spi.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061
  1. /*
  2. * spi.c - SPI init/core code
  3. *
  4. * Copyright (C) 2005 David Brownell
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/device.h>
  22. #include <linux/init.h>
  23. #include <linux/cache.h>
  24. #include <linux/mutex.h>
  25. #include <linux/of_device.h>
  26. #include <linux/slab.h>
  27. #include <linux/mod_devicetable.h>
  28. #include <linux/spi/spi.h>
  29. #include <linux/of_spi.h>
  30. /* SPI bustype and spi_master class are registered after board init code
  31. * provides the SPI device tables, ensuring that both are present by the
  32. * time controller driver registration causes spi_devices to "enumerate".
  33. */
  34. static void spidev_release(struct device *dev)
  35. {
  36. struct spi_device *spi = to_spi_device(dev);
  37. /* spi masters may cleanup for released devices */
  38. if (spi->master->cleanup)
  39. spi->master->cleanup(spi);
  40. spi_master_put(spi->master);
  41. kfree(spi);
  42. }
  43. static ssize_t
  44. modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  45. {
  46. const struct spi_device *spi = to_spi_device(dev);
  47. return sprintf(buf, "%s\n", spi->modalias);
  48. }
  49. static struct device_attribute spi_dev_attrs[] = {
  50. __ATTR_RO(modalias),
  51. __ATTR_NULL,
  52. };
  53. /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
  54. * and the sysfs version makes coldplug work too.
  55. */
  56. static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
  57. const struct spi_device *sdev)
  58. {
  59. while (id->name[0]) {
  60. if (!strcmp(sdev->modalias, id->name))
  61. return id;
  62. id++;
  63. }
  64. return NULL;
  65. }
  66. const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
  67. {
  68. const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
  69. return spi_match_id(sdrv->id_table, sdev);
  70. }
  71. EXPORT_SYMBOL_GPL(spi_get_device_id);
  72. static int spi_match_device(struct device *dev, struct device_driver *drv)
  73. {
  74. const struct spi_device *spi = to_spi_device(dev);
  75. const struct spi_driver *sdrv = to_spi_driver(drv);
  76. /* Attempt an OF style match */
  77. if (of_driver_match_device(dev, drv))
  78. return 1;
  79. if (sdrv->id_table)
  80. return !!spi_match_id(sdrv->id_table, spi);
  81. return strcmp(spi->modalias, drv->name) == 0;
  82. }
  83. static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
  84. {
  85. const struct spi_device *spi = to_spi_device(dev);
  86. add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
  87. return 0;
  88. }
  89. #ifdef CONFIG_PM
  90. static int spi_suspend(struct device *dev, pm_message_t message)
  91. {
  92. int value = 0;
  93. struct spi_driver *drv = to_spi_driver(dev->driver);
  94. /* suspend will stop irqs and dma; no more i/o */
  95. if (drv) {
  96. if (drv->suspend)
  97. value = drv->suspend(to_spi_device(dev), message);
  98. else
  99. dev_dbg(dev, "... can't suspend\n");
  100. }
  101. return value;
  102. }
  103. static int spi_resume(struct device *dev)
  104. {
  105. int value = 0;
  106. struct spi_driver *drv = to_spi_driver(dev->driver);
  107. /* resume may restart the i/o queue */
  108. if (drv) {
  109. if (drv->resume)
  110. value = drv->resume(to_spi_device(dev));
  111. else
  112. dev_dbg(dev, "... can't resume\n");
  113. }
  114. return value;
  115. }
  116. #else
  117. #define spi_suspend NULL
  118. #define spi_resume NULL
  119. #endif
  120. struct bus_type spi_bus_type = {
  121. .name = "spi",
  122. .dev_attrs = spi_dev_attrs,
  123. .match = spi_match_device,
  124. .uevent = spi_uevent,
  125. .suspend = spi_suspend,
  126. .resume = spi_resume,
  127. };
  128. EXPORT_SYMBOL_GPL(spi_bus_type);
  129. static int spi_drv_probe(struct device *dev)
  130. {
  131. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  132. return sdrv->probe(to_spi_device(dev));
  133. }
  134. static int spi_drv_remove(struct device *dev)
  135. {
  136. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  137. return sdrv->remove(to_spi_device(dev));
  138. }
  139. static void spi_drv_shutdown(struct device *dev)
  140. {
  141. const struct spi_driver *sdrv = to_spi_driver(dev->driver);
  142. sdrv->shutdown(to_spi_device(dev));
  143. }
  144. /**
  145. * spi_register_driver - register a SPI driver
  146. * @sdrv: the driver to register
  147. * Context: can sleep
  148. */
  149. int spi_register_driver(struct spi_driver *sdrv)
  150. {
  151. sdrv->driver.bus = &spi_bus_type;
  152. if (sdrv->probe)
  153. sdrv->driver.probe = spi_drv_probe;
  154. if (sdrv->remove)
  155. sdrv->driver.remove = spi_drv_remove;
  156. if (sdrv->shutdown)
  157. sdrv->driver.shutdown = spi_drv_shutdown;
  158. return driver_register(&sdrv->driver);
  159. }
  160. EXPORT_SYMBOL_GPL(spi_register_driver);
  161. /*-------------------------------------------------------------------------*/
  162. /* SPI devices should normally not be created by SPI device drivers; that
  163. * would make them board-specific. Similarly with SPI master drivers.
