forcedeth.c 188 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  43. #define FORCEDETH_VERSION "0.64"
  44. #define DRV_NAME "forcedeth"
  45. #include <linux/module.h>
  46. #include <linux/types.h>
  47. #include <linux/pci.h>
  48. #include <linux/interrupt.h>
  49. #include <linux/netdevice.h>
  50. #include <linux/etherdevice.h>
  51. #include <linux/delay.h>
  52. #include <linux/sched.h>
  53. #include <linux/spinlock.h>
  54. #include <linux/ethtool.h>
  55. #include <linux/timer.h>
  56. #include <linux/skbuff.h>
  57. #include <linux/mii.h>
  58. #include <linux/random.h>
  59. #include <linux/init.h>
  60. #include <linux/if_vlan.h>
  61. #include <linux/dma-mapping.h>
  62. #include <linux/slab.h>
  63. #include <linux/uaccess.h>
  64. #include <linux/prefetch.h>
  65. #include <linux/u64_stats_sync.h>
  66. #include <linux/io.h>
  67. #include <asm/irq.h>
  68. #include <asm/system.h>
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x0000400 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_STATISTICS_V3 0x0000800 /* device supports hw statistics version 3 */
  86. #define DEV_HAS_STATISTICS_V12 0x0000600 /* device supports hw statistics version 1 and 2 */
  87. #define DEV_HAS_STATISTICS_V123 0x0000e00 /* device supports hw statistics version 1, 2, and 3 */
  88. #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
  89. #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
  90. #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
  91. #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
  92. #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
  93. #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
  94. #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
  95. #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
  96. #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
  97. #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
  98. #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
  99. #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
  100. #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
  101. enum {
  102. NvRegIrqStatus = 0x000,
  103. #define NVREG_IRQSTAT_MIIEVENT 0x040
  104. #define NVREG_IRQSTAT_MASK 0x83ff
  105. NvRegIrqMask = 0x004,
  106. #define NVREG_IRQ_RX_ERROR 0x0001
  107. #define NVREG_IRQ_RX 0x0002
  108. #define NVREG_IRQ_RX_NOBUF 0x0004
  109. #define NVREG_IRQ_TX_ERR 0x0008
  110. #define NVREG_IRQ_TX_OK 0x0010
  111. #define NVREG_IRQ_TIMER 0x0020
  112. #define NVREG_IRQ_LINK 0x0040
  113. #define NVREG_IRQ_RX_FORCED 0x0080
  114. #define NVREG_IRQ_TX_FORCED 0x0100
  115. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  116. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  117. #define NVREG_IRQMASK_CPU 0x0060
  118. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  119. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  120. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  121. NvRegUnknownSetupReg6 = 0x008,
  122. #define NVREG_UNKSETUP6_VAL 3
  123. /*
  124. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  125. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  126. */
  127. NvRegPollingInterval = 0x00c,
  128. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  129. #define NVREG_POLL_DEFAULT_CPU 13
  130. NvRegMSIMap0 = 0x020,
  131. NvRegMSIMap1 = 0x024,
  132. NvRegMSIIrqMask = 0x030,
  133. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  134. NvRegMisc1 = 0x080,
  135. #define NVREG_MISC1_PAUSE_TX 0x01
  136. #define NVREG_MISC1_HD 0x02
  137. #define NVREG_MISC1_FORCE 0x3b0f3c
  138. NvRegMacReset = 0x34,
  139. #define NVREG_MAC_RESET_ASSERT 0x0F3
  140. NvRegTransmitterControl = 0x084,
  141. #define NVREG_XMITCTL_START 0x01
  142. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  143. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  144. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  145. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  146. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  147. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  148. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  149. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  150. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  151. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  152. #define NVREG_XMITCTL_DATA_START 0x00100000
  153. #define NVREG_XMITCTL_DATA_READY 0x00010000
  154. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  155. NvRegTransmitterStatus = 0x088,
  156. #define NVREG_XMITSTAT_BUSY 0x01
  157. NvRegPacketFilterFlags = 0x8c,
  158. #define NVREG_PFF_PAUSE_RX 0x08
  159. #define NVREG_PFF_ALWAYS 0x7F0000
  160. #define NVREG_PFF_PROMISC 0x80
  161. #define NVREG_PFF_MYADDR 0x20
  162. #define NVREG_PFF_LOOPBACK 0x10
  163. NvRegOffloadConfig = 0x90,
  164. #define NVREG_OFFLOAD_HOMEPHY 0x601
  165. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  166. NvRegReceiverControl = 0x094,
  167. #define NVREG_RCVCTL_START 0x01
  168. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  169. NvRegReceiverStatus = 0x98,
  170. #define NVREG_RCVSTAT_BUSY 0x01
  171. NvRegSlotTime = 0x9c,
  172. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  173. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  174. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  175. #define NVREG_SLOTTIME_HALF 0x0000ff00
  176. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  177. #define NVREG_SLOTTIME_MASK 0x000000ff
  178. NvRegTxDeferral = 0xA0,
  179. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  180. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  181. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  182. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  183. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  184. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  185. NvRegRxDeferral = 0xA4,
  186. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  187. NvRegMacAddrA = 0xA8,
  188. NvRegMacAddrB = 0xAC,
  189. NvRegMulticastAddrA = 0xB0,
  190. #define NVREG_MCASTADDRA_FORCE 0x01
  191. NvRegMulticastAddrB = 0xB4,
  192. NvRegMulticastMaskA = 0xB8,
  193. #define NVREG_MCASTMASKA_NONE 0xffffffff
  194. NvRegMulticastMaskB = 0xBC,
  195. #define NVREG_MCASTMASKB_NONE 0xffff
  196. NvRegPhyInterface = 0xC0,
  197. #define PHY_RGMII 0x10000000
  198. NvRegBackOffControl = 0xC4,
  199. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  200. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  201. #define NVREG_BKOFFCTRL_SELECT 24
  202. #define NVREG_BKOFFCTRL_GEAR 12
  203. NvRegTxRingPhysAddr = 0x100,
  204. NvRegRxRingPhysAddr = 0x104,
  205. NvRegRingSizes = 0x108,
  206. #define NVREG_RINGSZ_TXSHIFT 0
  207. #define NVREG_RINGSZ_RXSHIFT 16
  208. NvRegTransmitPoll = 0x10c,
  209. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  210. NvRegLinkSpeed = 0x110,
  211. #define NVREG_LINKSPEED_FORCE 0x10000
  212. #define NVREG_LINKSPEED_10 1000
  213. #define NVREG_LINKSPEED_100 100
  214. #define NVREG_LINKSPEED_1000 50
  215. #define NVREG_LINKSPEED_MASK (0xFFF)
  216. NvRegUnknownSetupReg5 = 0x130,
  217. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  218. NvRegTxWatermark = 0x13c,
  219. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  220. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  221. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  222. NvRegTxRxControl = 0x144,
  223. #define NVREG_TXRXCTL_KICK 0x0001
  224. #define NVREG_TXRXCTL_BIT1 0x0002
  225. #define NVREG_TXRXCTL_BIT2 0x0004
  226. #define NVREG_TXRXCTL_IDLE 0x0008
  227. #define NVREG_TXRXCTL_RESET 0x0010
  228. #define NVREG_TXRXCTL_RXCHECK 0x0400
  229. #define NVREG_TXRXCTL_DESC_1 0
  230. #define NVREG_TXRXCTL_DESC_2 0x002100
  231. #define NVREG_TXRXCTL_DESC_3 0xc02200
  232. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  233. #define NVREG_TXRXCTL_VLANINS 0x00080
  234. NvRegTxRingPhysAddrHigh = 0x148,
  235. NvRegRxRingPhysAddrHigh = 0x14C,
  236. NvRegTxPauseFrame = 0x170,
  237. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  238. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  239. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  240. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  241. NvRegTxPauseFrameLimit = 0x174,
  242. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  243. NvRegMIIStatus = 0x180,
  244. #define NVREG_MIISTAT_ERROR 0x0001
  245. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  246. #define NVREG_MIISTAT_MASK_RW 0x0007
  247. #define NVREG_MIISTAT_MASK_ALL 0x000f
  248. NvRegMIIMask = 0x184,
  249. #define NVREG_MII_LINKCHANGE 0x0008
  250. NvRegAdapterControl = 0x188,
  251. #define NVREG_ADAPTCTL_START 0x02
  252. #define NVREG_ADAPTCTL_LINKUP 0x04
  253. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  254. #define NVREG_ADAPTCTL_RUNNING 0x100000
  255. #define NVREG_ADAPTCTL_PHYSHIFT 24
  256. NvRegMIISpeed = 0x18c,
  257. #define NVREG_MIISPEED_BIT8 (1<<8)
  258. #define NVREG_MIIDELAY 5
  259. NvRegMIIControl = 0x190,
  260. #define NVREG_MIICTL_INUSE 0x08000
  261. #define NVREG_MIICTL_WRITE 0x00400
  262. #define NVREG_MIICTL_ADDRSHIFT 5
  263. NvRegMIIData = 0x194,
  264. NvRegTxUnicast = 0x1a0,
  265. NvRegTxMulticast = 0x1a4,
  266. NvRegTxBroadcast = 0x1a8,
  267. NvRegWakeUpFlags = 0x200,
  268. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  269. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  270. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  271. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  272. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  273. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  274. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  275. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  276. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  277. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  278. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  279. NvRegMgmtUnitGetVersion = 0x204,
  280. #define NVREG_MGMTUNITGETVERSION 0x01
  281. NvRegMgmtUnitVersion = 0x208,
  282. #define NVREG_MGMTUNITVERSION 0x08
  283. NvRegPowerCap = 0x268,
  284. #define NVREG_POWERCAP_D3SUPP (1<<30)
  285. #define NVREG_POWERCAP_D2SUPP (1<<26)
  286. #define NVREG_POWERCAP_D1SUPP (1<<25)
  287. NvRegPowerState = 0x26c,
  288. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  289. #define NVREG_POWERSTATE_VALID 0x0100
  290. #define NVREG_POWERSTATE_MASK 0x0003
  291. #define NVREG_POWERSTATE_D0 0x0000
  292. #define NVREG_POWERSTATE_D1 0x0001
  293. #define NVREG_POWERSTATE_D2 0x0002
  294. #define NVREG_POWERSTATE_D3 0x0003
  295. NvRegMgmtUnitControl = 0x278,
  296. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  297. NvRegTxCnt = 0x280,
  298. NvRegTxZeroReXmt = 0x284,
  299. NvRegTxOneReXmt = 0x288,
  300. NvRegTxManyReXmt = 0x28c,
  301. NvRegTxLateCol = 0x290,
  302. NvRegTxUnderflow = 0x294,
  303. NvRegTxLossCarrier = 0x298,
  304. NvRegTxExcessDef = 0x29c,
  305. NvRegTxRetryErr = 0x2a0,
  306. NvRegRxFrameErr = 0x2a4,
  307. NvRegRxExtraByte = 0x2a8,
  308. NvRegRxLateCol = 0x2ac,
  309. NvRegRxRunt = 0x2b0,
  310. NvRegRxFrameTooLong = 0x2b4,
  311. NvRegRxOverflow = 0x2b8,
  312. NvRegRxFCSErr = 0x2bc,
  313. NvRegRxFrameAlignErr = 0x2c0,
  314. NvRegRxLenErr = 0x2c4,
  315. NvRegRxUnicast = 0x2c8,
  316. NvRegRxMulticast = 0x2cc,
  317. NvRegRxBroadcast = 0x2d0,
  318. NvRegTxDef = 0x2d4,
  319. NvRegTxFrame = 0x2d8,
  320. NvRegRxCnt = 0x2dc,
  321. NvRegTxPause = 0x2e0,
  322. NvRegRxPause = 0x2e4,
  323. NvRegRxDropFrame = 0x2e8,
  324. NvRegVlanControl = 0x300,
  325. #define NVREG_VLANCONTROL_ENABLE 0x2000
  326. NvRegMSIXMap0 = 0x3e0,
  327. NvRegMSIXMap1 = 0x3e4,
  328. NvRegMSIXIrqStatus = 0x3f0,
  329. NvRegPowerState2 = 0x600,
  330. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  331. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  332. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  333. #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
  334. };
  335. /* Big endian: should work, but is untested */
  336. struct ring_desc {
  337. __le32 buf;
  338. __le32 flaglen;
  339. };
  340. struct ring_desc_ex {
  341. __le32 bufhigh;
  342. __le32 buflow;
  343. __le32 txvlan;
  344. __le32 flaglen;
  345. };
  346. union ring_type {
  347. struct ring_desc *orig;
  348. struct ring_desc_ex *ex;
  349. };
  350. #define FLAG_MASK_V1 0xffff0000
  351. #define FLAG_MASK_V2 0xffffc000
  352. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  353. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  354. #define NV_TX_LASTPACKET (1<<16)
  355. #define NV_TX_RETRYERROR (1<<19)
  356. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  357. #define NV_TX_FORCED_INTERRUPT (1<<24)
  358. #define NV_TX_DEFERRED (1<<26)
  359. #define NV_TX_CARRIERLOST (1<<27)
  360. #define NV_TX_LATECOLLISION (1<<28)
  361. #define NV_TX_UNDERFLOW (1<<29)
  362. #define NV_TX_ERROR (1<<30)
  363. #define NV_TX_VALID (1<<31)
  364. #define NV_TX2_LASTPACKET (1<<29)
  365. #define NV_TX2_RETRYERROR (1<<18)
  366. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  367. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  368. #define NV_TX2_DEFERRED (1<<25)
  369. #define NV_TX2_CARRIERLOST (1<<26)
  370. #define NV_TX2_LATECOLLISION (1<<27)
  371. #define NV_TX2_UNDERFLOW (1<<28)
  372. /* error and valid are the same for both */
  373. #define NV_TX2_ERROR (1<<30)
  374. #define NV_TX2_VALID (1<<31)
  375. #define NV_TX2_TSO (1<<28)
  376. #define NV_TX2_TSO_SHIFT 14
  377. #define NV_TX2_TSO_MAX_SHIFT 14
  378. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  379. #define NV_TX2_CHECKSUM_L3 (1<<27)
  380. #define NV_TX2_CHECKSUM_L4 (1<<26)
  381. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  382. #define NV_RX_DESCRIPTORVALID (1<<16)
  383. #define NV_RX_MISSEDFRAME (1<<17)
  384. #define NV_RX_SUBSTRACT1 (1<<18)
  385. #define NV_RX_ERROR1 (1<<23)
  386. #define NV_RX_ERROR2 (1<<24)
  387. #define NV_RX_ERROR3 (1<<25)
  388. #define NV_RX_ERROR4 (1<<26)
  389. #define NV_RX_CRCERR (1<<27)
  390. #define NV_RX_OVERFLOW (1<<28)
  391. #define NV_RX_FRAMINGERR (1<<29)
  392. #define NV_RX_ERROR (1<<30)
  393. #define NV_RX_AVAIL (1<<31)
  394. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  395. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  396. #define NV_RX2_CHECKSUM_IP (0x10000000)
  397. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  398. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  399. #define NV_RX2_DESCRIPTORVALID (1<<29)
  400. #define NV_RX2_SUBSTRACT1 (1<<25)
  401. #define NV_RX2_ERROR1 (1<<18)
  402. #define NV_RX2_ERROR2 (1<<19)
  403. #define NV_RX2_ERROR3 (1<<20)
  404. #define NV_RX2_ERROR4 (1<<21)
  405. #define NV_RX2_CRCERR (1<<22)
  406. #define NV_RX2_OVERFLOW (1<<23)
  407. #define NV_RX2_FRAMINGERR (1<<24)
  408. /* error and avail are the same for both */
  409. #define NV_RX2_ERROR (1<<30)
  410. #define NV_RX2_AVAIL (1<<31)
  411. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  412. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  413. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  414. /* Miscellaneous hardware related defines: */
  415. #define NV_PCI_REGSZ_VER1 0x270
  416. #define NV_PCI_REGSZ_VER2 0x2d4
  417. #define NV_PCI_REGSZ_VER3 0x604
  418. #define NV_PCI_REGSZ_MAX 0x604
  419. /* various timeout delays: all in usec */
  420. #define NV_TXRX_RESET_DELAY 4
  421. #define NV_TXSTOP_DELAY1 10
  422. #define NV_TXSTOP_DELAY1MAX 500000
  423. #define NV_TXSTOP_DELAY2 100
  424. #define NV_RXSTOP_DELAY1 10
  425. #define NV_RXSTOP_DELAY1MAX 500000
  426. #define NV_RXSTOP_DELAY2 100
  427. #define NV_SETUP5_DELAY 5
  428. #define NV_SETUP5_DELAYMAX 50000
  429. #define NV_POWERUP_DELAY 5
  430. #define NV_POWERUP_DELAYMAX 5000
  431. #define NV_MIIBUSY_DELAY 50
  432. #define NV_MIIPHY_DELAY 10
  433. #define NV_MIIPHY_DELAYMAX 10000
  434. #define NV_MAC_RESET_DELAY 64
  435. #define NV_WAKEUPPATTERNS 5
  436. #define NV_WAKEUPMASKENTRIES 4
  437. /* General driver defaults */
  438. #define NV_WATCHDOG_TIMEO (5*HZ)
  439. #define RX_RING_DEFAULT 512
  440. #define TX_RING_DEFAULT 256
  441. #define RX_RING_MIN 128
  442. #define TX_RING_MIN 64
  443. #define RING_MAX_DESC_VER_1 1024
  444. #define RING_MAX_DESC_VER_2_3 16384
  445. /* rx/tx mac addr + type + vlan + align + slack*/
  446. #define NV_RX_HEADERS (64)
  447. /* even more slack. */
  448. #define NV_RX_ALLOC_PAD (64)
  449. /* maximum mtu size */
  450. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  451. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  452. #define OOM_REFILL (1+HZ/20)
  453. #define POLL_WAIT (1+HZ/100)
  454. #define LINK_TIMEOUT (3*HZ)
  455. #define STATS_INTERVAL (10*HZ)
  456. /*
  457. * desc_ver values:
  458. * The nic supports three different descriptor types:
  459. * - DESC_VER_1: Original
  460. * - DESC_VER_2: support for jumbo frames.
  461. * - DESC_VER_3: 64-bit format.
  462. */
  463. #define DESC_VER_1 1
  464. #define DESC_VER_2 2
  465. #define DESC_VER_3 3
  466. /* PHY defines */
  467. #define PHY_OUI_MARVELL 0x5043
  468. #define PHY_OUI_CICADA 0x03f1
  469. #define PHY_OUI_VITESSE 0x01c1
  470. #define PHY_OUI_REALTEK 0x0732
  471. #define PHY_OUI_REALTEK2 0x0020
  472. #define PHYID1_OUI_MASK 0x03ff
  473. #define PHYID1_OUI_SHFT 6
  474. #define PHYID2_OUI_MASK 0xfc00
  475. #define PHYID2_OUI_SHFT 10
  476. #define PHYID2_MODEL_MASK 0x03f0
  477. #define PHY_MODEL_REALTEK_8211 0x0110
  478. #define PHY_REV_MASK 0x0001
  479. #define PHY_REV_REALTEK_8211B 0x0000
  480. #define PHY_REV_REALTEK_8211C 0x0001
  481. #define PHY_MODEL_REALTEK_8201 0x0200
  482. #define PHY_MODEL_MARVELL_E3016 0x0220
  483. #define PHY_MARVELL_E3016_INITMASK 0x0300
  484. #define PHY_CICADA_INIT1 0x0f000
  485. #define PHY_CICADA_INIT2 0x0e00
  486. #define PHY_CICADA_INIT3 0x01000
  487. #define PHY_CICADA_INIT4 0x0200
  488. #define PHY_CICADA_INIT5 0x0004
  489. #define PHY_CICADA_INIT6 0x02000
  490. #define PHY_VITESSE_INIT_REG1 0x1f
  491. #define PHY_VITESSE_INIT_REG2 0x10
  492. #define PHY_VITESSE_INIT_REG3 0x11
  493. #define PHY_VITESSE_INIT_REG4 0x12
  494. #define PHY_VITESSE_INIT_MSK1 0xc
  495. #define PHY_VITESSE_INIT_MSK2 0x0180
  496. #define PHY_VITESSE_INIT1 0x52b5
  497. #define PHY_VITESSE_INIT2 0xaf8a
  498. #define PHY_VITESSE_INIT3 0x8
  499. #define PHY_VITESSE_INIT4 0x8f8a
  500. #define PHY_VITESSE_INIT5 0xaf86
  501. #define PHY_VITESSE_INIT6 0x8f86
  502. #define PHY_VITESSE_INIT7 0xaf82
  503. #define PHY_VITESSE_INIT8 0x0100
  504. #define PHY_VITESSE_INIT9 0x8f82
  505. #define PHY_VITESSE_INIT10 0x0
  506. #define PHY_REALTEK_INIT_REG1 0x1f
  507. #define PHY_REALTEK_INIT_REG2 0x19
  508. #define PHY_REALTEK_INIT_REG3 0x13
  509. #define PHY_REALTEK_INIT_REG4 0x14
  510. #define PHY_REALTEK_INIT_REG5 0x18
  511. #define PHY_REALTEK_INIT_REG6 0x11
  512. #define PHY_REALTEK_INIT_REG7 0x01
  513. #define PHY_REALTEK_INIT1 0x0000
  514. #define PHY_REALTEK_INIT2 0x8e00
  515. #define PHY_REALTEK_INIT3 0x0001
  516. #define PHY_REALTEK_INIT4 0xad17
  517. #define PHY_REALTEK_INIT5 0xfb54
  518. #define PHY_REALTEK_INIT6 0xf5c7
  519. #define PHY_REALTEK_INIT7 0x1000
  520. #define PHY_REALTEK_INIT8 0x0003
  521. #define PHY_REALTEK_INIT9 0x0008
  522. #define PHY_REALTEK_INIT10 0x0005
  523. #define PHY_REALTEK_INIT11 0x0200
  524. #define PHY_REALTEK_INIT_MSK1 0x0003
  525. #define PHY_GIGABIT 0x0100
  526. #define PHY_TIMEOUT 0x1
  527. #define PHY_ERROR 0x2
  528. #define PHY_100 0x1
  529. #define PHY_1000 0x2
  530. #define PHY_HALF 0x100
  531. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  532. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  533. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  534. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  535. #define NV_PAUSEFRAME_RX_REQ 0x0010
  536. #define NV_PAUSEFRAME_TX_REQ 0x0020
  537. #define NV_PAUSEFRAME_AUTONEG 0x0040
  538. /* MSI/MSI-X defines */
  539. #define NV_MSI_X_MAX_VECTORS 8
  540. #define NV_MSI_X_VECTORS_MASK 0x000f
  541. #define NV_MSI_CAPABLE 0x0010
  542. #define NV_MSI_X_CAPABLE 0x0020
  543. #define NV_MSI_ENABLED 0x0040
  544. #define NV_MSI_X_ENABLED 0x0080
  545. #define NV_MSI_X_VECTOR_ALL 0x0
  546. #define NV_MSI_X_VECTOR_RX 0x0
  547. #define NV_MSI_X_VECTOR_TX 0x1
  548. #define NV_MSI_X_VECTOR_OTHER 0x2
  549. #define NV_MSI_PRIV_OFFSET 0x68
  550. #define NV_MSI_PRIV_VALUE 0xffffffff
  551. #define NV_RESTART_TX 0x1
  552. #define NV_RESTART_RX 0x2
  553. #define NV_TX_LIMIT_COUNT 16
  554. #define NV_DYNAMIC_THRESHOLD 4
  555. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  556. /* statistics */
  557. struct nv_ethtool_str {
  558. char name[ETH_GSTRING_LEN];
  559. };
  560. static const struct nv_ethtool_str nv_estats_str[] = {
  561. { "tx_bytes" }, /* includes Ethernet FCS CRC */
  562. { "tx_zero_rexmt" },
  563. { "tx_one_rexmt" },
  564. { "tx_many_rexmt" },
  565. { "tx_late_collision" },
  566. { "tx_fifo_errors" },
  567. { "tx_carrier_errors" },
  568. { "tx_excess_deferral" },
  569. { "tx_retry_error" },
  570. { "rx_frame_error" },
  571. { "rx_extra_byte" },
  572. { "rx_late_collision" },
  573. { "rx_runt" },
  574. { "rx_frame_too_long" },
  575. { "rx_over_errors" },
  576. { "rx_crc_errors" },
  577. { "rx_frame_align_error" },
  578. { "rx_length_error" },
  579. { "rx_unicast" },
  580. { "rx_multicast" },
  581. { "rx_broadcast" },
  582. { "rx_packets" },
  583. { "rx_errors_total" },
  584. { "tx_errors_total" },
  585. /* version 2 stats */
  586. { "tx_deferral" },
  587. { "tx_packets" },
  588. { "rx_bytes" }, /* includes Ethernet FCS CRC */
  589. { "tx_pause" },
  590. { "rx_pause" },
  591. { "rx_drop_frame" },
  592. /* version 3 stats */
  593. { "tx_unicast" },
  594. { "tx_multicast" },
  595. { "tx_broadcast" }
  596. };
  597. struct nv_ethtool_stats {
  598. u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */
  599. u64 tx_zero_rexmt;
  600. u64 tx_one_rexmt;
  601. u64 tx_many_rexmt;
  602. u64 tx_late_collision;
  603. u64 tx_fifo_errors;
  604. u64 tx_carrier_errors;
  605. u64 tx_excess_deferral;
  606. u64 tx_retry_error;
  607. u64 rx_frame_error;
  608. u64 rx_extra_byte;
  609. u64 rx_late_collision;
  610. u64 rx_runt;
  611. u64 rx_frame_too_long;
  612. u64 rx_over_errors;
  613. u64 rx_crc_errors;
  614. u64 rx_frame_align_error;
  615. u64 rx_length_error;
  616. u64 rx_unicast;
  617. u64 rx_multicast;
  618. u64 rx_broadcast;
  619. u64 rx_packets; /* should be ifconfig->rx_packets */
  620. u64 rx_errors_total;
  621. u64 tx_errors_total;
  622. /* version 2 stats */
  623. u64 tx_deferral;
  624. u64 tx_packets; /* should be ifconfig->tx_packets */
  625. u64 rx_bytes; /* should be ifconfig->rx_bytes + 4*rx_packets */
  626. u64 tx_pause;
  627. u64 rx_pause;
  628. u64 rx_drop_frame;
  629. /* version 3 stats */
  630. u64 tx_unicast;
  631. u64 tx_multicast;
  632. u64 tx_broadcast;
  633. };
  634. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  635. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  636. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  637. /* diagnostics */
  638. #define NV_TEST_COUNT_BASE 3
  639. #define NV_TEST_COUNT_EXTENDED 4
  640. static const struct nv_ethtool_str nv_etests_str[] = {
  641. { "link (online/offline)" },
  642. { "register (offline) " },
  643. { "interrupt (offline) " },
  644. { "loopback (offline) " }
  645. };
  646. struct register_test {
  647. __u32 reg;
  648. __u32 mask;
  649. };
  650. static const struct register_test nv_registers_test[] = {
  651. { NvRegUnknownSetupReg6, 0x01 },
  652. { NvRegMisc1, 0x03c },
  653. { NvRegOffloadConfig, 0x03ff },
  654. { NvRegMulticastAddrA, 0xffffffff },
  655. { NvRegTxWatermark, 0x0ff },
  656. { NvRegWakeUpFlags, 0x07777 },
  657. { 0, 0 }
  658. };
  659. struct nv_skb_map {
  660. struct sk_buff *skb;
  661. dma_addr_t dma;
  662. unsigned int dma_len:31;
  663. unsigned int dma_single:1;
  664. struct ring_desc_ex *first_tx_desc;
  665. struct nv_skb_map *next_tx_ctx;
  666. };
  667. /*
  668. * SMP locking:
  669. * All hardware access under netdev_priv(dev)->lock, except the performance
  670. * critical parts:
  671. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  672. * by the arch code for interrupts.
