packet_history.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. /*
  2. * net/dccp/packet_history.c
  3. *
  4. * Copyright (c) 2007 The University of Aberdeen, Scotland, UK
  5. * Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
  6. *
  7. * An implementation of the DCCP protocol
  8. *
  9. * This code has been developed by the University of Waikato WAND
  10. * research group. For further information please see http://www.wand.net.nz/
  11. * or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
  12. *
  13. * This code also uses code from Lulea University, rereleased as GPL by its
  14. * authors:
  15. * Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
  16. *
  17. * Changes to meet Linux coding standards, to make it meet latest ccid3 draft
  18. * and to make it work as a loadable module in the DCCP stack written by
  19. * Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
  20. *
  21. * Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
  22. *
  23. * This program is free software; you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation; either version 2 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program; if not, write to the Free Software
  35. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  36. */
  37. #include <linux/string.h>
  38. #include <linux/slab.h>
  39. #include "packet_history.h"
  40. #include "../../dccp.h"
  41. /*
  42. * Transmitter History Routines
  43. */
  44. static struct kmem_cache *tfrc_tx_hist_slab;
  45. int __init tfrc_tx_packet_history_init(void)
  46. {
  47. tfrc_tx_hist_slab = kmem_cache_create("tfrc_tx_hist",
  48. sizeof(struct tfrc_tx_hist_entry),
  49. 0, SLAB_HWCACHE_ALIGN, NULL);
  50. return tfrc_tx_hist_slab == NULL ? -ENOBUFS : 0;
  51. }
  52. void tfrc_tx_packet_history_exit(void)
  53. {
  54. if (tfrc_tx_hist_slab != NULL) {
  55. kmem_cache_destroy(tfrc_tx_hist_slab);
  56. tfrc_tx_hist_slab = NULL;
  57. }
  58. }
  59. int tfrc_tx_hist_add(struct tfrc_tx_hist_entry **headp, u64 seqno)
  60. {
  61. struct tfrc_tx_hist_entry *entry = kmem_cache_alloc(tfrc_tx_hist_slab, gfp_any());
  62. if (entry == NULL)
  63. return -ENOBUFS;
  64. entry->seqno = seqno;
  65. entry->stamp = ktime_get_real();
  66. entry->next = *headp;
  67. *headp = entry;
  68. return 0;
  69. }
  70. EXPORT_SYMBOL_GPL(tfrc_tx_hist_add);
  71. void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry **headp)
  72. {
  73. struct tfrc_tx_hist_entry *head = *headp;
  74. while (head != NULL) {
  75. struct tfrc_tx_hist_entry *next = head->next;
  76. kmem_cache_free(tfrc_tx_hist_slab, head);
  77. head = next;
  78. }
  79. *headp = NULL;
  80. }
  81. EXPORT_SYMBOL_GPL(tfrc_tx_hist_purge);
  82. /*
  83. * Receiver History Routines
  84. */
  85. static struct kmem_cache *tfrc_rx_hist_slab;
  86. int __init tfrc_rx_packet_history_init(void)
  87. {
  88. tfrc_rx_hist_slab = kmem_cache_create("tfrc_rxh_cache",
  89. sizeof(struct tfrc_rx_hist_entry),
  90. 0, SLAB_HWCACHE_ALIGN, NULL);
  91. return tfrc_rx_hist_slab == NULL ? -ENOBUFS : 0;
  92. }
  93. void tfrc_rx_packet_history_exit(void)
  94. {
  95. if (tfrc_rx_hist_slab != NULL) {
  96. kmem_cache_destroy(tfrc_rx_hist_slab);
  97. tfrc_rx_hist_slab = NULL;
  98. }
  99. }
  100. static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry *entry,
  101. const struct sk_buff *skb,
  102. const u64 ndp)
  103. {
  104. const struct dccp_hdr *dh = dccp_hdr(skb);
  105. entry->tfrchrx_seqno = DCCP_SKB_CB(skb)->dccpd_seq;
  106. entry->tfrchrx_ccval = dh->dccph_ccval;
  107. entry->tfrchrx_type = dh->dccph_type;
  108. entry->tfrchrx_ndp = ndp;
  109. entry->tfrchrx_tstamp = ktime_get_real();
  110. }
  111. void tfrc_rx_hist_add_packet(struct tfrc_rx_hist *h,
  112. const struct sk_buff *skb,
  113. const u64 ndp)
  114. {
  115. struct tfrc_rx_hist_entry *entry = tfrc_rx_hist_last_rcv(h);
  116. tfrc_rx_hist_entry_from_skb(entry, skb, ndp);
  117. }
  118. EXPORT_SYMBOL_GPL(tfrc_rx_hist_add_packet);
  119. /* has the packet contained in skb been seen before? */
  120. int tfrc_rx_hist_duplicate(struct tfrc_rx_hist *h, struct sk_buff *skb)
  121. {
  122. const u64 seq = DCCP_SKB_CB(skb)->dccpd_seq;
  123. int i;
  124. if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno, seq) <= 0)
  125. return 1;
  126. for (i = 1; i <= h->loss_count; i++)
  127. if (tfrc_rx_hist_entry(h, i)->tfrchrx_seqno == seq)
  128. return 1;
  129. return 0;
  130. }
  131. EXPORT_SYMBOL_GPL(tfrc_rx_hist_duplicate);
  132. static void __tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
  133. {
  134. struct tfrc_rx_hist_entry *tmp = h->ring[a];
  135. h->ring[a] = h->ring[b];
  136. h->ring[b] = tmp;
  137. }
  138. static void tfrc_rx_hist_swap(struct tfrc_rx_hist *h, const u8 a, const u8 b)
  139. {
  140. __tfrc_rx_hist_swap(h, tfrc_rx_hist_index(h, a),
  141. tfrc_rx_hist_index(h, b));
  142. }
  143. /**
  144. * tfrc_rx_hist_resume_rtt_sampling - Prepare RX history for RTT sampling
  145. * This is called after loss detection has finished, when the history entry
  146. * with the index of `loss_count' holds the highest-received sequence number.