  164. * Device registration normally goes into like arch/.../mach.../board-YYY.c
  165. * with other readonly (flashable) information about mainboard devices.
  166. */
  167. struct boardinfo {
  168. struct list_head list;
  169. unsigned n_board_info;
  170. struct spi_board_info board_info[0];
  171. };
  172. static LIST_HEAD(board_list);
  173. static DEFINE_MUTEX(board_lock);
  174. /**
  175. * spi_alloc_device - Allocate a new SPI device
  176. * @master: Controller to which device is connected
  177. * Context: can sleep
  178. *
  179. * Allows a driver to allocate and initialize a spi_device without
  180. * registering it immediately. This allows a driver to directly
  181. * fill the spi_device with device parameters before calling
  182. * spi_add_device() on it.
  183. *
  184. * Caller is responsible to call spi_add_device() on the returned
  185. * spi_device structure to add it to the SPI master. If the caller
  186. * needs to discard the spi_device without adding it, then it should
  187. * call spi_dev_put() on it.
  188. *
  189. * Returns a pointer to the new device, or NULL.
  190. */
  191. struct spi_device *spi_alloc_device(struct spi_master *master)
  192. {
  193. struct spi_device *spi;
  194. struct device *dev = master->dev.parent;
  195. if (!spi_master_get(master))
  196. return NULL;
  197. spi = kzalloc(sizeof *spi, GFP_KERNEL);
  198. if (!spi) {
  199. dev_err(dev, "cannot alloc spi_device\n");
  200. spi_master_put(master);
  201. return NULL;
  202. }
  203. spi->master = master;
  204. spi->dev.parent = dev;
  205. spi->dev.bus = &spi_bus_type;
  206. spi->dev.release = spidev_release;
  207. device_initialize(&spi->dev);
  208. return spi;
  209. }
  210. EXPORT_SYMBOL_GPL(spi_alloc_device);
  211. /**
  212. * spi_add_device - Add spi_device allocated with spi_alloc_device
  213. * @spi: spi_device to register
  214. *
  215. * Companion function to spi_alloc_device. Devices allocated with
  216. * spi_alloc_device can be added onto the spi bus with this function.
  217. *
  218. * Returns 0 on success; negative errno on failure
  219. */
  220. int spi_add_device(struct spi_device *spi)
  221. {
  222. static DEFINE_MUTEX(spi_add_lock);
  223. struct device *dev = spi->master->dev.parent;
  224. struct device *d;
  225. int status;
  226. /* Chipselects are numbered 0..max; validate. */
  227. if (spi->chip_select >= spi->master->num_chipselect) {
  228. dev_err(dev, "cs%d >= max %d\n",
  229. spi->chip_select,
  230. spi->master->num_chipselect);
  231. return -EINVAL;
  232. }
  233. /* Set the bus ID string */
  234. dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
  235. spi->chip_select);
  236. /* We need to make sure there's no other device with this
  237. * chipselect **BEFORE** we call setup(), else we'll trash
  238. * its configuration. Lock against concurrent add() calls.
  239. */
  240. mutex_lock(&spi_add_lock);
  241. d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
  242. if (d != NULL) {
  243. dev_err(dev, "chipselect %d already in use\n",
  244. spi->chip_select);
  245. put_device(d);
  246. status = -EBUSY;
  247. goto done;
  248. }
  249. /* Drivers may modify this initial i/o setup, but will
  250. * normally rely on the device being setup. Devices
  251. * using SPI_CS_HIGH can't coexist well otherwise...