  673. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  674. * needs netdev_priv(dev)->lock :-(
  675. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  676. *
  677. * Hardware stats updates are protected by hwstats_lock:
  678. * - updated by nv_do_stats_poll (timer). This is meant to avoid
  679. * integer wraparound in the NIC stats registers, at low frequency
  680. * (0.1 Hz)
  681. * - updated by nv_get_ethtool_stats + nv_get_stats64
  682. *
  683. * Software stats are accessed only through 64b synchronization points
  684. * and are not subject to other synchronization techniques (single
  685. * update thread on the TX or RX paths).
  686. */
  687. /* in dev: base, irq */
  688. struct fe_priv {
  689. spinlock_t lock;
  690. struct net_device *dev;
  691. struct napi_struct napi;
  692. /* hardware stats are updated in syscall and timer */
  693. spinlock_t hwstats_lock;
  694. struct nv_ethtool_stats estats;
  695. int in_shutdown;
  696. u32 linkspeed;
  697. int duplex;
  698. int autoneg;
  699. int fixed_mode;
  700. int phyaddr;
  701. int wolenabled;
  702. unsigned int phy_oui;
  703. unsigned int phy_model;
  704. unsigned int phy_rev;
  705. u16 gigabit;
  706. int intr_test;
  707. int recover_error;
  708. int quiet_count;
  709. /* General data: RO fields */
  710. dma_addr_t ring_addr;
  711. struct pci_dev *pci_dev;
  712. u32 orig_mac[2];
  713. u32 events;
  714. u32 irqmask;
  715. u32 desc_ver;
  716. u32 txrxctl_bits;
  717. u32 vlanctl_bits;
  718. u32 driver_data;
  719. u32 device_id;
  720. u32 register_size;
  721. u32 mac_in_use;
  722. int mgmt_version;
  723. int mgmt_sema;
  724. void __iomem *base;
  725. /* rx specific fields.
  726. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  727. */
  728. union ring_type get_rx, put_rx, first_rx, last_rx;
  729. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  730. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  731. struct nv_skb_map *rx_skb;
  732. union ring_type rx_ring;
  733. unsigned int rx_buf_sz;
  734. unsigned int pkt_limit;
  735. struct timer_list oom_kick;
  736. struct timer_list nic_poll;
  737. struct timer_list stats_poll;
  738. u32 nic_poll_irq;
  739. int rx_ring_size;
  740. /* RX software stats */
  741. struct u64_stats_sync swstats_rx_syncp;
  742. u64 stat_rx_packets;
  743. u64 stat_rx_bytes; /* not always available in HW */
  744. u64 stat_rx_missed_errors;
  745. u64 stat_rx_dropped;
  746. /* media detection workaround.
  747. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  748. */
  749. int need_linktimer;
  750. unsigned long link_timeout;
  751. /*
  752. * tx specific fields.
  753. */
  754. union ring_type get_tx, put_tx, first_tx, last_tx;
  755. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  756. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  757. struct nv_skb_map *tx_skb;
  758. union ring_type tx_ring;
  759. u32 tx_flags;
  760. int tx_ring_size;
  761. int tx_limit;
  762. u32 tx_pkts_in_progress;
  763. struct nv_skb_map *tx_change_owner;
  764. struct nv_skb_map *tx_end_flip;
  765. int tx_stop;
  766. /* TX software stats */
  767. struct u64_stats_sync swstats_tx_syncp;
  768. u64 stat_tx_packets; /* not always available in HW */
  769. u64 stat_tx_bytes;
  770. u64 stat_tx_dropped;
  771. /* msi/msi-x fields */
  772. u32 msi_flags;
  773. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  774. /* flow control */
  775. u32 pause_flags;
  776. /* power saved state */
  777. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  778. /* for different msi-x irq type */
  779. char name_rx[IFNAMSIZ + 3]; /* -rx */
  780. char name_tx[IFNAMSIZ + 3]; /* -tx */
  781. char name_other[IFNAMSIZ + 6]; /* -other */
  782. };
  783. /*
  784. * Maximum number of loops until we assume that a bit in the irq mask
  785. * is stuck. Overridable with module param.
  786. */
  787. static int max_interrupt_work = 4;
  788. /*
  789. * Optimization can be either throuput mode or cpu mode
  790. *
  791. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  792. * CPU Mode: Interrupts are controlled by a timer.
  793. */
  794. enum {
  795. NV_OPTIMIZATION_MODE_THROUGHPUT,
  796. NV_OPTIMIZATION_MODE_CPU,
  797. NV_OPTIMIZATION_MODE_DYNAMIC
  798. };
  799. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  800. /*
  801. * Poll interval for timer irq
  802. *
  803. * This interval determines how frequent an interrupt is generated.
  804. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  805. * Min = 0, and Max = 65535
  806. */
  807. static int poll_interval = -1;
  808. /*
  809. * MSI interrupts
  810. */
  811. enum {
  812. NV_MSI_INT_DISABLED,
  813. NV_MSI_INT_ENABLED
  814. };
  815. static int msi = NV_MSI_INT_ENABLED;
  816. /*
  817. * MSIX interrupts
  818. */
  819. enum {
  820. NV_MSIX_INT_DISABLED,
  821. NV_MSIX_INT_ENABLED
  822. };
  823. static int msix = NV_MSIX_INT_ENABLED;
  824. /*
  825. * DMA 64bit
  826. */
  827. enum {
  828. NV_DMA_64BIT_DISABLED,
  829. NV_DMA_64BIT_ENABLED
  830. };
  831. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  832. /*
  833. * Debug output control for tx_timeout
  834. */
  835. static bool debug_tx_timeout = false;
  836. /*
  837. * Crossover Detection
  838. * Realtek 8201 phy + some OEM boards do not work properly.
  839. */
  840. enum {
  841. NV_CROSSOVER_DETECTION_DISABLED,
  842. NV_CROSSOVER_DETECTION_ENABLED
  843. };
  844. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  845. /*
  846. * Power down phy when interface is down (persists through reboot;
  847. * older Linux and other OSes may not power it up again)
  848. */
  849. static int phy_power_down;
  850. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  851. {
  852. return netdev_priv(dev);
  853. }
  854. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  855. {
  856. return ((struct fe_priv *)netdev_priv(dev))->base;
  857. }
  858. static inline void pci_push(u8 __iomem *base)
  859. {
  860. /* force out pending posted writes */
  861. readl(base);
  862. }
  863. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  864. {
  865. return le32_to_cpu(prd->flaglen)
  866. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  867. }
  868. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  869. {
  870. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  871. }
  872. static bool nv_optimized(struct fe_priv *np)
  873. {
  874. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  875. return false;
  876. return true;
  877. }
  878. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  879. int delay, int delaymax)
  880. {
  881. u8 __iomem *base = get_hwbase(dev);
  882. pci_push(base);
  883. do {
  884. udelay(delay);
  885. delaymax -= delay;
  886. if (delaymax < 0)
  887. return 1;
  888. } while ((readl(base + offset) & mask) != target);
  889. return 0;
  890. }
  891. #define NV_SETUP_RX_RING 0x01
  892. #define NV_SETUP_TX_RING 0x02
  893. static inline u32 dma_low(dma_addr_t addr)
  894. {
  895. return addr;
  896. }
  897. static inline u32 dma_high(dma_addr_t addr)
  898. {
  899. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  900. }
  901. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  902. {
  903. struct fe_priv *np = get_nvpriv(dev);
  904. u8 __iomem *base = get_hwbase(dev);
  905. if (!nv_optimized(np)) {
  906. if (rxtx_flags & NV_SETUP_RX_RING)
  907. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  908. if (rxtx_flags & NV_SETUP_TX_RING)
  909. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  910. } else {
  911. if (rxtx_flags & NV_SETUP_RX_RING) {
  912. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  913. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  914. }
  915. if (rxtx_flags & NV_SETUP_TX_RING) {
  916. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  917. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  918. }
  919. }
  920. }
  921. static void free_rings(struct net_device *dev)
  922. {
  923. struct fe_priv *np = get_nvpriv(dev);
  924. if (!nv_optimized(np)) {
  925. if (np->rx_ring.orig)
  926. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  927. np->rx_ring.orig, np->ring_addr);
  928. } else {
  929. if (np->rx_ring.ex)
  930. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  931. np->rx_ring.ex, np->ring_addr);
  932. }
  933. kfree(np->rx_skb);
  934. kfree(np->tx_skb);
  935. }
  936. static int using_multi_irqs(struct net_device *dev)
  937. {
  938. struct fe_priv *np = get_nvpriv(dev);
  939. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  940. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  941. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  942. return 0;
  943. else
  944. return 1;
  945. }
  946. static void nv_txrx_gate(struct net_device *dev, bool gate)
  947. {
  948. struct fe_priv *np = get_nvpriv(dev);
  949. u8 __iomem *base = get_hwbase(dev);
  950. u32 powerstate;
  951. if (!np->mac_in_use &&
  952. (np->driver_data & DEV_HAS_POWER_CNTRL)) {
  953. powerstate = readl(base + NvRegPowerState2);
  954. if (gate)
  955. powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
  956. else
  957. powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
  958. writel(powerstate, base + NvRegPowerState2);
  959. }
  960. }
  961. static void nv_enable_irq(struct net_device *dev)
  962. {
  963. struct fe_priv *np = get_nvpriv(dev);
  964. if (!using_multi_irqs(dev)) {
  965. if (np->msi_flags & NV_MSI_X_ENABLED)
  966. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  967. else
  968. enable_irq(np->pci_dev->irq);
  969. } else {
  970. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  971. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  972. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  973. }
  974. }
  975. static void nv_disable_irq(struct net_device *dev)
  976. {
  977. struct fe_priv *np = get_nvpriv(dev);
  978. if (!using_multi_irqs(dev)) {
  979. if (np->msi_flags & NV_MSI_X_ENABLED)
  980. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  981. else
  982. disable_irq(np->pci_dev->irq);
  983. } else {
  984. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  985. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  986. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  987. }
  988. }
  989. /* In MSIX mode, a write to irqmask behaves as XOR */
  990. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  991. {
  992. u8 __iomem *base = get_hwbase(dev);
  993. writel(mask, base + NvRegIrqMask);
  994. }
  995. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  996. {
  997. struct fe_priv *np = get_nvpriv(dev);
  998. u8 __iomem *base = get_hwbase(dev);
  999. if (np->msi_flags & NV_MSI_X_ENABLED) {
  1000. writel(mask, base + NvRegIrqMask);
  1001. } else {
  1002. if (np->msi_flags & NV_MSI_ENABLED)
  1003. writel(0, base + NvRegMSIIrqMask);
  1004. writel(0, base + NvRegIrqMask);
  1005. }
  1006. }
  1007. static void nv_napi_enable(struct net_device *dev)
  1008. {
  1009. struct fe_priv *np = get_nvpriv(dev);
  1010. napi_enable(&np->napi);
  1011. }
  1012. static void nv_napi_disable(struct net_device *dev)
  1013. {
  1014. struct fe_priv *np = get_nvpriv(dev);
  1015. napi_disable(&np->napi);
  1016. }
  1017. #define MII_READ (-1)
  1018. /* mii_rw: read/write a register on the PHY.
  1019. *
  1020. * Caller must guarantee serialization
  1021. */
  1022. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  1023. {
  1024. u8 __iomem *base = get_hwbase(dev);
  1025. u32 reg;
  1026. int retval;
  1027. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  1028. reg = readl(base + NvRegMIIControl);
  1029. if (reg & NVREG_MIICTL_INUSE) {
  1030. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  1031. udelay(NV_MIIBUSY_DELAY);
  1032. }
  1033. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  1034. if (value != MII_READ) {
  1035. writel(value, base + NvRegMIIData);
  1036. reg |= NVREG_MIICTL_WRITE;
  1037. }
  1038. writel(reg, base + NvRegMIIControl);
  1039. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1040. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) {
  1041. retval = -1;
  1042. } else if (value != MII_READ) {
  1043. /* it was a write operation - fewer failures are detectable */
  1044. retval = 0;
  1045. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1046. retval = -1;
  1047. } else {
  1048. retval = readl(base + NvRegMIIData);
  1049. }
  1050. return retval;
  1051. }
  1052. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1053. {
  1054. struct fe_priv *np = netdev_priv(dev);
  1055. u32 miicontrol;
  1056. unsigned int tries = 0;
  1057. miicontrol = BMCR_RESET | bmcr_setup;
  1058. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol))
  1059. return -1;
  1060. /* wait for 500ms */
  1061. msleep(500);
  1062. /* must wait till reset is deasserted */
  1063. while (miicontrol & BMCR_RESET) {
  1064. usleep_range(10000, 20000);
  1065. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1066. /* FIXME: 100 tries seem excessive */
  1067. if (tries++ > 100)
  1068. return -1;
  1069. }
  1070. return 0;
  1071. }
  1072. static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np)
  1073. {
  1074. static const struct {
  1075. int reg;
  1076. int init;
  1077. } ri[] = {
  1078. { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
  1079. { PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 },
  1080. { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 },
  1081. { PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 },
  1082. { PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 },
  1083. { PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 },
  1084. { PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
  1085. };
  1086. int i;
  1087. for (i = 0; i < ARRAY_SIZE(ri); i++) {
  1088. if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init))
  1089. return PHY_ERROR;
  1090. }
  1091. return 0;
  1092. }
  1093. static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np)
  1094. {
  1095. u32 reg;
  1096. u8 __iomem *base = get_hwbase(dev);
  1097. u32 powerstate = readl(base + NvRegPowerState2);
  1098. /* need to perform hw phy reset */
  1099. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1100. writel(powerstate, base + NvRegPowerState2);
  1101. msleep(25);
  1102. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1103. writel(powerstate, base + NvRegPowerState2);
  1104. msleep(25);
  1105. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1106. reg |= PHY_REALTEK_INIT9;
  1107. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg))
  1108. return PHY_ERROR;
  1109. if (mii_rw(dev, np->phyaddr,
  1110. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10))
  1111. return PHY_ERROR;
  1112. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1113. if (!(reg & PHY_REALTEK_INIT11)) {
  1114. reg |= PHY_REALTEK_INIT11;
  1115. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg))
  1116. return PHY_ERROR;
  1117. }
  1118. if (mii_rw(dev, np->phyaddr,
  1119. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
  1120. return PHY_ERROR;
  1121. return 0;
  1122. }
  1123. static int init_realtek_8201(struct net_device *dev, struct fe_priv *np)
  1124. {
  1125. u32 phy_reserved;
  1126. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1127. phy_reserved = mii_rw(dev, np->phyaddr,
  1128. PHY_REALTEK_INIT_REG6, MII_READ);
  1129. phy_reserved |= PHY_REALTEK_INIT7;
  1130. if (mii_rw(dev, np->phyaddr,
  1131. PHY_REALTEK_INIT_REG6, phy_reserved))
  1132. return PHY_ERROR;
  1133. }
  1134. return 0;
  1135. }
  1136. static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np)
  1137. {
  1138. u32 phy_reserved;
  1139. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1140. if (mii_rw(dev, np->phyaddr,
  1141. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3))
  1142. return PHY_ERROR;
  1143. phy_reserved = mii_rw(dev, np->phyaddr,
  1144. PHY_REALTEK_INIT_REG2, MII_READ);
  1145. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1146. phy_reserved |= PHY_REALTEK_INIT3;
  1147. if (mii_rw(dev, np->phyaddr,
  1148. PHY_REALTEK_INIT_REG2, phy_reserved))
  1149. return PHY_ERROR;
  1150. if (mii_rw(dev, np->phyaddr,
  1151. PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
  1152. return PHY_ERROR;
  1153. }
  1154. return 0;
  1155. }
  1156. static int init_cicada(struct net_device *dev, struct fe_priv *np,
  1157. u32 phyinterface)
  1158. {
  1159. u32 phy_reserved;
  1160. if (phyinterface & PHY_RGMII) {
  1161. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1162. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1163. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1164. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved))
  1165. return PHY_ERROR;
  1166. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1167. phy_reserved |= PHY_CICADA_INIT5;
  1168. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved))
  1169. return PHY_ERROR;
  1170. }
  1171. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1172. phy_reserved |= PHY_CICADA_INIT6;
  1173. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved))
  1174. return PHY_ERROR;
  1175. return 0;
  1176. }
  1177. static int init_vitesse(struct net_device *dev, struct fe_priv *np)
  1178. {
  1179. u32 phy_reserved;
  1180. if (mii_rw(dev, np->phyaddr,
  1181. PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1))
  1182. return PHY_ERROR;
  1183. if (mii_rw(dev, np->phyaddr,
  1184. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2))
  1185. return PHY_ERROR;
  1186. phy_reserved = mii_rw(dev, np->phyaddr,
  1187. PHY_VITESSE_INIT_REG4, MII_READ);
  1188. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
  1189. return PHY_ERROR;
  1190. phy_reserved = mii_rw(dev, np->phyaddr,
  1191. PHY_VITESSE_INIT_REG3, MII_READ);
  1192. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1193. phy_reserved |= PHY_VITESSE_INIT3;
  1194. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
  1195. return PHY_ERROR;
  1196. if (mii_rw(dev, np->phyaddr,
  1197. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4))
  1198. return PHY_ERROR;
  1199. if (mii_rw(dev, np->phyaddr,
  1200. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5))
  1201. return PHY_ERROR;
  1202. phy_reserved = mii_rw(dev, np->phyaddr,
  1203. PHY_VITESSE_INIT_REG4, MII_READ);
  1204. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1205. phy_reserved |= PHY_VITESSE_INIT3;
  1206. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
  1207. return PHY_ERROR;
  1208. phy_reserved = mii_rw(dev, np->phyaddr,
  1209. PHY_VITESSE_INIT_REG3, MII_READ);
  1210. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
  1211. return PHY_ERROR;
  1212. if (mii_rw(dev, np->phyaddr,
  1213. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6))
  1214. return PHY_ERROR;
  1215. if (mii_rw(dev, np->phyaddr,
  1216. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7))
  1217. return PHY_ERROR;
  1218. phy_reserved = mii_rw(dev, np->phyaddr,
  1219. PHY_VITESSE_INIT_REG4, MII_READ);
  1220. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
  1221. return PHY_ERROR;
  1222. phy_reserved = mii_rw(dev, np->phyaddr,
  1223. PHY_VITESSE_INIT_REG3, MII_READ);
  1224. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1225. phy_reserved |= PHY_VITESSE_INIT8;
  1226. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
  1227. return PHY_ERROR;
  1228. if (mii_rw(dev, np->phyaddr,
  1229. PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9))
  1230. return PHY_ERROR;
  1231. if (mii_rw(dev, np->phyaddr,
  1232. PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10))
  1233. return PHY_ERROR;
  1234. return 0;
  1235. }
  1236. static int phy_init(struct net_device *dev)
  1237. {
  1238. struct fe_priv *np = get_nvpriv(dev);
  1239. u8 __iomem *base = get_hwbase(dev);
  1240. u32 phyinterface;
  1241. u32 mii_status, mii_control, mii_control_1000, reg;
  1242. /* phy errata for E3016 phy */
  1243. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1244. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1245. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1246. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1247. netdev_info(dev, "%s: phy write to errata reg failed\n",
  1248. pci_name(np->pci_dev));
  1249. return PHY_ERROR;
  1250. }
  1251. }
  1252. if (np->phy_oui == PHY_OUI_REALTEK) {
  1253. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1254. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1255. if (init_realtek_8211b(dev, np)) {
  1256. netdev_info(dev, "%s: phy init failed\n",
  1257. pci_name(np->pci_dev));
  1258. return PHY_ERROR;
  1259. }
  1260. } else if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1261. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1262. if (init_realtek_8211c(dev, np)) {
  1263. netdev_info(dev, "%s: phy init failed\n",
  1264. pci_name(np->pci_dev));
  1265. return PHY_ERROR;
  1266. }
  1267. } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1268. if (init_realtek_8201(dev, np)) {
  1269. netdev_info(dev, "%s: phy init failed\n",
  1270. pci_name(np->pci_dev));
  1271. return PHY_ERROR;
  1272. }
  1273. }
  1274. }
  1275. /* set advertise register */
  1276. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1277. reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
  1278. ADVERTISE_100HALF | ADVERTISE_100FULL |
  1279. ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
  1280. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1281. netdev_info(dev, "%s: phy write to advertise failed\n",
  1282. pci_name(np->pci_dev));
  1283. return PHY_ERROR;
  1284. }
  1285. /* get phy interface type */
  1286. phyinterface = readl(base + NvRegPhyInterface);
  1287. /* see if gigabit phy */
  1288. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1289. if (mii_status & PHY_GIGABIT) {
  1290. np->gigabit = PHY_GIGABIT;
  1291. mii_control_1000 = mii_rw(dev, np->phyaddr,
  1292. MII_CTRL1000, MII_READ);
  1293. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1294. if (phyinterface & PHY_RGMII)
  1295. mii_control_1000 |= ADVERTISE_1000FULL;
  1296. else
  1297. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1298. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1299. netdev_info(dev, "%s: phy init failed\n",
  1300. pci_name(np->pci_dev));
  1301. return PHY_ERROR;
  1302. }
  1303. } else
  1304. np->gigabit = 0;
  1305. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1306. mii_control |= BMCR_ANENABLE;
  1307. if (np->phy_oui == PHY_OUI_REALTEK &&
  1308. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1309. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1310. /* start autoneg since we already performed hw reset above */
  1311. mii_control |= BMCR_ANRESTART;
  1312. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1313. netdev_info(dev, "%s: phy init failed\n",
  1314. pci_name(np->pci_dev));
  1315. return PHY_ERROR;
  1316. }
  1317. } else {
  1318. /* reset the phy
  1319. * (certain phys need bmcr to be setup with reset)
  1320. */
  1321. if (phy_reset(dev, mii_control)) {
  1322. netdev_info(dev, "%s: phy reset failed\n",
  1323. pci_name(np->pci_dev));
  1324. return PHY_ERROR;
  1325. }
  1326. }
  1327. /* phy vendor specific configuration */
  1328. if ((np->phy_oui == PHY_OUI_CICADA)) {
  1329. if (init_cicada(dev, np, phyinterface)) {
  1330. netdev_info(dev, "%s: phy init failed\n",
  1331. pci_name(np->pci_dev));
  1332. return PHY_ERROR;
  1333. }
  1334. } else if (np->phy_oui == PHY_OUI_VITESSE) {
