139. default:
  1140. return -EOPNOTSUPP;
  1141. }
  1142. }
  1143. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1144. struct ethtool_stats *stats, u64 *data)
  1145. {
  1146. struct sh_eth_private *mdp = netdev_priv(ndev);
  1147. int i = 0;
  1148. /* device-specific stats */
  1149. data[i++] = mdp->cur_rx;
  1150. data[i++] = mdp->cur_tx;
  1151. data[i++] = mdp->dirty_rx;
  1152. data[i++] = mdp->dirty_tx;
  1153. }
  1154. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1155. {
  1156. switch (stringset) {
  1157. case ETH_SS_STATS:
  1158. memcpy(data, *sh_eth_gstrings_stats,
  1159. sizeof(sh_eth_gstrings_stats));
  1160. break;
  1161. }
  1162. }
  1163. static const struct ethtool_ops sh_eth_ethtool_ops = {
  1164. .get_settings = sh_eth_get_settings,
  1165. .set_settings = sh_eth_set_settings,
  1166. .nway_reset = sh_eth_nway_reset,
  1167. .get_msglevel = sh_eth_get_msglevel,
  1168. .set_msglevel = sh_eth_set_msglevel,
  1169. .get_link = ethtool_op_get_link,
  1170. .get_strings = sh_eth_get_strings,
  1171. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1172. .get_sset_count = sh_eth_get_sset_count,
  1173. };
  1174. /* network device open function */
  1175. static int sh_eth_open(struct net_device *ndev)
  1176. {
  1177. int ret = 0;
  1178. struct sh_eth_private *mdp = netdev_priv(ndev);
  1179. pm_runtime_get_sync(&mdp->pdev->dev);
  1180. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1181. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1182. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1183. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1184. IRQF_SHARED,
  1185. #else
  1186. 0,
  1187. #endif
  1188. ndev->name, ndev);
  1189. if (ret) {
  1190. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1191. return ret;
  1192. }
  1193. /* Descriptor set */
  1194. ret = sh_eth_ring_init(ndev);
  1195. if (ret)
  1196. goto out_free_irq;
  1197. /* device init */
  1198. ret = sh_eth_dev_init(ndev);
  1199. if (ret)
  1200. goto out_free_irq;
  1201. /* PHY control start*/
  1202. ret = sh_eth_phy_start(ndev);
  1203. if (ret)
  1204. goto out_free_irq;
  1205. /* Set the timer to check for link beat. */
  1206. init_timer(&mdp->timer);
  1207. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1208. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  1209. return ret;
  1210. out_free_irq:
  1211. free_irq(ndev->irq, ndev);
  1212. pm_runtime_put_sync(&mdp->pdev->dev);
  1213. return ret;
  1214. }
  1215. /* Timeout function */
  1216. static void sh_eth_tx_timeout(struct net_device *ndev)
  1217. {
  1218. struct sh_eth_private *mdp = netdev_priv(ndev);
  1219. struct sh_eth_rxdesc *rxdesc;
  1220. int i;
  1221. netif_stop_queue(ndev);
  1222. if (netif_msg_timer(mdp))
  1223. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1224. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1225. /* tx_errors count up */
  1226. ndev->stats.tx_errors++;
  1227. /* timer off */
  1228. del_timer_sync(&mdp->timer);
  1229. /* Free all the skbuffs in the Rx queue. */
  1230. for (i = 0; i < RX_RING_SIZE; i++) {
  1231. rxdesc = &mdp->rx_ring[i];
  1232. rxdesc->status = 0;
  1233. rxdesc->addr = 0xBADF00D0;
  1234. if (mdp->rx_skbuff[i])
  1235. dev_kfree_skb(mdp->rx_skbuff[i]);
  1236. mdp->rx_skbuff[i] = NULL;
  1237. }
  1238. for (i = 0; i < TX_RING_SIZE; i++) {
  1239. if (mdp->tx_skbuff[i])
  1240. dev_kfree_skb(mdp->tx_skbuff[i]);
  1241. mdp->tx_skbuff[i] = NULL;
  1242. }
  1243. /* device init */
  1244. sh_eth_dev_init(ndev);
  1245. /* timer on */
  1246. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  1247. add_timer(&mdp->timer);
  1248. }
  1249. /* Packet transmit function */
  1250. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1251. {
  1252. struct sh_eth_private *mdp = netdev_priv(ndev);
  1253. struct sh_eth_txdesc *txdesc;
  1254. u32 entry;
  1255. unsigned long flags;