  252. */
  253. status = spi_setup(spi);
  254. if (status < 0) {
  255. dev_err(dev, "can't %s %s, status %d\n",
  256. "setup", dev_name(&spi->dev), status);
  257. goto done;
  258. }
  259. /* Device may be bound to an active driver when this returns */
  260. status = device_add(&spi->dev);
  261. if (status < 0)
  262. dev_err(dev, "can't %s %s, status %d\n",
  263. "add", dev_name(&spi->dev), status);
  264. else
  265. dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
  266. done:
  267. mutex_unlock(&spi_add_lock);
  268. return status;
  269. }
  270. EXPORT_SYMBOL_GPL(spi_add_device);
  271. /**
  272. * spi_new_device - instantiate one new SPI device
  273. * @master: Controller to which device is connected
  274. * @chip: Describes the SPI device
  275. * Context: can sleep
  276. *
  277. * On typical mainboards, this is purely internal; and it's not needed
  278. * after board init creates the hard-wired devices. Some development
  279. * platforms may not be able to use spi_register_board_info though, and
  280. * this is exported so that for example a USB or parport based adapter
  281. * driver could add devices (which it would learn about out-of-band).
  282. *
  283. * Returns the new device, or NULL.
  284. */
  285. struct spi_device *spi_new_device(struct spi_master *master,
  286. struct spi_board_info *chip)
  287. {
  288. struct spi_device *proxy;
  289. int status;
  290. /* NOTE: caller did any chip->bus_num checks necessary.
  291. *
  292. * Also, unless we change the return value convention to use
  293. * error-or-pointer (not NULL-or-pointer), troubleshootability
  294. * suggests syslogged diagnostics are best here (ugh).
  295. */
  296. proxy = spi_alloc_device(master);
  297. if (!proxy)
  298. return NULL;
  299. WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
  300. proxy->chip_select = chip->chip_select;
  301. proxy->max_speed_hz = chip->max_speed_hz;
  302. proxy->mode = chip->mode;
  303. proxy->irq = chip->irq;
  304. strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
  305. proxy->dev.platform_data = (void *) chip->platform_data;
  306. proxy->controller_data = chip->controller_data;
  307. proxy->controller_state = NULL;
  308. status = spi_add_device(proxy);
  309. if (status < 0) {
  310. spi_dev_put(proxy);
  311. return NULL;
  312. }
  313. return proxy;
  314. }
  315. EXPORT_SYMBOL_GPL(spi_new_device);
  316. /**
  317. * spi_register_board_info - register SPI devices for a given board
  318. * @info: array of chip descriptors
  319. * @n: how many descriptors are provided
  320. * Context: can sleep
  321. *
  322. * Board-specific early init code calls this (probably during arch_initcall)
  323. * with segments of the SPI device table. Any device nodes are created later,
  324. * after the relevant parent SPI controller (bus_num) is defined. We keep
  325. * this table of devices forever, so that reloading a controller driver will
  326. * not make Linux forget about these hard-wired devices.
  327. *
  328. * Other code can also call this, e.g. a particular add-on board might provide
  329. * SPI devices through its expansion connector, so code initializing that board
  330. * would naturally declare its SPI devices.
  331. *
  332. * The board info passed can safely be __initdata ... but be careful of
  333. * any embedded pointers (platform_data, etc), they're copied as-is.