  1335. if (init_vitesse(dev, np)) {
  1336. netdev_info(dev, "%s: phy init failed\n",
  1337. pci_name(np->pci_dev));
  1338. return PHY_ERROR;
  1339. }
  1340. } else if (np->phy_oui == PHY_OUI_REALTEK) {
  1341. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1342. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1343. /* reset could have cleared these out, set them back */
  1344. if (init_realtek_8211b(dev, np)) {
  1345. netdev_info(dev, "%s: phy init failed\n",
  1346. pci_name(np->pci_dev));
  1347. return PHY_ERROR;
  1348. }
  1349. } else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1350. if (init_realtek_8201(dev, np) ||
  1351. init_realtek_8201_cross(dev, np)) {
  1352. netdev_info(dev, "%s: phy init failed\n",
  1353. pci_name(np->pci_dev));
  1354. return PHY_ERROR;
  1355. }
  1356. }
  1357. }
  1358. /* some phys clear out pause advertisement on reset, set it back */
  1359. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1360. /* restart auto negotiation, power down phy */
  1361. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1362. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1363. if (phy_power_down)
  1364. mii_control |= BMCR_PDOWN;
  1365. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control))
  1366. return PHY_ERROR;
  1367. return 0;
  1368. }
  1369. static void nv_start_rx(struct net_device *dev)
  1370. {
  1371. struct fe_priv *np = netdev_priv(dev);
  1372. u8 __iomem *base = get_hwbase(dev);
  1373. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1374. /* Already running? Stop it. */
  1375. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1376. rx_ctrl &= ~NVREG_RCVCTL_START;
  1377. writel(rx_ctrl, base + NvRegReceiverControl);
  1378. pci_push(base);
  1379. }
  1380. writel(np->linkspeed, base + NvRegLinkSpeed);
  1381. pci_push(base);
  1382. rx_ctrl |= NVREG_RCVCTL_START;
  1383. if (np->mac_in_use)
  1384. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1385. writel(rx_ctrl, base + NvRegReceiverControl);
  1386. pci_push(base);
  1387. }
  1388. static void nv_stop_rx(struct net_device *dev)
  1389. {
  1390. struct fe_priv *np = netdev_priv(dev);
  1391. u8 __iomem *base = get_hwbase(dev);
  1392. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1393. if (!np->mac_in_use)
  1394. rx_ctrl &= ~NVREG_RCVCTL_START;
  1395. else
  1396. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1397. writel(rx_ctrl, base + NvRegReceiverControl);
  1398. if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1399. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX))
  1400. netdev_info(dev, "%s: ReceiverStatus remained busy\n",
  1401. __func__);
  1402. udelay(NV_RXSTOP_DELAY2);
  1403. if (!np->mac_in_use)
  1404. writel(0, base + NvRegLinkSpeed);
  1405. }
  1406. static void nv_start_tx(struct net_device *dev)
  1407. {
  1408. struct fe_priv *np = netdev_priv(dev);
  1409. u8 __iomem *base = get_hwbase(dev);
  1410. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1411. tx_ctrl |= NVREG_XMITCTL_START;
  1412. if (np->mac_in_use)
  1413. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1414. writel(tx_ctrl, base + NvRegTransmitterControl);
  1415. pci_push(base);
  1416. }
  1417. static void nv_stop_tx(struct net_device *dev)
  1418. {
  1419. struct fe_priv *np = netdev_priv(dev);
  1420. u8 __iomem *base = get_hwbase(dev);
  1421. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1422. if (!np->mac_in_use)
  1423. tx_ctrl &= ~NVREG_XMITCTL_START;
  1424. else
  1425. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1426. writel(tx_ctrl, base + NvRegTransmitterControl);
  1427. if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1428. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX))
  1429. netdev_info(dev, "%s: TransmitterStatus remained busy\n",
  1430. __func__);
  1431. udelay(NV_TXSTOP_DELAY2);
  1432. if (!np->mac_in_use)
  1433. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1434. base + NvRegTransmitPoll);
  1435. }
  1436. static void nv_start_rxtx(struct net_device *dev)
  1437. {
  1438. nv_start_rx(dev);
  1439. nv_start_tx(dev);
  1440. }
  1441. static void nv_stop_rxtx(struct net_device *dev)
  1442. {
  1443. nv_stop_rx(dev);
  1444. nv_stop_tx(dev);
  1445. }
  1446. static void nv_txrx_reset(struct net_device *dev)
  1447. {
  1448. struct fe_priv *np = netdev_priv(dev);
  1449. u8 __iomem *base = get_hwbase(dev);
  1450. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1451. pci_push(base);
  1452. udelay(NV_TXRX_RESET_DELAY);
  1453. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1454. pci_push(base);
  1455. }
  1456. static void nv_mac_reset(struct net_device *dev)
  1457. {
  1458. struct fe_priv *np = netdev_priv(dev);
  1459. u8 __iomem *base = get_hwbase(dev);
  1460. u32 temp1, temp2, temp3;
  1461. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1462. pci_push(base);
  1463. /* save registers since they will be cleared on reset */
  1464. temp1 = readl(base + NvRegMacAddrA);
  1465. temp2 = readl(base + NvRegMacAddrB);
  1466. temp3 = readl(base + NvRegTransmitPoll);
  1467. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1468. pci_push(base);
  1469. udelay(NV_MAC_RESET_DELAY);
  1470. writel(0, base + NvRegMacReset);
  1471. pci_push(base);
  1472. udelay(NV_MAC_RESET_DELAY);
  1473. /* restore saved registers */
  1474. writel(temp1, base + NvRegMacAddrA);
  1475. writel(temp2, base + NvRegMacAddrB);
  1476. writel(temp3, base + NvRegTransmitPoll);
  1477. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1478. pci_push(base);
  1479. }
  1480. /* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */
  1481. static void nv_update_stats(struct net_device *dev)
  1482. {
  1483. struct fe_priv *np = netdev_priv(dev);
  1484. u8 __iomem *base = get_hwbase(dev);
  1485. /* If it happens that this is run in top-half context, then
  1486. * replace the spin_lock of hwstats_lock with
  1487. * spin_lock_irqsave() in calling functions. */
  1488. WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half");
  1489. assert_spin_locked(&np->hwstats_lock);
  1490. /* query hardware */
  1491. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1492. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1493. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1494. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1495. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1496. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1497. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1498. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1499. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1500. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1501. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1502. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1503. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1504. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1505. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1506. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1507. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1508. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1509. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1510. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1511. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1512. np->estats.rx_packets =
  1513. np->estats.rx_unicast +
  1514. np->estats.rx_multicast +
  1515. np->estats.rx_broadcast;
  1516. np->estats.rx_errors_total =
  1517. np->estats.rx_crc_errors +
  1518. np->estats.rx_over_errors +
  1519. np->estats.rx_frame_error +
  1520. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1521. np->estats.rx_late_collision +
  1522. np->estats.rx_runt +
  1523. np->estats.rx_frame_too_long;
  1524. np->estats.tx_errors_total =
  1525. np->estats.tx_late_collision +
  1526. np->estats.tx_fifo_errors +
  1527. np->estats.tx_carrier_errors +
  1528. np->estats.tx_excess_deferral +
  1529. np->estats.tx_retry_error;
  1530. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1531. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1532. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1533. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1534. np->estats.tx_pause += readl(base + NvRegTxPause);
  1535. np->estats.rx_pause += readl(base + NvRegRxPause);
  1536. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1537. np->estats.rx_errors_total += np->estats.rx_drop_frame;
  1538. }
  1539. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1540. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1541. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1542. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1543. }
  1544. }
  1545. /*
  1546. * nv_get_stats64: dev->ndo_get_stats64 function
  1547. * Get latest stats value from the nic.
  1548. * Called with read_lock(&dev_base_lock) held for read -
  1549. * only synchronized against unregister_netdevice.
  1550. */
  1551. static struct rtnl_link_stats64*
  1552. nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage)
  1553. __acquires(&netdev_priv(dev)->hwstats_lock)
  1554. __releases(&netdev_priv(dev)->hwstats_lock)
  1555. {
  1556. struct fe_priv *np = netdev_priv(dev);
  1557. unsigned int syncp_start;
  1558. /*
  1559. * Note: because HW stats are not always available and for
  1560. * consistency reasons, the following ifconfig stats are
  1561. * managed by software: rx_bytes, tx_bytes, rx_packets and
  1562. * tx_packets. The related hardware stats reported by ethtool
  1563. * should be equivalent to these ifconfig stats, with 4
  1564. * additional bytes per packet (Ethernet FCS CRC), except for
  1565. * tx_packets when TSO kicks in.
  1566. */
  1567. /* software stats */
  1568. do {
  1569. syncp_start = u64_stats_fetch_begin_bh(&np->swstats_rx_syncp);
  1570. storage->rx_packets = np->stat_rx_packets;
  1571. storage->rx_bytes = np->stat_rx_bytes;
  1572. storage->rx_dropped = np->stat_rx_dropped;
  1573. storage->rx_missed_errors = np->stat_rx_missed_errors;
  1574. } while (u64_stats_fetch_retry_bh(&np->swstats_rx_syncp, syncp_start));
  1575. do {
  1576. syncp_start = u64_stats_fetch_begin_bh(&np->swstats_tx_syncp);
  1577. storage->tx_packets = np->stat_tx_packets;
  1578. storage->tx_bytes = np->stat_tx_bytes;
  1579. storage->tx_dropped = np->stat_tx_dropped;
  1580. } while (u64_stats_fetch_retry_bh(&np->swstats_tx_syncp, syncp_start));
  1581. /* If the nic supports hw counters then retrieve latest values */
  1582. if (np->driver_data & DEV_HAS_STATISTICS_V123) {
  1583. spin_lock_bh(&np->hwstats_lock);
  1584. nv_update_stats(dev);
  1585. /* generic stats */
  1586. storage->rx_errors = np->estats.rx_errors_total;
  1587. storage->tx_errors = np->estats.tx_errors_total;
  1588. /* meaningful only when NIC supports stats v3 */
  1589. storage->multicast = np->estats.rx_multicast;
  1590. /* detailed rx_errors */
  1591. storage->rx_length_errors = np->estats.rx_length_error;
  1592. storage->rx_over_errors = np->estats.rx_over_errors;
  1593. storage->rx_crc_errors = np->estats.rx_crc_errors;
  1594. storage->rx_frame_errors = np->estats.rx_frame_align_error;
  1595. storage->rx_fifo_errors = np->estats.rx_drop_frame;
  1596. /* detailed tx_errors */
  1597. storage->tx_carrier_errors = np->estats.tx_carrier_errors;
  1598. storage->tx_fifo_errors = np->estats.tx_fifo_errors;
  1599. spin_unlock_bh(&np->hwstats_lock);
  1600. }
  1601. return storage;
  1602. }
  1603. /*
  1604. * nv_alloc_rx: fill rx ring entries.
  1605. * Return 1 if the allocations for the skbs failed and the
  1606. * rx engine is without Available descriptors
  1607. */
  1608. static int nv_alloc_rx(struct net_device *dev)
  1609. {
  1610. struct fe_priv *np = netdev_priv(dev);
  1611. struct ring_desc *less_rx;
  1612. less_rx = np->get_rx.orig;
  1613. if (less_rx-- == np->first_rx.orig)
  1614. less_rx = np->last_rx.orig;
  1615. while (np->put_rx.orig != less_rx) {
  1616. struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1617. if (skb) {
  1618. np->put_rx_ctx->skb = skb;
  1619. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1620. skb->data,
  1621. skb_tailroom(skb),
  1622. PCI_DMA_FROMDEVICE);
  1623. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1624. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1625. wmb();
  1626. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1627. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1628. np->put_rx.orig = np->first_rx.orig;
  1629. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1630. np->put_rx_ctx = np->first_rx_ctx;
  1631. } else {
  1632. u64_stats_update_begin(&np->swstats_rx_syncp);
  1633. np->stat_rx_dropped++;
  1634. u64_stats_update_end(&np->swstats_rx_syncp);
  1635. return 1;
  1636. }
  1637. }
  1638. return 0;
  1639. }
  1640. static int nv_alloc_rx_optimized(struct net_device *dev)
  1641. {
  1642. struct fe_priv *np = netdev_priv(dev);
  1643. struct ring_desc_ex *less_rx;
  1644. less_rx = np->get_rx.ex;
  1645. if (less_rx-- == np->first_rx.ex)
  1646. less_rx = np->last_rx.ex;
  1647. while (np->put_rx.ex != less_rx) {
  1648. struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1649. if (skb) {
  1650. np->put_rx_ctx->skb = skb;
  1651. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1652. skb->data,
  1653. skb_tailroom(skb),
  1654. PCI_DMA_FROMDEVICE);
  1655. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1656. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1657. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1658. wmb();
  1659. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1660. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1661. np->put_rx.ex = np->first_rx.ex;
  1662. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1663. np->put_rx_ctx = np->first_rx_ctx;
  1664. } else {
  1665. u64_stats_update_begin(&np->swstats_rx_syncp);
  1666. np->stat_rx_dropped++;
  1667. u64_stats_update_end(&np->swstats_rx_syncp);
  1668. return 1;
  1669. }
  1670. }
  1671. return 0;
  1672. }
  1673. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1674. static void nv_do_rx_refill(unsigned long data)
  1675. {
  1676. struct net_device *dev = (struct net_device *) data;
  1677. struct fe_priv *np = netdev_priv(dev);
  1678. /* Just reschedule NAPI rx processing */
  1679. napi_schedule(&np->napi);
  1680. }
  1681. static void nv_init_rx(struct net_device *dev)
  1682. {
  1683. struct fe_priv *np = netdev_priv(dev);
  1684. int i;
  1685. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1686. if (!nv_optimized(np))
  1687. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1688. else
  1689. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1690. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1691. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1692. for (i = 0; i < np->rx_ring_size; i++) {
  1693. if (!nv_optimized(np)) {
  1694. np->rx_ring.orig[i].flaglen = 0;
  1695. np->rx_ring.orig[i].buf = 0;
  1696. } else {
  1697. np->rx_ring.ex[i].flaglen = 0;
  1698. np->rx_ring.ex[i].txvlan = 0;
  1699. np->rx_ring.ex[i].bufhigh = 0;
  1700. np->rx_ring.ex[i].buflow = 0;
  1701. }
  1702. np->rx_skb[i].skb = NULL;
  1703. np->rx_skb[i].dma = 0;
  1704. }
  1705. }
  1706. static void nv_init_tx(struct net_device *dev)
  1707. {
  1708. struct fe_priv *np = netdev_priv(dev);
  1709. int i;
  1710. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1711. if (!nv_optimized(np))
  1712. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1713. else
  1714. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1715. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1716. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1717. netdev_reset_queue(np->dev);
  1718. np->tx_pkts_in_progress = 0;
  1719. np->tx_change_owner = NULL;
  1720. np->tx_end_flip = NULL;
  1721. np->tx_stop = 0;
  1722. for (i = 0; i < np->tx_ring_size; i++) {
  1723. if (!nv_optimized(np)) {
  1724. np->tx_ring.orig[i].flaglen = 0;
  1725. np->tx_ring.orig[i].buf = 0;
  1726. } else {
  1727. np->tx_ring.ex[i].flaglen = 0;
  1728. np->tx_ring.ex[i].txvlan = 0;
  1729. np->tx_ring.ex[i].bufhigh = 0;
  1730. np->tx_ring.ex[i].buflow = 0;
  1731. }
  1732. np->tx_skb[i].skb = NULL;
  1733. np->tx_skb[i].dma = 0;
  1734. np->tx_skb[i].dma_len = 0;
  1735. np->tx_skb[i].dma_single = 0;
  1736. np->tx_skb[i].first_tx_desc = NULL;
  1737. np->tx_skb[i].next_tx_ctx = NULL;
  1738. }
  1739. }
  1740. static int nv_init_ring(struct net_device *dev)
  1741. {
  1742. struct fe_priv *np = netdev_priv(dev);
  1743. nv_init_tx(dev);
  1744. nv_init_rx(dev);
  1745. if (!nv_optimized(np))
  1746. return nv_alloc_rx(dev);
  1747. else
  1748. return nv_alloc_rx_optimized(dev);
  1749. }
  1750. static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1751. {
  1752. if (tx_skb->dma) {
  1753. if (tx_skb->dma_single)
  1754. pci_unmap_single(np->pci_dev, tx_skb->dma,
  1755. tx_skb->dma_len,
  1756. PCI_DMA_TODEVICE);
  1757. else
  1758. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1759. tx_skb->dma_len,
  1760. PCI_DMA_TODEVICE);
  1761. tx_skb->dma = 0;
  1762. }
  1763. }
  1764. static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1765. {
  1766. nv_unmap_txskb(np, tx_skb);
  1767. if (tx_skb->skb) {
  1768. dev_kfree_skb_any(tx_skb->skb);
  1769. tx_skb->skb = NULL;
  1770. return 1;
  1771. }
  1772. return 0;
  1773. }
  1774. static void nv_drain_tx(struct net_device *dev)
  1775. {
  1776. struct fe_priv *np = netdev_priv(dev);
  1777. unsigned int i;
  1778. for (i = 0; i < np->tx_ring_size; i++) {
  1779. if (!nv_optimized(np)) {
  1780. np->tx_ring.orig[i].flaglen = 0;
  1781. np->tx_ring.orig[i].buf = 0;
  1782. } else {
  1783. np->tx_ring.ex[i].flaglen = 0;
  1784. np->tx_ring.ex[i].txvlan = 0;
  1785. np->tx_ring.ex[i].bufhigh = 0;
  1786. np->tx_ring.ex[i].buflow = 0;
  1787. }
  1788. if (nv_release_txskb(np, &np->tx_skb[i])) {
  1789. u64_stats_update_begin(&np->swstats_tx_syncp);
  1790. np->stat_tx_dropped++;
  1791. u64_stats_update_end(&np->swstats_tx_syncp);
  1792. }
  1793. np->tx_skb[i].dma = 0;
  1794. np->tx_skb[i].dma_len = 0;
  1795. np->tx_skb[i].dma_single = 0;
  1796. np->tx_skb[i].first_tx_desc = NULL;
  1797. np->tx_skb[i].next_tx_ctx = NULL;
  1798. }
  1799. np->tx_pkts_in_progress = 0;
  1800. np->tx_change_owner = NULL;
  1801. np->tx_end_flip = NULL;
  1802. }
  1803. static void nv_drain_rx(struct net_device *dev)
  1804. {
  1805. struct fe_priv *np = netdev_priv(dev);
  1806. int i;
  1807. for (i = 0; i < np->rx_ring_size; i++) {
  1808. if (!nv_optimized(np)) {
  1809. np->rx_ring.orig[i].flaglen = 0;
  1810. np->rx_ring.orig[i].buf = 0;
  1811. } else {
  1812. np->rx_ring.ex[i].flaglen = 0;
  1813. np->rx_ring.ex[i].txvlan = 0;
  1814. np->rx_ring.ex[i].bufhigh = 0;
  1815. np->rx_ring.ex[i].buflow = 0;
  1816. }
  1817. wmb();
  1818. if (np->rx_skb[i].skb) {
  1819. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1820. (skb_end_pointer(np->rx_skb[i].skb) -
  1821. np->rx_skb[i].skb->data),
  1822. PCI_DMA_FROMDEVICE);
  1823. dev_kfree_skb(np->rx_skb[i].skb);
  1824. np->rx_skb[i].skb = NULL;
  1825. }
  1826. }
  1827. }
  1828. static void nv_drain_rxtx(struct net_device *dev)
  1829. {
  1830. nv_drain_tx(dev);
  1831. nv_drain_rx(dev);
  1832. }
  1833. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1834. {
  1835. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1836. }
  1837. static void nv_legacybackoff_reseed(struct net_device *dev)
  1838. {
  1839. u8 __iomem *base = get_hwbase(dev);
  1840. u32 reg;
  1841. u32 low;
  1842. int tx_status = 0;
  1843. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1844. get_random_bytes(&low, sizeof(low));
  1845. reg |= low & NVREG_SLOTTIME_MASK;
  1846. /* Need to stop tx before change takes effect.
  1847. * Caller has already gained np->lock.
  1848. */
  1849. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1850. if (tx_status)
  1851. nv_stop_tx(dev);
  1852. nv_stop_rx(dev);
  1853. writel(reg, base + NvRegSlotTime);
  1854. if (tx_status)
  1855. nv_start_tx(dev);
  1856. nv_start_rx(dev);
  1857. }
  1858. /* Gear Backoff Seeds */
  1859. #define BACKOFF_SEEDSET_ROWS 8
  1860. #define BACKOFF_SEEDSET_LFSRS 15
  1861. /* Known Good seed sets */
  1862. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1863. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1864. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1865. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1866. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1867. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1868. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1869. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1870. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} };
  1871. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1872. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1873. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1874. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1875. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1876. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1877. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1878. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1879. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} };
  1880. static void nv_gear_backoff_reseed(struct net_device *dev)
  1881. {
  1882. u8 __iomem *base = get_hwbase(dev);
  1883. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1884. u32 temp, seedset, combinedSeed;
  1885. int i;
  1886. /* Setup seed for free running LFSR */
  1887. /* We are going to read the time stamp counter 3 times
  1888. and swizzle bits around to increase randomness */
  1889. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1890. miniseed1 &= 0x0fff;
  1891. if (miniseed1 == 0)
  1892. miniseed1 = 0xabc;
  1893. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1894. miniseed2 &= 0x0fff;
  1895. if (miniseed2 == 0)
  1896. miniseed2 = 0xabc;
  1897. miniseed2_reversed =
  1898. ((miniseed2 & 0xF00) >> 8) |
  1899. (miniseed2 & 0x0F0) |
  1900. ((miniseed2 & 0x00F) << 8);
  1901. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1902. miniseed3 &= 0x0fff;
  1903. if (miniseed3 == 0)
  1904. miniseed3 = 0xabc;
  1905. miniseed3_reversed =
  1906. ((miniseed3 & 0xF00) >> 8) |
  1907. (miniseed3 & 0x0F0) |
  1908. ((miniseed3 & 0x00F) << 8);
  1909. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1910. (miniseed2 ^ miniseed3_reversed);
  1911. /* Seeds can not be zero */
  1912. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1913. combinedSeed |= 0x08;
  1914. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1915. combinedSeed |= 0x8000;
  1916. /* No need to disable tx here */
  1917. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1918. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1919. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1920. writel(temp, base + NvRegBackOffControl);
  1921. /* Setup seeds for all gear LFSRs. */
  1922. get_random_bytes(&seedset, sizeof(seedset));
  1923. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1924. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) {
  1925. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1926. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1927. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1928. writel(temp, base + NvRegBackOffControl);
  1929. }
  1930. }
  1931. /*
  1932. * nv_start_xmit: dev->hard_start_xmit function
  1933. * Called with netif_tx_lock held.