  1256. spin_lock_irqsave(&mdp->lock, flags);
  1257. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  1258. if (!sh_eth_txfree(ndev)) {
  1259. if (netif_msg_tx_queued(mdp))
  1260. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1261. netif_stop_queue(ndev);
  1262. spin_unlock_irqrestore(&mdp->lock, flags);
  1263. return NETDEV_TX_BUSY;
  1264. }
  1265. }
  1266. spin_unlock_irqrestore(&mdp->lock, flags);
  1267. entry = mdp->cur_tx % TX_RING_SIZE;
  1268. mdp->tx_skbuff[entry] = skb;
  1269. txdesc = &mdp->tx_ring[entry];
  1270. /* soft swap. */
  1271. if (!mdp->cd->hw_swap)
  1272. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1273. skb->len + 2);
  1274. txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
  1275. DMA_TO_DEVICE);
  1276. if (skb->len < ETHERSMALL)
  1277. txdesc->buffer_length = ETHERSMALL;
  1278. else
  1279. txdesc->buffer_length = skb->len;
  1280. if (entry >= TX_RING_SIZE - 1)
  1281. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1282. else
  1283. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1284. mdp->cur_tx++;
  1285. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1286. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1287. return NETDEV_TX_OK;
  1288. }
  1289. /* device close function */
  1290. static int sh_eth_close(struct net_device *ndev)
  1291. {
  1292. struct sh_eth_private *mdp = netdev_priv(ndev);
  1293. int ringsize;
  1294. netif_stop_queue(ndev);
  1295. /* Disable interrupts by clearing the interrupt mask. */
  1296. sh_eth_write(ndev, 0x0000, EESIPR);
  1297. /* Stop the chip's Tx and Rx processes. */
  1298. sh_eth_write(ndev, 0, EDTRR);
  1299. sh_eth_write(ndev, 0, EDRRR);
  1300. /* PHY Disconnect */
  1301. if (mdp->phydev) {
  1302. phy_stop(mdp->phydev);
  1303. phy_disconnect(mdp->phydev);
  1304. }
  1305. free_irq(ndev->irq, ndev);
  1306. del_timer_sync(&mdp->timer);
  1307. /* Free all the skbuffs in the Rx queue. */
  1308. sh_eth_ring_free(ndev);
  1309. /* free DMA buffer */
  1310. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  1311. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  1312. /* free DMA buffer */
  1313. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  1314. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  1315. pm_runtime_put_sync(&mdp->pdev->dev);
  1316. return 0;
  1317. }
  1318. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1319. {
  1320. struct sh_eth_private *mdp = netdev_priv(ndev);
  1321. pm_runtime_get_sync(&mdp->pdev->dev);
  1322. ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1323. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1324. ndev->stats.collisions += sh_eth_read(ndev, CDCR);
  1325. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1326. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1327. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1328. if (sh_eth_is_gether(mdp)) {
  1329. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1330. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1331. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1332. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1333. } else {
  1334. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1335. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1336. }
  1337. pm_runtime_put_sync(&mdp->pdev->dev);
  1338. return &ndev->stats;
  1339. }
  1340. /* ioctl to device function */
  1341. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1342. int cmd)
  1343. {
  1344. struct sh_eth_private *mdp = netdev_priv(ndev);
  1345. struct phy_device *phydev = mdp->phydev;
  1346. if (!netif_running(ndev))
  1347. return -EINVAL;
  1348. if (!phydev)
  1349. return -ENODEV;
  1350. return phy_mii_ioctl(phydev, rq, cmd);
  1351. }
  1352. #if defined(SH_ETH_HAS_TSU)
  1353. /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
  1354. static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
  1355. int entry)
  1356. {