  334. */
  335. int __init
  336. spi_register_board_info(struct spi_board_info const *info, unsigned n)
  337. {
  338. struct boardinfo *bi;
  339. bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
  340. if (!bi)
  341. return -ENOMEM;
  342. bi->n_board_info = n;
  343. memcpy(bi->board_info, info, n * sizeof *info);
  344. mutex_lock(&board_lock);
  345. list_add_tail(&bi->list, &board_list);
  346. mutex_unlock(&board_lock);
  347. return 0;
  348. }
  349. /* FIXME someone should add support for a __setup("spi", ...) that
  350. * creates board info from kernel command lines
  351. */
  352. static void scan_boardinfo(struct spi_master *master)
  353. {
  354. struct boardinfo *bi;
  355. mutex_lock(&board_lock);
  356. list_for_each_entry(bi, &board_list, list) {
  357. struct spi_board_info *chip = bi->board_info;
  358. unsigned n;
  359. for (n = bi->n_board_info; n > 0; n--, chip++) {
  360. if (chip->bus_num != master->bus_num)
  361. continue;
  362. /* NOTE: this relies on spi_new_device to
  363. * issue diagnostics when given bogus inputs
  364. */
  365. (void) spi_new_device(master, chip);
  366. }
  367. }
  368. mutex_unlock(&board_lock);
  369. }
  370. /*-------------------------------------------------------------------------*/
  371. static void spi_master_release(struct device *dev)
  372. {
  373. struct spi_master *master;
  374. master = container_of(dev, struct spi_master, dev);
  375. kfree(master);
  376. }
  377. static struct class spi_master_class = {
  378. .name = "spi_master",
  379. .owner = THIS_MODULE,
  380. .dev_release = spi_master_release,
  381. };
  382. /**
  383. * spi_alloc_master - allocate SPI master controller
  384. * @dev: the controller, possibly using the platform_bus
  385. * @size: how much zeroed driver-private data to allocate; the pointer to this
  386. * memory is in the driver_data field of the returned device,
  387. * accessible with spi_master_get_devdata().
  388. * Context: can sleep
  389. *
  390. * This call is used only by SPI master controller drivers, which are the
  391. * only ones directly touching chip registers. It's how they allocate
  392. * an spi_master structure, prior to calling spi_register_master().
  393. *
  394. * This must be called from context that can sleep. It returns the SPI
  395. * master structure on success, else NULL.
  396. *
  397. * The caller is responsible for assigning the bus number and initializing
  398. * the master's methods before calling spi_register_master(); and (after errors
  399. * adding the device) calling spi_master_put() to prevent a memory leak.
  400. */
  401. struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
  402. {
  403. struct spi_master *master;
  404. if (!dev)
  405. return NULL;
  406. master = kzalloc(size + sizeof *master, GFP_KERNEL);
  407. if (!master)
  408. return NULL;
  409. device_initialize(&master->dev);
  410. master->dev.class = &spi_master_class;
  411. master->dev.parent = get_device(dev);
  412. spi_master_set_devdata(master, &master[1]);
  413. return master;
  414. }
  415. EXPORT_SYMBOL_GPL(spi_alloc_master);
  416. /**
  417. * spi_register_master - register SPI master controller
  418. * @master: initialized master, originally from spi_alloc_master()
  419. * Context: can sleep
  420. *
  421. * SPI master controllers connect to their drivers using some non-SPI bus,
  422. * such as the platform bus. The final stage of probe() in that code
  423. * includes calling spi_register_master() to hook up to this SPI bus glue.
  424. *
  425. * SPI controllers use board specific (often SOC specific) bus numbers,
  426. * and board-specific addressing for SPI devices combines those numbers
  427. * with chip select numbers. Since SPI does not directly support dynamic
  428. * device identification, boards need configuration tables telling which
  429. * chip is at which address.
  430. *
  431. * This must be called from context that can sleep. It returns zero on
  432. * success, else a negative error code (dropping the master's refcount).
  433. * After a successful return, the caller is responsible for calling
  434. * spi_unregister_master().
  435. */
  436. int spi_register_master(struct spi_master *master)
  437. {
  438. static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
  439. struct device *dev = master->dev.parent;
  440. int status = -ENODEV;
  441. int dynamic = 0;
  442. if (!dev)
  443. return -ENODEV;
  444. /* even if it's just one always-selected device, there must
  445. * be at least one chipselect
  446. */
  447. if (master->num_chipselect == 0)
  448. return -EINVAL;
  449. /* convention: dynamically assigned bus IDs count down from the max */
  450. if (master->bus_num < 0) {
  451. /* FIXME switch to an IDR based scheme, something like
  452. * I2C now uses, so we can't run out of "dynamic" IDs
  453. */
  454. master->bus_num = atomic_dec_return(&dyn_bus_id);
  455. dynamic = 1;
  456. }
  457. spin_lock_init(&master->bus_lock_spinlock);
  458. mutex_init(&master->bus_lock_mutex);
  459. master->bus_lock_flag = 0;
  460. /* register the device, then userspace will see it.
  461. * registration fails if the bus ID is in use.
