sata_mv.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019
  1. /*
  2. * sata_mv.c - Marvell SATA support
  3. *
  4. * Copyright 2008-2009: Marvell Corporation, all rights reserved.
  5. * Copyright 2005: EMC Corporation, all rights reserved.
  6. * Copyright 2005 Red Hat, Inc. All rights reserved.
  7. *
  8. * Originally written by Brett Russ.
  9. * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
  10. *
  11. * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; version 2 of the License.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  25. *
  26. */
  27. /*
  28. * sata_mv TODO list:
  29. *
  30. * --> More errata workarounds for PCI-X.
  31. *
  32. * --> Complete a full errata audit for all chipsets to identify others.
  33. *
  34. * --> Develop a low-power-consumption strategy, and implement it.
  35. *
  36. * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
  37. *
  38. * --> [Experiment, Marvell value added] Is it possible to use target
  39. * mode to cross-connect two Linux boxes with Marvell cards? If so,
  40. * creating LibATA target mode support would be very interesting.
  41. *
  42. * Target mode, for those without docs, is the ability to directly
  43. * connect two SATA ports.
  44. */
  45. #include <linux/kernel.h>
  46. #include <linux/module.h>
  47. #include <linux/pci.h>
  48. #include <linux/init.h>
  49. #include <linux/blkdev.h>
  50. #include <linux/delay.h>
  51. #include <linux/interrupt.h>
  52. #include <linux/dmapool.h>
  53. #include <linux/dma-mapping.h>
  54. #include <linux/device.h>
  55. #include <linux/platform_device.h>
  56. #include <linux/ata_platform.h>
  57. #include <linux/mbus.h>
  58. #include <linux/bitops.h>
  59. #include <scsi/scsi_host.h>
  60. #include <scsi/scsi_cmnd.h>
  61. #include <scsi/scsi_device.h>
  62. #include <linux/libata.h>
  63. #define DRV_NAME "sata_mv"
  64. #define DRV_VERSION "1.27"
  65. /*
  66. * module options
  67. */
  68. static int msi;
  69. #ifdef CONFIG_PCI
  70. module_param(msi, int, S_IRUGO);
  71. MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  72. #endif
  73. static int irq_coalescing_io_count;
  74. module_param(irq_coalescing_io_count, int, S_IRUGO);
  75. MODULE_PARM_DESC(irq_coalescing_io_count,
  76. "IRQ coalescing I/O count threshold (0..255)");
  77. static int irq_coalescing_usecs;
  78. module_param(irq_coalescing_usecs, int, S_IRUGO);
  79. MODULE_PARM_DESC(irq_coalescing_usecs,
  80. "IRQ coalescing time threshold in usecs");
  81. enum {
  82. /* BAR's are enumerated in terms of pci_resource_start() terms */
  83. MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
  84. MV_IO_BAR = 2, /* offset 0x18: IO space */
  85. MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
  86. MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
  87. MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
  88. /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
  89. COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
  90. MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
  91. MAX_COAL_IO_COUNT = 255, /* completed I/O count */
  92. MV_PCI_REG_BASE = 0,
  93. /*
  94. * Per-chip ("all ports") interrupt coalescing feature.
  95. * This is only for GEN_II / GEN_IIE hardware.
  96. *
  97. * Coalescing defers the interrupt until either the IO_THRESHOLD
  98. * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
  99. */
  100. MV_COAL_REG_BASE = 0x18000,
  101. MV_IRQ_COAL_CAUSE = (MV_COAL_REG_BASE + 0x08),
  102. ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
  103. MV_IRQ_COAL_IO_THRESHOLD = (MV_COAL_REG_BASE + 0xcc),
  104. MV_IRQ_COAL_TIME_THRESHOLD = (MV_COAL_REG_BASE + 0xd0),
  105. /*
  106. * Registers for the (unused here) transaction coalescing feature:
  107. */
  108. MV_TRAN_COAL_CAUSE_LO = (MV_COAL_REG_BASE + 0x88),
  109. MV_TRAN_COAL_CAUSE_HI = (MV_COAL_REG_BASE + 0x8c),
  110. MV_SATAHC0_REG_BASE = 0x20000,
  111. MV_FLASH_CTL_OFS = 0x1046c,
  112. MV_GPIO_PORT_CTL_OFS = 0x104f0,
  113. MV_RESET_CFG_OFS = 0x180d8,
  114. MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  115. MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  116. MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
  117. MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
  118. MV_MAX_Q_DEPTH = 32,
  119. MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
  120. /* CRQB needs alignment on a 1KB boundary. Size == 1KB
  121. * CRPB needs alignment on a 256B boundary. Size == 256B
  122. * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
  123. */
  124. MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
  125. MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
  126. MV_MAX_SG_CT = 256,
  127. MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
  128. /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
  129. MV_PORT_HC_SHIFT = 2,
  130. MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
  131. /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
  132. MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
  133. /* Host Flags */
  134. MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
  135. MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
  136. ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
  137. MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
  138. MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
  139. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
  140. MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
  141. CRQB_FLAG_READ = (1 << 0),
  142. CRQB_TAG_SHIFT = 1,
  143. CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
  144. CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
  145. CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
  146. CRQB_CMD_ADDR_SHIFT = 8,
  147. CRQB_CMD_CS = (0x2 << 11),
  148. CRQB_CMD_LAST = (1 << 15),
  149. CRPB_FLAG_STATUS_SHIFT = 8,
  150. CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
  151. CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
  152. EPRD_FLAG_END_OF_TBL = (1 << 31),
  153. /* PCI interface registers */
  154. PCI_COMMAND_OFS = 0xc00,
  155. PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
  156. PCI_MAIN_CMD_STS_OFS = 0xd30,
  157. STOP_PCI_MASTER = (1 << 2),
  158. PCI_MASTER_EMPTY = (1 << 3),
  159. GLOB_SFT_RST = (1 << 4),
  160. MV_PCI_MODE_OFS = 0xd00,
  161. MV_PCI_MODE_MASK = 0x30,
  162. MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
  163. MV_PCI_DISC_TIMER = 0xd04,
  164. MV_PCI_MSI_TRIGGER = 0xc38,
  165. MV_PCI_SERR_MASK = 0xc28,
  166. MV_PCI_XBAR_TMOUT_OFS = 0x1d04,
  167. MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
  168. MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
  169. MV_PCI_ERR_ATTRIBUTE = 0x1d48,
  170. MV_PCI_ERR_COMMAND = 0x1d50,
  171. PCI_IRQ_CAUSE_OFS = 0x1d58,
  172. PCI_IRQ_MASK_OFS = 0x1d5c,
  173. PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
  174. PCIE_IRQ_CAUSE_OFS = 0x1900,
  175. PCIE_IRQ_MASK_OFS = 0x1910,
  176. PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
  177. /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
  178. PCI_HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
  179. PCI_HC_MAIN_IRQ_MASK_OFS = 0x1d64,
  180. SOC_HC_MAIN_IRQ_CAUSE_OFS = 0x20020,
  181. SOC_HC_MAIN_IRQ_MASK_OFS = 0x20024,
  182. ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
  183. DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
  184. HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
  185. HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
  186. DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
  187. DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
  188. PCI_ERR = (1 << 18),
  189. TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
  190. TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
  191. PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
  192. PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
  193. ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
  194. GPIO_INT = (1 << 22),
  195. SELF_INT = (1 << 23),
  196. TWSI_INT = (1 << 24),
  197. HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
  198. HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
  199. HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
  200. /* SATAHC registers */
  201. HC_CFG_OFS = 0,
  202. HC_IRQ_CAUSE_OFS = 0x14,
  203. DMA_IRQ = (1 << 0), /* shift by port # */
  204. HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
  205. DEV_IRQ = (1 << 8), /* shift by port # */
  206. /*
  207. * Per-HC (Host-Controller) interrupt coalescing feature.
  208. * This is present on all chip generations.
  209. *
  210. * Coalescing defers the interrupt until either the IO_THRESHOLD
  211. * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
  212. */
  213. HC_IRQ_COAL_IO_THRESHOLD_OFS = 0x000c,
  214. HC_IRQ_COAL_TIME_THRESHOLD_OFS = 0x0010,
  215. /* Shadow block registers */
  216. SHD_BLK_OFS = 0x100,
  217. SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
  218. /* SATA registers */
  219. SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
  220. SATA_ACTIVE_OFS = 0x350,
  221. SATA_FIS_IRQ_CAUSE_OFS = 0x364,
  222. SATA_FIS_IRQ_AN = (1 << 9), /* async notification */
  223. LTMODE_OFS = 0x30c,
  224. LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
  225. PHY_MODE3 = 0x310,
  226. PHY_MODE4 = 0x314,
  227. PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
  228. PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
  229. PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
  230. PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
  231. PHY_MODE2 = 0x330,
  232. SATA_IFCTL_OFS = 0x344,
  233. SATA_TESTCTL_OFS = 0x348,
  234. SATA_IFSTAT_OFS = 0x34c,
  235. VENDOR_UNIQUE_FIS_OFS = 0x35c,
  236. FISCFG_OFS = 0x360,
  237. FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
  238. FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
  239. MV5_PHY_MODE = 0x74,
  240. MV5_LTMODE_OFS = 0x30,
  241. MV5_PHY_CTL_OFS = 0x0C,
  242. SATA_INTERFACE_CFG_OFS = 0x050,
  243. MV_M2_PREAMP_MASK = 0x7e0,
  244. /* Port registers */
  245. EDMA_CFG_OFS = 0,
  246. EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
  247. EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
  248. EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
  249. EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
  250. EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
  251. EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
  252. EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
  253. EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
  254. EDMA_ERR_IRQ_MASK_OFS = 0xc,
  255. EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
  256. EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
  257. EDMA_ERR_DEV = (1 << 2), /* device error */
  258. EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
  259. EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
  260. EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
  261. EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
  262. EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
  263. EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
  264. EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
  265. EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
  266. EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
  267. EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
  268. EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
  269. EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
  270. EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
  271. EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
  272. EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
  273. EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
  274. EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
  275. EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
  276. EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
  277. EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
  278. EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
  279. EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
  280. EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
  281. EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
  282. EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
  283. EDMA_ERR_OVERRUN_5 = (1 << 5),
  284. EDMA_ERR_UNDERRUN_5 = (1 << 6),
  285. EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
  286. EDMA_ERR_LNK_CTRL_RX_1 |
  287. EDMA_ERR_LNK_CTRL_RX_3 |
  288. EDMA_ERR_LNK_CTRL_TX,
  289. EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
  290. EDMA_ERR_PRD_PAR |
  291. EDMA_ERR_DEV_DCON |
  292. EDMA_ERR_DEV_CON |
  293. EDMA_ERR_SERR |
  294. EDMA_ERR_SELF_DIS |
  295. EDMA_ERR_CRQB_PAR |
  296. EDMA_ERR_CRPB_PAR |
  297. EDMA_ERR_INTRL_PAR |
  298. EDMA_ERR_IORDY |
  299. EDMA_ERR_LNK_CTRL_RX_2 |
  300. EDMA_ERR_LNK_DATA_RX |
  301. EDMA_ERR_LNK_DATA_TX |
  302. EDMA_ERR_TRANS_PROTO,
  303. EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
  304. EDMA_ERR_PRD_PAR |
  305. EDMA_ERR_DEV_DCON |
  306. EDMA_ERR_DEV_CON |
  307. EDMA_ERR_OVERRUN_5 |
  308. EDMA_ERR_UNDERRUN_5 |
  309. EDMA_ERR_SELF_DIS_5 |
  310. EDMA_ERR_CRQB_PAR |
  311. EDMA_ERR_CRPB_PAR |
  312. EDMA_ERR_INTRL_PAR |
  313. EDMA_ERR_IORDY,
  314. EDMA_REQ_Q_BASE_HI_OFS = 0x10,
  315. EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
  316. EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
  317. EDMA_REQ_Q_PTR_SHIFT = 5,
  318. EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
  319. EDMA_RSP_Q_IN_PTR_OFS = 0x20,
  320. EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
  321. EDMA_RSP_Q_PTR_SHIFT = 3,
  322. EDMA_CMD_OFS = 0x28, /* EDMA command register */
  323. EDMA_EN = (1 << 0), /* enable EDMA */
  324. EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
  325. EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
  326. EDMA_STATUS_OFS = 0x30, /* EDMA engine status */
  327. EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
  328. EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
  329. EDMA_IORDY_TMOUT_OFS = 0x34,
  330. EDMA_ARB_CFG_OFS = 0x38,
  331. EDMA_HALTCOND_OFS = 0x60, /* GenIIe halt conditions */
  332. EDMA_UNKNOWN_RSVD_OFS = 0x6C, /* GenIIe unknown/reserved */
  333. BMDMA_CMD_OFS = 0x224, /* bmdma command register */
  334. BMDMA_STATUS_OFS = 0x228, /* bmdma status register */
  335. BMDMA_PRD_LOW_OFS = 0x22c, /* bmdma PRD addr 31:0 */
  336. BMDMA_PRD_HIGH_OFS = 0x230, /* bmdma PRD addr 63:32 */
  337. /* Host private flags (hp_flags) */
  338. MV_HP_FLAG_MSI = (1 << 0),
  339. MV_HP_ERRATA_50XXB0 = (1 << 1),
  340. MV_HP_ERRATA_50XXB2 = (1 << 2),
  341. MV_HP_ERRATA_60X1B2 = (1 << 3),
  342. MV_HP_ERRATA_60X1C0 = (1 << 4),
  343. MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
  344. MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
  345. MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
  346. MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
  347. MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
  348. MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
  349. /* Port private flags (pp_flags) */
  350. MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
  351. MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
  352. MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
  353. MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
  354. MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
  355. };
  356. #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
  357. #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
  358. #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
  359. #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
  360. #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
  361. #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
  362. #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
  363. enum {
  364. /* DMA boundary 0xffff is required by the s/g splitting
  365. * we need on /length/ in mv_fill-sg().