  1357. return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
  1358. }
  1359. static u32 sh_eth_tsu_get_post_mask(int entry)
  1360. {
  1361. return 0x0f << (28 - ((entry % 8) * 4));
  1362. }
  1363. static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
  1364. {
  1365. return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
  1366. }
  1367. static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
  1368. int entry)
  1369. {
  1370. struct sh_eth_private *mdp = netdev_priv(ndev);
  1371. u32 tmp;
  1372. void *reg_offset;
  1373. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1374. tmp = ioread32(reg_offset);
  1375. iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
  1376. }
  1377. static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
  1378. int entry)
  1379. {
  1380. struct sh_eth_private *mdp = netdev_priv(ndev);
  1381. u32 post_mask, ref_mask, tmp;
  1382. void *reg_offset;
  1383. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1384. post_mask = sh_eth_tsu_get_post_mask(entry);
  1385. ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
  1386. tmp = ioread32(reg_offset);
  1387. iowrite32(tmp & ~post_mask, reg_offset);
  1388. /* If other port enables, the function returns "true" */
  1389. return tmp & ref_mask;
  1390. }
  1391. static int sh_eth_tsu_busy(struct net_device *ndev)
  1392. {
  1393. int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
  1394. struct sh_eth_private *mdp = netdev_priv(ndev);
  1395. while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
  1396. udelay(10);
  1397. timeout--;
  1398. if (timeout <= 0) {
  1399. dev_err(&ndev->dev, "%s: timeout\n", __func__);
  1400. return -ETIMEDOUT;
  1401. }
  1402. }
  1403. return 0;
  1404. }
  1405. static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
  1406. const u8 *addr)
  1407. {
  1408. u32 val;
  1409. val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
  1410. iowrite32(val, reg);
  1411. if (sh_eth_tsu_busy(ndev) < 0)
  1412. return -EBUSY;
  1413. val = addr[4] << 8 | addr[5];
  1414. iowrite32(val, reg + 4);
  1415. if (sh_eth_tsu_busy(ndev) < 0)
  1416. return -EBUSY;
  1417. return 0;
  1418. }
  1419. static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
  1420. {
  1421. u32 val;
  1422. val = ioread32(reg);
  1423. addr[0] = (val >> 24) & 0xff;
  1424. addr[1] = (val >> 16) & 0xff;
  1425. addr[2] = (val >> 8) & 0xff;
  1426. addr[3] = val & 0xff;
  1427. val = ioread32(reg + 4);
  1428. addr[4] = (val >> 8) & 0xff;
  1429. addr[5] = val & 0xff;
  1430. }
  1431. static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
  1432. {
  1433. struct sh_eth_private *mdp = netdev_priv(ndev);
  1434. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1435. int i;
  1436. u8 c_addr[ETH_ALEN];
  1437. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1438. sh_eth_tsu_read_entry(reg_offset, c_addr);
  1439. if (memcmp(addr, c_addr, ETH_ALEN) == 0)
  1440. return i;
  1441. }
  1442. return -ENOENT;
  1443. }
  1444. static int sh_eth_tsu_find_empty(struct net_device *ndev)
  1445. {
  1446. u8 blank[ETH_ALEN];
  1447. int entry;
  1448. memset(blank, 0, sizeof(blank));
  1449. entry = sh_eth_tsu_find_entry(ndev, blank);
  1450. return (entry < 0) ? -ENOMEM : entry;
  1451. }
  1452. static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
  1453. int entry)
  1454. {
  1455. struct sh_eth_private *mdp = netdev_priv(ndev);
  1456. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1457. int ret;
  1458. u8 blank[ETH_ALEN];
  1459. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
  1460. ~(1 << (31 - entry)), TSU_TEN);
  1461. memset(blank, 0, sizeof(blank));
  1462. ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
  1463. if (ret < 0)
  1464. return ret;
  1465. return 0;
  1466. }
  1467. static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
  1468. {
  1469. struct sh_eth_private *mdp = netdev_priv(ndev);