  462. */
  463. dev_set_name(&master->dev, "spi%u", master->bus_num);
  464. status = device_add(&master->dev);
  465. if (status < 0)
  466. goto done;
  467. dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
  468. dynamic ? " (dynamic)" : "");
  469. /* populate children from any spi device tables */
  470. scan_boardinfo(master);
  471. status = 0;
  472. /* Register devices from the device tree */
  473. of_register_spi_devices(master);
  474. done:
  475. return status;
  476. }
  477. EXPORT_SYMBOL_GPL(spi_register_master);
  478. static int __unregister(struct device *dev, void *null)
  479. {
  480. spi_unregister_device(to_spi_device(dev));
  481. return 0;
  482. }
  483. /**
  484. * spi_unregister_master - unregister SPI master controller
  485. * @master: the master being unregistered
  486. * Context: can sleep
  487. *
  488. * This call is used only by SPI master controller drivers, which are the
  489. * only ones directly touching chip registers.
  490. *
  491. * This must be called from context that can sleep.
  492. */
  493. void spi_unregister_master(struct spi_master *master)
  494. {
  495. int dummy;
  496. dummy = device_for_each_child(&master->dev, NULL, __unregister);
  497. device_unregister(&master->dev);
  498. }
  499. EXPORT_SYMBOL_GPL(spi_unregister_master);
  500. static int __spi_master_match(struct device *dev, void *data)
  501. {
  502. struct spi_master *m;
  503. u16 *bus_num = data;
  504. m = container_of(dev, struct spi_master, dev);
  505. return m->bus_num == *bus_num;
  506. }
  507. /**
  508. * spi_busnum_to_master - look up master associated with bus_num
  509. * @bus_num: the master's bus number
  510. * Context: can sleep
  511. *
  512. * This call may be used with devices that are registered after
  513. * arch init time. It returns a refcounted pointer to the relevant
  514. * spi_master (which the caller must release), or NULL if there is
  515. * no such master registered.
  516. */
  517. struct spi_master *spi_busnum_to_master(u16 bus_num)
  518. {
  519. struct device *dev;
  520. struct spi_master *master = NULL;
  521. dev = class_find_device(&spi_master_class, NULL, &bus_num,
  522. __spi_master_match);
  523. if (dev)
  524. master = container_of(dev, struct spi_master, dev);
  525. /* reference got in class_find_device */
  526. return master;
  527. }
  528. EXPORT_SYMBOL_GPL(spi_busnum_to_master);
  529. /*-------------------------------------------------------------------------*/
  530. /* Core methods for SPI master protocol drivers. Some of the
  531. * other core methods are currently defined as inline functions.
  532. */
  533. /**
  534. * spi_setup - setup SPI mode and clock rate
  535. * @spi: the device whose settings are being modified
  536. * Context: can sleep, and no requests are queued to the device
  537. *
  538. * SPI protocol drivers may need to update the transfer mode if the
  539. * device doesn't work with its default. They may likewise need
  540. * to update clock rates or word sizes from initial values. This function
  541. * changes those settings, and must be called from a context that can sleep.
  542. * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
  543. * effect the next time the device is selected and data is transferred to
  544. * or from it. When this function returns, the spi device is deselected.
  545. *
  546. * Note that this call will fail if the protocol driver specifies an option
  547. * that the underlying controller or its driver does not support. For
  548. * example, not all hardware supports wire transfers using nine bit words,
  549. * LSB-first wire encoding, or active-high chipselects.
  550. */
  551. int spi_setup(struct spi_device *spi)
  552. {
  553. unsigned bad_bits;
  554. int status;
  555. /* help drivers fail *cleanly* when they need options
  556. * that aren't supported with their current master
  557. */
  558. bad_bits = spi->mode & ~spi->master->mode_bits;
  559. if (bad_bits) {
  560. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  561. bad_bits);
  562. return -EINVAL;
  563. }
  564. if (!spi->bits_per_word)
  565. spi->bits_per_word = 8;
  566. status = spi->master->setup(spi);
  567. dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
  568. "%u bits/w, %u Hz max --> %d\n",
  569. (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
  570. (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
  571. (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
  572. (spi->mode & SPI_3WIRE) ? "3wire, " : "",
  573. (spi->mode & SPI_LOOP) ? "loopback, " : "",
  574. spi->bits_per_word, spi->max_speed_hz,
  575. status);
  576. return status;
  577. }
  578. EXPORT_SYMBOL_GPL(spi_setup);
  579. static int __spi_async(struct spi_device *spi, struct spi_message *message)
  580. {
  581. struct spi_master *master = spi->master;
  582. /* Half-duplex links include original MicroWire, and ones with
  583. * only one data pin like SPI_3WIRE (switches direction) or where
  584. * either MOSI or MISO is missing. They can also be caused by
  585. * software limitations.