  366. */
  367. MV_DMA_BOUNDARY = 0xffffU,
  368. /* mask of register bits containing lower 32 bits
  369. * of EDMA request queue DMA address
  370. */
  371. EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
  372. /* ditto, for response queue */
  373. EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
  374. };
  375. enum chip_type {
  376. chip_504x,
  377. chip_508x,
  378. chip_5080,
  379. chip_604x,
  380. chip_608x,
  381. chip_6042,
  382. chip_7042,
  383. chip_soc,
  384. };
  385. /* Command ReQuest Block: 32B */
  386. struct mv_crqb {
  387. __le32 sg_addr;
  388. __le32 sg_addr_hi;
  389. __le16 ctrl_flags;
  390. __le16 ata_cmd[11];
  391. };
  392. struct mv_crqb_iie {
  393. __le32 addr;
  394. __le32 addr_hi;
  395. __le32 flags;
  396. __le32 len;
  397. __le32 ata_cmd[4];
  398. };
  399. /* Command ResPonse Block: 8B */
  400. struct mv_crpb {
  401. __le16 id;
  402. __le16 flags;
  403. __le32 tmstmp;
  404. };
  405. /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
  406. struct mv_sg {
  407. __le32 addr;
  408. __le32 flags_size;
  409. __le32 addr_hi;
  410. __le32 reserved;
  411. };
  412. /*
  413. * We keep a local cache of a few frequently accessed port
  414. * registers here, to avoid having to read them (very slow)
  415. * when switching between EDMA and non-EDMA modes.
  416. */
  417. struct mv_cached_regs {
  418. u32 fiscfg;
  419. u32 ltmode;
  420. u32 haltcond;
  421. u32 unknown_rsvd;
  422. };
  423. struct mv_port_priv {
  424. struct mv_crqb *crqb;
  425. dma_addr_t crqb_dma;
  426. struct mv_crpb *crpb;
  427. dma_addr_t crpb_dma;
  428. struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
  429. dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
  430. unsigned int req_idx;
  431. unsigned int resp_idx;
  432. u32 pp_flags;
  433. struct mv_cached_regs cached;
  434. unsigned int delayed_eh_pmp_map;
  435. };
  436. struct mv_port_signal {
  437. u32 amps;
  438. u32 pre;
  439. };
  440. struct mv_host_priv {
  441. u32 hp_flags;
  442. u32 main_irq_mask;
  443. struct mv_port_signal signal[8];
  444. const struct mv_hw_ops *ops;
  445. int n_ports;
  446. void __iomem *base;
  447. void __iomem *main_irq_cause_addr;
  448. void __iomem *main_irq_mask_addr;
  449. u32 irq_cause_ofs;
  450. u32 irq_mask_ofs;
  451. u32 unmask_all_irqs;
  452. /*
  453. * These consistent DMA memory pools give us guaranteed
  454. * alignment for hardware-accessed data structures,
  455. * and less memory waste in accomplishing the alignment.
  456. */
  457. struct dma_pool *crqb_pool;
  458. struct dma_pool *crpb_pool;
  459. struct dma_pool *sg_tbl_pool;
  460. };
  461. struct mv_hw_ops {
  462. void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
  463. unsigned int port);
  464. void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
  465. void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
  466. void __iomem *mmio);
  467. int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
  468. unsigned int n_hc);
  469. void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
  470. void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
  471. };
  472. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  473. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  474. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  475. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  476. static int mv_port_start(struct ata_port *ap);
  477. static void mv_port_stop(struct ata_port *ap);
  478. static int mv_qc_defer(struct ata_queued_cmd *qc);
  479. static void mv_qc_prep(struct ata_queued_cmd *qc);
  480. static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
  481. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
  482. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  483. unsigned long deadline);
  484. static void mv_eh_freeze(struct ata_port *ap);
  485. static void mv_eh_thaw(struct ata_port *ap);
  486. static void mv6_dev_config(struct ata_device *dev);
  487. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  488. unsigned int port);
  489. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  490. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  491. void __iomem *mmio);
  492. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  493. unsigned int n_hc);
  494. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  495. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
  496. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  497. unsigned int port);
  498. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  499. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  500. void __iomem *mmio);
  501. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  502. unsigned int n_hc);
  503. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  504. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  505. void __iomem *mmio);
  506. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  507. void __iomem *mmio);
  508. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  509. void __iomem *mmio, unsigned int n_hc);
  510. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  511. void __iomem *mmio);
  512. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
  513. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
  514. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  515. unsigned int port_no);
  516. static int mv_stop_edma(struct ata_port *ap);
  517. static int mv_stop_edma_engine(void __iomem *port_mmio);
  518. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
  519. static void mv_pmp_select(struct ata_port *ap, int pmp);
  520. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  521. unsigned long deadline);
  522. static int mv_softreset(struct ata_link *link, unsigned int *class,
  523. unsigned long deadline);
  524. static void mv_pmp_error_handler(struct ata_port *ap);
  525. static void mv_process_crpb_entries(struct ata_port *ap,
  526. struct mv_port_priv *pp);
  527. static void mv_sff_irq_clear(struct ata_port *ap);
  528. static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
  529. static void mv_bmdma_setup(struct ata_queued_cmd *qc);
  530. static void mv_bmdma_start(struct ata_queued_cmd *qc);
  531. static void mv_bmdma_stop(struct ata_queued_cmd *qc);
  532. static u8 mv_bmdma_status(struct ata_port *ap);
  533. static u8 mv_sff_check_status(struct ata_port *ap);
  534. /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
  535. * because we have to allow room for worst case splitting of
  536. * PRDs for 64K boundaries in mv_fill_sg().
  537. */
  538. static struct scsi_host_template mv5_sht = {
  539. ATA_BASE_SHT(DRV_NAME),
  540. .sg_tablesize = MV_MAX_SG_CT / 2,
  541. .dma_boundary = MV_DMA_BOUNDARY,
  542. };
  543. static struct scsi_host_template mv6_sht = {
  544. ATA_NCQ_SHT(DRV_NAME),
  545. .can_queue = MV_MAX_Q_DEPTH - 1,
  546. .sg_tablesize = MV_MAX_SG_CT / 2,
  547. .dma_boundary = MV_DMA_BOUNDARY,
  548. };
  549. static struct ata_port_operations mv5_ops = {
  550. .inherits = &ata_sff_port_ops,
  551. .qc_defer = mv_qc_defer,
  552. .qc_prep = mv_qc_prep,
  553. .qc_issue = mv_qc_issue,
  554. .freeze = mv_eh_freeze,
  555. .thaw = mv_eh_thaw,
  556. .hardreset = mv_hardreset,
  557. .error_handler = ata_std_error_handler, /* avoid SFF EH */
  558. .post_internal_cmd = ATA_OP_NULL,
  559. .scr_read = mv5_scr_read,
  560. .scr_write = mv5_scr_write,
  561. .port_start = mv_port_start,
  562. .port_stop = mv_port_stop,
  563. };
  564. static struct ata_port_operations mv6_ops = {
  565. .inherits = &mv5_ops,
  566. .dev_config = mv6_dev_config,
  567. .scr_read = mv_scr_read,
  568. .scr_write = mv_scr_write,
  569. .pmp_hardreset = mv_pmp_hardreset,
  570. .pmp_softreset = mv_softreset,
  571. .softreset = mv_softreset,
  572. .error_handler = mv_pmp_error_handler,
  573. .sff_check_status = mv_sff_check_status,
  574. .sff_irq_clear = mv_sff_irq_clear,
  575. .check_atapi_dma = mv_check_atapi_dma,
  576. .bmdma_setup = mv_bmdma_setup,
  577. .bmdma_start = mv_bmdma_start,
  578. .bmdma_stop = mv_bmdma_stop,
  579. .bmdma_status = mv_bmdma_status,
  580. };
  581. static struct ata_port_operations mv_iie_ops = {
  582. .inherits = &mv6_ops,
  583. .dev_config = ATA_OP_NULL,
  584. .qc_prep = mv_qc_prep_iie,
  585. };
  586. static const struct ata_port_info mv_port_info[] = {
  587. { /* chip_504x */
  588. .flags = MV_GEN_I_FLAGS,
  589. .pio_mask = 0x1f, /* pio0-4 */
  590. .udma_mask = ATA_UDMA6,
  591. .port_ops = &mv5_ops,
  592. },
  593. { /* chip_508x */
  594. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  595. .pio_mask = 0x1f, /* pio0-4 */
  596. .udma_mask = ATA_UDMA6,
  597. .port_ops = &mv5_ops,
  598. },
  599. { /* chip_5080 */
  600. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  601. .pio_mask = 0x1f, /* pio0-4 */
  602. .udma_mask = ATA_UDMA6,
  603. .port_ops = &mv5_ops,
  604. },
  605. { /* chip_604x */
  606. .flags = MV_GEN_II_FLAGS,
  607. .pio_mask = 0x1f, /* pio0-4 */
  608. .udma_mask = ATA_UDMA6,
  609. .port_ops = &mv6_ops,
  610. },
  611. { /* chip_608x */
  612. .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
  613. .pio_mask = 0x1f, /* pio0-4 */
  614. .udma_mask = ATA_UDMA6,
  615. .port_ops = &mv6_ops,
  616. },
  617. { /* chip_6042 */
  618. .flags = MV_GEN_IIE_FLAGS,
  619. .pio_mask = 0x1f, /* pio0-4 */
  620. .udma_mask = ATA_UDMA6,
  621. .port_ops = &mv_iie_ops,
  622. },
  623. { /* chip_7042 */
  624. .flags = MV_GEN_IIE_FLAGS,
  625. .pio_mask = 0x1f, /* pio0-4 */
  626. .udma_mask = ATA_UDMA6,
  627. .port_ops = &mv_iie_ops,
  628. },
  629. { /* chip_soc */
  630. .flags = MV_GEN_IIE_FLAGS,
  631. .pio_mask = 0x1f, /* pio0-4 */
  632. .udma_mask = ATA_UDMA6,
  633. .port_ops = &mv_iie_ops,
  634. },
  635. };
  636. static const struct pci_device_id mv_pci_tbl[] = {
  637. { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
  638. { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
  639. { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
  640. { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
  641. /* RocketRAID 1720/174x have different identifiers */
  642. { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
  643. { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
  644. { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
  645. { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
  646. { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
  647. { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
  648. { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
  649. { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
  650. { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
  651. /* Adaptec 1430SA */
  652. { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
  653. /* Marvell 7042 support */
  654. { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
  655. /* Highpoint RocketRAID PCIe series */
  656. { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
  657. { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
  658. { } /* terminate list */
  659. };
  660. static const struct mv_hw_ops mv5xxx_ops = {
  661. .phy_errata = mv5_phy_errata,
  662. .enable_leds = mv5_enable_leds,
  663. .read_preamp = mv5_read_preamp,
  664. .reset_hc = mv5_reset_hc,
  665. .reset_flash = mv5_reset_flash,
  666. .reset_bus = mv5_reset_bus,
  667. };
  668. static const struct mv_hw_ops mv6xxx_ops = {
  669. .phy_errata = mv6_phy_errata,
  670. .enable_leds = mv6_enable_leds,
  671. .read_preamp = mv6_read_preamp,
  672. .reset_hc = mv6_reset_hc,
  673. .reset_flash = mv6_reset_flash,
  674. .reset_bus = mv_reset_pci_bus,
  675. };
  676. static const struct mv_hw_ops mv_soc_ops = {
  677. .phy_errata = mv6_phy_errata,
  678. .enable_leds = mv_soc_enable_leds,
  679. .read_preamp = mv_soc_read_preamp,
  680. .reset_hc = mv_soc_reset_hc,
  681. .reset_flash = mv_soc_reset_flash,
  682. .reset_bus = mv_soc_reset_bus,
  683. };
  684. /*
  685. * Functions
  686. */
  687. static inline void writelfl(unsigned long data, void __iomem *addr)
  688. {
  689. writel(data, addr);
  690. (void) readl(addr); /* flush to avoid PCI posted write */
  691. }
  692. static inline unsigned int mv_hc_from_port(unsigned int port)
  693. {
  694. return port >> MV_PORT_HC_SHIFT;
  695. }
  696. static inline unsigned int mv_hardport_from_port(unsigned int port)
  697. {
  698. return port & MV_PORT_MASK;
  699. }
  700. /*
  701. * Consolidate some rather tricky bit shift calculations.