  1934. */
  1935. static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1936. {
  1937. struct fe_priv *np = netdev_priv(dev);
  1938. u32 tx_flags = 0;
  1939. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1940. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1941. unsigned int i;
  1942. u32 offset = 0;
  1943. u32 bcnt;
  1944. u32 size = skb_headlen(skb);
  1945. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1946. u32 empty_slots;
  1947. struct ring_desc *put_tx;
  1948. struct ring_desc *start_tx;
  1949. struct ring_desc *prev_tx;
  1950. struct nv_skb_map *prev_tx_ctx;
  1951. unsigned long flags;
  1952. /* add fragments to entries count */
  1953. for (i = 0; i < fragments; i++) {
  1954. u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1955. entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
  1956. ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1957. }
  1958. spin_lock_irqsave(&np->lock, flags);
  1959. empty_slots = nv_get_empty_tx_slots(np);
  1960. if (unlikely(empty_slots <= entries)) {
  1961. netif_stop_queue(dev);
  1962. np->tx_stop = 1;
  1963. spin_unlock_irqrestore(&np->lock, flags);
  1964. return NETDEV_TX_BUSY;
  1965. }
  1966. spin_unlock_irqrestore(&np->lock, flags);
  1967. start_tx = put_tx = np->put_tx.orig;
  1968. /* setup the header buffer */
  1969. do {
  1970. prev_tx = put_tx;
  1971. prev_tx_ctx = np->put_tx_ctx;
  1972. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1973. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1974. PCI_DMA_TODEVICE);
  1975. np->put_tx_ctx->dma_len = bcnt;
  1976. np->put_tx_ctx->dma_single = 1;
  1977. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1978. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1979. tx_flags = np->tx_flags;
  1980. offset += bcnt;
  1981. size -= bcnt;
  1982. if (unlikely(put_tx++ == np->last_tx.orig))
  1983. put_tx = np->first_tx.orig;
  1984. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1985. np->put_tx_ctx = np->first_tx_ctx;
  1986. } while (size);
  1987. /* setup the fragments */
  1988. for (i = 0; i < fragments; i++) {
  1989. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1990. u32 frag_size = skb_frag_size(frag);
  1991. offset = 0;
  1992. do {
  1993. prev_tx = put_tx;
  1994. prev_tx_ctx = np->put_tx_ctx;
  1995. bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
  1996. np->put_tx_ctx->dma = skb_frag_dma_map(
  1997. &np->pci_dev->dev,
  1998. frag, offset,
  1999. bcnt,
  2000. DMA_TO_DEVICE);
  2001. np->put_tx_ctx->dma_len = bcnt;
  2002. np->put_tx_ctx->dma_single = 0;
  2003. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  2004. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2005. offset += bcnt;
  2006. frag_size -= bcnt;
  2007. if (unlikely(put_tx++ == np->last_tx.orig))
  2008. put_tx = np->first_tx.orig;
  2009. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2010. np->put_tx_ctx = np->first_tx_ctx;
  2011. } while (frag_size);
  2012. }
  2013. /* set last fragment flag */
  2014. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  2015. /* save skb in this slot's context area */
  2016. prev_tx_ctx->skb = skb;
  2017. if (skb_is_gso(skb))
  2018. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2019. else
  2020. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2021. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2022. spin_lock_irqsave(&np->lock, flags);
  2023. /* set tx flags */
  2024. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2025. netdev_sent_queue(np->dev, skb->len);
  2026. np->put_tx.orig = put_tx;
  2027. spin_unlock_irqrestore(&np->lock, flags);
  2028. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2029. return NETDEV_TX_OK;
  2030. }
  2031. static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
  2032. struct net_device *dev)
  2033. {
  2034. struct fe_priv *np = netdev_priv(dev);
  2035. u32 tx_flags = 0;
  2036. u32 tx_flags_extra;
  2037. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2038. unsigned int i;
  2039. u32 offset = 0;
  2040. u32 bcnt;
  2041. u32 size = skb_headlen(skb);
  2042. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2043. u32 empty_slots;
  2044. struct ring_desc_ex *put_tx;
  2045. struct ring_desc_ex *start_tx;
  2046. struct ring_desc_ex *prev_tx;
  2047. struct nv_skb_map *prev_tx_ctx;
  2048. struct nv_skb_map *start_tx_ctx;
  2049. unsigned long flags;
  2050. /* add fragments to entries count */
  2051. for (i = 0; i < fragments; i++) {
  2052. u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
  2053. entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
  2054. ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2055. }
  2056. spin_lock_irqsave(&np->lock, flags);
  2057. empty_slots = nv_get_empty_tx_slots(np);
  2058. if (unlikely(empty_slots <= entries)) {
  2059. netif_stop_queue(dev);
  2060. np->tx_stop = 1;
  2061. spin_unlock_irqrestore(&np->lock, flags);
  2062. return NETDEV_TX_BUSY;
  2063. }
  2064. spin_unlock_irqrestore(&np->lock, flags);
  2065. start_tx = put_tx = np->put_tx.ex;
  2066. start_tx_ctx = np->put_tx_ctx;
  2067. /* setup the header buffer */
  2068. do {
  2069. prev_tx = put_tx;
  2070. prev_tx_ctx = np->put_tx_ctx;
  2071. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2072. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2073. PCI_DMA_TODEVICE);
  2074. np->put_tx_ctx->dma_len = bcnt;
  2075. np->put_tx_ctx->dma_single = 1;
  2076. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2077. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2078. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2079. tx_flags = NV_TX2_VALID;
  2080. offset += bcnt;
  2081. size -= bcnt;
  2082. if (unlikely(put_tx++ == np->last_tx.ex))
  2083. put_tx = np->first_tx.ex;
  2084. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2085. np->put_tx_ctx = np->first_tx_ctx;
  2086. } while (size);
  2087. /* setup the fragments */
  2088. for (i = 0; i < fragments; i++) {
  2089. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2090. u32 frag_size = skb_frag_size(frag);
  2091. offset = 0;
  2092. do {
  2093. prev_tx = put_tx;
  2094. prev_tx_ctx = np->put_tx_ctx;
  2095. bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
  2096. np->put_tx_ctx->dma = skb_frag_dma_map(
  2097. &np->pci_dev->dev,
  2098. frag, offset,
  2099. bcnt,
  2100. DMA_TO_DEVICE);
  2101. np->put_tx_ctx->dma_len = bcnt;
  2102. np->put_tx_ctx->dma_single = 0;
  2103. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2104. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2105. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2106. offset += bcnt;
  2107. frag_size -= bcnt;
  2108. if (unlikely(put_tx++ == np->last_tx.ex))
  2109. put_tx = np->first_tx.ex;
  2110. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2111. np->put_tx_ctx = np->first_tx_ctx;
  2112. } while (frag_size);
  2113. }
  2114. /* set last fragment flag */
  2115. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2116. /* save skb in this slot's context area */
  2117. prev_tx_ctx->skb = skb;
  2118. if (skb_is_gso(skb))
  2119. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2120. else
  2121. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2122. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2123. /* vlan tag */
  2124. if (vlan_tx_tag_present(skb))
  2125. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT |
  2126. vlan_tx_tag_get(skb));
  2127. else
  2128. start_tx->txvlan = 0;
  2129. spin_lock_irqsave(&np->lock, flags);
  2130. if (np->tx_limit) {
  2131. /* Limit the number of outstanding tx. Setup all fragments, but
  2132. * do not set the VALID bit on the first descriptor. Save a pointer
  2133. * to that descriptor and also for next skb_map element.
  2134. */
  2135. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2136. if (!np->tx_change_owner)
  2137. np->tx_change_owner = start_tx_ctx;
  2138. /* remove VALID bit */
  2139. tx_flags &= ~NV_TX2_VALID;
  2140. start_tx_ctx->first_tx_desc = start_tx;
  2141. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2142. np->tx_end_flip = np->put_tx_ctx;
  2143. } else {
  2144. np->tx_pkts_in_progress++;
  2145. }
  2146. }
  2147. /* set tx flags */
  2148. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2149. netdev_sent_queue(np->dev, skb->len);
  2150. np->put_tx.ex = put_tx;
  2151. spin_unlock_irqrestore(&np->lock, flags);
  2152. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2153. return NETDEV_TX_OK;
  2154. }
  2155. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2156. {
  2157. struct fe_priv *np = netdev_priv(dev);
  2158. np->tx_pkts_in_progress--;
  2159. if (np->tx_change_owner) {
  2160. np->tx_change_owner->first_tx_desc->flaglen |=
  2161. cpu_to_le32(NV_TX2_VALID);
  2162. np->tx_pkts_in_progress++;
  2163. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2164. if (np->tx_change_owner == np->tx_end_flip)
  2165. np->tx_change_owner = NULL;
  2166. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2167. }
  2168. }
  2169. /*
  2170. * nv_tx_done: check for completed packets, release the skbs.
  2171. *
  2172. * Caller must own np->lock.
  2173. */
  2174. static int nv_tx_done(struct net_device *dev, int limit)
  2175. {
  2176. struct fe_priv *np = netdev_priv(dev);
  2177. u32 flags;
  2178. int tx_work = 0;
  2179. struct ring_desc *orig_get_tx = np->get_tx.orig;
  2180. unsigned int bytes_compl = 0;
  2181. while ((np->get_tx.orig != np->put_tx.orig) &&
  2182. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2183. (tx_work < limit)) {
  2184. nv_unmap_txskb(np, np->get_tx_ctx);
  2185. if (np->desc_ver == DESC_VER_1) {
  2186. if (flags & NV_TX_LASTPACKET) {
  2187. if (flags & NV_TX_ERROR) {
  2188. if ((flags & NV_TX_RETRYERROR)
  2189. && !(flags & NV_TX_RETRYCOUNT_MASK))
  2190. nv_legacybackoff_reseed(dev);
  2191. } else {
  2192. u64_stats_update_begin(&np->swstats_tx_syncp);
  2193. np->stat_tx_packets++;
  2194. np->stat_tx_bytes += np->get_tx_ctx->skb->len;
  2195. u64_stats_update_end(&np->swstats_tx_syncp);
  2196. }
  2197. bytes_compl += np->get_tx_ctx->skb->len;
  2198. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2199. np->get_tx_ctx->skb = NULL;
  2200. tx_work++;
  2201. }
  2202. } else {
  2203. if (flags & NV_TX2_LASTPACKET) {
  2204. if (flags & NV_TX2_ERROR) {
  2205. if ((flags & NV_TX2_RETRYERROR)
  2206. && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2207. nv_legacybackoff_reseed(dev);
  2208. } else {
  2209. u64_stats_update_begin(&np->swstats_tx_syncp);
  2210. np->stat_tx_packets++;
  2211. np->stat_tx_bytes += np->get_tx_ctx->skb->len;
  2212. u64_stats_update_end(&np->swstats_tx_syncp);
  2213. }
  2214. bytes_compl += np->get_tx_ctx->skb->len;
  2215. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2216. np->get_tx_ctx->skb = NULL;
  2217. tx_work++;
  2218. }
  2219. }
  2220. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2221. np->get_tx.orig = np->first_tx.orig;
  2222. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2223. np->get_tx_ctx = np->first_tx_ctx;
  2224. }
  2225. netdev_completed_queue(np->dev, tx_work, bytes_compl);
  2226. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2227. np->tx_stop = 0;
  2228. netif_wake_queue(dev);
  2229. }
  2230. return tx_work;
  2231. }
  2232. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2233. {
  2234. struct fe_priv *np = netdev_priv(dev);
  2235. u32 flags;
  2236. int tx_work = 0;
  2237. struct ring_desc_ex *orig_get_tx = np->get_tx.ex;
  2238. unsigned long bytes_cleaned = 0;
  2239. while ((np->get_tx.ex != np->put_tx.ex) &&
  2240. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
  2241. (tx_work < limit)) {
  2242. nv_unmap_txskb(np, np->get_tx_ctx);
  2243. if (flags & NV_TX2_LASTPACKET) {
  2244. if (flags & NV_TX2_ERROR) {
  2245. if ((flags & NV_TX2_RETRYERROR)
  2246. && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2247. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2248. nv_gear_backoff_reseed(dev);
  2249. else
  2250. nv_legacybackoff_reseed(dev);
  2251. }
  2252. } else {
  2253. u64_stats_update_begin(&np->swstats_tx_syncp);
  2254. np->stat_tx_packets++;
  2255. np->stat_tx_bytes += np->get_tx_ctx->skb->len;
  2256. u64_stats_update_end(&np->swstats_tx_syncp);
  2257. }
  2258. bytes_cleaned += np->get_tx_ctx->skb->len;
  2259. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2260. np->get_tx_ctx->skb = NULL;
  2261. tx_work++;
  2262. if (np->tx_limit)
  2263. nv_tx_flip_ownership(dev);
  2264. }
  2265. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2266. np->get_tx.ex = np->first_tx.ex;
  2267. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2268. np->get_tx_ctx = np->first_tx_ctx;
  2269. }
  2270. netdev_completed_queue(np->dev, tx_work, bytes_cleaned);
  2271. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2272. np->tx_stop = 0;
  2273. netif_wake_queue(dev);
  2274. }
  2275. return tx_work;
  2276. }
  2277. /*
  2278. * nv_tx_timeout: dev->tx_timeout function
  2279. * Called with netif_tx_lock held.
  2280. */
  2281. static void nv_tx_timeout(struct net_device *dev)
  2282. {
  2283. struct fe_priv *np = netdev_priv(dev);
  2284. u8 __iomem *base = get_hwbase(dev);
  2285. u32 status;
  2286. union ring_type put_tx;
  2287. int saved_tx_limit;
  2288. if (np->msi_flags & NV_MSI_X_ENABLED)
  2289. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2290. else
  2291. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2292. netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status);
  2293. if (unlikely(debug_tx_timeout)) {
  2294. int i;
  2295. netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr);
  2296. netdev_info(dev, "Dumping tx registers\n");
  2297. for (i = 0; i <= np->register_size; i += 32) {
  2298. netdev_info(dev,
  2299. "%3x: %08x %08x %08x %08x "
  2300. "%08x %08x %08x %08x\n",
  2301. i,
  2302. readl(base + i + 0), readl(base + i + 4),
  2303. readl(base + i + 8), readl(base + i + 12),
  2304. readl(base + i + 16), readl(base + i + 20),
  2305. readl(base + i + 24), readl(base + i + 28));
  2306. }
  2307. netdev_info(dev, "Dumping tx ring\n");
  2308. for (i = 0; i < np->tx_ring_size; i += 4) {
  2309. if (!nv_optimized(np)) {
  2310. netdev_info(dev,
  2311. "%03x: %08x %08x // %08x %08x "
  2312. "// %08x %08x // %08x %08x\n",
  2313. i,
  2314. le32_to_cpu(np->tx_ring.orig[i].buf),
  2315. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2316. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2317. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2318. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2319. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2320. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2321. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2322. } else {
  2323. netdev_info(dev,
  2324. "%03x: %08x %08x %08x "
  2325. "// %08x %08x %08x "
  2326. "// %08x %08x %08x "
  2327. "// %08x %08x %08x\n",
  2328. i,
  2329. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2330. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2331. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2332. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2333. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2334. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2335. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2336. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2337. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2338. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2339. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2340. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2341. }
  2342. }
  2343. }
  2344. spin_lock_irq(&np->lock);
  2345. /* 1) stop tx engine */
  2346. nv_stop_tx(dev);
  2347. /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
  2348. saved_tx_limit = np->tx_limit;
  2349. np->tx_limit = 0; /* prevent giving HW any limited pkts */
  2350. np->tx_stop = 0; /* prevent waking tx queue */
  2351. if (!nv_optimized(np))
  2352. nv_tx_done(dev, np->tx_ring_size);
  2353. else
  2354. nv_tx_done_optimized(dev, np->tx_ring_size);
  2355. /* save current HW position */
  2356. if (np->tx_change_owner)
  2357. put_tx.ex = np->tx_change_owner->first_tx_desc;
  2358. else
  2359. put_tx = np->put_tx;
  2360. /* 3) clear all tx state */
  2361. nv_drain_tx(dev);
  2362. nv_init_tx(dev);
  2363. /* 4) restore state to current HW position */
  2364. np->get_tx = np->put_tx = put_tx;
  2365. np->tx_limit = saved_tx_limit;
  2366. /* 5) restart tx engine */
  2367. nv_start_tx(dev);
  2368. netif_wake_queue(dev);
  2369. spin_unlock_irq(&np->lock);
  2370. }
  2371. /*
  2372. * Called when the nic notices a mismatch between the actual data len on the
  2373. * wire and the len indicated in the 802 header
  2374. */
  2375. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2376. {
  2377. int hdrlen; /* length of the 802 header */
  2378. int protolen; /* length as stored in the proto field */
  2379. /* 1) calculate len according to header */
  2380. if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2381. protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto);
  2382. hdrlen = VLAN_HLEN;
  2383. } else {
  2384. protolen = ntohs(((struct ethhdr *)packet)->h_proto);
  2385. hdrlen = ETH_HLEN;
  2386. }
  2387. if (protolen > ETH_DATA_LEN)
  2388. return datalen; /* Value in proto field not a len, no checks possible */
  2389. protolen += hdrlen;
  2390. /* consistency checks: */
  2391. if (datalen > ETH_ZLEN) {
  2392. if (datalen >= protolen) {
  2393. /* more data on wire than in 802 header, trim of
  2394. * additional data.
  2395. */
  2396. return protolen;
  2397. } else {
  2398. /* less data on wire than mentioned in header.
  2399. * Discard the packet.
  2400. */
  2401. return -1;
  2402. }
  2403. } else {
  2404. /* short packet. Accept only if 802 values are also short */
  2405. if (protolen > ETH_ZLEN) {
  2406. return -1;
  2407. }
  2408. return datalen;
  2409. }
  2410. }
  2411. static int nv_rx_process(struct net_device *dev, int limit)
  2412. {
  2413. struct fe_priv *np = netdev_priv(dev);
  2414. u32 flags;
  2415. int rx_work = 0;
  2416. struct sk_buff *skb;
  2417. int len;
  2418. while ((np->get_rx.orig != np->put_rx.orig) &&
  2419. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2420. (rx_work < limit)) {
  2421. /*
  2422. * the packet is for us - immediately tear down the pci mapping.
  2423. * TODO: check if a prefetch of the first cacheline improves
  2424. * the performance.
  2425. */
  2426. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2427. np->get_rx_ctx->dma_len,
  2428. PCI_DMA_FROMDEVICE);
  2429. skb = np->get_rx_ctx->skb;
  2430. np->get_rx_ctx->skb = NULL;
  2431. /* look at what we actually got: */
  2432. if (np->desc_ver == DESC_VER_1) {
  2433. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2434. len = flags & LEN_MASK_V1;
  2435. if (unlikely(flags & NV_RX_ERROR)) {
  2436. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2437. len = nv_getlen(dev, skb->data, len);
  2438. if (len < 0) {
  2439. dev_kfree_skb(skb);
  2440. goto next_pkt;
  2441. }
  2442. }
  2443. /* framing errors are soft errors */
  2444. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2445. if (flags & NV_RX_SUBSTRACT1)
  2446. len--;
  2447. }
  2448. /* the rest are hard errors */
  2449. else {
  2450. if (flags & NV_RX_MISSEDFRAME) {
  2451. u64_stats_update_begin(&np->swstats_rx_syncp);
  2452. np->stat_rx_missed_errors++;
  2453. u64_stats_update_end(&np->swstats_rx_syncp);
  2454. }
  2455. dev_kfree_skb(skb);
  2456. goto next_pkt;
  2457. }
  2458. }
  2459. } else {
  2460. dev_kfree_skb(skb);
  2461. goto next_pkt;
  2462. }
  2463. } else {
  2464. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2465. len = flags & LEN_MASK_V2;
  2466. if (unlikely(flags & NV_RX2_ERROR)) {
  2467. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2468. len = nv_getlen(dev, skb->data, len);
  2469. if (len < 0) {
  2470. dev_kfree_skb(skb);
  2471. goto next_pkt;
  2472. }
  2473. }
  2474. /* framing errors are soft errors */
  2475. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2476. if (flags & NV_RX2_SUBSTRACT1)
  2477. len--;
  2478. }
  2479. /* the rest are hard errors */
  2480. else {
  2481. dev_kfree_skb(skb);
  2482. goto next_pkt;
  2483. }
  2484. }
  2485. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2486. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2487. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2488. } else {
  2489. dev_kfree_skb(skb);
  2490. goto next_pkt;
  2491. }
  2492. }
  2493. /* got a valid packet - forward it to the network core */
  2494. skb_put(skb, len);
  2495. skb->protocol = eth_type_trans(skb, dev);
  2496. napi_gro_receive(&np->napi, skb);
  2497. u64_stats_update_begin(&np->swstats_rx_syncp);
  2498. np->stat_rx_packets++;
  2499. np->stat_rx_bytes += len;
  2500. u64_stats_update_end(&np->swstats_rx_syncp);
  2501. next_pkt:
  2502. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2503. np->get_rx.orig = np->first_rx.orig;
  2504. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2505. np->get_rx_ctx = np->first_rx_ctx;
  2506. rx_work++;
  2507. }
  2508. return rx_work;
  2509. }
  2510. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2511. {
  2512. struct fe_priv *np = netdev_priv(dev);
  2513. u32 flags;
  2514. u32 vlanflags = 0;
  2515. int rx_work = 0;
  2516. struct sk_buff *skb;
  2517. int len;
  2518. while ((np->get_rx.ex != np->put_rx.ex) &&
  2519. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2520. (rx_work < limit)) {
  2521. /*
  2522. * the packet is for us - immediately tear down the pci mapping.
  2523. * TODO: check if a prefetch of the first cacheline improves
  2524. * the performance.
  2525. */
  2526. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2527. np->get_rx_ctx->dma_len,
  2528. PCI_DMA_FROMDEVICE);
  2529. skb = np->get_rx_ctx->skb;
  2530. np->get_rx_ctx->skb = NULL;
  2531. /* look at what we actually got: */
  2532. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2533. len = flags & LEN_MASK_V2;
  2534. if (unlikely(flags & NV_RX2_ERROR)) {
  2535. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2536. len = nv_getlen(dev, skb->data, len);
  2537. if (len < 0) {
  2538. dev_kfree_skb(skb);
  2539. goto next_pkt;
  2540. }
  2541. }
  2542. /* framing errors are soft errors */
  2543. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2544. if (flags & NV_RX2_SUBSTRACT1)
  2545. len--;
  2546. }
  2547. /* the rest are hard errors */
  2548. else {
  2549. dev_kfree_skb(skb);
  2550. goto next_pkt;
  2551. }
  2552. }
  2553. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2554. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2555. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2556. /* got a valid packet - forward it to the network core */
  2557. skb_put(skb, len);
  2558. skb->protocol = eth_type_trans(skb, dev);
  2559. prefetch(skb->data);
  2560. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2561. /*
  2562. * There's need to check for NETIF_F_HW_VLAN_RX here.
  2563. * Even if vlan rx accel is disabled,
  2564. * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set.
  2565. */
  2566. if (dev->features & NETIF_F_HW_VLAN_RX &&
  2567. vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2568. u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK;
  2569. __vlan_hwaccel_put_tag(skb, vid);
  2570. }
  2571. napi_gro_receive(&np->napi, skb);
  2572. u64_stats_update_begin(&np->swstats_rx_syncp);
  2573. np->stat_rx_packets++;
  2574. np->stat_rx_bytes += len;
  2575. u64_stats_update_end(&np->swstats_rx_syncp);
  2576. } else {
  2577. dev_kfree_skb(skb);
  2578. }
  2579. next_pkt:
  2580. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2581. np->get_rx.ex = np->first_rx.ex;
  2582. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2583. np->get_rx_ctx = np->first_rx_ctx;
  2584. rx_work++;
  2585. }
  2586. return rx_work;
  2587. }
  2588. static void set_bufsize(struct net_device *dev)
  2589. {
  2590. struct fe_priv *np = netdev_priv(dev);
  2591. if (dev->mtu <= ETH_DATA_LEN)
  2592. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2593. else
  2594. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2595. }
  2596. /*
  2597. * nv_change_mtu: dev->change_mtu function
  2598. * Called with dev_base_lock held for read.
  2599. */
  2600. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2601. {
  2602. struct fe_priv *np = netdev_priv(dev);
  2603. int old_mtu;
  2604. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2605. return -EINVAL;
  2606. old_mtu = dev->mtu;
  2607. dev->mtu = new_mtu;
  2608. /* return early if the buffer sizes will not change */
  2609. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2610. return 0;
  2611. if (old_mtu == new_mtu)
  2612. return 0;
  2613. /* synchronized against open : rtnl_lock() held by caller */
  2614. if (netif_running(dev)) {
  2615. u8 __iomem *base = get_hwbase(dev);
  2616. /*
  2617. * It seems that the nic preloads valid ring entries into an
  2618. * internal buffer. The procedure for flushing everything is
  2619. * guessed, there is probably a simpler approach.
  2620. * Changing the MTU is a rare event, it shouldn't matter.
  2621. */
  2622. nv_disable_irq(dev);
  2623. nv_napi_disable(dev);
  2624. netif_tx_lock_bh(dev);
  2625. netif_addr_lock(dev);
  2626. spin_lock(&np->lock);
  2627. /* stop engines */
  2628. nv_stop_rxtx(dev);
  2629. nv_txrx_reset(dev);
  2630. /* drain rx queue */
  2631. nv_drain_rxtx(dev);
  2632. /* reinit driver view of the rx queue */
  2633. set_bufsize(dev);
  2634. if (nv_init_ring(dev)) {
  2635. if (!np->in_shutdown)
  2636. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2637. }
  2638. /* reinit nic view of the rx queue */
  2639. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2640. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2641. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2642. base + NvRegRingSizes);
  2643. pci_push(base);
  2644. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2645. pci_push(base);
  2646. /* restart rx engine */
  2647. nv_start_rxtx(dev);
  2648. spin_unlock(&np->lock);
  2649. netif_addr_unlock(dev);
  2650. netif_tx_unlock_bh(dev);
  2651. nv_napi_enable(dev);
  2652. nv_enable_irq(dev);
  2653. }
  2654. return 0;
  2655. }
  2656. static void nv_copy_mac_to_hw(struct net_device *dev)
  2657. {
  2658. u8 __iomem *base = get_hwbase(dev);
  2659. u32 mac[2];
  2660. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2661. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2662. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2663. writel(mac[0], base + NvRegMacAddrA);
  2664. writel(mac[1], base + NvRegMacAddrB);
  2665. }
  2666. /*
  2667. * nv_set_mac_address: dev->set_mac_address function
  2668. * Called with rtnl_lock() held.