  1470. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1471. int i, ret;
  1472. if (!mdp->cd->tsu)
  1473. return 0;
  1474. i = sh_eth_tsu_find_entry(ndev, addr);
  1475. if (i < 0) {
  1476. /* No entry found, create one */
  1477. i = sh_eth_tsu_find_empty(ndev);
  1478. if (i < 0)
  1479. return -ENOMEM;
  1480. ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
  1481. if (ret < 0)
  1482. return ret;
  1483. /* Enable the entry */
  1484. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
  1485. (1 << (31 - i)), TSU_TEN);
  1486. }
  1487. /* Entry found or created, enable POST */
  1488. sh_eth_tsu_enable_cam_entry_post(ndev, i);
  1489. return 0;
  1490. }
  1491. static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
  1492. {
  1493. struct sh_eth_private *mdp = netdev_priv(ndev);
  1494. int i, ret;
  1495. if (!mdp->cd->tsu)
  1496. return 0;
  1497. i = sh_eth_tsu_find_entry(ndev, addr);
  1498. if (i) {
  1499. /* Entry found */
  1500. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1501. goto done;
  1502. /* Disable the entry if both ports was disabled */
  1503. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1504. if (ret < 0)
  1505. return ret;
  1506. }
  1507. done:
  1508. return 0;
  1509. }
  1510. static int sh_eth_tsu_purge_all(struct net_device *ndev)
  1511. {
  1512. struct sh_eth_private *mdp = netdev_priv(ndev);
  1513. int i, ret;
  1514. if (unlikely(!mdp->cd->tsu))
  1515. return 0;
  1516. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
  1517. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1518. continue;
  1519. /* Disable the entry if both ports was disabled */
  1520. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1521. if (ret < 0)
  1522. return ret;
  1523. }
  1524. return 0;
  1525. }
  1526. static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
  1527. {
  1528. struct sh_eth_private *mdp = netdev_priv(ndev);
  1529. u8 addr[ETH_ALEN];
  1530. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1531. int i;
  1532. if (unlikely(!mdp->cd->tsu))
  1533. return;
  1534. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1535. sh_eth_tsu_read_entry(reg_offset, addr);
  1536. if (is_multicast_ether_addr(addr))
  1537. sh_eth_tsu_del_entry(ndev, addr);
  1538. }
  1539. }
  1540. /* Multicast reception directions set */
  1541. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1542. {
  1543. struct sh_eth_private *mdp = netdev_priv(ndev);
  1544. u32 ecmr_bits;
  1545. int mcast_all = 0;
  1546. unsigned long flags;
  1547. spin_lock_irqsave(&mdp->lock, flags);
  1548. /*
  1549. * Initial condition is MCT = 1, PRM = 0.
  1550. * Depending on ndev->flags, set PRM or clear MCT
  1551. */
  1552. ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
  1553. if (!(ndev->flags & IFF_MULTICAST)) {
  1554. sh_eth_tsu_purge_mcast(ndev);
  1555. mcast_all = 1;
  1556. }
  1557. if (ndev->flags & IFF_ALLMULTI) {
  1558. sh_eth_tsu_purge_mcast(ndev);
  1559. ecmr_bits &= ~ECMR_MCT;
  1560. mcast_all = 1;
  1561. }
  1562. if (ndev->flags & IFF_PROMISC) {
  1563. sh_eth_tsu_purge_all(ndev);
  1564. ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
  1565. } else if (mdp->cd->tsu) {
  1566. struct netdev_hw_addr *ha;
  1567. netdev_for_each_mc_addr(ha, ndev) {
  1568. if (mcast_all && is_multicast_ether_addr(ha->addr))
  1569. continue;
  1570. if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
  1571. if (!mcast_all) {
  1572. sh_eth_tsu_purge_mcast(ndev);
  1573. ecmr_bits &= ~ECMR_MCT;
  1574. mcast_all = 1;
  1575. }
  1576. }
  1577. }
  1578. } else {
  1579. /* Normal, unicast/broadcast-only mode. */
  1580. ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
  1581. }
  1582. /* update the ethernet mode */
  1583. sh_eth_write(ndev, ecmr_bits, ECMR);
  1584. spin_unlock_irqrestore(&mdp->lock, flags);
  1585. }
  1586. static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
  1587. {