  702. * This is hot-path stuff, so not a function.
  703. * Simple code, with two return values, so macro rather than inline.
  704. *
  705. * port is the sole input, in range 0..7.
  706. * shift is one output, for use with main_irq_cause / main_irq_mask registers.
  707. * hardport is the other output, in range 0..3.
  708. *
  709. * Note that port and hardport may be the same variable in some cases.
  710. */
  711. #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
  712. { \
  713. shift = mv_hc_from_port(port) * HC_SHIFT; \
  714. hardport = mv_hardport_from_port(port); \
  715. shift += hardport * 2; \
  716. }
  717. static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
  718. {
  719. return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
  720. }
  721. static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
  722. unsigned int port)
  723. {
  724. return mv_hc_base(base, mv_hc_from_port(port));
  725. }
  726. static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
  727. {
  728. return mv_hc_base_from_port(base, port) +
  729. MV_SATAHC_ARBTR_REG_SZ +
  730. (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
  731. }
  732. static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
  733. {
  734. void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
  735. unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
  736. return hc_mmio + ofs;
  737. }
  738. static inline void __iomem *mv_host_base(struct ata_host *host)
  739. {
  740. struct mv_host_priv *hpriv = host->private_data;
  741. return hpriv->base;
  742. }
  743. static inline void __iomem *mv_ap_base(struct ata_port *ap)
  744. {
  745. return mv_port_base(mv_host_base(ap->host), ap->port_no);
  746. }
  747. static inline int mv_get_hc_count(unsigned long port_flags)
  748. {
  749. return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
  750. }
  751. /**
  752. * mv_save_cached_regs - (re-)initialize cached port registers
  753. * @ap: the port whose registers we are caching
  754. *
  755. * Initialize the local cache of port registers,
  756. * so that reading them over and over again can
  757. * be avoided on the hotter paths of this driver.
  758. * This saves a few microseconds each time we switch
  759. * to/from EDMA mode to perform (eg.) a drive cache flush.
  760. */
  761. static void mv_save_cached_regs(struct ata_port *ap)
  762. {
  763. void __iomem *port_mmio = mv_ap_base(ap);
  764. struct mv_port_priv *pp = ap->private_data;
  765. pp->cached.fiscfg = readl(port_mmio + FISCFG_OFS);
  766. pp->cached.ltmode = readl(port_mmio + LTMODE_OFS);
  767. pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND_OFS);
  768. pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD_OFS);
  769. }
  770. /**
  771. * mv_write_cached_reg - write to a cached port register
  772. * @addr: hardware address of the register
  773. * @old: pointer to cached value of the register
  774. * @new: new value for the register
  775. *
  776. * Write a new value to a cached register,
  777. * but only if the value is different from before.
  778. */
  779. static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
  780. {
  781. if (new != *old) {
  782. *old = new;
  783. writel(new, addr);
  784. }
  785. }
  786. static void mv_set_edma_ptrs(void __iomem *port_mmio,
  787. struct mv_host_priv *hpriv,
  788. struct mv_port_priv *pp)
  789. {
  790. u32 index;
  791. /*
  792. * initialize request queue
  793. */
  794. pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  795. index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  796. WARN_ON(pp->crqb_dma & 0x3ff);
  797. writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
  798. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
  799. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  800. writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
  801. /*
  802. * initialize response queue
  803. */
  804. pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  805. index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
  806. WARN_ON(pp->crpb_dma & 0xff);
  807. writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
  808. writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
  809. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
  810. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  811. }
  812. static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
  813. {
  814. /*
  815. * When writing to the main_irq_mask in hardware,
  816. * we must ensure exclusivity between the interrupt coalescing bits
  817. * and the corresponding individual port DONE_IRQ bits.
  818. *
  819. * Note that this register is really an "IRQ enable" register,
  820. * not an "IRQ mask" register as Marvell's naming might suggest.
  821. */
  822. if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
  823. mask &= ~DONE_IRQ_0_3;
  824. if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
  825. mask &= ~DONE_IRQ_4_7;
  826. writelfl(mask, hpriv->main_irq_mask_addr);
  827. }
  828. static void mv_set_main_irq_mask(struct ata_host *host,
  829. u32 disable_bits, u32 enable_bits)
  830. {
  831. struct mv_host_priv *hpriv = host->private_data;
  832. u32 old_mask, new_mask;
  833. old_mask = hpriv->main_irq_mask;
  834. new_mask = (old_mask & ~disable_bits) | enable_bits;
  835. if (new_mask != old_mask) {
  836. hpriv->main_irq_mask = new_mask;
  837. mv_write_main_irq_mask(new_mask, hpriv);
  838. }
  839. }
  840. static void mv_enable_port_irqs(struct ata_port *ap,
  841. unsigned int port_bits)
  842. {
  843. unsigned int shift, hardport, port = ap->port_no;
  844. u32 disable_bits, enable_bits;
  845. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  846. disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
  847. enable_bits = port_bits << shift;
  848. mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
  849. }
  850. static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
  851. void __iomem *port_mmio,
  852. unsigned int port_irqs)
  853. {
  854. struct mv_host_priv *hpriv = ap->host->private_data;
  855. int hardport = mv_hardport_from_port(ap->port_no);
  856. void __iomem *hc_mmio = mv_hc_base_from_port(
  857. mv_host_base(ap->host), ap->port_no);
  858. u32 hc_irq_cause;
  859. /* clear EDMA event indicators, if any */
  860. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  861. /* clear pending irq events */
  862. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  863. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  864. /* clear FIS IRQ Cause */
  865. if (IS_GEN_IIE(hpriv))
  866. writelfl(0, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  867. mv_enable_port_irqs(ap, port_irqs);
  868. }
  869. static void mv_set_irq_coalescing(struct ata_host *host,
  870. unsigned int count, unsigned int usecs)
  871. {
  872. struct mv_host_priv *hpriv = host->private_data;
  873. void __iomem *mmio = hpriv->base, *hc_mmio;
  874. u32 coal_enable = 0;
  875. unsigned long flags;
  876. unsigned int clks;
  877. const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
  878. ALL_PORTS_COAL_DONE;
  879. /* Disable IRQ coalescing if either threshold is zero */
  880. if (!usecs || !count) {
  881. clks = count = 0;
  882. } else {
  883. /* Respect maximum limits of the hardware */
  884. clks = usecs * COAL_CLOCKS_PER_USEC;
  885. if (clks > MAX_COAL_TIME_THRESHOLD)
  886. clks = MAX_COAL_TIME_THRESHOLD;
  887. if (count > MAX_COAL_IO_COUNT)
  888. count = MAX_COAL_IO_COUNT;
  889. }
  890. spin_lock_irqsave(&host->lock, flags);
  891. #if 0 /* disabled pending functional clarification from Marvell */
  892. if (!IS_GEN_I(hpriv)) {
  893. /*
  894. * GEN_II/GEN_IIE: global thresholds for the entire chip.
  895. */
  896. writel(clks, mmio + MV_IRQ_COAL_TIME_THRESHOLD);
  897. writel(count, mmio + MV_IRQ_COAL_IO_THRESHOLD);
  898. /* clear leftover coal IRQ bit */
  899. writelfl(~ALL_PORTS_COAL_IRQ, mmio + MV_IRQ_COAL_CAUSE);
  900. clks = count = 0; /* so as to clear the alternate regs below */
  901. coal_enable = ALL_PORTS_COAL_DONE;
  902. }
  903. #endif
  904. /*
  905. * All chips: independent thresholds for each HC on the chip.
  906. */
  907. hc_mmio = mv_hc_base_from_port(mmio, 0);
  908. writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD_OFS);
  909. writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD_OFS);
  910. coal_enable |= PORTS_0_3_COAL_DONE;
  911. if (hpriv->n_ports > 4) {
  912. hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
  913. writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD_OFS);
  914. writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD_OFS);
  915. coal_enable |= PORTS_4_7_COAL_DONE;
  916. }
  917. if (!count)
  918. coal_enable = 0;
  919. mv_set_main_irq_mask(host, coal_disable, coal_enable);
  920. spin_unlock_irqrestore(&host->lock, flags);
  921. }
  922. /**
  923. * mv_start_edma - Enable eDMA engine
  924. * @base: port base address
  925. * @pp: port private data
  926. *
  927. * Verify the local cache of the eDMA state is accurate with a
  928. * WARN_ON.
  929. *
  930. * LOCKING:
  931. * Inherited from caller.
  932. */
  933. static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
  934. struct mv_port_priv *pp, u8 protocol)
  935. {
  936. int want_ncq = (protocol == ATA_PROT_NCQ);
  937. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
  938. int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
  939. if (want_ncq != using_ncq)
  940. mv_stop_edma(ap);
  941. }
  942. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
  943. struct mv_host_priv *hpriv = ap->host->private_data;
  944. mv_edma_cfg(ap, want_ncq, 1);
  945. mv_set_edma_ptrs(port_mmio, hpriv, pp);
  946. mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
  947. writelfl(EDMA_EN, port_mmio + EDMA_CMD_OFS);
  948. pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
  949. }
  950. }
  951. static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
  952. {
  953. void __iomem *port_mmio = mv_ap_base(ap);
  954. const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
  955. const int per_loop = 5, timeout = (15 * 1000 / per_loop);
  956. int i;
  957. /*
  958. * Wait for the EDMA engine to finish transactions in progress.
  959. * No idea what a good "timeout" value might be, but measurements
  960. * indicate that it often requires hundreds of microseconds
  961. * with two drives in-use. So we use the 15msec value above
  962. * as a rough guess at what even more drives might require.
  963. */
  964. for (i = 0; i < timeout; ++i) {
  965. u32 edma_stat = readl(port_mmio + EDMA_STATUS_OFS);
  966. if ((edma_stat & empty_idle) == empty_idle)
  967. break;
  968. udelay(per_loop);
  969. }
  970. /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
  971. }
  972. /**
  973. * mv_stop_edma_engine - Disable eDMA engine
  974. * @port_mmio: io base address
  975. *
  976. * LOCKING:
  977. * Inherited from caller.