  2669. */
  2670. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2671. {
  2672. struct fe_priv *np = netdev_priv(dev);
  2673. struct sockaddr *macaddr = (struct sockaddr *)addr;
  2674. if (!is_valid_ether_addr(macaddr->sa_data))
  2675. return -EADDRNOTAVAIL;
  2676. /* synchronized against open : rtnl_lock() held by caller */
  2677. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2678. dev->addr_assign_type &= ~NET_ADDR_RANDOM;
  2679. if (netif_running(dev)) {
  2680. netif_tx_lock_bh(dev);
  2681. netif_addr_lock(dev);
  2682. spin_lock_irq(&np->lock);
  2683. /* stop rx engine */
  2684. nv_stop_rx(dev);
  2685. /* set mac address */
  2686. nv_copy_mac_to_hw(dev);
  2687. /* restart rx engine */
  2688. nv_start_rx(dev);
  2689. spin_unlock_irq(&np->lock);
  2690. netif_addr_unlock(dev);
  2691. netif_tx_unlock_bh(dev);
  2692. } else {
  2693. nv_copy_mac_to_hw(dev);
  2694. }
  2695. return 0;
  2696. }
  2697. /*
  2698. * nv_set_multicast: dev->set_multicast function
  2699. * Called with netif_tx_lock held.
  2700. */
  2701. static void nv_set_multicast(struct net_device *dev)
  2702. {
  2703. struct fe_priv *np = netdev_priv(dev);
  2704. u8 __iomem *base = get_hwbase(dev);
  2705. u32 addr[2];
  2706. u32 mask[2];
  2707. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2708. memset(addr, 0, sizeof(addr));
  2709. memset(mask, 0, sizeof(mask));
  2710. if (dev->flags & IFF_PROMISC) {
  2711. pff |= NVREG_PFF_PROMISC;
  2712. } else {
  2713. pff |= NVREG_PFF_MYADDR;
  2714. if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
  2715. u32 alwaysOff[2];
  2716. u32 alwaysOn[2];
  2717. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2718. if (dev->flags & IFF_ALLMULTI) {
  2719. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2720. } else {
  2721. struct netdev_hw_addr *ha;
  2722. netdev_for_each_mc_addr(ha, dev) {
  2723. unsigned char *hw_addr = ha->addr;
  2724. u32 a, b;
  2725. a = le32_to_cpu(*(__le32 *) hw_addr);
  2726. b = le16_to_cpu(*(__le16 *) (&hw_addr[4]));
  2727. alwaysOn[0] &= a;
  2728. alwaysOff[0] &= ~a;
  2729. alwaysOn[1] &= b;
  2730. alwaysOff[1] &= ~b;
  2731. }
  2732. }
  2733. addr[0] = alwaysOn[0];
  2734. addr[1] = alwaysOn[1];
  2735. mask[0] = alwaysOn[0] | alwaysOff[0];
  2736. mask[1] = alwaysOn[1] | alwaysOff[1];
  2737. } else {
  2738. mask[0] = NVREG_MCASTMASKA_NONE;
  2739. mask[1] = NVREG_MCASTMASKB_NONE;
  2740. }
  2741. }
  2742. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2743. pff |= NVREG_PFF_ALWAYS;
  2744. spin_lock_irq(&np->lock);
  2745. nv_stop_rx(dev);
  2746. writel(addr[0], base + NvRegMulticastAddrA);
  2747. writel(addr[1], base + NvRegMulticastAddrB);
  2748. writel(mask[0], base + NvRegMulticastMaskA);
  2749. writel(mask[1], base + NvRegMulticastMaskB);
  2750. writel(pff, base + NvRegPacketFilterFlags);
  2751. nv_start_rx(dev);
  2752. spin_unlock_irq(&np->lock);
  2753. }
  2754. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2755. {
  2756. struct fe_priv *np = netdev_priv(dev);
  2757. u8 __iomem *base = get_hwbase(dev);
  2758. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2759. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2760. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2761. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2762. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2763. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2764. } else {
  2765. writel(pff, base + NvRegPacketFilterFlags);
  2766. }
  2767. }
  2768. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2769. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2770. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2771. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2772. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2773. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2774. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2775. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2776. /* limit the number of tx pause frames to a default of 8 */
  2777. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2778. }
  2779. writel(pause_enable, base + NvRegTxPauseFrame);
  2780. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2781. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2782. } else {
  2783. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2784. writel(regmisc, base + NvRegMisc1);
  2785. }
  2786. }
  2787. }
  2788. static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex)
  2789. {
  2790. struct fe_priv *np = netdev_priv(dev);
  2791. u8 __iomem *base = get_hwbase(dev);
  2792. u32 phyreg, txreg;
  2793. int mii_status;
  2794. np->linkspeed = NVREG_LINKSPEED_FORCE|speed;
  2795. np->duplex = duplex;
  2796. /* see if gigabit phy */
  2797. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2798. if (mii_status & PHY_GIGABIT) {
  2799. np->gigabit = PHY_GIGABIT;
  2800. phyreg = readl(base + NvRegSlotTime);
  2801. phyreg &= ~(0x3FF00);
  2802. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2803. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2804. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2805. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2806. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2807. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2808. writel(phyreg, base + NvRegSlotTime);
  2809. }
  2810. phyreg = readl(base + NvRegPhyInterface);
  2811. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2812. if (np->duplex == 0)
  2813. phyreg |= PHY_HALF;
  2814. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2815. phyreg |= PHY_100;
  2816. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
  2817. NVREG_LINKSPEED_1000)
  2818. phyreg |= PHY_1000;
  2819. writel(phyreg, base + NvRegPhyInterface);
  2820. if (phyreg & PHY_RGMII) {
  2821. if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
  2822. NVREG_LINKSPEED_1000)
  2823. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2824. else
  2825. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2826. } else {
  2827. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2828. }
  2829. writel(txreg, base + NvRegTxDeferral);
  2830. if (np->desc_ver == DESC_VER_1) {
  2831. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2832. } else {
  2833. if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
  2834. NVREG_LINKSPEED_1000)
  2835. txreg = NVREG_TX_WM_DESC2_3_1000;
  2836. else
  2837. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2838. }
  2839. writel(txreg, base + NvRegTxWatermark);
  2840. writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
  2841. base + NvRegMisc1);
  2842. pci_push(base);
  2843. writel(np->linkspeed, base + NvRegLinkSpeed);
  2844. pci_push(base);
  2845. return;
  2846. }
  2847. /**
  2848. * nv_update_linkspeed: Setup the MAC according to the link partner
  2849. * @dev: Network device to be configured
  2850. *
  2851. * The function queries the PHY and checks if there is a link partner.
  2852. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2853. * set to 10 MBit HD.
  2854. *
  2855. * The function returns 0 if there is no link partner and 1 if there is
  2856. * a good link partner.
  2857. */
  2858. static int nv_update_linkspeed(struct net_device *dev)
  2859. {
  2860. struct fe_priv *np = netdev_priv(dev);
  2861. u8 __iomem *base = get_hwbase(dev);
  2862. int adv = 0;
  2863. int lpa = 0;
  2864. int adv_lpa, adv_pause, lpa_pause;
  2865. int newls = np->linkspeed;
  2866. int newdup = np->duplex;
  2867. int mii_status;
  2868. u32 bmcr;
  2869. int retval = 0;
  2870. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2871. u32 txrxFlags = 0;
  2872. u32 phy_exp;
  2873. /* If device loopback is enabled, set carrier on and enable max link
  2874. * speed.
  2875. */
  2876. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2877. if (bmcr & BMCR_LOOPBACK) {
  2878. if (netif_running(dev)) {
  2879. nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1);
  2880. if (!netif_carrier_ok(dev))
  2881. netif_carrier_on(dev);
  2882. }
  2883. return 1;
  2884. }
  2885. /* BMSR_LSTATUS is latched, read it twice:
  2886. * we want the current value.
  2887. */
  2888. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2889. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2890. if (!(mii_status & BMSR_LSTATUS)) {
  2891. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2892. newdup = 0;
  2893. retval = 0;
  2894. goto set_speed;
  2895. }
  2896. if (np->autoneg == 0) {
  2897. if (np->fixed_mode & LPA_100FULL) {
  2898. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2899. newdup = 1;
  2900. } else if (np->fixed_mode & LPA_100HALF) {
  2901. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2902. newdup = 0;
  2903. } else if (np->fixed_mode & LPA_10FULL) {
  2904. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2905. newdup = 1;
  2906. } else {
  2907. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2908. newdup = 0;
  2909. }
  2910. retval = 1;
  2911. goto set_speed;
  2912. }
  2913. /* check auto negotiation is complete */
  2914. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2915. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2916. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2917. newdup = 0;
  2918. retval = 0;
  2919. goto set_speed;
  2920. }
  2921. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2922. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2923. retval = 1;
  2924. if (np->gigabit == PHY_GIGABIT) {
  2925. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2926. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2927. if ((control_1000 & ADVERTISE_1000FULL) &&
  2928. (status_1000 & LPA_1000FULL)) {
  2929. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2930. newdup = 1;
  2931. goto set_speed;
  2932. }
  2933. }
  2934. /* FIXME: handle parallel detection properly */
  2935. adv_lpa = lpa & adv;
  2936. if (adv_lpa & LPA_100FULL) {
  2937. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2938. newdup = 1;
  2939. } else if (adv_lpa & LPA_100HALF) {
  2940. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2941. newdup = 0;
  2942. } else if (adv_lpa & LPA_10FULL) {
  2943. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2944. newdup = 1;
  2945. } else if (adv_lpa & LPA_10HALF) {
  2946. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2947. newdup = 0;
  2948. } else {
  2949. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2950. newdup = 0;
  2951. }
  2952. set_speed:
  2953. if (np->duplex == newdup && np->linkspeed == newls)
  2954. return retval;
  2955. np->duplex = newdup;
  2956. np->linkspeed = newls;
  2957. /* The transmitter and receiver must be restarted for safe update */
  2958. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2959. txrxFlags |= NV_RESTART_TX;
  2960. nv_stop_tx(dev);
  2961. }
  2962. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2963. txrxFlags |= NV_RESTART_RX;
  2964. nv_stop_rx(dev);
  2965. }
  2966. if (np->gigabit == PHY_GIGABIT) {
  2967. phyreg = readl(base + NvRegSlotTime);
  2968. phyreg &= ~(0x3FF00);
  2969. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2970. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2971. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2972. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2973. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2974. writel(phyreg, base + NvRegSlotTime);
  2975. }
  2976. phyreg = readl(base + NvRegPhyInterface);
  2977. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2978. if (np->duplex == 0)
  2979. phyreg |= PHY_HALF;
  2980. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2981. phyreg |= PHY_100;
  2982. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2983. phyreg |= PHY_1000;
  2984. writel(phyreg, base + NvRegPhyInterface);
  2985. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2986. if (phyreg & PHY_RGMII) {
  2987. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2988. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2989. } else {
  2990. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2991. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2992. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2993. else
  2994. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2995. } else {
  2996. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2997. }
  2998. }
  2999. } else {
  3000. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  3001. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  3002. else
  3003. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  3004. }
  3005. writel(txreg, base + NvRegTxDeferral);
  3006. if (np->desc_ver == DESC_VER_1) {
  3007. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  3008. } else {
  3009. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  3010. txreg = NVREG_TX_WM_DESC2_3_1000;
  3011. else
  3012. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  3013. }
  3014. writel(txreg, base + NvRegTxWatermark);
  3015. writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
  3016. base + NvRegMisc1);
  3017. pci_push(base);
  3018. writel(np->linkspeed, base + NvRegLinkSpeed);
  3019. pci_push(base);
  3020. pause_flags = 0;
  3021. /* setup pause frame */
  3022. if (np->duplex != 0) {
  3023. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  3024. adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3025. lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM);
  3026. switch (adv_pause) {
  3027. case ADVERTISE_PAUSE_CAP:
  3028. if (lpa_pause & LPA_PAUSE_CAP) {
  3029. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3030. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3031. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3032. }
  3033. break;
  3034. case ADVERTISE_PAUSE_ASYM:
  3035. if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM))
  3036. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3037. break;
  3038. case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM:
  3039. if (lpa_pause & LPA_PAUSE_CAP) {
  3040. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3041. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3042. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3043. }
  3044. if (lpa_pause == LPA_PAUSE_ASYM)
  3045. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3046. break;
  3047. }
  3048. } else {
  3049. pause_flags = np->pause_flags;
  3050. }
  3051. }
  3052. nv_update_pause(dev, pause_flags);
  3053. if (txrxFlags & NV_RESTART_TX)
  3054. nv_start_tx(dev);
  3055. if (txrxFlags & NV_RESTART_RX)
  3056. nv_start_rx(dev);
  3057. return retval;
  3058. }
  3059. static void nv_linkchange(struct net_device *dev)
  3060. {
  3061. if (nv_update_linkspeed(dev)) {
  3062. if (!netif_carrier_ok(dev)) {
  3063. netif_carrier_on(dev);
  3064. netdev_info(dev, "link up\n");
  3065. nv_txrx_gate(dev, false);
  3066. nv_start_rx(dev);
  3067. }
  3068. } else {
  3069. if (netif_carrier_ok(dev)) {
  3070. netif_carrier_off(dev);
  3071. netdev_info(dev, "link down\n");
  3072. nv_txrx_gate(dev, true);
  3073. nv_stop_rx(dev);
  3074. }
  3075. }
  3076. }
  3077. static void nv_link_irq(struct net_device *dev)
  3078. {
  3079. u8 __iomem *base = get_hwbase(dev);
  3080. u32 miistat;
  3081. miistat = readl(base + NvRegMIIStatus);
  3082. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3083. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3084. nv_linkchange(dev);
  3085. }
  3086. static void nv_msi_workaround(struct fe_priv *np)
  3087. {
  3088. /* Need to toggle the msi irq mask within the ethernet device,
  3089. * otherwise, future interrupts will not be detected.
  3090. */
  3091. if (np->msi_flags & NV_MSI_ENABLED) {
  3092. u8 __iomem *base = np->base;
  3093. writel(0, base + NvRegMSIIrqMask);
  3094. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3095. }
  3096. }
  3097. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  3098. {
  3099. struct fe_priv *np = netdev_priv(dev);
  3100. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3101. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3102. /* transition to poll based interrupts */
  3103. np->quiet_count = 0;
  3104. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3105. np->irqmask = NVREG_IRQMASK_CPU;
  3106. return 1;
  3107. }
  3108. } else {
  3109. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3110. np->quiet_count++;
  3111. } else {
  3112. /* reached a period of low activity, switch
  3113. to per tx/rx packet interrupts */
  3114. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3115. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3116. return 1;
  3117. }
  3118. }
  3119. }
  3120. }
  3121. return 0;
  3122. }
  3123. static irqreturn_t nv_nic_irq(int foo, void *data)
  3124. {
  3125. struct net_device *dev = (struct net_device *) data;
  3126. struct fe_priv *np = netdev_priv(dev);
  3127. u8 __iomem *base = get_hwbase(dev);
  3128. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3129. np->events = readl(base + NvRegIrqStatus);
  3130. writel(np->events, base + NvRegIrqStatus);
  3131. } else {
  3132. np->events = readl(base + NvRegMSIXIrqStatus);
  3133. writel(np->events, base + NvRegMSIXIrqStatus);
  3134. }
  3135. if (!(np->events & np->irqmask))
  3136. return IRQ_NONE;
  3137. nv_msi_workaround(np);
  3138. if (napi_schedule_prep(&np->napi)) {
  3139. /*
  3140. * Disable further irq's (msix not enabled with napi)
  3141. */
  3142. writel(0, base + NvRegIrqMask);
  3143. __napi_schedule(&np->napi);
  3144. }
  3145. return IRQ_HANDLED;
  3146. }
  3147. /**
  3148. * All _optimized functions are used to help increase performance
  3149. * (reduce CPU and increase throughput). They use descripter version 3,
  3150. * compiler directives, and reduce memory accesses.
  3151. */
  3152. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3153. {
  3154. struct net_device *dev = (struct net_device *) data;
  3155. struct fe_priv *np = netdev_priv(dev);
  3156. u8 __iomem *base = get_hwbase(dev);
  3157. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3158. np->events = readl(base + NvRegIrqStatus);
  3159. writel(np->events, base + NvRegIrqStatus);
  3160. } else {
  3161. np->events = readl(base + NvRegMSIXIrqStatus);
  3162. writel(np->events, base + NvRegMSIXIrqStatus);
  3163. }
  3164. if (!(np->events & np->irqmask))
  3165. return IRQ_NONE;
  3166. nv_msi_workaround(np);
  3167. if (napi_schedule_prep(&np->napi)) {
  3168. /*
  3169. * Disable further irq's (msix not enabled with napi)
  3170. */
  3171. writel(0, base + NvRegIrqMask);
  3172. __napi_schedule(&np->napi);
  3173. }
  3174. return IRQ_HANDLED;
  3175. }
  3176. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3177. {
  3178. struct net_device *dev = (struct net_device *) data;
  3179. struct fe_priv *np = netdev_priv(dev);
  3180. u8 __iomem *base = get_hwbase(dev);
  3181. u32 events;
  3182. int i;
  3183. unsigned long flags;
  3184. for (i = 0;; i++) {
  3185. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3186. writel(events, base + NvRegMSIXIrqStatus);
  3187. netdev_dbg(dev, "tx irq events: %08x\n", events);
  3188. if (!(events & np->irqmask))
  3189. break;
  3190. spin_lock_irqsave(&np->lock, flags);
  3191. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3192. spin_unlock_irqrestore(&np->lock, flags);
  3193. if (unlikely(i > max_interrupt_work)) {
  3194. spin_lock_irqsave(&np->lock, flags);
  3195. /* disable interrupts on the nic */
  3196. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3197. pci_push(base);
  3198. if (!np->in_shutdown) {
  3199. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3200. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3201. }
  3202. spin_unlock_irqrestore(&np->lock, flags);
  3203. netdev_dbg(dev, "%s: too many iterations (%d)\n",
  3204. __func__, i);
  3205. break;
  3206. }
  3207. }
  3208. return IRQ_RETVAL(i);
  3209. }
  3210. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3211. {
  3212. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3213. struct net_device *dev = np->dev;
  3214. u8 __iomem *base = get_hwbase(dev);
  3215. unsigned long flags;
  3216. int retcode;
  3217. int rx_count, tx_work = 0, rx_work = 0;
  3218. do {
  3219. if (!nv_optimized(np)) {
  3220. spin_lock_irqsave(&np->lock, flags);
  3221. tx_work += nv_tx_done(dev, np->tx_ring_size);
  3222. spin_unlock_irqrestore(&np->lock, flags);
  3223. rx_count = nv_rx_process(dev, budget - rx_work);
  3224. retcode = nv_alloc_rx(dev);
  3225. } else {
  3226. spin_lock_irqsave(&np->lock, flags);
  3227. tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
  3228. spin_unlock_irqrestore(&np->lock, flags);
  3229. rx_count = nv_rx_process_optimized(dev,
  3230. budget - rx_work);
  3231. retcode = nv_alloc_rx_optimized(dev);
  3232. }
  3233. } while (retcode == 0 &&
  3234. rx_count > 0 && (rx_work += rx_count) < budget);
  3235. if (retcode) {
  3236. spin_lock_irqsave(&np->lock, flags);
  3237. if (!np->in_shutdown)
  3238. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3239. spin_unlock_irqrestore(&np->lock, flags);
  3240. }
  3241. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3242. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3243. spin_lock_irqsave(&np->lock, flags);
  3244. nv_link_irq(dev);
  3245. spin_unlock_irqrestore(&np->lock, flags);
  3246. }
  3247. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3248. spin_lock_irqsave(&np->lock, flags);
  3249. nv_linkchange(dev);
  3250. spin_unlock_irqrestore(&np->lock, flags);
  3251. np->link_timeout = jiffies + LINK_TIMEOUT;
  3252. }
  3253. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3254. spin_lock_irqsave(&np->lock, flags);
  3255. if (!np->in_shutdown) {
  3256. np->nic_poll_irq = np->irqmask;
  3257. np->recover_error = 1;
  3258. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3259. }
  3260. spin_unlock_irqrestore(&np->lock, flags);
  3261. napi_complete(napi);
  3262. return rx_work;
  3263. }
  3264. if (rx_work < budget) {
  3265. /* re-enable interrupts
  3266. (msix not enabled in napi) */
  3267. napi_complete(napi);
  3268. writel(np->irqmask, base + NvRegIrqMask);
  3269. }
  3270. return rx_work;
  3271. }
  3272. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3273. {
  3274. struct net_device *dev = (struct net_device *) data;
  3275. struct fe_priv *np = netdev_priv(dev);
  3276. u8 __iomem *base = get_hwbase(dev);
  3277. u32 events;
  3278. int i;
  3279. unsigned long flags;
  3280. for (i = 0;; i++) {
  3281. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3282. writel(events, base + NvRegMSIXIrqStatus);
  3283. netdev_dbg(dev, "rx irq events: %08x\n", events);
  3284. if (!(events & np->irqmask))
  3285. break;
  3286. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3287. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3288. spin_lock_irqsave(&np->lock, flags);
  3289. if (!np->in_shutdown)
  3290. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3291. spin_unlock_irqrestore(&np->lock, flags);
  3292. }
  3293. }
  3294. if (unlikely(i > max_interrupt_work)) {
  3295. spin_lock_irqsave(&np->lock, flags);
  3296. /* disable interrupts on the nic */
  3297. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3298. pci_push(base);
  3299. if (!np->in_shutdown) {
  3300. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3301. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3302. }
  3303. spin_unlock_irqrestore(&np->lock, flags);
  3304. netdev_dbg(dev, "%s: too many iterations (%d)\n",
  3305. __func__, i);
  3306. break;
  3307. }
  3308. }
  3309. return IRQ_RETVAL(i);
  3310. }
  3311. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3312. {
  3313. struct net_device *dev = (struct net_device *) data;
  3314. struct fe_priv *np = netdev_priv(dev);
  3315. u8 __iomem *base = get_hwbase(dev);
  3316. u32 events;
  3317. int i;
  3318. unsigned long flags;
  3319. for (i = 0;; i++) {
  3320. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3321. writel(events, base + NvRegMSIXIrqStatus);
  3322. netdev_dbg(dev, "irq events: %08x\n", events);
  3323. if (!(events & np->irqmask))
  3324. break;
  3325. /* check tx in case we reached max loop limit in tx isr */
  3326. spin_lock_irqsave(&np->lock, flags);
  3327. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3328. spin_unlock_irqrestore(&np->lock, flags);
  3329. if (events & NVREG_IRQ_LINK) {
  3330. spin_lock_irqsave(&np->lock, flags);
  3331. nv_link_irq(dev);
  3332. spin_unlock_irqrestore(&np->lock, flags);
  3333. }
  3334. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3335. spin_lock_irqsave(&np->lock, flags);
  3336. nv_linkchange(dev);
  3337. spin_unlock_irqrestore(&np->lock, flags);
  3338. np->link_timeout = jiffies + LINK_TIMEOUT;
  3339. }
  3340. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3341. spin_lock_irq(&np->lock);
  3342. /* disable interrupts on the nic */
  3343. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3344. pci_push(base);
  3345. if (!np->in_shutdown) {
  3346. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3347. np->recover_error = 1;
  3348. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3349. }
  3350. spin_unlock_irq(&np->lock);
  3351. break;
  3352. }
  3353. if (unlikely(i > max_interrupt_work)) {
  3354. spin_lock_irqsave(&np->lock, flags);
  3355. /* disable interrupts on the nic */
  3356. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3357. pci_push(base);
  3358. if (!np->in_shutdown) {
  3359. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3360. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3361. }
  3362. spin_unlock_irqrestore(&np->lock, flags);
  3363. netdev_dbg(dev, "%s: too many iterations (%d)\n",
  3364. __func__, i);
  3365. break;
  3366. }
  3367. }
  3368. return IRQ_RETVAL(i);
  3369. }
  3370. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3371. {
  3372. struct net_device *dev = (struct net_device *) data;
  3373. struct fe_priv *np = netdev_priv(dev);
  3374. u8 __iomem *base = get_hwbase(dev);
  3375. u32 events;
  3376. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3377. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3378. writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3379. } else {
  3380. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3381. writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3382. }
  3383. pci_push(base);
  3384. if (!(events & NVREG_IRQ_TIMER))
  3385. return IRQ_RETVAL(0);
  3386. nv_msi_workaround(np);
  3387. spin_lock(&np->lock);
  3388. np->intr_test = 1;
  3389. spin_unlock(&np->lock);
  3390. return IRQ_RETVAL(1);
  3391. }
  3392. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3393. {
  3394. u8 __iomem *base = get_hwbase(dev);
  3395. int i;
  3396. u32 msixmap = 0;
  3397. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3398. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3399. * the remaining 8 interrupts.