  1588. if (!mdp->port)
  1589. return TSU_VTAG0;
  1590. else
  1591. return TSU_VTAG1;
  1592. }
  1593. static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1594. {
  1595. struct sh_eth_private *mdp = netdev_priv(ndev);
  1596. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1597. if (unlikely(!mdp->cd->tsu))
  1598. return -EPERM;
  1599. /* No filtering if vid = 0 */
  1600. if (!vid)
  1601. return 0;
  1602. mdp->vlan_num_ids++;
  1603. /*
  1604. * The controller has one VLAN tag HW filter. So, if the filter is
  1605. * already enabled, the driver disables it and the filte
  1606. */
  1607. if (mdp->vlan_num_ids > 1) {
  1608. /* disable VLAN filter */
  1609. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1610. return 0;
  1611. }
  1612. sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
  1613. vtag_reg_index);
  1614. return 0;
  1615. }
  1616. static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1617. {
  1618. struct sh_eth_private *mdp = netdev_priv(ndev);
  1619. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1620. if (unlikely(!mdp->cd->tsu))
  1621. return -EPERM;
  1622. /* No filtering if vid = 0 */
  1623. if (!vid)
  1624. return 0;
  1625. mdp->vlan_num_ids--;
  1626. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1627. return 0;
  1628. }
  1629. #endif /* SH_ETH_HAS_TSU */
  1630. /* SuperH's TSU register init function */
  1631. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1632. {
  1633. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1634. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1635. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1636. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1637. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1638. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1639. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1640. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1641. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1642. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1643. if (sh_eth_is_gether(mdp)) {
  1644. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1645. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1646. } else {
  1647. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1648. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1649. }
  1650. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1651. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1652. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1653. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1654. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1655. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1656. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1657. }
  1658. /* MDIO bus release function */
  1659. static int sh_mdio_release(struct net_device *ndev)
  1660. {
  1661. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1662. /* unregister mdio bus */
  1663. mdiobus_unregister(bus);
  1664. /* remove mdio bus info from net_device */
  1665. dev_set_drvdata(&ndev->dev, NULL);
  1666. /* free interrupts memory */
  1667. kfree(bus->irq);
  1668. /* free bitbang info */
  1669. free_mdio_bitbang(bus);
  1670. return 0;
  1671. }
  1672. /* MDIO bus init function */
  1673. static int sh_mdio_init(struct net_device *ndev, int id,
  1674. struct sh_eth_plat_data *pd)
  1675. {
  1676. int ret, i;
  1677. struct bb_info *bitbang;
  1678. struct sh_eth_private *mdp = netdev_priv(ndev);
  1679. /* create bit control struct for PHY */
  1680. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1681. if (!bitbang) {
  1682. ret = -ENOMEM;
  1683. goto out;
  1684. }
  1685. /* bitbang init */
  1686. bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
  1687. bitbang->set_gate = pd->set_mdio_gate;
  1688. bitbang->mdi_msk = 0x08;
  1689. bitbang->mdo_msk = 0x04;
  1690. bitbang->mmd_msk = 0x02;/* MMD */
  1691. bitbang->mdc_msk = 0x01;