  147. * RTT sampling requires this information at ring[0] (tfrc_rx_hist_sample_rtt).
  148. */
  149. static inline void tfrc_rx_hist_resume_rtt_sampling(struct tfrc_rx_hist *h)
  150. {
  151. __tfrc_rx_hist_swap(h, 0, tfrc_rx_hist_index(h, h->loss_count));
  152. h->loss_count = h->loss_start = 0;
  153. }
  154. /*
  155. * Private helper functions for loss detection.
  156. *
  157. * In the descriptions, `Si' refers to the sequence number of entry number i,
  158. * whose NDP count is `Ni' (lower case is used for variables).
  159. * Note: All __xxx_loss functions expect that a test against duplicates has been
  160. * performed already: the seqno of the skb must not be less than the seqno
  161. * of loss_prev; and it must not equal that of any valid history entry.
  162. */
  163. static void __do_track_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u64 n1)
  164. {
  165. u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
  166. s1 = DCCP_SKB_CB(skb)->dccpd_seq;
  167. if (!dccp_loss_free(s0, s1, n1)) { /* gap between S0 and S1 */
  168. h->loss_count = 1;
  169. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n1);
  170. }
  171. }
  172. static void __one_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n2)
  173. {
  174. u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
  175. s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
  176. s2 = DCCP_SKB_CB(skb)->dccpd_seq;
  177. if (likely(dccp_delta_seqno(s1, s2) > 0)) { /* S1 < S2 */
  178. h->loss_count = 2;
  179. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n2);
  180. return;
  181. }
  182. /* S0 < S2 < S1 */
  183. if (dccp_loss_free(s0, s2, n2)) {
  184. u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
  185. if (dccp_loss_free(s2, s1, n1)) {
  186. /* hole is filled: S0, S2, and S1 are consecutive */
  187. tfrc_rx_hist_resume_rtt_sampling(h);
  188. } else
  189. /* gap between S2 and S1: just update loss_prev */
  190. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n2);
  191. } else { /* gap between S0 and S2 */
  192. /*
  193. * Reorder history to insert S2 between S0 and S1
  194. */
  195. tfrc_rx_hist_swap(h, 0, 3);
  196. h->loss_start = tfrc_rx_hist_index(h, 3);
  197. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n2);
  198. h->loss_count = 2;
  199. }
  200. }
  201. /* return 1 if a new loss event has been identified */
  202. static int __two_after_loss(struct tfrc_rx_hist *h, struct sk_buff *skb, u32 n3)
  203. {
  204. u64 s0 = tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno,
  205. s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
  206. s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
  207. s3 = DCCP_SKB_CB(skb)->dccpd_seq;
  208. if (likely(dccp_delta_seqno(s2, s3) > 0)) { /* S2 < S3 */
  209. h->loss_count = 3;
  210. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 3), skb, n3);
  211. return 1;
  212. }
  213. /* S3 < S2 */
  214. if (dccp_delta_seqno(s1, s3) > 0) { /* S1 < S3 < S2 */
  215. /*
  216. * Reorder history to insert S3 between S1 and S2
  217. */
  218. tfrc_rx_hist_swap(h, 2, 3);
  219. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 2), skb, n3);
  220. h->loss_count = 3;
  221. return 1;
  222. }
  223. /* S0 < S3 < S1 */
  224. if (dccp_loss_free(s0, s3, n3)) {
  225. u64 n1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_ndp;
  226. if (dccp_loss_free(s3, s1, n1)) {
  227. /* hole between S0 and S1 filled by S3 */
  228. u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp;
  229. if (dccp_loss_free(s1, s2, n2)) {
  230. /* entire hole filled by S0, S3, S1, S2 */
  231. tfrc_rx_hist_resume_rtt_sampling(h);
  232. } else {
  233. /* gap remains between S1 and S2 */
  234. h->loss_start = tfrc_rx_hist_index(h, 1);
  235. h->loss_count = 1;
  236. }
  237. } else /* gap exists between S3 and S1, loss_count stays at 2 */
  238. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h), skb, n3);
  239. return 0;
  240. }
  241. /*
  242. * The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3
  243. * Reorder history to insert S3 between S0 and S1.