  3400. */
  3401. for (i = 0; i < 8; i++) {
  3402. if ((irqmask >> i) & 0x1)
  3403. msixmap |= vector << (i << 2);
  3404. }
  3405. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3406. msixmap = 0;
  3407. for (i = 0; i < 8; i++) {
  3408. if ((irqmask >> (i + 8)) & 0x1)
  3409. msixmap |= vector << (i << 2);
  3410. }
  3411. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3412. }
  3413. static int nv_request_irq(struct net_device *dev, int intr_test)
  3414. {
  3415. struct fe_priv *np = get_nvpriv(dev);
  3416. u8 __iomem *base = get_hwbase(dev);
  3417. int ret = 1;
  3418. int i;
  3419. irqreturn_t (*handler)(int foo, void *data);
  3420. if (intr_test) {
  3421. handler = nv_nic_irq_test;
  3422. } else {
  3423. if (nv_optimized(np))
  3424. handler = nv_nic_irq_optimized;
  3425. else
  3426. handler = nv_nic_irq;
  3427. }
  3428. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3429. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
  3430. np->msi_x_entry[i].entry = i;
  3431. ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK));
  3432. if (ret == 0) {
  3433. np->msi_flags |= NV_MSI_X_ENABLED;
  3434. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3435. /* Request irq for rx handling */
  3436. sprintf(np->name_rx, "%s-rx", dev->name);
  3437. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3438. nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3439. netdev_info(dev,
  3440. "request_irq failed for rx %d\n",
  3441. ret);
  3442. pci_disable_msix(np->pci_dev);
  3443. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3444. goto out_err;
  3445. }
  3446. /* Request irq for tx handling */
  3447. sprintf(np->name_tx, "%s-tx", dev->name);
  3448. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3449. nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3450. netdev_info(dev,
  3451. "request_irq failed for tx %d\n",
  3452. ret);
  3453. pci_disable_msix(np->pci_dev);
  3454. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3455. goto out_free_rx;
  3456. }
  3457. /* Request irq for link and timer handling */
  3458. sprintf(np->name_other, "%s-other", dev->name);
  3459. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3460. nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3461. netdev_info(dev,
  3462. "request_irq failed for link %d\n",
  3463. ret);
  3464. pci_disable_msix(np->pci_dev);
  3465. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3466. goto out_free_tx;
  3467. }
  3468. /* map interrupts to their respective vector */
  3469. writel(0, base + NvRegMSIXMap0);
  3470. writel(0, base + NvRegMSIXMap1);
  3471. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3472. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3473. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3474. } else {
  3475. /* Request irq for all interrupts */
  3476. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3477. netdev_info(dev,
  3478. "request_irq failed %d\n",
  3479. ret);
  3480. pci_disable_msix(np->pci_dev);
  3481. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3482. goto out_err;
  3483. }
  3484. /* map interrupts to vector 0 */
  3485. writel(0, base + NvRegMSIXMap0);
  3486. writel(0, base + NvRegMSIXMap1);
  3487. }
  3488. netdev_info(dev, "MSI-X enabled\n");
  3489. }
  3490. }
  3491. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3492. ret = pci_enable_msi(np->pci_dev);
  3493. if (ret == 0) {
  3494. np->msi_flags |= NV_MSI_ENABLED;
  3495. dev->irq = np->pci_dev->irq;
  3496. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3497. netdev_info(dev, "request_irq failed %d\n",
  3498. ret);
  3499. pci_disable_msi(np->pci_dev);
  3500. np->msi_flags &= ~NV_MSI_ENABLED;
  3501. dev->irq = np->pci_dev->irq;
  3502. goto out_err;
  3503. }
  3504. /* map interrupts to vector 0 */
  3505. writel(0, base + NvRegMSIMap0);
  3506. writel(0, base + NvRegMSIMap1);
  3507. /* enable msi vector 0 */
  3508. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3509. netdev_info(dev, "MSI enabled\n");
  3510. }
  3511. }
  3512. if (ret != 0) {
  3513. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3514. goto out_err;
  3515. }
  3516. return 0;
  3517. out_free_tx:
  3518. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3519. out_free_rx:
  3520. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3521. out_err:
  3522. return 1;
  3523. }
  3524. static void nv_free_irq(struct net_device *dev)
  3525. {
  3526. struct fe_priv *np = get_nvpriv(dev);
  3527. int i;
  3528. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3529. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
  3530. free_irq(np->msi_x_entry[i].vector, dev);
  3531. pci_disable_msix(np->pci_dev);
  3532. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3533. } else {
  3534. free_irq(np->pci_dev->irq, dev);
  3535. if (np->msi_flags & NV_MSI_ENABLED) {
  3536. pci_disable_msi(np->pci_dev);
  3537. np->msi_flags &= ~NV_MSI_ENABLED;
  3538. }
  3539. }
  3540. }
  3541. static void nv_do_nic_poll(unsigned long data)
  3542. {
  3543. struct net_device *dev = (struct net_device *) data;
  3544. struct fe_priv *np = netdev_priv(dev);
  3545. u8 __iomem *base = get_hwbase(dev);
  3546. u32 mask = 0;
  3547. /*
  3548. * First disable irq(s) and then
  3549. * reenable interrupts on the nic, we have to do this before calling
  3550. * nv_nic_irq because that may decide to do otherwise
  3551. */
  3552. if (!using_multi_irqs(dev)) {
  3553. if (np->msi_flags & NV_MSI_X_ENABLED)
  3554. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3555. else
  3556. disable_irq_lockdep(np->pci_dev->irq);
  3557. mask = np->irqmask;
  3558. } else {
  3559. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3560. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3561. mask |= NVREG_IRQ_RX_ALL;
  3562. }
  3563. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3564. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3565. mask |= NVREG_IRQ_TX_ALL;
  3566. }
  3567. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3568. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3569. mask |= NVREG_IRQ_OTHER;
  3570. }
  3571. }
  3572. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3573. if (np->recover_error) {
  3574. np->recover_error = 0;
  3575. netdev_info(dev, "MAC in recoverable error state\n");
  3576. if (netif_running(dev)) {
  3577. netif_tx_lock_bh(dev);
  3578. netif_addr_lock(dev);
  3579. spin_lock(&np->lock);
  3580. /* stop engines */
  3581. nv_stop_rxtx(dev);
  3582. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3583. nv_mac_reset(dev);
  3584. nv_txrx_reset(dev);
  3585. /* drain rx queue */
  3586. nv_drain_rxtx(dev);
  3587. /* reinit driver view of the rx queue */
  3588. set_bufsize(dev);
  3589. if (nv_init_ring(dev)) {
  3590. if (!np->in_shutdown)
  3591. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3592. }
  3593. /* reinit nic view of the rx queue */
  3594. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3595. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3596. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3597. base + NvRegRingSizes);
  3598. pci_push(base);
  3599. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3600. pci_push(base);
  3601. /* clear interrupts */
  3602. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3603. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3604. else
  3605. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3606. /* restart rx engine */
  3607. nv_start_rxtx(dev);
  3608. spin_unlock(&np->lock);
  3609. netif_addr_unlock(dev);
  3610. netif_tx_unlock_bh(dev);
  3611. }
  3612. }
  3613. writel(mask, base + NvRegIrqMask);
  3614. pci_push(base);
  3615. if (!using_multi_irqs(dev)) {
  3616. np->nic_poll_irq = 0;
  3617. if (nv_optimized(np))
  3618. nv_nic_irq_optimized(0, dev);
  3619. else
  3620. nv_nic_irq(0, dev);
  3621. if (np->msi_flags & NV_MSI_X_ENABLED)
  3622. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3623. else
  3624. enable_irq_lockdep(np->pci_dev->irq);
  3625. } else {
  3626. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3627. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3628. nv_nic_irq_rx(0, dev);
  3629. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3630. }
  3631. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3632. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3633. nv_nic_irq_tx(0, dev);
  3634. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3635. }
  3636. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3637. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3638. nv_nic_irq_other(0, dev);
  3639. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3640. }
  3641. }
  3642. }
  3643. #ifdef CONFIG_NET_POLL_CONTROLLER
  3644. static void nv_poll_controller(struct net_device *dev)
  3645. {
  3646. nv_do_nic_poll((unsigned long) dev);
  3647. }
  3648. #endif
  3649. static void nv_do_stats_poll(unsigned long data)
  3650. __acquires(&netdev_priv(dev)->hwstats_lock)
  3651. __releases(&netdev_priv(dev)->hwstats_lock)
  3652. {
  3653. struct net_device *dev = (struct net_device *) data;
  3654. struct fe_priv *np = netdev_priv(dev);
  3655. /* If lock is currently taken, the stats are being refreshed
  3656. * and hence fresh enough */
  3657. if (spin_trylock(&np->hwstats_lock)) {
  3658. nv_update_stats(dev);
  3659. spin_unlock(&np->hwstats_lock);
  3660. }
  3661. if (!np->in_shutdown)
  3662. mod_timer(&np->stats_poll,
  3663. round_jiffies(jiffies + STATS_INTERVAL));
  3664. }
  3665. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3666. {
  3667. struct fe_priv *np = netdev_priv(dev);
  3668. strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
  3669. strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version));
  3670. strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
  3671. }
  3672. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3673. {
  3674. struct fe_priv *np = netdev_priv(dev);
  3675. wolinfo->supported = WAKE_MAGIC;
  3676. spin_lock_irq(&np->lock);
  3677. if (np->wolenabled)
  3678. wolinfo->wolopts = WAKE_MAGIC;
  3679. spin_unlock_irq(&np->lock);
  3680. }
  3681. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3682. {
  3683. struct fe_priv *np = netdev_priv(dev);
  3684. u8 __iomem *base = get_hwbase(dev);
  3685. u32 flags = 0;
  3686. if (wolinfo->wolopts == 0) {
  3687. np->wolenabled = 0;
  3688. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3689. np->wolenabled = 1;
  3690. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3691. }
  3692. if (netif_running(dev)) {
  3693. spin_lock_irq(&np->lock);
  3694. writel(flags, base + NvRegWakeUpFlags);
  3695. spin_unlock_irq(&np->lock);
  3696. }
  3697. device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled);
  3698. return 0;
  3699. }
  3700. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3701. {
  3702. struct fe_priv *np = netdev_priv(dev);
  3703. u32 speed;
  3704. int adv;
  3705. spin_lock_irq(&np->lock);
  3706. ecmd->port = PORT_MII;
  3707. if (!netif_running(dev)) {
  3708. /* We do not track link speed / duplex setting if the
  3709. * interface is disabled. Force a link check */
  3710. if (nv_update_linkspeed(dev)) {
  3711. if (!netif_carrier_ok(dev))
  3712. netif_carrier_on(dev);
  3713. } else {
  3714. if (netif_carrier_ok(dev))
  3715. netif_carrier_off(dev);
  3716. }
  3717. }
  3718. if (netif_carrier_ok(dev)) {
  3719. switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3720. case NVREG_LINKSPEED_10:
  3721. speed = SPEED_10;
  3722. break;
  3723. case NVREG_LINKSPEED_100:
  3724. speed = SPEED_100;
  3725. break;
  3726. case NVREG_LINKSPEED_1000:
  3727. speed = SPEED_1000;
  3728. break;
  3729. default:
  3730. speed = -1;
  3731. break;
  3732. }
  3733. ecmd->duplex = DUPLEX_HALF;
  3734. if (np->duplex)
  3735. ecmd->duplex = DUPLEX_FULL;
  3736. } else {
  3737. speed = -1;
  3738. ecmd->duplex = -1;
  3739. }
  3740. ethtool_cmd_speed_set(ecmd, speed);
  3741. ecmd->autoneg = np->autoneg;
  3742. ecmd->advertising = ADVERTISED_MII;
  3743. if (np->autoneg) {
  3744. ecmd->advertising |= ADVERTISED_Autoneg;
  3745. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3746. if (adv & ADVERTISE_10HALF)
  3747. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3748. if (adv & ADVERTISE_10FULL)
  3749. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3750. if (adv & ADVERTISE_100HALF)
  3751. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3752. if (adv & ADVERTISE_100FULL)
  3753. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3754. if (np->gigabit == PHY_GIGABIT) {
  3755. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3756. if (adv & ADVERTISE_1000FULL)
  3757. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3758. }
  3759. }
  3760. ecmd->supported = (SUPPORTED_Autoneg |
  3761. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3762. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3763. SUPPORTED_MII);
  3764. if (np->gigabit == PHY_GIGABIT)
  3765. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3766. ecmd->phy_address = np->phyaddr;
  3767. ecmd->transceiver = XCVR_EXTERNAL;
  3768. /* ignore maxtxpkt, maxrxpkt for now */
  3769. spin_unlock_irq(&np->lock);
  3770. return 0;
  3771. }
  3772. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3773. {
  3774. struct fe_priv *np = netdev_priv(dev);
  3775. u32 speed = ethtool_cmd_speed(ecmd);
  3776. if (ecmd->port != PORT_MII)
  3777. return -EINVAL;
  3778. if (ecmd->transceiver != XCVR_EXTERNAL)
  3779. return -EINVAL;
  3780. if (ecmd->phy_address != np->phyaddr) {
  3781. /* TODO: support switching between multiple phys. Should be
  3782. * trivial, but not enabled due to lack of test hardware. */
  3783. return -EINVAL;
  3784. }
  3785. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3786. u32 mask;
  3787. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3788. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3789. if (np->gigabit == PHY_GIGABIT)
  3790. mask |= ADVERTISED_1000baseT_Full;
  3791. if ((ecmd->advertising & mask) == 0)
  3792. return -EINVAL;
  3793. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3794. /* Note: autonegotiation disable, speed 1000 intentionally
  3795. * forbidden - no one should need that. */
  3796. if (speed != SPEED_10 && speed != SPEED_100)
  3797. return -EINVAL;
  3798. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3799. return -EINVAL;
  3800. } else {
  3801. return -EINVAL;
  3802. }
  3803. netif_carrier_off(dev);
  3804. if (netif_running(dev)) {
  3805. unsigned long flags;
  3806. nv_disable_irq(dev);
  3807. netif_tx_lock_bh(dev);
  3808. netif_addr_lock(dev);
  3809. /* with plain spinlock lockdep complains */
  3810. spin_lock_irqsave(&np->lock, flags);
  3811. /* stop engines */
  3812. /* FIXME:
  3813. * this can take some time, and interrupts are disabled
  3814. * due to spin_lock_irqsave, but let's hope no daemon
  3815. * is going to change the settings very often...
  3816. * Worst case:
  3817. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3818. * + some minor delays, which is up to a second approximately
  3819. */
  3820. nv_stop_rxtx(dev);
  3821. spin_unlock_irqrestore(&np->lock, flags);
  3822. netif_addr_unlock(dev);
  3823. netif_tx_unlock_bh(dev);
  3824. }
  3825. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3826. int adv, bmcr;
  3827. np->autoneg = 1;
  3828. /* advertise only what has been requested */
  3829. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3830. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3831. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3832. adv |= ADVERTISE_10HALF;
  3833. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3834. adv |= ADVERTISE_10FULL;
  3835. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3836. adv |= ADVERTISE_100HALF;
  3837. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3838. adv |= ADVERTISE_100FULL;
  3839. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
  3840. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3841. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3842. adv |= ADVERTISE_PAUSE_ASYM;
  3843. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3844. if (np->gigabit == PHY_GIGABIT) {
  3845. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3846. adv &= ~ADVERTISE_1000FULL;
  3847. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3848. adv |= ADVERTISE_1000FULL;
  3849. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3850. }
  3851. if (netif_running(dev))
  3852. netdev_info(dev, "link down\n");
  3853. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3854. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3855. bmcr |= BMCR_ANENABLE;
  3856. /* reset the phy in order for settings to stick,
  3857. * and cause autoneg to start */
  3858. if (phy_reset(dev, bmcr)) {
  3859. netdev_info(dev, "phy reset failed\n");
  3860. return -EINVAL;
  3861. }
  3862. } else {
  3863. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3864. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3865. }
  3866. } else {
  3867. int adv, bmcr;
  3868. np->autoneg = 0;
  3869. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3870. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3871. if (speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3872. adv |= ADVERTISE_10HALF;
  3873. if (speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3874. adv |= ADVERTISE_10FULL;
  3875. if (speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3876. adv |= ADVERTISE_100HALF;
  3877. if (speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3878. adv |= ADVERTISE_100FULL;
  3879. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3880. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */
  3881. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3882. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3883. }
  3884. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3885. adv |= ADVERTISE_PAUSE_ASYM;
  3886. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3887. }
  3888. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3889. np->fixed_mode = adv;
  3890. if (np->gigabit == PHY_GIGABIT) {
  3891. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3892. adv &= ~ADVERTISE_1000FULL;
  3893. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3894. }
  3895. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3896. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3897. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3898. bmcr |= BMCR_FULLDPLX;
  3899. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3900. bmcr |= BMCR_SPEED100;
  3901. if (np->phy_oui == PHY_OUI_MARVELL) {
  3902. /* reset the phy in order for forced mode settings to stick */
  3903. if (phy_reset(dev, bmcr)) {
  3904. netdev_info(dev, "phy reset failed\n");
  3905. return -EINVAL;
  3906. }
  3907. } else {
  3908. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3909. if (netif_running(dev)) {
  3910. /* Wait a bit and then reconfigure the nic. */
  3911. udelay(10);
  3912. nv_linkchange(dev);
  3913. }
  3914. }
  3915. }
  3916. if (netif_running(dev)) {
  3917. nv_start_rxtx(dev);
  3918. nv_enable_irq(dev);
  3919. }
  3920. return 0;
  3921. }
  3922. #define FORCEDETH_REGS_VER 1
  3923. static int nv_get_regs_len(struct net_device *dev)
  3924. {
  3925. struct fe_priv *np = netdev_priv(dev);
  3926. return np->register_size;
  3927. }
  3928. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3929. {
  3930. struct fe_priv *np = netdev_priv(dev);
  3931. u8 __iomem *base = get_hwbase(dev);
  3932. u32 *rbuf = buf;
  3933. int i;
  3934. regs->version = FORCEDETH_REGS_VER;
  3935. spin_lock_irq(&np->lock);
  3936. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  3937. rbuf[i] = readl(base + i*sizeof(u32));
  3938. spin_unlock_irq(&np->lock);
  3939. }
  3940. static int nv_nway_reset(struct net_device *dev)
  3941. {
  3942. struct fe_priv *np = netdev_priv(dev);
  3943. int ret;
  3944. if (np->autoneg) {
  3945. int bmcr;
  3946. netif_carrier_off(dev);
  3947. if (netif_running(dev)) {
  3948. nv_disable_irq(dev);
  3949. netif_tx_lock_bh(dev);
  3950. netif_addr_lock(dev);
  3951. spin_lock(&np->lock);
  3952. /* stop engines */
  3953. nv_stop_rxtx(dev);
  3954. spin_unlock(&np->lock);
  3955. netif_addr_unlock(dev);
  3956. netif_tx_unlock_bh(dev);
  3957. netdev_info(dev, "link down\n");
  3958. }
  3959. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3960. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3961. bmcr |= BMCR_ANENABLE;
  3962. /* reset the phy in order for settings to stick*/
  3963. if (phy_reset(dev, bmcr)) {
  3964. netdev_info(dev, "phy reset failed\n");
  3965. return -EINVAL;
  3966. }
  3967. } else {
  3968. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3969. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3970. }
  3971. if (netif_running(dev)) {
  3972. nv_start_rxtx(dev);
  3973. nv_enable_irq(dev);
  3974. }
  3975. ret = 0;
  3976. } else {
  3977. ret = -EINVAL;
  3978. }
  3979. return ret;
  3980. }
  3981. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3982. {
  3983. struct fe_priv *np = netdev_priv(dev);
  3984. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3985. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3986. ring->rx_pending = np->rx_ring_size;
  3987. ring->tx_pending = np->tx_ring_size;
  3988. }
  3989. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3990. {
  3991. struct fe_priv *np = netdev_priv(dev);
  3992. u8 __iomem *base = get_hwbase(dev);
  3993. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3994. dma_addr_t ring_addr;
  3995. if (ring->rx_pending < RX_RING_MIN ||
  3996. ring->tx_pending < TX_RING_MIN ||
  3997. ring->rx_mini_pending != 0 ||
  3998. ring->rx_jumbo_pending != 0 ||
  3999. (np->desc_ver == DESC_VER_1 &&
  4000. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4001. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4002. (np->desc_ver != DESC_VER_1 &&
  4003. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4004. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4005. return -EINVAL;
  4006. }
  4007. /* allocate new rings */
  4008. if (!nv_optimized(np)) {
  4009. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4010. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4011. &ring_addr);
  4012. } else {
  4013. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4014. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4015. &ring_addr);
  4016. }
  4017. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4018. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4019. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4020. /* fall back to old rings */
  4021. if (!nv_optimized(np)) {
  4022. if (rxtx_ring)
  4023. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4024. rxtx_ring, ring_addr);
  4025. } else {
  4026. if (rxtx_ring)
  4027. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4028. rxtx_ring, ring_addr);
  4029. }
  4030. kfree(rx_skbuff);
  4031. kfree(tx_skbuff);
  4032. goto exit;
  4033. }
  4034. if (netif_running(dev)) {
  4035. nv_disable_irq(dev);
  4036. nv_napi_disable(dev);
  4037. netif_tx_lock_bh(dev);
  4038. netif_addr_lock(dev);
  4039. spin_lock(&np->lock);
  4040. /* stop engines */
  4041. nv_stop_rxtx(dev);
  4042. nv_txrx_reset(dev);
  4043. /* drain queues */
  4044. nv_drain_rxtx(dev);
  4045. /* delete queues */
  4046. free_rings(dev);
  4047. }
  4048. /* set new values */
  4049. np->rx_ring_size = ring->rx_pending;
  4050. np->tx_ring_size = ring->tx_pending;
  4051. if (!nv_optimized(np)) {
  4052. np->rx_ring.orig = (struct ring_desc *)rxtx_ring;
  4053. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4054. } else {
  4055. np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring;
  4056. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4057. }
  4058. np->rx_skb = (struct nv_skb_map *)rx_skbuff;
  4059. np->tx_skb = (struct nv_skb_map *)tx_skbuff;
  4060. np->ring_addr = ring_addr;
  4061. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4062. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4063. if (netif_running(dev)) {
  4064. /* reinit driver view of the queues */
  4065. set_bufsize(dev);
  4066. if (nv_init_ring(dev)) {
  4067. if (!np->in_shutdown)
  4068. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4069. }
  4070. /* reinit nic view of the queues */
  4071. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4072. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4073. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4074. base + NvRegRingSizes);
  4075. pci_push(base);
  4076. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4077. pci_push(base);
  4078. /* restart engines */
  4079. nv_start_rxtx(dev);
  4080. spin_unlock(&np->lock);
  4081. netif_addr_unlock(dev);
  4082. netif_tx_unlock_bh(dev);
  4083. nv_napi_enable(dev);
  4084. nv_enable_irq(dev);
  4085. }
  4086. return 0;
  4087. exit:
  4088. return -ENOMEM;
  4089. }
  4090. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4091. {
  4092. struct fe_priv *np = netdev_priv(dev);
  4093. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4094. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4095. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4096. }
  4097. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4098. {