  586. */
  587. if ((master->flags & SPI_MASTER_HALF_DUPLEX)
  588. || (spi->mode & SPI_3WIRE)) {
  589. struct spi_transfer *xfer;
  590. unsigned flags = master->flags;
  591. list_for_each_entry(xfer, &message->transfers, transfer_list) {
  592. if (xfer->rx_buf && xfer->tx_buf)
  593. return -EINVAL;
  594. if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
  595. return -EINVAL;
  596. if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
  597. return -EINVAL;
  598. }
  599. }
  600. message->spi = spi;
  601. message->status = -EINPROGRESS;
  602. return master->transfer(spi, message);
  603. }
  604. /**
  605. * spi_async - asynchronous SPI transfer
  606. * @spi: device with which data will be exchanged
  607. * @message: describes the data transfers, including completion callback
  608. * Context: any (irqs may be blocked, etc)
  609. *
  610. * This call may be used in_irq and other contexts which can't sleep,
  611. * as well as from task contexts which can sleep.
  612. *
  613. * The completion callback is invoked in a context which can't sleep.
  614. * Before that invocation, the value of message->status is undefined.
  615. * When the callback is issued, message->status holds either zero (to
  616. * indicate complete success) or a negative error code. After that
  617. * callback returns, the driver which issued the transfer request may
  618. * deallocate the associated memory; it's no longer in use by any SPI
  619. * core or controller driver code.
  620. *
  621. * Note that although all messages to a spi_device are handled in
  622. * FIFO order, messages may go to different devices in other orders.
  623. * Some device might be higher priority, or have various "hard" access
  624. * time requirements, for example.
  625. *
  626. * On detection of any fault during the transfer, processing of
  627. * the entire message is aborted, and the device is deselected.
  628. * Until returning from the associated message completion callback,
  629. * no other spi_message queued to that device will be processed.
  630. * (This rule applies equally to all the synchronous transfer calls,
  631. * which are wrappers around this core asynchronous primitive.)
  632. */
  633. int spi_async(struct spi_device *spi, struct spi_message *message)
  634. {
  635. struct spi_master *master = spi->master;
  636. int ret;
  637. unsigned long flags;
  638. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  639. if (master->bus_lock_flag)
  640. ret = -EBUSY;
  641. else
  642. ret = __spi_async(spi, message);
  643. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  644. return ret;
  645. }
  646. EXPORT_SYMBOL_GPL(spi_async);
  647. /**
  648. * spi_async_locked - version of spi_async with exclusive bus usage
  649. * @spi: device with which data will be exchanged
  650. * @message: describes the data transfers, including completion callback
  651. * Context: any (irqs may be blocked, etc)
  652. *
  653. * This call may be used in_irq and other contexts which can't sleep,
  654. * as well as from task contexts which can sleep.
  655. *
  656. * The completion callback is invoked in a context which can't sleep.
  657. * Before that invocation, the value of message->status is undefined.
  658. * When the callback is issued, message->status holds either zero (to
  659. * indicate complete success) or a negative error code. After that
  660. * callback returns, the driver which issued the transfer request may
  661. * deallocate the associated memory; it's no longer in use by any SPI
  662. * core or controller driver code.
  663. *
  664. * Note that although all messages to a spi_device are handled in
  665. * FIFO order, messages may go to different devices in other orders.
  666. * Some device might be higher priority, or have various "hard" access
  667. * time requirements, for example.
  668. *
  669. * On detection of any fault during the transfer, processing of
  670. * the entire message is aborted, and the device is deselected.
  671. * Until returning from the associated message completion callback,
  672. * no other spi_message queued to that device will be processed.
  673. * (This rule applies equally to all the synchronous transfer calls,
  674. * which are wrappers around this core asynchronous primitive.)
  675. */
  676. int spi_async_locked(struct spi_device *spi, struct spi_message *message)
  677. {
  678. struct spi_master *master = spi->master;
  679. int ret;
  680. unsigned long flags;
  681. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  682. ret = __spi_async(spi, message);
  683. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  684. return ret;
  685. }
  686. EXPORT_SYMBOL_GPL(spi_async_locked);
  687. /*-------------------------------------------------------------------------*/
  688. /* Utility methods for SPI master protocol drivers, layered on
  689. * top of the core. Some other utility methods are defined as
  690. * inline functions.