  244. */
  245. tfrc_rx_hist_swap(h, 0, 3);
  246. h->loss_start = tfrc_rx_hist_index(h, 3);
  247. tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h, 1), skb, n3);
  248. h->loss_count = 3;
  249. return 1;
  250. }
  251. /* recycle RX history records to continue loss detection if necessary */
  252. static void __three_after_loss(struct tfrc_rx_hist *h)
  253. {
  254. /*
  255. * At this stage we know already that there is a gap between S0 and S1
  256. * (since S0 was the highest sequence number received before detecting
  257. * the loss). To recycle the loss record, it is thus only necessary to
  258. * check for other possible gaps between S1/S2 and between S2/S3.
  259. */
  260. u64 s1 = tfrc_rx_hist_entry(h, 1)->tfrchrx_seqno,
  261. s2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_seqno,
  262. s3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_seqno;
  263. u64 n2 = tfrc_rx_hist_entry(h, 2)->tfrchrx_ndp,
  264. n3 = tfrc_rx_hist_entry(h, 3)->tfrchrx_ndp;
  265. if (dccp_loss_free(s1, s2, n2)) {
  266. if (dccp_loss_free(s2, s3, n3)) {
  267. /* no gap between S2 and S3: entire hole is filled */
  268. tfrc_rx_hist_resume_rtt_sampling(h);
  269. } else {
  270. /* gap between S2 and S3 */
  271. h->loss_start = tfrc_rx_hist_index(h, 2);
  272. h->loss_count = 1;
  273. }
  274. } else { /* gap between S1 and S2 */
  275. h->loss_start = tfrc_rx_hist_index(h, 1);
  276. h->loss_count = 2;
  277. }
  278. }
  279. /**
  280. * tfrc_rx_handle_loss - Loss detection and further processing
  281. * @h: The non-empty RX history object
  282. * @lh: Loss Intervals database to update
  283. * @skb: Currently received packet
  284. * @ndp: The NDP count belonging to @skb
  285. * @calc_first_li: Caller-dependent computation of first loss interval in @lh
  286. * @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
  287. * Chooses action according to pending loss, updates LI database when a new
  288. * loss was detected, and does required post-processing. Returns 1 when caller
  289. * should send feedback, 0 otherwise.
  290. * Since it also takes care of reordering during loss detection and updates the
  291. * records accordingly, the caller should not perform any more RX history
  292. * operations when loss_count is greater than 0 after calling this function.
  293. */
  294. int tfrc_rx_handle_loss(struct tfrc_rx_hist *h,
  295. struct tfrc_loss_hist *lh,
  296. struct sk_buff *skb, const u64 ndp,
  297. u32 (*calc_first_li)(struct sock *), struct sock *sk)
  298. {
  299. int is_new_loss = 0;
  300. if (tfrc_rx_hist_duplicate(h, skb))
  301. return 0;
  302. if (h->loss_count == 0) {
  303. __do_track_loss(h, skb, ndp);
  304. tfrc_rx_hist_sample_rtt(h, skb);
  305. } else if (h->loss_count == 1) {
  306. __one_after_loss(h, skb, ndp);
  307. } else if (h->loss_count != 2) {
  308. DCCP_BUG("invalid loss_count %d", h->loss_count);
  309. } else if (__two_after_loss(h, skb, ndp)) {
  310. /*
  311. * Update Loss Interval database and recycle RX records
  312. */
  313. is_new_loss = tfrc_lh_interval_add(lh, h, calc_first_li, sk);
  314. __three_after_loss(h);
  315. }
  316. /*
  317. * Update moving-average of `s' and the sum of received payload bytes.