  1692. bitbang->ctrl.ops = &bb_ops;
  1693. /* MII controller setting */
  1694. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1695. if (!mdp->mii_bus) {
  1696. ret = -ENOMEM;
  1697. goto out_free_bitbang;
  1698. }
  1699. /* Hook up MII support for ethtool */
  1700. mdp->mii_bus->name = "sh_mii";
  1701. mdp->mii_bus->parent = &ndev->dev;
  1702. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1703. mdp->pdev->name, id);
  1704. /* PHY IRQ */
  1705. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1706. if (!mdp->mii_bus->irq) {
  1707. ret = -ENOMEM;
  1708. goto out_free_bus;
  1709. }
  1710. for (i = 0; i < PHY_MAX_ADDR; i++)
  1711. mdp->mii_bus->irq[i] = PHY_POLL;
  1712. /* regist mdio bus */
  1713. ret = mdiobus_register(mdp->mii_bus);
  1714. if (ret)
  1715. goto out_free_irq;
  1716. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1717. return 0;
  1718. out_free_irq:
  1719. kfree(mdp->mii_bus->irq);
  1720. out_free_bus:
  1721. free_mdio_bitbang(mdp->mii_bus);
  1722. out_free_bitbang:
  1723. kfree(bitbang);
  1724. out:
  1725. return ret;
  1726. }
  1727. static const u16 *sh_eth_get_register_offset(int register_type)
  1728. {
  1729. const u16 *reg_offset = NULL;
  1730. switch (register_type) {
  1731. case SH_ETH_REG_GIGABIT:
  1732. reg_offset = sh_eth_offset_gigabit;
  1733. break;
  1734. case SH_ETH_REG_FAST_SH4:
  1735. reg_offset = sh_eth_offset_fast_sh4;
  1736. break;
  1737. case SH_ETH_REG_FAST_SH3_SH2:
  1738. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1739. break;
  1740. default:
  1741. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1742. break;
  1743. }
  1744. return reg_offset;
  1745. }
  1746. static const struct net_device_ops sh_eth_netdev_ops = {
  1747. .ndo_open = sh_eth_open,
  1748. .ndo_stop = sh_eth_close,
  1749. .ndo_start_xmit = sh_eth_start_xmit,
  1750. .ndo_get_stats = sh_eth_get_stats,
  1751. #if defined(SH_ETH_HAS_TSU)
  1752. .ndo_set_rx_mode = sh_eth_set_multicast_list,
  1753. .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
  1754. .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
  1755. #endif
  1756. .ndo_tx_timeout = sh_eth_tx_timeout,
  1757. .ndo_do_ioctl = sh_eth_do_ioctl,
  1758. .ndo_validate_addr = eth_validate_addr,
  1759. .ndo_set_mac_address = eth_mac_addr,
  1760. .ndo_change_mtu = eth_change_mtu,
  1761. };
  1762. static int sh_eth_drv_probe(struct platform_device *pdev)
  1763. {
  1764. int ret, devno = 0;
  1765. struct resource *res;
  1766. struct net_device *ndev = NULL;
  1767. struct sh_eth_private *mdp = NULL;
  1768. struct sh_eth_plat_data *pd;
  1769. /* get base addr */
  1770. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1771. if (unlikely(res == NULL)) {
  1772. dev_err(&pdev->dev, "invalid resource\n");
  1773. ret = -EINVAL;
  1774. goto out;
  1775. }
  1776. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1777. if (!ndev) {
  1778. ret = -ENOMEM;
  1779. goto out;
  1780. }
  1781. /* The sh Ether-specific entries in the device structure. */
  1782. ndev->base_addr = res->start;
  1783. devno = pdev->id;
  1784. if (devno < 0)
  1785. devno = 0;
  1786. ndev->dma = -1;
  1787. ret = platform_get_irq(pdev, 0);
  1788. if (ret < 0) {
  1789. ret = -ENODEV;
  1790. goto out_release;
  1791. }
  1792. ndev->irq = ret;
  1793. SET_NETDEV_DEV(ndev, &pdev->dev);
  1794. /* Fill in the fields of the device structure with ethernet values. */
  1795. ether_setup(ndev);
  1796. mdp = netdev_priv(ndev);
  1797. mdp->addr = ioremap(res->start, resource_size(res));
  1798. if (mdp->addr == NULL) {
  1799. ret = -ENOMEM;
  1800. dev_err(&pdev->dev, "ioremap failed.\n");
  1801. goto out_release;
  1802. }
  1803. spin_lock_init(&mdp->lock);
  1804. mdp->pdev = pdev;
  1805. pm_runtime_enable(&pdev->dev);
  1806. pm_runtime_resume(&pdev->dev);
  1807. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1808. /* get PHY ID */
  1809. mdp->phy_id = pd->phy;