  978. */
  979. static int mv_stop_edma_engine(void __iomem *port_mmio)
  980. {
  981. int i;
  982. /* Disable eDMA. The disable bit auto clears. */
  983. writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
  984. /* Wait for the chip to confirm eDMA is off. */
  985. for (i = 10000; i > 0; i--) {
  986. u32 reg = readl(port_mmio + EDMA_CMD_OFS);
  987. if (!(reg & EDMA_EN))
  988. return 0;
  989. udelay(10);
  990. }
  991. return -EIO;
  992. }
  993. static int mv_stop_edma(struct ata_port *ap)
  994. {
  995. void __iomem *port_mmio = mv_ap_base(ap);
  996. struct mv_port_priv *pp = ap->private_data;
  997. int err = 0;
  998. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  999. return 0;
  1000. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1001. mv_wait_for_edma_empty_idle(ap);
  1002. if (mv_stop_edma_engine(port_mmio)) {
  1003. ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
  1004. err = -EIO;
  1005. }
  1006. mv_edma_cfg(ap, 0, 0);
  1007. return err;
  1008. }
  1009. #ifdef ATA_DEBUG
  1010. static void mv_dump_mem(void __iomem *start, unsigned bytes)
  1011. {
  1012. int b, w;
  1013. for (b = 0; b < bytes; ) {
  1014. DPRINTK("%p: ", start + b);
  1015. for (w = 0; b < bytes && w < 4; w++) {
  1016. printk("%08x ", readl(start + b));
  1017. b += sizeof(u32);
  1018. }
  1019. printk("\n");
  1020. }
  1021. }
  1022. #endif
  1023. static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
  1024. {
  1025. #ifdef ATA_DEBUG
  1026. int b, w;
  1027. u32 dw;
  1028. for (b = 0; b < bytes; ) {
  1029. DPRINTK("%02x: ", b);
  1030. for (w = 0; b < bytes && w < 4; w++) {
  1031. (void) pci_read_config_dword(pdev, b, &dw);
  1032. printk("%08x ", dw);
  1033. b += sizeof(u32);
  1034. }
  1035. printk("\n");
  1036. }
  1037. #endif
  1038. }
  1039. static void mv_dump_all_regs(void __iomem *mmio_base, int port,
  1040. struct pci_dev *pdev)
  1041. {
  1042. #ifdef ATA_DEBUG
  1043. void __iomem *hc_base = mv_hc_base(mmio_base,
  1044. port >> MV_PORT_HC_SHIFT);
  1045. void __iomem *port_base;
  1046. int start_port, num_ports, p, start_hc, num_hcs, hc;
  1047. if (0 > port) {
  1048. start_hc = start_port = 0;
  1049. num_ports = 8; /* shld be benign for 4 port devs */
  1050. num_hcs = 2;
  1051. } else {
  1052. start_hc = port >> MV_PORT_HC_SHIFT;
  1053. start_port = port;
  1054. num_ports = num_hcs = 1;
  1055. }
  1056. DPRINTK("All registers for port(s) %u-%u:\n", start_port,
  1057. num_ports > 1 ? num_ports - 1 : start_port);
  1058. if (NULL != pdev) {
  1059. DPRINTK("PCI config space regs:\n");
  1060. mv_dump_pci_cfg(pdev, 0x68);
  1061. }
  1062. DPRINTK("PCI regs:\n");
  1063. mv_dump_mem(mmio_base+0xc00, 0x3c);
  1064. mv_dump_mem(mmio_base+0xd00, 0x34);
  1065. mv_dump_mem(mmio_base+0xf00, 0x4);
  1066. mv_dump_mem(mmio_base+0x1d00, 0x6c);
  1067. for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
  1068. hc_base = mv_hc_base(mmio_base, hc);
  1069. DPRINTK("HC regs (HC %i):\n", hc);
  1070. mv_dump_mem(hc_base, 0x1c);
  1071. }
  1072. for (p = start_port; p < start_port + num_ports; p++) {
  1073. port_base = mv_port_base(mmio_base, p);
  1074. DPRINTK("EDMA regs (port %i):\n", p);
  1075. mv_dump_mem(port_base, 0x54);
  1076. DPRINTK("SATA regs (port %i):\n", p);
  1077. mv_dump_mem(port_base+0x300, 0x60);
  1078. }
  1079. #endif
  1080. }
  1081. static unsigned int mv_scr_offset(unsigned int sc_reg_in)
  1082. {
  1083. unsigned int ofs;
  1084. switch (sc_reg_in) {
  1085. case SCR_STATUS:
  1086. case SCR_CONTROL:
  1087. case SCR_ERROR:
  1088. ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
  1089. break;
  1090. case SCR_ACTIVE:
  1091. ofs = SATA_ACTIVE_OFS; /* active is not with the others */
  1092. break;
  1093. default:
  1094. ofs = 0xffffffffU;
  1095. break;
  1096. }
  1097. return ofs;
  1098. }
  1099. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  1100. {
  1101. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1102. if (ofs != 0xffffffffU) {
  1103. *val = readl(mv_ap_base(link->ap) + ofs);
  1104. return 0;
  1105. } else
  1106. return -EINVAL;
  1107. }
  1108. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  1109. {
  1110. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1111. if (ofs != 0xffffffffU) {
  1112. writelfl(val, mv_ap_base(link->ap) + ofs);
  1113. return 0;
  1114. } else
  1115. return -EINVAL;
  1116. }
  1117. static void mv6_dev_config(struct ata_device *adev)
  1118. {
  1119. /*
  1120. * Deal with Gen-II ("mv6") hardware quirks/restrictions:
  1121. *
  1122. * Gen-II does not support NCQ over a port multiplier
  1123. * (no FIS-based switching).
  1124. */
  1125. if (adev->flags & ATA_DFLAG_NCQ) {
  1126. if (sata_pmp_attached(adev->link->ap)) {
  1127. adev->flags &= ~ATA_DFLAG_NCQ;
  1128. ata_dev_printk(adev, KERN_INFO,
  1129. "NCQ disabled for command-based switching\n");
  1130. }
  1131. }
  1132. }
  1133. static int mv_qc_defer(struct ata_queued_cmd *qc)
  1134. {
  1135. struct ata_link *link = qc->dev->link;
  1136. struct ata_port *ap = link->ap;
  1137. struct mv_port_priv *pp = ap->private_data;
  1138. /*
  1139. * Don't allow new commands if we're in a delayed EH state
  1140. * for NCQ and/or FIS-based switching.
  1141. */
  1142. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  1143. return ATA_DEFER_PORT;
  1144. /*
  1145. * If the port is completely idle, then allow the new qc.
  1146. */
  1147. if (ap->nr_active_links == 0)
  1148. return 0;
  1149. /*
  1150. * The port is operating in host queuing mode (EDMA) with NCQ
  1151. * enabled, allow multiple NCQ commands. EDMA also allows
  1152. * queueing multiple DMA commands but libata core currently
  1153. * doesn't allow it.
  1154. */
  1155. if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
  1156. (pp->pp_flags & MV_PP_FLAG_NCQ_EN) && ata_is_ncq(qc->tf.protocol))
  1157. return 0;
  1158. return ATA_DEFER_PORT;
  1159. }
  1160. static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
  1161. {
  1162. struct mv_port_priv *pp = ap->private_data;
  1163. void __iomem *port_mmio;
  1164. u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
  1165. u32 ltmode, *old_ltmode = &pp->cached.ltmode;
  1166. u32 haltcond, *old_haltcond = &pp->cached.haltcond;
  1167. ltmode = *old_ltmode & ~LTMODE_BIT8;
  1168. haltcond = *old_haltcond | EDMA_ERR_DEV;
  1169. if (want_fbs) {
  1170. fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
  1171. ltmode = *old_ltmode | LTMODE_BIT8;
  1172. if (want_ncq)
  1173. haltcond &= ~EDMA_ERR_DEV;
  1174. else
  1175. fiscfg |= FISCFG_WAIT_DEV_ERR;
  1176. } else {
  1177. fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
  1178. }
  1179. port_mmio = mv_ap_base(ap);
  1180. mv_write_cached_reg(port_mmio + FISCFG_OFS, old_fiscfg, fiscfg);
  1181. mv_write_cached_reg(port_mmio + LTMODE_OFS, old_ltmode, ltmode);
  1182. mv_write_cached_reg(port_mmio + EDMA_HALTCOND_OFS, old_haltcond, haltcond);
  1183. }
  1184. static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
  1185. {
  1186. struct mv_host_priv *hpriv = ap->host->private_data;
  1187. u32 old, new;
  1188. /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
  1189. old = readl(hpriv->base + MV_GPIO_PORT_CTL_OFS);
  1190. if (want_ncq)
  1191. new = old | (1 << 22);
  1192. else
  1193. new = old & ~(1 << 22);
  1194. if (new != old)
  1195. writel(new, hpriv->base + MV_GPIO_PORT_CTL_OFS);
  1196. }
  1197. /**
  1198. * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
  1199. * @ap: Port being initialized
  1200. *
  1201. * There are two DMA modes on these chips: basic DMA, and EDMA.
  1202. *
  1203. * Bit-0 of the "EDMA RESERVED" register enables/disables use
  1204. * of basic DMA on the GEN_IIE versions of the chips.
  1205. *
  1206. * This bit survives EDMA resets, and must be set for basic DMA
  1207. * to function, and should be cleared when EDMA is active.
  1208. */
  1209. static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
  1210. {
  1211. struct mv_port_priv *pp = ap->private_data;
  1212. u32 new, *old = &pp->cached.unknown_rsvd;
  1213. if (enable_bmdma)
  1214. new = *old | 1;
  1215. else
  1216. new = *old & ~1;
  1217. mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD_OFS, old, new);
  1218. }
  1219. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
  1220. {
  1221. u32 cfg;
  1222. struct mv_port_priv *pp = ap->private_data;
  1223. struct mv_host_priv *hpriv = ap->host->private_data;
  1224. void __iomem *port_mmio = mv_ap_base(ap);
  1225. /* set up non-NCQ EDMA configuration */
  1226. cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
  1227. pp->pp_flags &=
  1228. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  1229. if (IS_GEN_I(hpriv))
  1230. cfg |= (1 << 8); /* enab config burst size mask */
  1231. else if (IS_GEN_II(hpriv)) {
  1232. cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
  1233. mv_60x1_errata_sata25(ap, want_ncq);
  1234. } else if (IS_GEN_IIE(hpriv)) {
  1235. int want_fbs = sata_pmp_attached(ap);
  1236. /*
  1237. * Possible future enhancement:
  1238. *
  1239. * The chip can use FBS with non-NCQ, if we allow it,
  1240. * But first we need to have the error handling in place
  1241. * for this mode (datasheet section 7.3.15.4.2.3).
  1242. * So disallow non-NCQ FBS for now.
  1243. */
  1244. want_fbs &= want_ncq;
  1245. mv_config_fbs(ap, want_ncq, want_fbs);
  1246. if (want_fbs) {
  1247. pp->pp_flags |= MV_PP_FLAG_FBS_EN;
  1248. cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
  1249. }
  1250. cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
  1251. if (want_edma) {
  1252. cfg |= (1 << 22); /* enab 4-entry host queue cache */
  1253. if (!IS_SOC(hpriv))
  1254. cfg |= (1 << 18); /* enab early completion */
  1255. }
  1256. if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
  1257. cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
  1258. mv_bmdma_enable_iie(ap, !want_edma);
  1259. }
  1260. if (want_ncq) {
  1261. cfg |= EDMA_CFG_NCQ;
  1262. pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
  1263. }
  1264. writelfl(cfg, port_mmio + EDMA_CFG_OFS);
  1265. }
  1266. static void mv_port_free_dma_mem(struct ata_port *ap)
  1267. {
  1268. struct mv_host_priv *hpriv = ap->host->private_data;
  1269. struct mv_port_priv *pp = ap->private_data;
  1270. int tag;
  1271. if (pp->crqb) {
  1272. dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
  1273. pp->crqb = NULL;
  1274. }
  1275. if (pp->crpb) {
  1276. dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
  1277. pp->crpb = NULL;
  1278. }
  1279. /*
  1280. * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
  1281. * For later hardware, we have one unique sg_tbl per NCQ tag.
  1282. */
  1283. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1284. if (pp->sg_tbl[tag]) {
  1285. if (tag == 0 || !IS_GEN_I(hpriv))
  1286. dma_pool_free(hpriv->sg_tbl_pool,
  1287. pp->sg_tbl[tag],
  1288. pp->sg_tbl_dma[tag]);
  1289. pp->sg_tbl[tag] = NULL;
  1290. }
  1291. }
  1292. }
  1293. /**
  1294. * mv_port_start - Port specific init/start routine.
  1295. * @ap: ATA channel to manipulate
  1296. *
  1297. * Allocate and point to DMA memory, init port private memory,
  1298. * zero indices.
  1299. *
  1300. * LOCKING:
  1301. * Inherited from caller.
  1302. */
  1303. static int mv_port_start(struct ata_port *ap)
  1304. {
  1305. struct device *dev = ap->host->dev;
  1306. struct mv_host_priv *hpriv = ap->host->private_data;
  1307. struct mv_port_priv *pp;
  1308. int tag;
  1309. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  1310. if (!pp)
  1311. return -ENOMEM;
  1312. ap->private_data = pp;
  1313. pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
  1314. if (!pp->crqb)
  1315. return -ENOMEM;
  1316. memset(pp->crqb, 0, MV_CRQB_Q_SZ);
  1317. pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
  1318. if (!pp->crpb)
  1319. goto out_port_free_dma_mem;
  1320. memset(pp->crpb, 0, MV_CRPB_Q_SZ);
  1321. /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
  1322. if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
  1323. ap->flags |= ATA_FLAG_AN;
  1324. /*
  1325. * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
  1326. * For later hardware, we need one unique sg_tbl per NCQ tag.
  1327. */
  1328. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1329. if (tag == 0 || !IS_GEN_I(hpriv)) {
  1330. pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
  1331. GFP_KERNEL, &pp->sg_tbl_dma[tag]);
  1332. if (!pp->sg_tbl[tag])
  1333. goto out_port_free_dma_mem;
  1334. } else {
  1335. pp->sg_tbl[tag] = pp->sg_tbl[0];
  1336. pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
  1337. }
  1338. }
  1339. mv_save_cached_regs(ap);
  1340. mv_edma_cfg(ap, 0, 0);
  1341. return 0;
  1342. out_port_free_dma_mem:
  1343. mv_port_free_dma_mem(ap);
  1344. return -ENOMEM;
  1345. }
  1346. /**
  1347. * mv_port_stop - Port specific cleanup/stop routine.
  1348. * @ap: ATA channel to manipulate
  1349. *
  1350. * Stop DMA, cleanup port memory.
  1351. *
  1352. * LOCKING:
  1353. * This routine uses the host lock to protect the DMA stop.
  1354. */
  1355. static void mv_port_stop(struct ata_port *ap)
  1356. {
  1357. mv_stop_edma(ap);
  1358. mv_enable_port_irqs(ap, 0);
  1359. mv_port_free_dma_mem(ap);
  1360. }
  1361. /**
  1362. * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
  1363. * @qc: queued command whose SG list to source from
  1364. *
  1365. * Populate the SG list and mark the last entry.