  318. */
  319. if (dccp_data_packet(skb)) {
  320. const u32 payload = skb->len - dccp_hdr(skb)->dccph_doff * 4;
  321. h->packet_size = tfrc_ewma(h->packet_size, payload, 9);
  322. h->bytes_recvd += payload;
  323. }
  324. /* RFC 3448, 6.1: update I_0, whose growth implies p <= p_prev */
  325. if (!is_new_loss)
  326. tfrc_lh_update_i_mean(lh, skb);
  327. return is_new_loss;
  328. }
  329. EXPORT_SYMBOL_GPL(tfrc_rx_handle_loss);
  330. void tfrc_rx_hist_purge(struct tfrc_rx_hist *h)
  331. {
  332. int i;
  333. for (i = 0; i <= TFRC_NDUPACK; ++i)
  334. if (h->ring[i] != NULL) {
  335. kmem_cache_free(tfrc_rx_hist_slab, h->ring[i]);
  336. h->ring[i] = NULL;
  337. }
  338. }
  339. EXPORT_SYMBOL_GPL(tfrc_rx_hist_purge);
  340. static int tfrc_rx_hist_alloc(struct tfrc_rx_hist *h)
  341. {
  342. int i;
  343. memset(h, 0, sizeof(*h));
  344. for (i = 0; i <= TFRC_NDUPACK; i++) {
  345. h->ring[i] = kmem_cache_alloc(tfrc_rx_hist_slab, GFP_ATOMIC);
  346. if (h->ring[i] == NULL) {
  347. tfrc_rx_hist_purge(h);
  348. return -ENOBUFS;
  349. }
  350. }
  351. return 0;
  352. }
  353. int tfrc_rx_hist_init(struct tfrc_rx_hist *h, struct sock *sk)
  354. {
  355. if (tfrc_rx_hist_alloc(h))
  356. return -ENOBUFS;
  357. /*
  358. * Initialise first entry with GSR to start loss detection as early as
  359. * possible. Code using this must not use any other fields. The entry
  360. * will be overwritten once the CCID updates its received packets.
  361. */
  362. tfrc_rx_hist_loss_prev(h)->tfrchrx_seqno = dccp_sk(sk)->dccps_gsr;
  363. return 0;
  364. }
  365. EXPORT_SYMBOL_GPL(tfrc_rx_hist_init);
  366. /**
  367. * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
  368. */
  369. static inline struct tfrc_rx_hist_entry *
  370. tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist *h)
  371. {
  372. return h->ring[0];
  373. }
  374. /**
  375. * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
  376. */
  377. static inline struct tfrc_rx_hist_entry *
  378. tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist *h)
  379. {
  380. return h->ring[h->rtt_sample_prev];
  381. }
  382. /**
  383. * tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
  384. * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
  385. * to compute a sample with given data - calling function should check this.
  386. */
  387. void tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist *h, const struct sk_buff *skb)
  388. {
  389. u32 sample = 0, delta_v;
  390. /*
  391. * When not to sample:
  392. * - on non-data packets
  393. * (RFC 4342, 8.1: CCVal only fully defined for data packets);
  394. * - when no data packets have been received yet
  395. * (FIXME: using sampled packet size as indicator here);
  396. * - as long as there are gaps in the sequence space (pending loss).
  397. */
  398. if (!dccp_data_packet(skb) || h->packet_size == 0 ||
  399. tfrc_rx_hist_loss_pending(h))
  400. return;
  401. delta_v = SUB16(dccp_hdr(skb)->dccph_ccval,
  402. tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
  403. if (delta_v < 1 || delta_v > 4) { /* unsuitable CCVal delta */
  404. if (h->rtt_sample_prev == 2) { /* previous candidate stored */
  405. sample = SUB16(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
  406. tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
  407. if (sample)
  408. sample = 4 / sample *
  409. ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_tstamp,
  410. tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp);
  411. else /*
  412. * FIXME: This condition is in principle not
  413. * possible but occurs when CCID is used for
  414. * two-way data traffic. I have tried to trace
  415. * it, but the cause does not seem to be here.
  416. */
  417. DCCP_BUG("please report to dccp@vger.kernel.org"
  418. " => prev = %u, last = %u",
  419. tfrc_rx_hist_rtt_prev_s(h)->tfrchrx_ccval,
  420. tfrc_rx_hist_rtt_last_s(h)->tfrchrx_ccval);
  421. } else if (delta_v < 1) {
  422. h->rtt_sample_prev = 1;
  423. goto keep_ref_for_next_time;
  424. }
  425. } else if (delta_v == 4) /* optimal match */
  426. sample = ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h)->tfrchrx_tstamp));
  427. else { /* suboptimal match */
  428. h->rtt_sample_prev = 2;
  429. goto keep_ref_for_next_time;
  430. }
  431. if (unlikely(sample > DCCP_SANE_RTT_MAX)) {
  432. DCCP_WARN("RTT sample %u too large, using max\n", sample);
  433. sample = DCCP_SANE_RTT_MAX;
  434. }
  435. h->rtt_sample_prev = 0; /* use current entry as next reference */
  436. keep_ref_for_next_time:
  437. h->rtt_estimate = tfrc_ewma(h->rtt_estimate, sample, 9);
  438. }
  439. EXPORT_SYMBOL_GPL(tfrc_rx_hist_sample_rtt);