  691. */
  692. static void spi_complete(void *arg)
  693. {
  694. complete(arg);
  695. }
  696. static int __spi_sync(struct spi_device *spi, struct spi_message *message,
  697. int bus_locked)
  698. {
  699. DECLARE_COMPLETION_ONSTACK(done);
  700. int status;
  701. struct spi_master *master = spi->master;
  702. message->complete = spi_complete;
  703. message->context = &done;
  704. if (!bus_locked)
  705. mutex_lock(&master->bus_lock_mutex);
  706. status = spi_async_locked(spi, message);
  707. if (!bus_locked)
  708. mutex_unlock(&master->bus_lock_mutex);
  709. if (status == 0) {
  710. wait_for_completion(&done);
  711. status = message->status;
  712. }
  713. message->context = NULL;
  714. return status;
  715. }
  716. /**
  717. * spi_sync - blocking/synchronous SPI data transfers
  718. * @spi: device with which data will be exchanged
  719. * @message: describes the data transfers
  720. * Context: can sleep
  721. *
  722. * This call may only be used from a context that may sleep. The sleep
  723. * is non-interruptible, and has no timeout. Low-overhead controller
  724. * drivers may DMA directly into and out of the message buffers.
  725. *
  726. * Note that the SPI device's chip select is active during the message,
  727. * and then is normally disabled between messages. Drivers for some
  728. * frequently-used devices may want to minimize costs of selecting a chip,
  729. * by leaving it selected in anticipation that the next message will go
  730. * to the same chip. (That may increase power usage.)
  731. *
  732. * Also, the caller is guaranteeing that the memory associated with the
  733. * message will not be freed before this call returns.
  734. *
  735. * It returns zero on success, else a negative error code.
  736. */
  737. int spi_sync(struct spi_device *spi, struct spi_message *message)
  738. {
  739. return __spi_sync(spi, message, 0);
  740. }
  741. EXPORT_SYMBOL_GPL(spi_sync);
  742. /**
  743. * spi_sync_locked - version of spi_sync with exclusive bus usage
  744. * @spi: device with which data will be exchanged
  745. * @message: describes the data transfers
  746. * Context: can sleep
  747. *
  748. * This call may only be used from a context that may sleep. The sleep
  749. * is non-interruptible, and has no timeout. Low-overhead controller
  750. * drivers may DMA directly into and out of the message buffers.
  751. *
  752. * This call should be used by drivers that require exclusive access to the
  753. * SPI bus. It has to be preceeded by a spi_bus_lock call. The SPI bus must
  754. * be released by a spi_bus_unlock call when the exclusive access is over.
  755. *
  756. * It returns zero on success, else a negative error code.
  757. */
  758. int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
  759. {
  760. return __spi_sync(spi, message, 1);
  761. }
  762. EXPORT_SYMBOL_GPL(spi_sync_locked);
  763. /**
  764. * spi_bus_lock - obtain a lock for exclusive SPI bus usage
  765. * @master: SPI bus master that should be locked for exclusive bus access
  766. * Context: can sleep
  767. *
  768. * This call may only be used from a context that may sleep. The sleep
  769. * is non-interruptible, and has no timeout.
  770. *
  771. * This call should be used by drivers that require exclusive access to the
  772. * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
  773. * exclusive access is over. Data transfer must be done by spi_sync_locked
  774. * and spi_async_locked calls when the SPI bus lock is held.
  775. *
  776. * It returns zero on success, else a negative error code.
  777. */
  778. int spi_bus_lock(struct spi_master *master)
  779. {
  780. unsigned long flags;
  781. mutex_lock(&master->bus_lock_mutex);
  782. spin_lock_irqsave(&master->bus_lock_spinlock, flags);
  783. master->bus_lock_flag = 1;
  784. spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
  785. /* mutex remains locked until spi_bus_unlock is called */
  786. return 0;
  787. }
  788. EXPORT_SYMBOL_GPL(spi_bus_lock);
  789. /**
  790. * spi_bus_unlock - release the lock for exclusive SPI bus usage
  791. * @master: SPI bus master that was locked for exclusive bus access
  792. * Context: can sleep
  793. *
  794. * This call may only be used from a context that may sleep. The sleep
  795. * is non-interruptible, and has no timeout.