  1366. *
  1367. * LOCKING:
  1368. * Inherited from caller.
  1369. */
  1370. static void mv_fill_sg(struct ata_queued_cmd *qc)
  1371. {
  1372. struct mv_port_priv *pp = qc->ap->private_data;
  1373. struct scatterlist *sg;
  1374. struct mv_sg *mv_sg, *last_sg = NULL;
  1375. unsigned int si;
  1376. mv_sg = pp->sg_tbl[qc->tag];
  1377. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  1378. dma_addr_t addr = sg_dma_address(sg);
  1379. u32 sg_len = sg_dma_len(sg);
  1380. while (sg_len) {
  1381. u32 offset = addr & 0xffff;
  1382. u32 len = sg_len;
  1383. if (offset + len > 0x10000)
  1384. len = 0x10000 - offset;
  1385. mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
  1386. mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
  1387. mv_sg->flags_size = cpu_to_le32(len & 0xffff);
  1388. mv_sg->reserved = 0;
  1389. sg_len -= len;
  1390. addr += len;
  1391. last_sg = mv_sg;
  1392. mv_sg++;
  1393. }
  1394. }
  1395. if (likely(last_sg))
  1396. last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
  1397. mb(); /* ensure data structure is visible to the chipset */
  1398. }
  1399. static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
  1400. {
  1401. u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
  1402. (last ? CRQB_CMD_LAST : 0);
  1403. *cmdw = cpu_to_le16(tmp);
  1404. }
  1405. /**
  1406. * mv_sff_irq_clear - Clear hardware interrupt after DMA.
  1407. * @ap: Port associated with this ATA transaction.
  1408. *
  1409. * We need this only for ATAPI bmdma transactions,
  1410. * as otherwise we experience spurious interrupts
  1411. * after libata-sff handles the bmdma interrupts.
  1412. */
  1413. static void mv_sff_irq_clear(struct ata_port *ap)
  1414. {
  1415. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
  1416. }
  1417. /**
  1418. * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
  1419. * @qc: queued command to check for chipset/DMA compatibility.
  1420. *
  1421. * The bmdma engines cannot handle speculative data sizes
  1422. * (bytecount under/over flow). So only allow DMA for
  1423. * data transfer commands with known data sizes.
  1424. *
  1425. * LOCKING:
  1426. * Inherited from caller.
  1427. */
  1428. static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
  1429. {
  1430. struct scsi_cmnd *scmd = qc->scsicmd;
  1431. if (scmd) {
  1432. switch (scmd->cmnd[0]) {
  1433. case READ_6:
  1434. case READ_10:
  1435. case READ_12:
  1436. case WRITE_6:
  1437. case WRITE_10:
  1438. case WRITE_12:
  1439. case GPCMD_READ_CD:
  1440. case GPCMD_SEND_DVD_STRUCTURE:
  1441. case GPCMD_SEND_CUE_SHEET:
  1442. return 0; /* DMA is safe */
  1443. }
  1444. }
  1445. return -EOPNOTSUPP; /* use PIO instead */
  1446. }
  1447. /**
  1448. * mv_bmdma_setup - Set up BMDMA transaction
  1449. * @qc: queued command to prepare DMA for.
  1450. *
  1451. * LOCKING:
  1452. * Inherited from caller.
  1453. */
  1454. static void mv_bmdma_setup(struct ata_queued_cmd *qc)
  1455. {
  1456. struct ata_port *ap = qc->ap;
  1457. void __iomem *port_mmio = mv_ap_base(ap);
  1458. struct mv_port_priv *pp = ap->private_data;
  1459. mv_fill_sg(qc);
  1460. /* clear all DMA cmd bits */
  1461. writel(0, port_mmio + BMDMA_CMD_OFS);
  1462. /* load PRD table addr. */
  1463. writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
  1464. port_mmio + BMDMA_PRD_HIGH_OFS);
  1465. writelfl(pp->sg_tbl_dma[qc->tag],
  1466. port_mmio + BMDMA_PRD_LOW_OFS);
  1467. /* issue r/w command */
  1468. ap->ops->sff_exec_command(ap, &qc->tf);
  1469. }
  1470. /**
  1471. * mv_bmdma_start - Start a BMDMA transaction
  1472. * @qc: queued command to start DMA on.
  1473. *
  1474. * LOCKING:
  1475. * Inherited from caller.
  1476. */
  1477. static void mv_bmdma_start(struct ata_queued_cmd *qc)
  1478. {
  1479. struct ata_port *ap = qc->ap;
  1480. void __iomem *port_mmio = mv_ap_base(ap);
  1481. unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
  1482. u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
  1483. /* start host DMA transaction */
  1484. writelfl(cmd, port_mmio + BMDMA_CMD_OFS);
  1485. }
  1486. /**
  1487. * mv_bmdma_stop - Stop BMDMA transfer
  1488. * @qc: queued command to stop DMA on.
  1489. *
  1490. * Clears the ATA_DMA_START flag in the bmdma control register
  1491. *
  1492. * LOCKING:
  1493. * Inherited from caller.
  1494. */
  1495. static void mv_bmdma_stop(struct ata_queued_cmd *qc)
  1496. {
  1497. struct ata_port *ap = qc->ap;
  1498. void __iomem *port_mmio = mv_ap_base(ap);
  1499. u32 cmd;
  1500. /* clear start/stop bit */
  1501. cmd = readl(port_mmio + BMDMA_CMD_OFS);
  1502. cmd &= ~ATA_DMA_START;
  1503. writelfl(cmd, port_mmio + BMDMA_CMD_OFS);
  1504. /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
  1505. ata_sff_dma_pause(ap);
  1506. }
  1507. /**
  1508. * mv_bmdma_status - Read BMDMA status
  1509. * @ap: port for which to retrieve DMA status.
  1510. *
  1511. * Read and return equivalent of the sff BMDMA status register.
  1512. *
  1513. * LOCKING:
  1514. * Inherited from caller.
  1515. */
  1516. static u8 mv_bmdma_status(struct ata_port *ap)
  1517. {
  1518. void __iomem *port_mmio = mv_ap_base(ap);
  1519. u32 reg, status;
  1520. /*
  1521. * Other bits are valid only if ATA_DMA_ACTIVE==0,
  1522. * and the ATA_DMA_INTR bit doesn't exist.
  1523. */
  1524. reg = readl(port_mmio + BMDMA_STATUS_OFS);
  1525. if (reg & ATA_DMA_ACTIVE)
  1526. status = ATA_DMA_ACTIVE;
  1527. else
  1528. status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
  1529. return status;
  1530. }
  1531. /**
  1532. * mv_qc_prep - Host specific command preparation.
  1533. * @qc: queued command to prepare
  1534. *
  1535. * This routine simply redirects to the general purpose routine
  1536. * if command is not DMA. Else, it handles prep of the CRQB
  1537. * (command request block), does some sanity checking, and calls
  1538. * the SG load routine.
  1539. *
  1540. * LOCKING:
  1541. * Inherited from caller.
  1542. */
  1543. static void mv_qc_prep(struct ata_queued_cmd *qc)
  1544. {
  1545. struct ata_port *ap = qc->ap;
  1546. struct mv_port_priv *pp = ap->private_data;
  1547. __le16 *cw;
  1548. struct ata_taskfile *tf;
  1549. u16 flags = 0;
  1550. unsigned in_index;
  1551. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1552. (qc->tf.protocol != ATA_PROT_NCQ))
  1553. return;
  1554. /* Fill in command request block
  1555. */
  1556. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1557. flags |= CRQB_FLAG_READ;
  1558. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1559. flags |= qc->tag << CRQB_TAG_SHIFT;
  1560. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1561. /* get current queue index from software */
  1562. in_index = pp->req_idx;
  1563. pp->crqb[in_index].sg_addr =
  1564. cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1565. pp->crqb[in_index].sg_addr_hi =
  1566. cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1567. pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
  1568. cw = &pp->crqb[in_index].ata_cmd[0];
  1569. tf = &qc->tf;
  1570. /* Sadly, the CRQB cannot accomodate all registers--there are
  1571. * only 11 bytes...so we must pick and choose required
  1572. * registers based on the command. So, we drop feature and
  1573. * hob_feature for [RW] DMA commands, but they are needed for
  1574. * NCQ. NCQ will drop hob_nsect, which is not needed there
  1575. * (nsect is used only for the tag; feat/hob_feat hold true nsect).
  1576. */
  1577. switch (tf->command) {
  1578. case ATA_CMD_READ:
  1579. case ATA_CMD_READ_EXT:
  1580. case ATA_CMD_WRITE:
  1581. case ATA_CMD_WRITE_EXT:
  1582. case ATA_CMD_WRITE_FUA_EXT:
  1583. mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
  1584. break;
  1585. case ATA_CMD_FPDMA_READ:
  1586. case ATA_CMD_FPDMA_WRITE:
  1587. mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
  1588. mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
  1589. break;
  1590. default:
  1591. /* The only other commands EDMA supports in non-queued and
  1592. * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
  1593. * of which are defined/used by Linux. If we get here, this
  1594. * driver needs work.
  1595. *
  1596. * FIXME: modify libata to give qc_prep a return value and
  1597. * return error here.
  1598. */
  1599. BUG_ON(tf->command);
  1600. break;
  1601. }
  1602. mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
  1603. mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
  1604. mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
  1605. mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
  1606. mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
  1607. mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
  1608. mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
  1609. mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
  1610. mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
  1611. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1612. return;
  1613. mv_fill_sg(qc);
  1614. }
  1615. /**
  1616. * mv_qc_prep_iie - Host specific command preparation.
  1617. * @qc: queued command to prepare
  1618. *
  1619. * This routine simply redirects to the general purpose routine
  1620. * if command is not DMA. Else, it handles prep of the CRQB
  1621. * (command request block), does some sanity checking, and calls
  1622. * the SG load routine.
  1623. *
  1624. * LOCKING:
  1625. * Inherited from caller.
  1626. */
  1627. static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
  1628. {
  1629. struct ata_port *ap = qc->ap;
  1630. struct mv_port_priv *pp = ap->private_data;
  1631. struct mv_crqb_iie *crqb;
  1632. struct ata_taskfile *tf;
  1633. unsigned in_index;
  1634. u32 flags = 0;
  1635. if ((qc->tf.protocol != ATA_PROT_DMA) &&
  1636. (qc->tf.protocol != ATA_PROT_NCQ))
  1637. return;
  1638. /* Fill in Gen IIE command request block */
  1639. if (!(qc->tf.flags & ATA_TFLAG_WRITE))
  1640. flags |= CRQB_FLAG_READ;
  1641. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1642. flags |= qc->tag << CRQB_TAG_SHIFT;
  1643. flags |= qc->tag << CRQB_HOSTQ_SHIFT;
  1644. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1645. /* get current queue index from software */
  1646. in_index = pp->req_idx;
  1647. crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
  1648. crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1649. crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1650. crqb->flags = cpu_to_le32(flags);
  1651. tf = &qc->tf;
  1652. crqb->ata_cmd[0] = cpu_to_le32(
  1653. (tf->command << 16) |
  1654. (tf->feature << 24)
  1655. );
  1656. crqb->ata_cmd[1] = cpu_to_le32(
  1657. (tf->lbal << 0) |
  1658. (tf->lbam << 8) |
  1659. (tf->lbah << 16) |
  1660. (tf->device << 24)
  1661. );
  1662. crqb->ata_cmd[2] = cpu_to_le32(
  1663. (tf->hob_lbal << 0) |
  1664. (tf->hob_lbam << 8) |
  1665. (tf->hob_lbah << 16) |
  1666. (tf->hob_feature << 24)
  1667. );
  1668. crqb->ata_cmd[3] = cpu_to_le32(
  1669. (tf->nsect << 0) |
  1670. (tf->hob_nsect << 8)
  1671. );
  1672. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1673. return;
  1674. mv_fill_sg(qc);
  1675. }
  1676. /**
  1677. * mv_sff_check_status - fetch device status, if valid
  1678. * @ap: ATA port to fetch status from
  1679. *
  1680. * When using command issue via mv_qc_issue_fis(),
  1681. * the initial ATA_BUSY state does not show up in the
  1682. * ATA status (shadow) register. This can confuse libata!
  1683. *
  1684. * So we have a hook here to fake ATA_BUSY for that situation,
  1685. * until the first time a BUSY, DRQ, or ERR bit is seen.
  1686. *
  1687. * The rest of the time, it simply returns the ATA status register.