  4099. struct fe_priv *np = netdev_priv(dev);
  4100. int adv, bmcr;
  4101. if ((!np->autoneg && np->duplex == 0) ||
  4102. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4103. netdev_info(dev, "can not set pause settings when forced link is in half duplex\n");
  4104. return -EINVAL;
  4105. }
  4106. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4107. netdev_info(dev, "hardware does not support tx pause frames\n");
  4108. return -EINVAL;
  4109. }
  4110. netif_carrier_off(dev);
  4111. if (netif_running(dev)) {
  4112. nv_disable_irq(dev);
  4113. netif_tx_lock_bh(dev);
  4114. netif_addr_lock(dev);
  4115. spin_lock(&np->lock);
  4116. /* stop engines */
  4117. nv_stop_rxtx(dev);
  4118. spin_unlock(&np->lock);
  4119. netif_addr_unlock(dev);
  4120. netif_tx_unlock_bh(dev);
  4121. }
  4122. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4123. if (pause->rx_pause)
  4124. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4125. if (pause->tx_pause)
  4126. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4127. if (np->autoneg && pause->autoneg) {
  4128. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4129. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4130. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4131. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
  4132. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4133. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4134. adv |= ADVERTISE_PAUSE_ASYM;
  4135. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4136. if (netif_running(dev))
  4137. netdev_info(dev, "link down\n");
  4138. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4139. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4140. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4141. } else {
  4142. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4143. if (pause->rx_pause)
  4144. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4145. if (pause->tx_pause)
  4146. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4147. if (!netif_running(dev))
  4148. nv_update_linkspeed(dev);
  4149. else
  4150. nv_update_pause(dev, np->pause_flags);
  4151. }
  4152. if (netif_running(dev)) {
  4153. nv_start_rxtx(dev);
  4154. nv_enable_irq(dev);
  4155. }
  4156. return 0;
  4157. }
  4158. static int nv_set_loopback(struct net_device *dev, netdev_features_t features)
  4159. {
  4160. struct fe_priv *np = netdev_priv(dev);
  4161. unsigned long flags;
  4162. u32 miicontrol;
  4163. int err, retval = 0;
  4164. spin_lock_irqsave(&np->lock, flags);
  4165. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4166. if (features & NETIF_F_LOOPBACK) {
  4167. if (miicontrol & BMCR_LOOPBACK) {
  4168. spin_unlock_irqrestore(&np->lock, flags);
  4169. netdev_info(dev, "Loopback already enabled\n");
  4170. return 0;
  4171. }
  4172. nv_disable_irq(dev);
  4173. /* Turn on loopback mode */
  4174. miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000;
  4175. err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol);
  4176. if (err) {
  4177. retval = PHY_ERROR;
  4178. spin_unlock_irqrestore(&np->lock, flags);
  4179. phy_init(dev);
  4180. } else {
  4181. if (netif_running(dev)) {
  4182. /* Force 1000 Mbps full-duplex */
  4183. nv_force_linkspeed(dev, NVREG_LINKSPEED_1000,
  4184. 1);
  4185. /* Force link up */
  4186. netif_carrier_on(dev);
  4187. }
  4188. spin_unlock_irqrestore(&np->lock, flags);
  4189. netdev_info(dev,
  4190. "Internal PHY loopback mode enabled.\n");
  4191. }
  4192. } else {
  4193. if (!(miicontrol & BMCR_LOOPBACK)) {
  4194. spin_unlock_irqrestore(&np->lock, flags);
  4195. netdev_info(dev, "Loopback already disabled\n");
  4196. return 0;
  4197. }
  4198. nv_disable_irq(dev);
  4199. /* Turn off loopback */
  4200. spin_unlock_irqrestore(&np->lock, flags);
  4201. netdev_info(dev, "Internal PHY loopback mode disabled.\n");
  4202. phy_init(dev);
  4203. }
  4204. msleep(500);
  4205. spin_lock_irqsave(&np->lock, flags);
  4206. nv_enable_irq(dev);
  4207. spin_unlock_irqrestore(&np->lock, flags);
  4208. return retval;
  4209. }
  4210. static netdev_features_t nv_fix_features(struct net_device *dev,
  4211. netdev_features_t features)
  4212. {
  4213. /* vlan is dependent on rx checksum offload */
  4214. if (features & (NETIF_F_HW_VLAN_TX|NETIF_F_HW_VLAN_RX))
  4215. features |= NETIF_F_RXCSUM;
  4216. return features;
  4217. }
  4218. static void nv_vlan_mode(struct net_device *dev, netdev_features_t features)
  4219. {
  4220. struct fe_priv *np = get_nvpriv(dev);
  4221. spin_lock_irq(&np->lock);
  4222. if (features & NETIF_F_HW_VLAN_RX)
  4223. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP;
  4224. else
  4225. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4226. if (features & NETIF_F_HW_VLAN_TX)
  4227. np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS;
  4228. else
  4229. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4230. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4231. spin_unlock_irq(&np->lock);
  4232. }
  4233. static int nv_set_features(struct net_device *dev, netdev_features_t features)
  4234. {
  4235. struct fe_priv *np = netdev_priv(dev);
  4236. u8 __iomem *base = get_hwbase(dev);
  4237. netdev_features_t changed = dev->features ^ features;
  4238. int retval;
  4239. if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) {
  4240. retval = nv_set_loopback(dev, features);
  4241. if (retval != 0)
  4242. return retval;
  4243. }
  4244. if (changed & NETIF_F_RXCSUM) {
  4245. spin_lock_irq(&np->lock);
  4246. if (features & NETIF_F_RXCSUM)
  4247. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4248. else
  4249. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4250. if (netif_running(dev))
  4251. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4252. spin_unlock_irq(&np->lock);
  4253. }
  4254. if (changed & (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX))
  4255. nv_vlan_mode(dev, features);
  4256. return 0;
  4257. }
  4258. static int nv_get_sset_count(struct net_device *dev, int sset)
  4259. {
  4260. struct fe_priv *np = netdev_priv(dev);
  4261. switch (sset) {
  4262. case ETH_SS_TEST:
  4263. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4264. return NV_TEST_COUNT_EXTENDED;
  4265. else
  4266. return NV_TEST_COUNT_BASE;
  4267. case ETH_SS_STATS:
  4268. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4269. return NV_DEV_STATISTICS_V3_COUNT;
  4270. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4271. return NV_DEV_STATISTICS_V2_COUNT;
  4272. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4273. return NV_DEV_STATISTICS_V1_COUNT;
  4274. else
  4275. return 0;
  4276. default:
  4277. return -EOPNOTSUPP;
  4278. }
  4279. }
  4280. static void nv_get_ethtool_stats(struct net_device *dev,
  4281. struct ethtool_stats *estats, u64 *buffer)
  4282. __acquires(&netdev_priv(dev)->hwstats_lock)
  4283. __releases(&netdev_priv(dev)->hwstats_lock)
  4284. {
  4285. struct fe_priv *np = netdev_priv(dev);
  4286. spin_lock_bh(&np->hwstats_lock);
  4287. nv_update_stats(dev);
  4288. memcpy(buffer, &np->estats,
  4289. nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4290. spin_unlock_bh(&np->hwstats_lock);
  4291. }
  4292. static int nv_link_test(struct net_device *dev)
  4293. {
  4294. struct fe_priv *np = netdev_priv(dev);
  4295. int mii_status;
  4296. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4297. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4298. /* check phy link status */
  4299. if (!(mii_status & BMSR_LSTATUS))
  4300. return 0;
  4301. else
  4302. return 1;
  4303. }
  4304. static int nv_register_test(struct net_device *dev)
  4305. {
  4306. u8 __iomem *base = get_hwbase(dev);
  4307. int i = 0;
  4308. u32 orig_read, new_read;
  4309. do {
  4310. orig_read = readl(base + nv_registers_test[i].reg);
  4311. /* xor with mask to toggle bits */
  4312. orig_read ^= nv_registers_test[i].mask;
  4313. writel(orig_read, base + nv_registers_test[i].reg);
  4314. new_read = readl(base + nv_registers_test[i].reg);
  4315. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4316. return 0;
  4317. /* restore original value */
  4318. orig_read ^= nv_registers_test[i].mask;
  4319. writel(orig_read, base + nv_registers_test[i].reg);
  4320. } while (nv_registers_test[++i].reg != 0);
  4321. return 1;
  4322. }
  4323. static int nv_interrupt_test(struct net_device *dev)
  4324. {
  4325. struct fe_priv *np = netdev_priv(dev);
  4326. u8 __iomem *base = get_hwbase(dev);
  4327. int ret = 1;
  4328. int testcnt;
  4329. u32 save_msi_flags, save_poll_interval = 0;
  4330. if (netif_running(dev)) {
  4331. /* free current irq */
  4332. nv_free_irq(dev);
  4333. save_poll_interval = readl(base+NvRegPollingInterval);
  4334. }
  4335. /* flag to test interrupt handler */
  4336. np->intr_test = 0;
  4337. /* setup test irq */
  4338. save_msi_flags = np->msi_flags;
  4339. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4340. np->msi_flags |= 0x001; /* setup 1 vector */
  4341. if (nv_request_irq(dev, 1))
  4342. return 0;
  4343. /* setup timer interrupt */
  4344. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4345. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4346. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4347. /* wait for at least one interrupt */
  4348. msleep(100);
  4349. spin_lock_irq(&np->lock);
  4350. /* flag should be set within ISR */
  4351. testcnt = np->intr_test;
  4352. if (!testcnt)
  4353. ret = 2;
  4354. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4355. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4356. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4357. else
  4358. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4359. spin_unlock_irq(&np->lock);
  4360. nv_free_irq(dev);
  4361. np->msi_flags = save_msi_flags;
  4362. if (netif_running(dev)) {
  4363. writel(save_poll_interval, base + NvRegPollingInterval);
  4364. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4365. /* restore original irq */
  4366. if (nv_request_irq(dev, 0))
  4367. return 0;
  4368. }
  4369. return ret;
  4370. }
  4371. static int nv_loopback_test(struct net_device *dev)
  4372. {
  4373. struct fe_priv *np = netdev_priv(dev);
  4374. u8 __iomem *base = get_hwbase(dev);
  4375. struct sk_buff *tx_skb, *rx_skb;
  4376. dma_addr_t test_dma_addr;
  4377. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4378. u32 flags;
  4379. int len, i, pkt_len;
  4380. u8 *pkt_data;
  4381. u32 filter_flags = 0;
  4382. u32 misc1_flags = 0;
  4383. int ret = 1;
  4384. if (netif_running(dev)) {
  4385. nv_disable_irq(dev);
  4386. filter_flags = readl(base + NvRegPacketFilterFlags);
  4387. misc1_flags = readl(base + NvRegMisc1);
  4388. } else {
  4389. nv_txrx_reset(dev);
  4390. }
  4391. /* reinit driver view of the rx queue */
  4392. set_bufsize(dev);
  4393. nv_init_ring(dev);
  4394. /* setup hardware for loopback */
  4395. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4396. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4397. /* reinit nic view of the rx queue */
  4398. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4399. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4400. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4401. base + NvRegRingSizes);
  4402. pci_push(base);
  4403. /* restart rx engine */
  4404. nv_start_rxtx(dev);
  4405. /* setup packet for tx */
  4406. pkt_len = ETH_DATA_LEN;
  4407. tx_skb = netdev_alloc_skb(dev, pkt_len);
  4408. if (!tx_skb) {
  4409. netdev_err(dev, "netdev_alloc_skb() failed during loopback test\n");
  4410. ret = 0;
  4411. goto out;
  4412. }
  4413. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4414. skb_tailroom(tx_skb),
  4415. PCI_DMA_FROMDEVICE);
  4416. pkt_data = skb_put(tx_skb, pkt_len);
  4417. for (i = 0; i < pkt_len; i++)
  4418. pkt_data[i] = (u8)(i & 0xff);
  4419. if (!nv_optimized(np)) {
  4420. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4421. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4422. } else {
  4423. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4424. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4425. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4426. }
  4427. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4428. pci_push(get_hwbase(dev));
  4429. msleep(500);
  4430. /* check for rx of the packet */
  4431. if (!nv_optimized(np)) {
  4432. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4433. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4434. } else {
  4435. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4436. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4437. }
  4438. if (flags & NV_RX_AVAIL) {
  4439. ret = 0;
  4440. } else if (np->desc_ver == DESC_VER_1) {
  4441. if (flags & NV_RX_ERROR)
  4442. ret = 0;
  4443. } else {
  4444. if (flags & NV_RX2_ERROR)
  4445. ret = 0;
  4446. }
  4447. if (ret) {
  4448. if (len != pkt_len) {
  4449. ret = 0;
  4450. } else {
  4451. rx_skb = np->rx_skb[0].skb;
  4452. for (i = 0; i < pkt_len; i++) {
  4453. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4454. ret = 0;
  4455. break;
  4456. }
  4457. }
  4458. }
  4459. }
  4460. pci_unmap_single(np->pci_dev, test_dma_addr,
  4461. (skb_end_pointer(tx_skb) - tx_skb->data),
  4462. PCI_DMA_TODEVICE);
  4463. dev_kfree_skb_any(tx_skb);
  4464. out:
  4465. /* stop engines */
  4466. nv_stop_rxtx(dev);
  4467. nv_txrx_reset(dev);
  4468. /* drain rx queue */
  4469. nv_drain_rxtx(dev);
  4470. if (netif_running(dev)) {
  4471. writel(misc1_flags, base + NvRegMisc1);
  4472. writel(filter_flags, base + NvRegPacketFilterFlags);
  4473. nv_enable_irq(dev);
  4474. }
  4475. return ret;
  4476. }
  4477. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4478. {
  4479. struct fe_priv *np = netdev_priv(dev);
  4480. u8 __iomem *base = get_hwbase(dev);
  4481. int result;
  4482. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4483. if (!nv_link_test(dev)) {
  4484. test->flags |= ETH_TEST_FL_FAILED;
  4485. buffer[0] = 1;
  4486. }
  4487. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4488. if (netif_running(dev)) {
  4489. netif_stop_queue(dev);
  4490. nv_napi_disable(dev);
  4491. netif_tx_lock_bh(dev);
  4492. netif_addr_lock(dev);
  4493. spin_lock_irq(&np->lock);
  4494. nv_disable_hw_interrupts(dev, np->irqmask);
  4495. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4496. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4497. else
  4498. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4499. /* stop engines */
  4500. nv_stop_rxtx(dev);
  4501. nv_txrx_reset(dev);
  4502. /* drain rx queue */
  4503. nv_drain_rxtx(dev);
  4504. spin_unlock_irq(&np->lock);
  4505. netif_addr_unlock(dev);
  4506. netif_tx_unlock_bh(dev);
  4507. }
  4508. if (!nv_register_test(dev)) {
  4509. test->flags |= ETH_TEST_FL_FAILED;
  4510. buffer[1] = 1;
  4511. }
  4512. result = nv_interrupt_test(dev);
  4513. if (result != 1) {
  4514. test->flags |= ETH_TEST_FL_FAILED;
  4515. buffer[2] = 1;
  4516. }
  4517. if (result == 0) {
  4518. /* bail out */
  4519. return;
  4520. }
  4521. if (!nv_loopback_test(dev)) {
  4522. test->flags |= ETH_TEST_FL_FAILED;
  4523. buffer[3] = 1;
  4524. }
  4525. if (netif_running(dev)) {
  4526. /* reinit driver view of the rx queue */
  4527. set_bufsize(dev);
  4528. if (nv_init_ring(dev)) {
  4529. if (!np->in_shutdown)
  4530. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4531. }
  4532. /* reinit nic view of the rx queue */
  4533. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4534. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4535. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4536. base + NvRegRingSizes);
  4537. pci_push(base);
  4538. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4539. pci_push(base);
  4540. /* restart rx engine */
  4541. nv_start_rxtx(dev);
  4542. netif_start_queue(dev);
  4543. nv_napi_enable(dev);
  4544. nv_enable_hw_interrupts(dev, np->irqmask);
  4545. }
  4546. }
  4547. }
  4548. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4549. {
  4550. switch (stringset) {
  4551. case ETH_SS_STATS:
  4552. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4553. break;
  4554. case ETH_SS_TEST:
  4555. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4556. break;
  4557. }
  4558. }
  4559. static const struct ethtool_ops ops = {
  4560. .get_drvinfo = nv_get_drvinfo,
  4561. .get_link = ethtool_op_get_link,
  4562. .get_wol = nv_get_wol,
  4563. .set_wol = nv_set_wol,
  4564. .get_settings = nv_get_settings,
  4565. .set_settings = nv_set_settings,
  4566. .get_regs_len = nv_get_regs_len,
  4567. .get_regs = nv_get_regs,
  4568. .nway_reset = nv_nway_reset,
  4569. .get_ringparam = nv_get_ringparam,
  4570. .set_ringparam = nv_set_ringparam,
  4571. .get_pauseparam = nv_get_pauseparam,
  4572. .set_pauseparam = nv_set_pauseparam,
  4573. .get_strings = nv_get_strings,
  4574. .get_ethtool_stats = nv_get_ethtool_stats,
  4575. .get_sset_count = nv_get_sset_count,
  4576. .self_test = nv_self_test,
  4577. };
  4578. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4579. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4580. {
  4581. struct fe_priv *np = netdev_priv(dev);
  4582. u8 __iomem *base = get_hwbase(dev);
  4583. int i;
  4584. u32 tx_ctrl, mgmt_sema;
  4585. for (i = 0; i < 10; i++) {
  4586. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4587. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4588. break;
  4589. msleep(500);
  4590. }
  4591. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4592. return 0;
  4593. for (i = 0; i < 2; i++) {
  4594. tx_ctrl = readl(base + NvRegTransmitterControl);
  4595. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4596. writel(tx_ctrl, base + NvRegTransmitterControl);
  4597. /* verify that semaphore was acquired */
  4598. tx_ctrl = readl(base + NvRegTransmitterControl);
  4599. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4600. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4601. np->mgmt_sema = 1;
  4602. return 1;
  4603. } else
  4604. udelay(50);
  4605. }
  4606. return 0;
  4607. }
  4608. static void nv_mgmt_release_sema(struct net_device *dev)
  4609. {
  4610. struct fe_priv *np = netdev_priv(dev);
  4611. u8 __iomem *base = get_hwbase(dev);
  4612. u32 tx_ctrl;
  4613. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4614. if (np->mgmt_sema) {
  4615. tx_ctrl = readl(base + NvRegTransmitterControl);
  4616. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4617. writel(tx_ctrl, base + NvRegTransmitterControl);
  4618. }
  4619. }
  4620. }
  4621. static int nv_mgmt_get_version(struct net_device *dev)
  4622. {
  4623. struct fe_priv *np = netdev_priv(dev);
  4624. u8 __iomem *base = get_hwbase(dev);
  4625. u32 data_ready = readl(base + NvRegTransmitterControl);
  4626. u32 data_ready2 = 0;
  4627. unsigned long start;
  4628. int ready = 0;
  4629. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4630. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4631. start = jiffies;
  4632. while (time_before(jiffies, start + 5*HZ)) {
  4633. data_ready2 = readl(base + NvRegTransmitterControl);
  4634. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4635. ready = 1;
  4636. break;
  4637. }
  4638. schedule_timeout_uninterruptible(1);
  4639. }
  4640. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4641. return 0;
  4642. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4643. return 1;
  4644. }
  4645. static int nv_open(struct net_device *dev)
  4646. {
  4647. struct fe_priv *np = netdev_priv(dev);
  4648. u8 __iomem *base = get_hwbase(dev);
  4649. int ret = 1;
  4650. int oom, i;
  4651. u32 low;
  4652. /* power up phy */
  4653. mii_rw(dev, np->phyaddr, MII_BMCR,
  4654. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4655. nv_txrx_gate(dev, false);
  4656. /* erase previous misconfiguration */
  4657. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4658. nv_mac_reset(dev);
  4659. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4660. writel(0, base + NvRegMulticastAddrB);
  4661. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4662. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4663. writel(0, base + NvRegPacketFilterFlags);
  4664. writel(0, base + NvRegTransmitterControl);
  4665. writel(0, base + NvRegReceiverControl);
  4666. writel(0, base + NvRegAdapterControl);
  4667. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4668. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4669. /* initialize descriptor rings */
  4670. set_bufsize(dev);
  4671. oom = nv_init_ring(dev);
  4672. writel(0, base + NvRegLinkSpeed);
  4673. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4674. nv_txrx_reset(dev);
  4675. writel(0, base + NvRegUnknownSetupReg6);
  4676. np->in_shutdown = 0;
  4677. /* give hw rings */
  4678. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4679. writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4680. base + NvRegRingSizes);
  4681. writel(np->linkspeed, base + NvRegLinkSpeed);
  4682. if (np->desc_ver == DESC_VER_1)
  4683. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4684. else
  4685. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4686. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4687. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4688. pci_push(base);
  4689. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4690. if (reg_delay(dev, NvRegUnknownSetupReg5,
  4691. NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4692. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX))
  4693. netdev_info(dev,
  4694. "%s: SetupReg5, Bit 31 remained off\n", __func__);
  4695. writel(0, base + NvRegMIIMask);
  4696. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4697. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4698. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4699. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4700. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4701. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4702. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4703. get_random_bytes(&low, sizeof(low));
  4704. low &= NVREG_SLOTTIME_MASK;
  4705. if (np->desc_ver == DESC_VER_1) {
  4706. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4707. } else {
  4708. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4709. /* setup legacy backoff */
  4710. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4711. } else {
  4712. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4713. nv_gear_backoff_reseed(dev);
  4714. }
  4715. }
  4716. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4717. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4718. if (poll_interval == -1) {
  4719. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4720. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4721. else
  4722. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4723. } else
  4724. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4725. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4726. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4727. base + NvRegAdapterControl);
  4728. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4729. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4730. if (np->wolenabled)
  4731. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4732. i = readl(base + NvRegPowerState);
  4733. if ((i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4734. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4735. pci_push(base);
  4736. udelay(10);
  4737. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4738. nv_disable_hw_interrupts(dev, np->irqmask);
  4739. pci_push(base);
  4740. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4741. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4742. pci_push(base);
  4743. if (nv_request_irq(dev, 0))
  4744. goto out_drain;
  4745. /* ask for interrupts */
  4746. nv_enable_hw_interrupts(dev, np->irqmask);
  4747. spin_lock_irq(&np->lock);
  4748. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4749. writel(0, base + NvRegMulticastAddrB);
  4750. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4751. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4752. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4753. /* One manual link speed update: Interrupts are enabled, future link
  4754. * speed changes cause interrupts and are handled by nv_link_irq().
  4755. */
  4756. {
  4757. u32 miistat;
  4758. miistat = readl(base + NvRegMIIStatus);
  4759. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4760. }
  4761. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4762. * to init hw */
  4763. np->linkspeed = 0;
  4764. ret = nv_update_linkspeed(dev);
  4765. nv_start_rxtx(dev);
  4766. netif_start_queue(dev);
  4767. nv_napi_enable(dev);
  4768. if (ret) {
  4769. netif_carrier_on(dev);
  4770. } else {
  4771. netdev_info(dev, "no link during initialization\n");
  4772. netif_carrier_off(dev);
  4773. }
  4774. if (oom)
  4775. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4776. /* start statistics timer */
  4777. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4778. mod_timer(&np->stats_poll,
  4779. round_jiffies(jiffies + STATS_INTERVAL));
  4780. spin_unlock_irq(&np->lock);
  4781. /* If the loopback feature was set while the device was down, make sure
  4782. * that it's set correctly now.