  796. *
  797. * This call releases an SPI bus lock previously obtained by an spi_bus_lock
  798. * call.
  799. *
  800. * It returns zero on success, else a negative error code.
  801. */
  802. int spi_bus_unlock(struct spi_master *master)
  803. {
  804. master->bus_lock_flag = 0;
  805. mutex_unlock(&master->bus_lock_mutex);
  806. return 0;
  807. }
  808. EXPORT_SYMBOL_GPL(spi_bus_unlock);
  809. /* portable code must never pass more than 32 bytes */
  810. #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
  811. static u8 *buf;
  812. /**
  813. * spi_write_then_read - SPI synchronous write followed by read
  814. * @spi: device with which data will be exchanged
  815. * @txbuf: data to be written (need not be dma-safe)
  816. * @n_tx: size of txbuf, in bytes
  817. * @rxbuf: buffer into which data will be read (need not be dma-safe)
  818. * @n_rx: size of rxbuf, in bytes
  819. * Context: can sleep
  820. *
  821. * This performs a half duplex MicroWire style transaction with the
  822. * device, sending txbuf and then reading rxbuf. The return value
  823. * is zero for success, else a negative errno status code.
  824. * This call may only be used from a context that may sleep.
  825. *
  826. * Parameters to this routine are always copied using a small buffer;
  827. * portable code should never use this for more than 32 bytes.
  828. * Performance-sensitive or bulk transfer code should instead use
  829. * spi_{async,sync}() calls with dma-safe buffers.
  830. */
  831. int spi_write_then_read(struct spi_device *spi,
  832. const u8 *txbuf, unsigned n_tx,
  833. u8 *rxbuf, unsigned n_rx)
  834. {
  835. static DEFINE_MUTEX(lock);
  836. int status;
  837. struct spi_message message;
  838. struct spi_transfer x[2];
  839. u8 *local_buf;
  840. /* Use preallocated DMA-safe buffer. We can't avoid copying here,
  841. * (as a pure convenience thing), but we can keep heap costs
  842. * out of the hot path ...
  843. */
  844. if ((n_tx + n_rx) > SPI_BUFSIZ)
  845. return -EINVAL;
  846. spi_message_init(&message);
  847. memset(x, 0, sizeof x);
  848. if (n_tx) {
  849. x[0].len = n_tx;
  850. spi_message_add_tail(&x[0], &message);
  851. }
  852. if (n_rx) {
  853. x[1].len = n_rx;
  854. spi_message_add_tail(&x[1], &message);
  855. }
  856. /* ... unless someone else is using the pre-allocated buffer */
  857. if (!mutex_trylock(&lock)) {
  858. local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  859. if (!local_buf)
  860. return -ENOMEM;
  861. } else
  862. local_buf = buf;
  863. memcpy(local_buf, txbuf, n_tx);
  864. x[0].tx_buf = local_buf;
  865. x[1].rx_buf = local_buf + n_tx;
  866. /* do the i/o */
  867. status = spi_sync(spi, &message);
  868. if (status == 0)
  869. memcpy(rxbuf, x[1].rx_buf, n_rx);
  870. if (x[0].tx_buf == buf)
  871. mutex_unlock(&lock);
  872. else
  873. kfree(local_buf);
  874. return status;
  875. }
  876. EXPORT_SYMBOL_GPL(spi_write_then_read);
  877. /*-------------------------------------------------------------------------*/
  878. static int __init spi_init(void)
  879. {
  880. int status;
  881. buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
  882. if (!buf) {
  883. status = -ENOMEM;
  884. goto err0;
  885. }
  886. status = bus_register(&spi_bus_type);
  887. if (status < 0)
  888. goto err1;
  889. status = class_register(&spi_master_class);
  890. if (status < 0)
  891. goto err2;
  892. return 0;
  893. err2:
  894. bus_unregister(&spi_bus_type);
  895. err1:
  896. kfree(buf);
  897. buf = NULL;
  898. err0:
  899. return status;
  900. }
  901. /* board_info is normally registered in arch_initcall(),
  902. * but even essential drivers wait till later
  903. *
  904. * REVISIT only boardinfo really needs static linking. the rest (device and
  905. * driver registration) _could_ be dynamically linked (modular) ... costs
  906. * include needing to have boardinfo data structures be much more public.
  907. */
  908. postcore_initcall(spi_init);