  1688. */
  1689. static u8 mv_sff_check_status(struct ata_port *ap)
  1690. {
  1691. u8 stat = ioread8(ap->ioaddr.status_addr);
  1692. struct mv_port_priv *pp = ap->private_data;
  1693. if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
  1694. if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
  1695. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
  1696. else
  1697. stat = ATA_BUSY;
  1698. }
  1699. return stat;
  1700. }
  1701. /**
  1702. * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
  1703. * @fis: fis to be sent
  1704. * @nwords: number of 32-bit words in the fis
  1705. */
  1706. static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
  1707. {
  1708. void __iomem *port_mmio = mv_ap_base(ap);
  1709. u32 ifctl, old_ifctl, ifstat;
  1710. int i, timeout = 200, final_word = nwords - 1;
  1711. /* Initiate FIS transmission mode */
  1712. old_ifctl = readl(port_mmio + SATA_IFCTL_OFS);
  1713. ifctl = 0x100 | (old_ifctl & 0xf);
  1714. writelfl(ifctl, port_mmio + SATA_IFCTL_OFS);
  1715. /* Send all words of the FIS except for the final word */
  1716. for (i = 0; i < final_word; ++i)
  1717. writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS_OFS);
  1718. /* Flag end-of-transmission, and then send the final word */
  1719. writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL_OFS);
  1720. writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS_OFS);
  1721. /*
  1722. * Wait for FIS transmission to complete.
  1723. * This typically takes just a single iteration.
  1724. */
  1725. do {
  1726. ifstat = readl(port_mmio + SATA_IFSTAT_OFS);
  1727. } while (!(ifstat & 0x1000) && --timeout);
  1728. /* Restore original port configuration */
  1729. writelfl(old_ifctl, port_mmio + SATA_IFCTL_OFS);
  1730. /* See if it worked */
  1731. if ((ifstat & 0x3000) != 0x1000) {
  1732. ata_port_printk(ap, KERN_WARNING,
  1733. "%s transmission error, ifstat=%08x\n",
  1734. __func__, ifstat);
  1735. return AC_ERR_OTHER;
  1736. }
  1737. return 0;
  1738. }
  1739. /**
  1740. * mv_qc_issue_fis - Issue a command directly as a FIS
  1741. * @qc: queued command to start
  1742. *
  1743. * Note that the ATA shadow registers are not updated
  1744. * after command issue, so the device will appear "READY"
  1745. * if polled, even while it is BUSY processing the command.
  1746. *
  1747. * So we use a status hook to fake ATA_BUSY until the drive changes state.
  1748. *
  1749. * Note: we don't get updated shadow regs on *completion*
  1750. * of non-data commands. So avoid sending them via this function,
  1751. * as they will appear to have completed immediately.
  1752. *
  1753. * GEN_IIE has special registers that we could get the result tf from,
  1754. * but earlier chipsets do not. For now, we ignore those registers.
  1755. */
  1756. static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
  1757. {
  1758. struct ata_port *ap = qc->ap;
  1759. struct mv_port_priv *pp = ap->private_data;
  1760. struct ata_link *link = qc->dev->link;
  1761. u32 fis[5];
  1762. int err = 0;
  1763. ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
  1764. err = mv_send_fis(ap, fis, sizeof(fis) / sizeof(fis[0]));
  1765. if (err)
  1766. return err;
  1767. switch (qc->tf.protocol) {
  1768. case ATAPI_PROT_PIO:
  1769. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  1770. /* fall through */
  1771. case ATAPI_PROT_NODATA:
  1772. ap->hsm_task_state = HSM_ST_FIRST;
  1773. break;
  1774. case ATA_PROT_PIO:
  1775. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  1776. if (qc->tf.flags & ATA_TFLAG_WRITE)
  1777. ap->hsm_task_state = HSM_ST_FIRST;
  1778. else
  1779. ap->hsm_task_state = HSM_ST;
  1780. break;
  1781. default:
  1782. ap->hsm_task_state = HSM_ST_LAST;
  1783. break;
  1784. }
  1785. if (qc->tf.flags & ATA_TFLAG_POLLING)
  1786. ata_pio_queue_task(ap, qc, 0);
  1787. return 0;
  1788. }
  1789. /**
  1790. * mv_qc_issue - Initiate a command to the host
  1791. * @qc: queued command to start
  1792. *
  1793. * This routine simply redirects to the general purpose routine
  1794. * if command is not DMA. Else, it sanity checks our local
  1795. * caches of the request producer/consumer indices then enables
  1796. * DMA and bumps the request producer index.
  1797. *
  1798. * LOCKING:
  1799. * Inherited from caller.
  1800. */
  1801. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
  1802. {
  1803. static int limit_warnings = 10;
  1804. struct ata_port *ap = qc->ap;
  1805. void __iomem *port_mmio = mv_ap_base(ap);
  1806. struct mv_port_priv *pp = ap->private_data;
  1807. u32 in_index;
  1808. unsigned int port_irqs;
  1809. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
  1810. switch (qc->tf.protocol) {
  1811. case ATA_PROT_DMA:
  1812. case ATA_PROT_NCQ:
  1813. mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
  1814. pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  1815. in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  1816. /* Write the request in pointer to kick the EDMA to life */
  1817. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
  1818. port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
  1819. return 0;
  1820. case ATA_PROT_PIO:
  1821. /*
  1822. * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
  1823. *
  1824. * Someday, we might implement special polling workarounds
  1825. * for these, but it all seems rather unnecessary since we
  1826. * normally use only DMA for commands which transfer more
  1827. * than a single block of data.
  1828. *
  1829. * Much of the time, this could just work regardless.
  1830. * So for now, just log the incident, and allow the attempt.
  1831. */
  1832. if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
  1833. --limit_warnings;
  1834. ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
  1835. ": attempting PIO w/multiple DRQ: "
  1836. "this may fail due to h/w errata\n");
  1837. }
  1838. /* drop through */
  1839. case ATA_PROT_NODATA:
  1840. case ATAPI_PROT_PIO:
  1841. case ATAPI_PROT_NODATA:
  1842. if (ap->flags & ATA_FLAG_PIO_POLLING)
  1843. qc->tf.flags |= ATA_TFLAG_POLLING;
  1844. break;
  1845. }
  1846. if (qc->tf.flags & ATA_TFLAG_POLLING)
  1847. port_irqs = ERR_IRQ; /* mask device interrupt when polling */
  1848. else
  1849. port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
  1850. /*
  1851. * We're about to send a non-EDMA capable command to the
  1852. * port. Turn off EDMA so there won't be problems accessing
  1853. * shadow block, etc registers.
  1854. */
  1855. mv_stop_edma(ap);
  1856. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
  1857. mv_pmp_select(ap, qc->dev->link->pmp);
  1858. if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
  1859. struct mv_host_priv *hpriv = ap->host->private_data;
  1860. /*
  1861. * Workaround for 88SX60x1 FEr SATA#25 (part 2).
  1862. *
  1863. * After any NCQ error, the READ_LOG_EXT command
  1864. * from libata-eh *must* use mv_qc_issue_fis().
  1865. * Otherwise it might fail, due to chip errata.
  1866. *
  1867. * Rather than special-case it, we'll just *always*
  1868. * use this method here for READ_LOG_EXT, making for
  1869. * easier testing.
  1870. */
  1871. if (IS_GEN_II(hpriv))
  1872. return mv_qc_issue_fis(qc);
  1873. }
  1874. return ata_sff_qc_issue(qc);
  1875. }
  1876. static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
  1877. {
  1878. struct mv_port_priv *pp = ap->private_data;
  1879. struct ata_queued_cmd *qc;
  1880. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  1881. return NULL;
  1882. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  1883. if (qc) {
  1884. if (qc->tf.flags & ATA_TFLAG_POLLING)
  1885. qc = NULL;
  1886. else if (!(qc->flags & ATA_QCFLAG_ACTIVE))
  1887. qc = NULL;
  1888. }
  1889. return qc;
  1890. }
  1891. static void mv_pmp_error_handler(struct ata_port *ap)
  1892. {
  1893. unsigned int pmp, pmp_map;
  1894. struct mv_port_priv *pp = ap->private_data;
  1895. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
  1896. /*
  1897. * Perform NCQ error analysis on failed PMPs
  1898. * before we freeze the port entirely.
  1899. *
  1900. * The failed PMPs are marked earlier by mv_pmp_eh_prep().
  1901. */
  1902. pmp_map = pp->delayed_eh_pmp_map;
  1903. pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
  1904. for (pmp = 0; pmp_map != 0; pmp++) {
  1905. unsigned int this_pmp = (1 << pmp);
  1906. if (pmp_map & this_pmp) {
  1907. struct ata_link *link = &ap->pmp_link[pmp];
  1908. pmp_map &= ~this_pmp;
  1909. ata_eh_analyze_ncq_error(link);
  1910. }
  1911. }
  1912. ata_port_freeze(ap);
  1913. }
  1914. sata_pmp_error_handler(ap);
  1915. }
  1916. static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
  1917. {
  1918. void __iomem *port_mmio = mv_ap_base(ap);
  1919. return readl(port_mmio + SATA_TESTCTL_OFS) >> 16;
  1920. }
  1921. static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
  1922. {
  1923. struct ata_eh_info *ehi;
  1924. unsigned int pmp;
  1925. /*
  1926. * Initialize EH info for PMPs which saw device errors
  1927. */
  1928. ehi = &ap->link.eh_info;
  1929. for (pmp = 0; pmp_map != 0; pmp++) {
  1930. unsigned int this_pmp = (1 << pmp);
  1931. if (pmp_map & this_pmp) {
  1932. struct ata_link *link = &ap->pmp_link[pmp];
  1933. pmp_map &= ~this_pmp;
  1934. ehi = &link->eh_info;
  1935. ata_ehi_clear_desc(ehi);
  1936. ata_ehi_push_desc(ehi, "dev err");
  1937. ehi->err_mask |= AC_ERR_DEV;
  1938. ehi->action |= ATA_EH_RESET;
  1939. ata_link_abort(link);
  1940. }
  1941. }
  1942. }
  1943. static int mv_req_q_empty(struct ata_port *ap)
  1944. {
  1945. void __iomem *port_mmio = mv_ap_base(ap);
  1946. u32 in_ptr, out_ptr;
  1947. in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS)
  1948. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  1949. out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
  1950. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  1951. return (in_ptr == out_ptr); /* 1 == queue_is_empty */
  1952. }
  1953. static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
  1954. {
  1955. struct mv_port_priv *pp = ap->private_data;
  1956. int failed_links;
  1957. unsigned int old_map, new_map;
  1958. /*
  1959. * Device error during FBS+NCQ operation:
  1960. *
  1961. * Set a port flag to prevent further I/O being enqueued.
  1962. * Leave the EDMA running to drain outstanding commands from this port.
  1963. * Perform the post-mortem/EH only when all responses are complete.
  1964. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
  1965. */
  1966. if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
  1967. pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
  1968. pp->delayed_eh_pmp_map = 0;
  1969. }
  1970. old_map = pp->delayed_eh_pmp_map;
  1971. new_map = old_map | mv_get_err_pmp_map(ap);
  1972. if (old_map != new_map) {
  1973. pp->delayed_eh_pmp_map = new_map;
  1974. mv_pmp_eh_prep(ap, new_map & ~old_map);
  1975. }
  1976. failed_links = hweight16(new_map);
  1977. ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
  1978. "failed_links=%d nr_active_links=%d\n",
  1979. __func__, pp->delayed_eh_pmp_map,
  1980. ap->qc_active, failed_links,
  1981. ap->nr_active_links);
  1982. if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
  1983. mv_process_crpb_entries(ap, pp);
  1984. mv_stop_edma(ap);
  1985. mv_eh_freeze(ap);
  1986. ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
  1987. return 1; /* handled */
  1988. }
  1989. ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
  1990. return 1; /* handled */
  1991. }
  1992. static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
  1993. {
  1994. /*
  1995. * Possible future enhancement:
  1996. *
  1997. * FBS+non-NCQ operation is not yet implemented.
  1998. * See related notes in mv_edma_cfg().
  1999. *
  2000. * Device error during FBS+non-NCQ operation:
  2001. *
  2002. * We need to snapshot the shadow registers for each failed command.
  2003. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
  2004. */
  2005. return 0; /* not handled */
  2006. }
  2007. static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
  2008. {
  2009. struct mv_port_priv *pp = ap->private_data;
  2010. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  2011. return 0; /* EDMA was not active: not handled */
  2012. if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
  2013. return 0; /* FBS was not active: not handled */
  2014. if (!(edma_err_cause & EDMA_ERR_DEV))
  2015. return 0; /* non DEV error: not handled */
  2016. edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
  2017. if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
  2018. return 0; /* other problems: not handled */
  2019. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
  2020. /*
  2021. * EDMA should NOT have self-disabled for this case.
  2022. * If it did, then something is wrong elsewhere,
  2023. * and we cannot handle it here.
  2024. */
  2025. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2026. ata_port_printk(ap, KERN_WARNING,
  2027. "%s: err_cause=0x%x pp_flags=0x%x\n",
  2028. __func__, edma_err_cause, pp->pp_flags);
  2029. return 0; /* not handled */
  2030. }
  2031. return mv_handle_fbs_ncq_dev_err(ap);
  2032. } else {
  2033. /*
  2034. * EDMA should have self-disabled for this case.