  4783. */
  4784. if (dev->features & NETIF_F_LOOPBACK)
  4785. nv_set_loopback(dev, dev->features);
  4786. return 0;
  4787. out_drain:
  4788. nv_drain_rxtx(dev);
  4789. return ret;
  4790. }
  4791. static int nv_close(struct net_device *dev)
  4792. {
  4793. struct fe_priv *np = netdev_priv(dev);
  4794. u8 __iomem *base;
  4795. spin_lock_irq(&np->lock);
  4796. np->in_shutdown = 1;
  4797. spin_unlock_irq(&np->lock);
  4798. nv_napi_disable(dev);
  4799. synchronize_irq(np->pci_dev->irq);
  4800. del_timer_sync(&np->oom_kick);
  4801. del_timer_sync(&np->nic_poll);
  4802. del_timer_sync(&np->stats_poll);
  4803. netif_stop_queue(dev);
  4804. spin_lock_irq(&np->lock);
  4805. nv_stop_rxtx(dev);
  4806. nv_txrx_reset(dev);
  4807. /* disable interrupts on the nic or we will lock up */
  4808. base = get_hwbase(dev);
  4809. nv_disable_hw_interrupts(dev, np->irqmask);
  4810. pci_push(base);
  4811. spin_unlock_irq(&np->lock);
  4812. nv_free_irq(dev);
  4813. nv_drain_rxtx(dev);
  4814. if (np->wolenabled || !phy_power_down) {
  4815. nv_txrx_gate(dev, false);
  4816. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4817. nv_start_rx(dev);
  4818. } else {
  4819. /* power down phy */
  4820. mii_rw(dev, np->phyaddr, MII_BMCR,
  4821. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4822. nv_txrx_gate(dev, true);
  4823. }
  4824. /* FIXME: power down nic */
  4825. return 0;
  4826. }
  4827. static const struct net_device_ops nv_netdev_ops = {
  4828. .ndo_open = nv_open,
  4829. .ndo_stop = nv_close,
  4830. .ndo_get_stats64 = nv_get_stats64,
  4831. .ndo_start_xmit = nv_start_xmit,
  4832. .ndo_tx_timeout = nv_tx_timeout,
  4833. .ndo_change_mtu = nv_change_mtu,
  4834. .ndo_fix_features = nv_fix_features,
  4835. .ndo_set_features = nv_set_features,
  4836. .ndo_validate_addr = eth_validate_addr,
  4837. .ndo_set_mac_address = nv_set_mac_address,
  4838. .ndo_set_rx_mode = nv_set_multicast,
  4839. #ifdef CONFIG_NET_POLL_CONTROLLER
  4840. .ndo_poll_controller = nv_poll_controller,
  4841. #endif
  4842. };
  4843. static const struct net_device_ops nv_netdev_ops_optimized = {
  4844. .ndo_open = nv_open,
  4845. .ndo_stop = nv_close,
  4846. .ndo_get_stats64 = nv_get_stats64,
  4847. .ndo_start_xmit = nv_start_xmit_optimized,
  4848. .ndo_tx_timeout = nv_tx_timeout,
  4849. .ndo_change_mtu = nv_change_mtu,
  4850. .ndo_fix_features = nv_fix_features,
  4851. .ndo_set_features = nv_set_features,
  4852. .ndo_validate_addr = eth_validate_addr,
  4853. .ndo_set_mac_address = nv_set_mac_address,
  4854. .ndo_set_rx_mode = nv_set_multicast,
  4855. #ifdef CONFIG_NET_POLL_CONTROLLER
  4856. .ndo_poll_controller = nv_poll_controller,
  4857. #endif
  4858. };
  4859. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4860. {
  4861. struct net_device *dev;
  4862. struct fe_priv *np;
  4863. unsigned long addr;
  4864. u8 __iomem *base;
  4865. int err, i;
  4866. u32 powerstate, txreg;
  4867. u32 phystate_orig = 0, phystate;
  4868. int phyinitialized = 0;
  4869. static int printed_version;
  4870. if (!printed_version++)
  4871. pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n",
  4872. FORCEDETH_VERSION);
  4873. dev = alloc_etherdev(sizeof(struct fe_priv));
  4874. err = -ENOMEM;
  4875. if (!dev)
  4876. goto out;
  4877. np = netdev_priv(dev);
  4878. np->dev = dev;
  4879. np->pci_dev = pci_dev;
  4880. spin_lock_init(&np->lock);
  4881. spin_lock_init(&np->hwstats_lock);
  4882. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4883. init_timer(&np->oom_kick);
  4884. np->oom_kick.data = (unsigned long) dev;
  4885. np->oom_kick.function = nv_do_rx_refill; /* timer handler */
  4886. init_timer(&np->nic_poll);
  4887. np->nic_poll.data = (unsigned long) dev;
  4888. np->nic_poll.function = nv_do_nic_poll; /* timer handler */
  4889. init_timer_deferrable(&np->stats_poll);
  4890. np->stats_poll.data = (unsigned long) dev;
  4891. np->stats_poll.function = nv_do_stats_poll; /* timer handler */
  4892. err = pci_enable_device(pci_dev);
  4893. if (err)
  4894. goto out_free;
  4895. pci_set_master(pci_dev);
  4896. err = pci_request_regions(pci_dev, DRV_NAME);
  4897. if (err < 0)
  4898. goto out_disable;
  4899. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4900. np->register_size = NV_PCI_REGSZ_VER3;
  4901. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4902. np->register_size = NV_PCI_REGSZ_VER2;
  4903. else
  4904. np->register_size = NV_PCI_REGSZ_VER1;
  4905. err = -EINVAL;
  4906. addr = 0;
  4907. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4908. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4909. pci_resource_len(pci_dev, i) >= np->register_size) {
  4910. addr = pci_resource_start(pci_dev, i);
  4911. break;
  4912. }
  4913. }
  4914. if (i == DEVICE_COUNT_RESOURCE) {
  4915. dev_info(&pci_dev->dev, "Couldn't find register window\n");
  4916. goto out_relreg;
  4917. }
  4918. /* copy of driver data */
  4919. np->driver_data = id->driver_data;
  4920. /* copy of device id */
  4921. np->device_id = id->device;
  4922. /* handle different descriptor versions */
  4923. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4924. /* packet format 3: supports 40-bit addressing */
  4925. np->desc_ver = DESC_VER_3;
  4926. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4927. if (dma_64bit) {
  4928. if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
  4929. dev_info(&pci_dev->dev,
  4930. "64-bit DMA failed, using 32-bit addressing\n");
  4931. else
  4932. dev->features |= NETIF_F_HIGHDMA;
  4933. if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
  4934. dev_info(&pci_dev->dev,
  4935. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4936. }
  4937. }
  4938. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4939. /* packet format 2: supports jumbo frames */
  4940. np->desc_ver = DESC_VER_2;
  4941. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4942. } else {
  4943. /* original packet format */
  4944. np->desc_ver = DESC_VER_1;
  4945. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4946. }
  4947. np->pkt_limit = NV_PKTLIMIT_1;
  4948. if (id->driver_data & DEV_HAS_LARGEDESC)
  4949. np->pkt_limit = NV_PKTLIMIT_2;
  4950. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4951. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4952. dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG |
  4953. NETIF_F_TSO | NETIF_F_RXCSUM;
  4954. }
  4955. np->vlanctl_bits = 0;
  4956. if (id->driver_data & DEV_HAS_VLAN) {
  4957. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4958. dev->hw_features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4959. }
  4960. dev->features |= dev->hw_features;
  4961. /* Add loopback capability to the device. */
  4962. dev->hw_features |= NETIF_F_LOOPBACK;
  4963. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4964. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4965. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4966. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4967. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4968. }
  4969. err = -ENOMEM;
  4970. np->base = ioremap(addr, np->register_size);
  4971. if (!np->base)
  4972. goto out_relreg;
  4973. dev->base_addr = (unsigned long)np->base;
  4974. dev->irq = pci_dev->irq;
  4975. np->rx_ring_size = RX_RING_DEFAULT;
  4976. np->tx_ring_size = TX_RING_DEFAULT;
  4977. if (!nv_optimized(np)) {
  4978. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4979. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4980. &np->ring_addr);
  4981. if (!np->rx_ring.orig)
  4982. goto out_unmap;
  4983. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4984. } else {
  4985. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4986. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4987. &np->ring_addr);
  4988. if (!np->rx_ring.ex)
  4989. goto out_unmap;
  4990. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4991. }
  4992. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4993. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4994. if (!np->rx_skb || !np->tx_skb)
  4995. goto out_freering;
  4996. if (!nv_optimized(np))
  4997. dev->netdev_ops = &nv_netdev_ops;
  4998. else
  4999. dev->netdev_ops = &nv_netdev_ops_optimized;
  5000. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5001. SET_ETHTOOL_OPS(dev, &ops);
  5002. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5003. pci_set_drvdata(pci_dev, dev);
  5004. /* read the mac address */
  5005. base = get_hwbase(dev);
  5006. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5007. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5008. /* check the workaround bit for correct mac address order */
  5009. txreg = readl(base + NvRegTransmitPoll);
  5010. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5011. /* mac address is already in correct order */
  5012. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5013. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5014. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5015. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5016. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5017. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5018. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5019. /* mac address is already in correct order */
  5020. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5021. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5022. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5023. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5024. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5025. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5026. /*
  5027. * Set orig mac address back to the reversed version.
  5028. * This flag will be cleared during low power transition.
  5029. * Therefore, we should always put back the reversed address.
  5030. */
  5031. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5032. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5033. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5034. } else {
  5035. /* need to reverse mac address to correct order */
  5036. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5037. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5038. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5039. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5040. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5041. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5042. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5043. dev_dbg(&pci_dev->dev,
  5044. "%s: set workaround bit for reversed mac addr\n",
  5045. __func__);
  5046. }
  5047. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5048. if (!is_valid_ether_addr(dev->perm_addr)) {
  5049. /*
  5050. * Bad mac address. At least one bios sets the mac address
  5051. * to 01:23:45:67:89:ab
  5052. */
  5053. dev_err(&pci_dev->dev,
  5054. "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n",
  5055. dev->dev_addr);
  5056. eth_hw_addr_random(dev);
  5057. dev_err(&pci_dev->dev,
  5058. "Using random MAC address: %pM\n", dev->dev_addr);
  5059. }
  5060. /* set mac address */
  5061. nv_copy_mac_to_hw(dev);
  5062. /* disable WOL */
  5063. writel(0, base + NvRegWakeUpFlags);
  5064. np->wolenabled = 0;
  5065. device_set_wakeup_enable(&pci_dev->dev, false);
  5066. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5067. /* take phy and nic out of low power mode */
  5068. powerstate = readl(base + NvRegPowerState2);
  5069. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5070. if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
  5071. pci_dev->revision >= 0xA3)
  5072. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5073. writel(powerstate, base + NvRegPowerState2);
  5074. }
  5075. if (np->desc_ver == DESC_VER_1)
  5076. np->tx_flags = NV_TX_VALID;
  5077. else
  5078. np->tx_flags = NV_TX2_VALID;
  5079. np->msi_flags = 0;
  5080. if ((id->driver_data & DEV_HAS_MSI) && msi)
  5081. np->msi_flags |= NV_MSI_CAPABLE;
  5082. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5083. /* msix has had reported issues when modifying irqmask
  5084. as in the case of napi, therefore, disable for now
  5085. */
  5086. #if 0
  5087. np->msi_flags |= NV_MSI_X_CAPABLE;
  5088. #endif
  5089. }
  5090. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  5091. np->irqmask = NVREG_IRQMASK_CPU;
  5092. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5093. np->msi_flags |= 0x0001;
  5094. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  5095. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  5096. /* start off in throughput mode */
  5097. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5098. /* remove support for msix mode */
  5099. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  5100. } else {
  5101. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  5102. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5103. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5104. np->msi_flags |= 0x0003;
  5105. }
  5106. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5107. np->irqmask |= NVREG_IRQ_TIMER;
  5108. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5109. np->need_linktimer = 1;
  5110. np->link_timeout = jiffies + LINK_TIMEOUT;
  5111. } else {
  5112. np->need_linktimer = 0;
  5113. }
  5114. /* Limit the number of tx's outstanding for hw bug */
  5115. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5116. np->tx_limit = 1;
  5117. if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) &&
  5118. pci_dev->revision >= 0xA2)
  5119. np->tx_limit = 0;
  5120. }
  5121. /* clear phy state and temporarily halt phy interrupts */
  5122. writel(0, base + NvRegMIIMask);
  5123. phystate = readl(base + NvRegAdapterControl);
  5124. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5125. phystate_orig = 1;
  5126. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5127. writel(phystate, base + NvRegAdapterControl);
  5128. }
  5129. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5130. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5131. /* management unit running on the mac? */
  5132. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5133. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5134. nv_mgmt_acquire_sema(dev) &&
  5135. nv_mgmt_get_version(dev)) {
  5136. np->mac_in_use = 1;
  5137. if (np->mgmt_version > 0)
  5138. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5139. /* management unit setup the phy already? */
  5140. if (np->mac_in_use &&
  5141. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5142. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5143. /* phy is inited by mgmt unit */
  5144. phyinitialized = 1;
  5145. } else {
  5146. /* we need to init the phy */
  5147. }
  5148. }
  5149. }
  5150. /* find a suitable phy */
  5151. for (i = 1; i <= 32; i++) {
  5152. int id1, id2;
  5153. int phyaddr = i & 0x1F;
  5154. spin_lock_irq(&np->lock);
  5155. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5156. spin_unlock_irq(&np->lock);
  5157. if (id1 < 0 || id1 == 0xffff)
  5158. continue;
  5159. spin_lock_irq(&np->lock);
  5160. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5161. spin_unlock_irq(&np->lock);
  5162. if (id2 < 0 || id2 == 0xffff)
  5163. continue;
  5164. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5165. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5166. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5167. np->phyaddr = phyaddr;
  5168. np->phy_oui = id1 | id2;
  5169. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5170. if (np->phy_oui == PHY_OUI_REALTEK2)
  5171. np->phy_oui = PHY_OUI_REALTEK;
  5172. /* Setup phy revision for Realtek */
  5173. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5174. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5175. break;
  5176. }
  5177. if (i == 33) {
  5178. dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n");
  5179. goto out_error;
  5180. }
  5181. if (!phyinitialized) {
  5182. /* reset it */
  5183. phy_init(dev);
  5184. } else {
  5185. /* see if it is a gigabit phy */
  5186. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5187. if (mii_status & PHY_GIGABIT)
  5188. np->gigabit = PHY_GIGABIT;
  5189. }
  5190. /* set default link speed settings */
  5191. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5192. np->duplex = 0;
  5193. np->autoneg = 1;
  5194. err = register_netdev(dev);
  5195. if (err) {
  5196. dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err);
  5197. goto out_error;
  5198. }
  5199. if (id->driver_data & DEV_HAS_VLAN)
  5200. nv_vlan_mode(dev, dev->features);
  5201. netif_carrier_off(dev);
  5202. dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n",
  5203. dev->name, np->phy_oui, np->phyaddr, dev->dev_addr);
  5204. dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5205. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5206. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5207. "csum " : "",
  5208. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5209. "vlan " : "",
  5210. dev->features & (NETIF_F_LOOPBACK) ?
  5211. "loopback " : "",
  5212. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5213. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5214. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5215. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5216. np->need_linktimer ? "lnktim " : "",
  5217. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5218. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5219. np->desc_ver);
  5220. return 0;
  5221. out_error:
  5222. if (phystate_orig)
  5223. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5224. pci_set_drvdata(pci_dev, NULL);
  5225. out_freering:
  5226. free_rings(dev);
  5227. out_unmap:
  5228. iounmap(get_hwbase(dev));
  5229. out_relreg:
  5230. pci_release_regions(pci_dev);
  5231. out_disable:
  5232. pci_disable_device(pci_dev);
  5233. out_free:
  5234. free_netdev(dev);
  5235. out:
  5236. return err;
  5237. }
  5238. static void nv_restore_phy(struct net_device *dev)
  5239. {
  5240. struct fe_priv *np = netdev_priv(dev);
  5241. u16 phy_reserved, mii_control;
  5242. if (np->phy_oui == PHY_OUI_REALTEK &&
  5243. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5244. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5245. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5246. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5247. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5248. phy_reserved |= PHY_REALTEK_INIT8;
  5249. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5250. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5251. /* restart auto negotiation */
  5252. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5253. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5254. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5255. }
  5256. }
  5257. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5258. {
  5259. struct net_device *dev = pci_get_drvdata(pci_dev);
  5260. struct fe_priv *np = netdev_priv(dev);
  5261. u8 __iomem *base = get_hwbase(dev);
  5262. /* special op: write back the misordered MAC address - otherwise
  5263. * the next nv_probe would see a wrong address.
  5264. */
  5265. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5266. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5267. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5268. base + NvRegTransmitPoll);
  5269. }
  5270. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5271. {
  5272. struct net_device *dev = pci_get_drvdata(pci_dev);
  5273. unregister_netdev(dev);
  5274. nv_restore_mac_addr(pci_dev);
  5275. /* restore any phy related changes */
  5276. nv_restore_phy(dev);
  5277. nv_mgmt_release_sema(dev);
  5278. /* free all structures */
  5279. free_rings(dev);
  5280. iounmap(get_hwbase(dev));
  5281. pci_release_regions(pci_dev);
  5282. pci_disable_device(pci_dev);
  5283. free_netdev(dev);
  5284. pci_set_drvdata(pci_dev, NULL);
  5285. }
  5286. #ifdef CONFIG_PM_SLEEP
  5287. static int nv_suspend(struct device *device)
  5288. {
  5289. struct pci_dev *pdev = to_pci_dev(device);
  5290. struct net_device *dev = pci_get_drvdata(pdev);
  5291. struct fe_priv *np = netdev_priv(dev);
  5292. u8 __iomem *base = get_hwbase(dev);
  5293. int i;
  5294. if (netif_running(dev)) {
  5295. /* Gross. */
  5296. nv_close(dev);
  5297. }
  5298. netif_device_detach(dev);
  5299. /* save non-pci configuration space */
  5300. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  5301. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5302. return 0;
  5303. }
  5304. static int nv_resume(struct device *device)
  5305. {
  5306. struct pci_dev *pdev = to_pci_dev(device);
  5307. struct net_device *dev = pci_get_drvdata(pdev);
  5308. struct fe_priv *np = netdev_priv(dev);
  5309. u8 __iomem *base = get_hwbase(dev);
  5310. int i, rc = 0;
  5311. /* restore non-pci configuration space */
  5312. for (i = 0; i <= np->register_size/sizeof(u32); i++)
  5313. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5314. if (np->driver_data & DEV_NEED_MSI_FIX)
  5315. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5316. /* restore phy state, including autoneg */
  5317. phy_init(dev);
  5318. netif_device_attach(dev);
  5319. if (netif_running(dev)) {
  5320. rc = nv_open(dev);
  5321. nv_set_multicast(dev);
  5322. }
  5323. return rc;
  5324. }
  5325. static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume);
  5326. #define NV_PM_OPS (&nv_pm_ops)
  5327. #else
  5328. #define NV_PM_OPS NULL
  5329. #endif /* CONFIG_PM_SLEEP */
  5330. #ifdef CONFIG_PM
  5331. static void nv_shutdown(struct pci_dev *pdev)
  5332. {
  5333. struct net_device *dev = pci_get_drvdata(pdev);
  5334. struct fe_priv *np = netdev_priv(dev);
  5335. if (netif_running(dev))
  5336. nv_close(dev);
  5337. /*
  5338. * Restore the MAC so a kernel started by kexec won't get confused.
  5339. * If we really go for poweroff, we must not restore the MAC,
  5340. * otherwise the MAC for WOL will be reversed at least on some boards.
  5341. */
  5342. if (system_state != SYSTEM_POWER_OFF)
  5343. nv_restore_mac_addr(pdev);
  5344. pci_disable_device(pdev);
  5345. /*
  5346. * Apparently it is not possible to reinitialise from D3 hot,
  5347. * only put the device into D3 if we really go for poweroff.
  5348. */
  5349. if (system_state == SYSTEM_POWER_OFF) {
  5350. pci_wake_from_d3(pdev, np->wolenabled);
  5351. pci_set_power_state(pdev, PCI_D3hot);
  5352. }
  5353. }
  5354. #else
  5355. #define nv_shutdown NULL
  5356. #endif /* CONFIG_PM */
  5357. static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = {
  5358. { /* nForce Ethernet Controller */
  5359. PCI_DEVICE(0x10DE, 0x01C3),
  5360. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5361. },
  5362. { /* nForce2 Ethernet Controller */
  5363. PCI_DEVICE(0x10DE, 0x0066),
  5364. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5365. },
  5366. { /* nForce3 Ethernet Controller */
  5367. PCI_DEVICE(0x10DE, 0x00D6),
  5368. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5369. },
  5370. { /* nForce3 Ethernet Controller */
  5371. PCI_DEVICE(0x10DE, 0x0086),
  5372. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5373. },
  5374. { /* nForce3 Ethernet Controller */
  5375. PCI_DEVICE(0x10DE, 0x008C),
  5376. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5377. },
  5378. { /* nForce3 Ethernet Controller */
  5379. PCI_DEVICE(0x10DE, 0x00E6),
  5380. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5381. },
  5382. { /* nForce3 Ethernet Controller */
  5383. PCI_DEVICE(0x10DE, 0x00DF),
  5384. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5385. },
  5386. { /* CK804 Ethernet Controller */
  5387. PCI_DEVICE(0x10DE, 0x0056),
  5388. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5389. },
  5390. { /* CK804 Ethernet Controller */
  5391. PCI_DEVICE(0x10DE, 0x0057),
  5392. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5393. },
  5394. { /* MCP04 Ethernet Controller */
  5395. PCI_DEVICE(0x10DE, 0x0037),
  5396. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5397. },
  5398. { /* MCP04 Ethernet Controller */
  5399. PCI_DEVICE(0x10DE, 0x0038),
  5400. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5401. },
  5402. { /* MCP51 Ethernet Controller */
  5403. PCI_DEVICE(0x10DE, 0x0268),
  5404. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5405. },
  5406. { /* MCP51 Ethernet Controller */
  5407. PCI_DEVICE(0x10DE, 0x0269),
  5408. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5409. },
  5410. { /* MCP55 Ethernet Controller */
  5411. PCI_DEVICE(0x10DE, 0x0372),
  5412. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5413. },
  5414. { /* MCP55 Ethernet Controller */
  5415. PCI_DEVICE(0x10DE, 0x0373),
  5416. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5417. },
  5418. { /* MCP61 Ethernet Controller */
  5419. PCI_DEVICE(0x10DE, 0x03E5),
  5420. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5421. },
  5422. { /* MCP61 Ethernet Controller */
  5423. PCI_DEVICE(0x10DE, 0x03E6),
  5424. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5425. },
  5426. { /* MCP61 Ethernet Controller */
  5427. PCI_DEVICE(0x10DE, 0x03EE),
  5428. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5429. },
  5430. { /* MCP61 Ethernet Controller */
  5431. PCI_DEVICE(0x10DE, 0x03EF),
  5432. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5433. },
  5434. { /* MCP65 Ethernet Controller */
  5435. PCI_DEVICE(0x10DE, 0x0450),
  5436. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5437. },
  5438. { /* MCP65 Ethernet Controller */
  5439. PCI_DEVICE(0x10DE, 0x0451),
  5440. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5441. },
  5442. { /* MCP65 Ethernet Controller */
  5443. PCI_DEVICE(0x10DE, 0x0452),
  5444. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5445. },
  5446. { /* MCP65 Ethernet Controller */
  5447. PCI_DEVICE(0x10DE, 0x0453),
  5448. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5449. },
  5450. { /* MCP67 Ethernet Controller */
  5451. PCI_DEVICE(0x10DE, 0x054C),
  5452. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5453. },
  5454. { /* MCP67 Ethernet Controller */
  5455. PCI_DEVICE(0x10DE, 0x054D),
  5456. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5457. },
  5458. { /* MCP67 Ethernet Controller */
  5459. PCI_DEVICE(0x10DE, 0x054E),
  5460. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5461. },
  5462. { /* MCP67 Ethernet Controller */
  5463. PCI_DEVICE(0x10DE, 0x054F),
  5464. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5465. },
  5466. { /* MCP73 Ethernet Controller */
  5467. PCI_DEVICE(0x10DE, 0x07DC),
  5468. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5469. },
  5470. { /* MCP73 Ethernet Controller */
  5471. PCI_DEVICE(0x10DE, 0x07DD),
  5472. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5473. },
  5474. { /* MCP73 Ethernet Controller */
  5475. PCI_DEVICE(0x10DE, 0x07DE),
  5476. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5477. },
  5478. { /* MCP73 Ethernet Controller */
  5479. PCI_DEVICE(0x10DE, 0x07DF),
  5480. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5481. },
  5482. { /* MCP77 Ethernet Controller */
  5483. PCI_DEVICE(0x10DE, 0x0760),
  5484. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5485. },
  5486. { /* MCP77 Ethernet Controller */
  5487. PCI_DEVICE(0x10DE, 0x0761),
  5488. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5489. },
  5490. { /* MCP77 Ethernet Controller */
  5491. PCI_DEVICE(0x10DE, 0x0762),
  5492. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5493. },
  5494. { /* MCP77 Ethernet Controller */
  5495. PCI_DEVICE(0x10DE, 0x0763),
  5496. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5497. },
  5498. { /* MCP79 Ethernet Controller */
  5499. PCI_DEVICE(0x10DE, 0x0AB0),
  5500. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5501. },
  5502. { /* MCP79 Ethernet Controller */
  5503. PCI_DEVICE(0x10DE, 0x0AB1),
  5504. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5505. },
  5506. { /* MCP79 Ethernet Controller */
  5507. PCI_DEVICE(0x10DE, 0x0AB2),
  5508. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5509. },
  5510. { /* MCP79 Ethernet Controller */
  5511. PCI_DEVICE(0x10DE, 0x0AB3),
  5512. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5513. },
  5514. { /* MCP89 Ethernet Controller */
  5515. PCI_DEVICE(0x10DE, 0x0D7D),
  5516. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
  5517. },
  5518. {0,},
  5519. };
  5520. static struct pci_driver driver = {
  5521. .name = DRV_NAME,
  5522. .id_table = pci_tbl,
  5523. .probe = nv_probe,
  5524. .remove = __devexit_p(nv_remove),
  5525. .shutdown = nv_shutdown,
  5526. .driver.pm = NV_PM_OPS,
  5527. };
  5528. static int __init init_nic(void)
  5529. {
  5530. return pci_register_driver(&driver);
  5531. }
  5532. static void __exit exit_nic(void)
  5533. {
  5534. pci_unregister_driver(&driver);
  5535. }
  5536. module_param(max_interrupt_work, int, 0);
  5537. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5538. module_param(optimization_mode, int, 0);
  5539. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5540. module_param(poll_interval, int, 0);
  5541. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5542. module_param(msi, int, 0);
  5543. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5544. module_param(msix, int, 0);
  5545. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5546. module_param(dma_64bit, int, 0);
  5547. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5548. module_param(phy_cross, int, 0);
  5549. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5550. module_param(phy_power_down, int, 0);
  5551. MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
  5552. module_param(debug_tx_timeout, bool, 0);
  5553. MODULE_PARM_DESC(debug_tx_timeout,
  5554. "Dump tx related registers and ring when tx_timeout happens");
  5555. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5556. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5557. MODULE_LICENSE("GPL");
  5558. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5559. module_init(init_nic);
  5560. module_exit(exit_nic);