  1810. mdp->phy_interface = pd->phy_interface;
  1811. /* EDMAC endian */
  1812. mdp->edmac_endian = pd->edmac_endian;
  1813. mdp->no_ether_link = pd->no_ether_link;
  1814. mdp->ether_link_active_low = pd->ether_link_active_low;
  1815. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  1816. /* set cpu data */
  1817. #if defined(SH_ETH_HAS_BOTH_MODULES)
  1818. mdp->cd = sh_eth_get_cpu_data(mdp);
  1819. #else
  1820. mdp->cd = &sh_eth_my_cpu_data;
  1821. #endif
  1822. sh_eth_set_default_cpu_data(mdp->cd);
  1823. /* set function */
  1824. ndev->netdev_ops = &sh_eth_netdev_ops;
  1825. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  1826. ndev->watchdog_timeo = TX_TIMEOUT;
  1827. /* debug message level */
  1828. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  1829. mdp->post_rx = POST_RX >> (devno << 1);
  1830. mdp->post_fw = POST_FW >> (devno << 1);
  1831. /* read and set MAC address */
  1832. read_mac_address(ndev, pd->mac_addr);
  1833. /* ioremap the TSU registers */
  1834. if (mdp->cd->tsu) {
  1835. struct resource *rtsu;
  1836. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1837. if (!rtsu) {
  1838. dev_err(&pdev->dev, "Not found TSU resource\n");
  1839. goto out_release;
  1840. }
  1841. mdp->tsu_addr = ioremap(rtsu->start,
  1842. resource_size(rtsu));
  1843. mdp->port = devno % 2;
  1844. ndev->features = NETIF_F_HW_VLAN_FILTER;
  1845. }
  1846. /* initialize first or needed device */
  1847. if (!devno || pd->needs_init) {
  1848. if (mdp->cd->chip_reset)
  1849. mdp->cd->chip_reset(ndev);
  1850. if (mdp->cd->tsu) {
  1851. /* TSU init (Init only)*/
  1852. sh_eth_tsu_init(mdp);
  1853. }
  1854. }
  1855. /* network device register */
  1856. ret = register_netdev(ndev);
  1857. if (ret)
  1858. goto out_release;
  1859. /* mdio bus init */
  1860. ret = sh_mdio_init(ndev, pdev->id, pd);
  1861. if (ret)
  1862. goto out_unregister;
  1863. /* print device information */
  1864. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  1865. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  1866. platform_set_drvdata(pdev, ndev);
  1867. return ret;
  1868. out_unregister:
  1869. unregister_netdev(ndev);
  1870. out_release:
  1871. /* net_dev free */
  1872. if (mdp && mdp->addr)
  1873. iounmap(mdp->addr);
  1874. if (mdp && mdp->tsu_addr)
  1875. iounmap(mdp->tsu_addr);
  1876. if (ndev)
  1877. free_netdev(ndev);
  1878. out:
  1879. return ret;
  1880. }
  1881. static int sh_eth_drv_remove(struct platform_device *pdev)
  1882. {
  1883. struct net_device *ndev = platform_get_drvdata(pdev);
  1884. struct sh_eth_private *mdp = netdev_priv(ndev);
  1885. if (mdp->cd->tsu)
  1886. iounmap(mdp->tsu_addr);
  1887. sh_mdio_release(ndev);
  1888. unregister_netdev(ndev);
  1889. pm_runtime_disable(&pdev->dev);
  1890. iounmap(mdp->addr);
  1891. free_netdev(ndev);
  1892. platform_set_drvdata(pdev, NULL);
  1893. return 0;
  1894. }
  1895. static int sh_eth_runtime_nop(struct device *dev)
  1896. {
  1897. /*
  1898. * Runtime PM callback shared between ->runtime_suspend()
  1899. * and ->runtime_resume(). Simply returns success.
  1900. *
  1901. * This driver re-initializes all registers after
  1902. * pm_runtime_get_sync() anyway so there is no need
  1903. * to save and restore registers here.
  1904. */
  1905. return 0;
  1906. }
  1907. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  1908. .runtime_suspend = sh_eth_runtime_nop,
  1909. .runtime_resume = sh_eth_runtime_nop,
  1910. };
  1911. static struct platform_driver sh_eth_driver = {
  1912. .probe = sh_eth_drv_probe,
  1913. .remove = sh_eth_drv_remove,
  1914. .driver = {
  1915. .name = CARDNAME,
  1916. .pm = &sh_eth_dev_pm_ops,
  1917. },
  1918. };
  1919. module_platform_driver(sh_eth_driver);
  1920. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1921. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1922. MODULE_LICENSE("GPL v2");