  2035. * If it did not, then something is wrong elsewhere,
  2036. * and we cannot handle it here.
  2037. */
  2038. if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
  2039. ata_port_printk(ap, KERN_WARNING,
  2040. "%s: err_cause=0x%x pp_flags=0x%x\n",
  2041. __func__, edma_err_cause, pp->pp_flags);
  2042. return 0; /* not handled */
  2043. }
  2044. return mv_handle_fbs_non_ncq_dev_err(ap);
  2045. }
  2046. return 0; /* not handled */
  2047. }
  2048. static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
  2049. {
  2050. struct ata_eh_info *ehi = &ap->link.eh_info;
  2051. char *when = "idle";
  2052. ata_ehi_clear_desc(ehi);
  2053. if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
  2054. when = "disabled";
  2055. } else if (edma_was_enabled) {
  2056. when = "EDMA enabled";
  2057. } else {
  2058. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2059. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  2060. when = "polling";
  2061. }
  2062. ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
  2063. ehi->err_mask |= AC_ERR_OTHER;
  2064. ehi->action |= ATA_EH_RESET;
  2065. ata_port_freeze(ap);
  2066. }
  2067. /**
  2068. * mv_err_intr - Handle error interrupts on the port
  2069. * @ap: ATA channel to manipulate
  2070. *
  2071. * Most cases require a full reset of the chip's state machine,
  2072. * which also performs a COMRESET.
  2073. * Also, if the port disabled DMA, update our cached copy to match.
  2074. *
  2075. * LOCKING:
  2076. * Inherited from caller.
  2077. */
  2078. static void mv_err_intr(struct ata_port *ap)
  2079. {
  2080. void __iomem *port_mmio = mv_ap_base(ap);
  2081. u32 edma_err_cause, eh_freeze_mask, serr = 0;
  2082. u32 fis_cause = 0;
  2083. struct mv_port_priv *pp = ap->private_data;
  2084. struct mv_host_priv *hpriv = ap->host->private_data;
  2085. unsigned int action = 0, err_mask = 0;
  2086. struct ata_eh_info *ehi = &ap->link.eh_info;
  2087. struct ata_queued_cmd *qc;
  2088. int abort = 0;
  2089. /*
  2090. * Read and clear the SError and err_cause bits.
  2091. * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
  2092. * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
  2093. */
  2094. sata_scr_read(&ap->link, SCR_ERROR, &serr);
  2095. sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
  2096. edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2097. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2098. fis_cause = readl(port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  2099. writelfl(~fis_cause, port_mmio + SATA_FIS_IRQ_CAUSE_OFS);
  2100. }
  2101. writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2102. if (edma_err_cause & EDMA_ERR_DEV) {
  2103. /*
  2104. * Device errors during FIS-based switching operation
  2105. * require special handling.
  2106. */
  2107. if (mv_handle_dev_err(ap, edma_err_cause))
  2108. return;
  2109. }
  2110. qc = mv_get_active_qc(ap);
  2111. ata_ehi_clear_desc(ehi);
  2112. ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
  2113. edma_err_cause, pp->pp_flags);
  2114. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2115. ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
  2116. if (fis_cause & SATA_FIS_IRQ_AN) {
  2117. u32 ec = edma_err_cause &
  2118. ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
  2119. sata_async_notification(ap);
  2120. if (!ec)
  2121. return; /* Just an AN; no need for the nukes */
  2122. ata_ehi_push_desc(ehi, "SDB notify");
  2123. }
  2124. }
  2125. /*
  2126. * All generations share these EDMA error cause bits:
  2127. */
  2128. if (edma_err_cause & EDMA_ERR_DEV) {
  2129. err_mask |= AC_ERR_DEV;
  2130. action |= ATA_EH_RESET;
  2131. ata_ehi_push_desc(ehi, "dev error");
  2132. }
  2133. if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
  2134. EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
  2135. EDMA_ERR_INTRL_PAR)) {
  2136. err_mask |= AC_ERR_ATA_BUS;
  2137. action |= ATA_EH_RESET;
  2138. ata_ehi_push_desc(ehi, "parity error");
  2139. }
  2140. if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
  2141. ata_ehi_hotplugged(ehi);
  2142. ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
  2143. "dev disconnect" : "dev connect");
  2144. action |= ATA_EH_RESET;
  2145. }
  2146. /*
  2147. * Gen-I has a different SELF_DIS bit,
  2148. * different FREEZE bits, and no SERR bit:
  2149. */
  2150. if (IS_GEN_I(hpriv)) {
  2151. eh_freeze_mask = EDMA_EH_FREEZE_5;
  2152. if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
  2153. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2154. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2155. }
  2156. } else {
  2157. eh_freeze_mask = EDMA_EH_FREEZE;
  2158. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2159. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2160. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2161. }
  2162. if (edma_err_cause & EDMA_ERR_SERR) {
  2163. ata_ehi_push_desc(ehi, "SError=%08x", serr);
  2164. err_mask |= AC_ERR_ATA_BUS;
  2165. action |= ATA_EH_RESET;
  2166. }
  2167. }
  2168. if (!err_mask) {
  2169. err_mask = AC_ERR_OTHER;
  2170. action |= ATA_EH_RESET;
  2171. }
  2172. ehi->serror |= serr;
  2173. ehi->action |= action;
  2174. if (qc)
  2175. qc->err_mask |= err_mask;
  2176. else
  2177. ehi->err_mask |= err_mask;
  2178. if (err_mask == AC_ERR_DEV) {
  2179. /*
  2180. * Cannot do ata_port_freeze() here,
  2181. * because it would kill PIO access,
  2182. * which is needed for further diagnosis.
  2183. */
  2184. mv_eh_freeze(ap);
  2185. abort = 1;
  2186. } else if (edma_err_cause & eh_freeze_mask) {
  2187. /*
  2188. * Note to self: ata_port_freeze() calls ata_port_abort()
  2189. */
  2190. ata_port_freeze(ap);
  2191. } else {
  2192. abort = 1;
  2193. }
  2194. if (abort) {
  2195. if (qc)
  2196. ata_link_abort(qc->dev->link);
  2197. else
  2198. ata_port_abort(ap);
  2199. }
  2200. }
  2201. static void mv_process_crpb_response(struct ata_port *ap,
  2202. struct mv_crpb *response, unsigned int tag, int ncq_enabled)
  2203. {
  2204. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
  2205. if (qc) {
  2206. u8 ata_status;
  2207. u16 edma_status = le16_to_cpu(response->flags);
  2208. /*
  2209. * edma_status from a response queue entry:
  2210. * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
  2211. * MSB is saved ATA status from command completion.
  2212. */
  2213. if (!ncq_enabled) {
  2214. u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
  2215. if (err_cause) {
  2216. /*
  2217. * Error will be seen/handled by mv_err_intr().
  2218. * So do nothing at all here.
  2219. */
  2220. return;
  2221. }
  2222. }
  2223. ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
  2224. if (!ac_err_mask(ata_status))
  2225. ata_qc_complete(qc);
  2226. /* else: leave it for mv_err_intr() */
  2227. } else {
  2228. ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
  2229. __func__, tag);
  2230. }
  2231. }
  2232. static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
  2233. {
  2234. void __iomem *port_mmio = mv_ap_base(ap);
  2235. struct mv_host_priv *hpriv = ap->host->private_data;
  2236. u32 in_index;
  2237. bool work_done = false;
  2238. int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
  2239. /* Get the hardware queue position index */
  2240. in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
  2241. >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2242. /* Process new responses from since the last time we looked */
  2243. while (in_index != pp->resp_idx) {
  2244. unsigned int tag;
  2245. struct mv_crpb *response = &pp->crpb[pp->resp_idx];
  2246. pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  2247. if (IS_GEN_I(hpriv)) {
  2248. /* 50xx: no NCQ, only one command active at a time */
  2249. tag = ap->link.active_tag;
  2250. } else {
  2251. /* Gen II/IIE: get command tag from CRPB entry */
  2252. tag = le16_to_cpu(response->id) & 0x1f;
  2253. }
  2254. mv_process_crpb_response(ap, response, tag, ncq_enabled);
  2255. work_done = true;
  2256. }
  2257. /* Update the software queue position index in hardware */
  2258. if (work_done)
  2259. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
  2260. (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
  2261. port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
  2262. }
  2263. static void mv_port_intr(struct ata_port *ap, u32 port_cause)
  2264. {
  2265. struct mv_port_priv *pp;
  2266. int edma_was_enabled;
  2267. if (!ap || (ap->flags & ATA_FLAG_DISABLED)) {
  2268. mv_unexpected_intr(ap, 0);
  2269. return;
  2270. }
  2271. /*
  2272. * Grab a snapshot of the EDMA_EN flag setting,
  2273. * so that we have a consistent view for this port,
  2274. * even if something we call of our routines changes it.
  2275. */
  2276. pp = ap->private_data;
  2277. edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
  2278. /*
  2279. * Process completed CRPB response(s) before other events.
  2280. */
  2281. if (edma_was_enabled && (port_cause & DONE_IRQ)) {
  2282. mv_process_crpb_entries(ap, pp);
  2283. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  2284. mv_handle_fbs_ncq_dev_err(ap);
  2285. }
  2286. /*
  2287. * Handle chip-reported errors, or continue on to handle PIO.
  2288. */
  2289. if (unlikely(port_cause & ERR_IRQ)) {
  2290. mv_err_intr(ap);
  2291. } else if (!edma_was_enabled) {
  2292. struct ata_queued_cmd *qc = mv_get_active_qc(ap);
  2293. if (qc)
  2294. ata_sff_host_intr(ap, qc);
  2295. else
  2296. mv_unexpected_intr(ap, edma_was_enabled);
  2297. }
  2298. }
  2299. /**
  2300. * mv_host_intr - Handle all interrupts on the given host controller
  2301. * @host: host specific structure
  2302. * @main_irq_cause: Main interrupt cause register for the chip.
  2303. *
  2304. * LOCKING:
  2305. * Inherited from caller.
  2306. */
  2307. static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
  2308. {
  2309. struct mv_host_priv *hpriv = host->private_data;
  2310. void __iomem *mmio = hpriv->base, *hc_mmio;
  2311. unsigned int handled = 0, port;
  2312. /* If asserted, clear the "all ports" IRQ coalescing bit */
  2313. if (main_irq_cause & ALL_PORTS_COAL_DONE)
  2314. writel(~ALL_PORTS_COAL_IRQ, mmio + MV_IRQ_COAL_CAUSE);
  2315. for (port = 0; port < hpriv->n_ports; port++) {
  2316. struct ata_port *ap = host->ports[port];
  2317. unsigned int p, shift, hardport, port_cause;
  2318. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  2319. /*
  2320. * Each hc within the host has its own hc_irq_cause register,
  2321. * where the interrupting ports bits get ack'd.
  2322. */
  2323. if (hardport == 0) { /* first port on this hc ? */
  2324. u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
  2325. u32 port_mask, ack_irqs;
  2326. /*
  2327. * Skip this entire hc if nothing pending for any ports
  2328. */
  2329. if (!hc_cause) {
  2330. port += MV_PORTS_PER_HC - 1;
  2331. continue;
  2332. }
  2333. /*
  2334. * We don't need/want to read the hc_irq_cause register,
  2335. * because doing so hurts performance, and
  2336. * main_irq_cause already gives us everything we need.
  2337. *
  2338. * But we do have to *write* to the hc_irq_cause to ack
  2339. * the ports that we are handling this time through.
  2340. *
  2341. * This requires that we create a bitmap for those
  2342. * ports which interrupted us, and use that bitmap
  2343. * to ack (only) those ports via hc_irq_cause.
  2344. */
  2345. ack_irqs = 0;
  2346. if (hc_cause & PORTS_0_3_COAL_DONE)
  2347. ack_irqs = HC_COAL_IRQ;
  2348. for (p = 0; p < MV_PORTS_PER_HC; ++p) {
  2349. if ((port + p) >= hpriv->n_ports)
  2350. break;
  2351. port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
  2352. if (hc_cause & port_mask)
  2353. ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
  2354. }
  2355. hc_mmio = mv_hc_base_from_port(mmio, port);
  2356. writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE_OFS);
  2357. handled = 1;
  2358. }
  2359. /*
  2360. * Handle interrupts signalled for this port:
  2361. */
  2362. port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
  2363. if (port_cause)
  2364. mv_port_intr(ap, port_cause);
  2365. }
  2366. return handled;
  2367. }
  2368. static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
  2369. {
  2370. struct mv_host_priv *hpriv = host->private_data;
  2371. struct ata_port *ap;
  2372. struct ata_queued_cmd *qc;
  2373. struct ata_eh_info *ehi;
  2374. unsigned int i, err_mask, printed = 0;
  2375. u32 err_cause;
  2376. err_cause = readl(mmio + hpriv->irq_cause_ofs);
  2377. dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
  2378. err_cause);
  2379. DPRINTK("All regs @ PCI error\n");
  2380. mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
  2381. writelfl(0, mmio + hpriv->irq_cause_ofs);
  2382. for (i = 0; i < host->n_ports; i++) {
  2383. ap = host->ports[i];
  2384. if (!ata_link_offline(&ap->link)) {
  2385. ehi = &ap->link.eh_info;
  2386. ata_ehi_clear_desc(ehi);
  2387. if (!printed++)
  2388. ata_ehi_push_desc(ehi,
  2389. "PCI err cause 0x%08x", err_cause);
  2390. err_mask = AC_ERR_HOST_BUS;
  2391. ehi->action = ATA_EH_RESET;
  2392. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2393. if (qc)
  2394. qc->err_mask |= err_mask;
  2395. else
  2396. ehi->err_mask |= err_mask;
  2397. ata_port_freeze(ap);
  2398. }
  2399. }
  2400. return 1; /* handled */
  2401. }
  2402. /**
  2403. * mv_interrupt - Main interrupt event handler
  2404. * @irq: unused
  2405. * @dev_instance: private data; in this case the host structure
  2406. *
  2407. * Read the read only register to determine if any host
  2408. * controllers have pending interrupts. If so, call lower level
  2409. * routine to handle. Also check for PCI errors which are only
  2410. * reported here.
  2411. *
  2412. * LOCKING:
  2413. * This routine holds the host lock while processing pending
  2414. * interrupts.
  2415. */
  2416. static irqreturn_t mv_interrupt(int irq, void *dev_instance)
  2417. {
  2418. struct ata_host *host = dev_instance;
  2419. struct mv_host_priv *hpriv = host->private_data;
  2420. unsigned int handled = 0;
  2421. int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
  2422. u32 main_irq_cause, pending_irqs;
  2423. spin_lock(&host->lock);
  2424. /* for MSI: block new interrupts while in here */
  2425. if (using_msi)
  2426. mv_write_main_irq_mask(0, hpriv);
  2427. main_irq_cause = readl(hpriv->main_irq_cause_addr);
  2428. pending_irqs = main_irq_cause & hpriv->main_irq_mask;
  2429. /*
  2430. * Deal with cases where we either have nothing pending, or have read
  2431. * a bogus register value which can indicate HW removal or PCI fault.
  2432. */
  2433. if (pending_irqs && main_irq_cause != 0xffffffffU) {
  2434. if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
  2435. handled = mv_pci_error(host, hpriv->base);
  2436. else
  2437. handled = mv_host_intr(host, pending_irqs);
  2438. }
  2439. /* for MSI: unmask; interrupt cause bits will retrigger now */
  2440. if (using_msi)
  2441. mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
  2442. spin_unlock(&host->lock);
  2443. return IRQ_RETVAL(handled);
  2444. }
  2445. static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
  2446. {
  2447. unsigned int ofs;
  2448. switch (sc_reg_in) {
  2449. case SCR_STATUS:
  2450. case SCR_ERROR:
  2451. case SCR_CONTROL:
  2452. ofs = sc_reg_in * sizeof(u32);
  2453. break;
  2454. default:
  2455. ofs = 0xffffffffU;
  2456. break;
  2457. }
  2458. return ofs;
  2459. }
  2460. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  2461. {
  2462. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2463. void __iomem *mmio = hpriv->base;
  2464. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2465. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2466. if (ofs != 0xffffffffU) {
  2467. *val = readl(addr + ofs);
  2468. return 0;
  2469. } else
  2470. return -EINVAL;
  2471. }
  2472. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  2473. {
  2474. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2475. void __iomem *mmio = hpriv->base;
  2476. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2477. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2478. if (ofs != 0xffffffffU) {
  2479. writelfl(val, addr + ofs);
  2480. return 0;
  2481. } else
  2482. return -EINVAL;
  2483. }
  2484. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
  2485. {
  2486. struct pci_dev *pdev = to_pci_dev(host->dev);
  2487. int early_5080;
  2488. early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
  2489. if (!early_5080) {
  2490. u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2491. tmp |= (1 << 0);
  2492. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2493. }
  2494. mv_reset_pci_bus(host, mmio);
  2495. }
  2496. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2497. {
  2498. writel(0x0fcfffff, mmio + MV_FLASH_CTL_OFS);
  2499. }
  2500. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  2501. void __iomem *mmio)
  2502. {
  2503. void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
  2504. u32 tmp;
  2505. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2506. hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
  2507. hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
  2508. }
  2509. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2510. {
  2511. u32 tmp;
  2512. writel(0, mmio + MV_GPIO_PORT_CTL_OFS);
  2513. /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
  2514. tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2515. tmp |= ~(1 << 0);
  2516. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2517. }
  2518. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2519. unsigned int port)
  2520. {
  2521. void __iomem *phy_mmio = mv5_phy_base(mmio, port);
  2522. const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
  2523. u32 tmp;
  2524. int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
  2525. if (fix_apm_sq) {
  2526. tmp = readl(phy_mmio + MV5_LTMODE_OFS);
  2527. tmp |= (1 << 19);
  2528. writel(tmp, phy_mmio + MV5_LTMODE_OFS);
  2529. tmp = readl(phy_mmio + MV5_PHY_CTL_OFS);
  2530. tmp &= ~0x3;
  2531. tmp |= 0x1;
  2532. writel(tmp, phy_mmio + MV5_PHY_CTL_OFS);
  2533. }
  2534. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2535. tmp &= ~mask;
  2536. tmp |= hpriv->signal[port].pre;
  2537. tmp |= hpriv->signal[port].amps;
  2538. writel(tmp, phy_mmio + MV5_PHY_MODE);
  2539. }
  2540. #undef ZERO
  2541. #define ZERO(reg) writel(0, port_mmio + (reg))
  2542. static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
  2543. unsigned int port)
  2544. {
  2545. void __iomem *port_mmio = mv_port_base(mmio, port);
  2546. mv_reset_channel(hpriv, mmio, port);
  2547. ZERO(0x028); /* command */
  2548. writel(0x11f, port_mmio + EDMA_CFG_OFS);
  2549. ZERO(0x004); /* timer */
  2550. ZERO(0x008); /* irq err cause */
  2551. ZERO(0x00c); /* irq err mask */
  2552. ZERO(0x010); /* rq bah */
  2553. ZERO(0x014); /* rq inp */
  2554. ZERO(0x018); /* rq outp */
  2555. ZERO(0x01c); /* respq bah */
  2556. ZERO(0x024); /* respq outp */
  2557. ZERO(0x020); /* respq inp */
  2558. ZERO(0x02c); /* test control */
  2559. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
  2560. }
  2561. #undef ZERO
  2562. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2563. static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2564. unsigned int hc)
  2565. {
  2566. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  2567. u32 tmp;
  2568. ZERO(0x00c);
  2569. ZERO(0x010);
  2570. ZERO(0x014);
  2571. ZERO(0x018);
  2572. tmp = readl(hc_mmio + 0x20);
  2573. tmp &= 0x1c1c1c1c;
  2574. tmp |= 0x03030303;
  2575. writel(tmp, hc_mmio + 0x20);
  2576. }
  2577. #undef ZERO
  2578. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2579. unsigned int n_hc)
  2580. {
  2581. unsigned int hc, port;
  2582. for (hc = 0; hc < n_hc; hc++) {
  2583. for (port = 0; port < MV_PORTS_PER_HC; port++)
  2584. mv5_reset_hc_port(hpriv, mmio,
  2585. (hc * MV_PORTS_PER_HC) + port);
  2586. mv5_reset_one_hc(hpriv, mmio, hc);
  2587. }
  2588. return 0;
  2589. }
  2590. #undef ZERO
  2591. #define ZERO(reg) writel(0, mmio + (reg))
  2592. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
  2593. {
  2594. struct mv_host_priv *hpriv = host->private_data;
  2595. u32 tmp;
  2596. tmp = readl(mmio + MV_PCI_MODE_OFS);
  2597. tmp &= 0xff00ffff;
  2598. writel(tmp, mmio + MV_PCI_MODE_OFS);
  2599. ZERO(MV_PCI_DISC_TIMER);
  2600. ZERO(MV_PCI_MSI_TRIGGER);
  2601. writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT_OFS);
  2602. ZERO(MV_PCI_SERR_MASK);
  2603. ZERO(hpriv->irq_cause_ofs);
  2604. ZERO(hpriv->irq_mask_ofs);
  2605. ZERO(MV_PCI_ERR_LOW_ADDRESS);
  2606. ZERO(MV_PCI_ERR_HIGH_ADDRESS);
  2607. ZERO(MV_PCI_ERR_ATTRIBUTE);
  2608. ZERO(MV_PCI_ERR_COMMAND);
  2609. }
  2610. #undef ZERO
  2611. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2612. {
  2613. u32 tmp;
  2614. mv5_reset_flash(hpriv, mmio);
  2615. tmp = readl(mmio + MV_GPIO_PORT_CTL_OFS);
  2616. tmp &= 0x3;
  2617. tmp |= (1 << 5) | (1 << 6);
  2618. writel(tmp, mmio + MV_GPIO_PORT_CTL_OFS);
  2619. }
  2620. /**
  2621. * mv6_reset_hc - Perform the 6xxx global soft reset
  2622. * @mmio: base address of the HBA
  2623. *
  2624. * This routine only applies to 6xxx parts.
  2625. *
  2626. * LOCKING:
  2627. * Inherited from caller.
  2628. */
  2629. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2630. unsigned int n_hc)
  2631. {
  2632. void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
  2633. int i, rc = 0;
  2634. u32 t;
  2635. /* Following procedure defined in PCI "main command and status
  2636. * register" table.
  2637. */
  2638. t = readl(reg);
  2639. writel(t | STOP_PCI_MASTER, reg);
  2640. for (i = 0; i < 1000; i++) {
  2641. udelay(1);
  2642. t = readl(reg);
  2643. if (PCI_MASTER_EMPTY & t)
  2644. break;
  2645. }
  2646. if (!(PCI_MASTER_EMPTY & t)) {
  2647. printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
  2648. rc = 1;
  2649. goto done;
  2650. }
  2651. /* set reset */
  2652. i = 5;
  2653. do {
  2654. writel(t | GLOB_SFT_RST, reg);
  2655. t = readl(reg);
  2656. udelay(1);
  2657. } while (!(GLOB_SFT_RST & t) && (i-- > 0));
  2658. if (!(GLOB_SFT_RST & t)) {
  2659. printk(KERN_ERR DRV_NAME ": can't set global reset\n");
  2660. rc = 1;
  2661. goto done;
  2662. }
  2663. /* clear reset and *reenable the PCI master* (not mentioned in spec) */
  2664. i = 5;
  2665. do {
  2666. writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
  2667. t = readl(reg);
  2668. udelay(1);
  2669. } while ((GLOB_SFT_RST & t) && (i-- > 0));
  2670. if (GLOB_SFT_RST & t) {
  2671. printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
  2672. rc = 1;
  2673. }
  2674. done:
  2675. return rc;
  2676. }
  2677. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  2678. void __iomem *mmio)
  2679. {
  2680. void __iomem *port_mmio;
  2681. u32 tmp;
  2682. tmp = readl(mmio + MV_RESET_CFG_OFS);
  2683. if ((tmp & (1 << 0)) == 0) {
  2684. hpriv->signal[idx].amps = 0x7 << 8;
  2685. hpriv->signal[idx].pre = 0x1 << 5;
  2686. return;
  2687. }
  2688. port_mmio = mv_port_base(mmio, idx);
  2689. tmp = readl(port_mmio + PHY_MODE2);
  2690. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2691. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2692. }
  2693. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2694. {
  2695. writel(0x00000060, mmio + MV_GPIO_PORT_CTL_OFS);
  2696. }
  2697. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2698. unsigned int port)
  2699. {
  2700. void __iomem *port_mmio = mv_port_base(mmio, port);
  2701. u32 hp_flags = hpriv->hp_flags;
  2702. int fix_phy_mode2 =
  2703. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2704. int fix_phy_mode4 =
  2705. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2706. u32 m2, m3;
  2707. if (fix_phy_mode2) {
  2708. m2 = readl(port_mmio + PHY_MODE2);
  2709. m2 &= ~(1 << 16);
  2710. m2 |= (1 << 31);
  2711. writel(m2, port_mmio + PHY_MODE2);
  2712. udelay(200);
  2713. m2 = readl(port_mmio + PHY_MODE2);
  2714. m2 &= ~((1 << 16) | (1 << 31));
  2715. writel(m2, port_mmio + PHY_MODE2);
  2716. udelay(200);
  2717. }
  2718. /*
  2719. * Gen-II/IIe PHY_MODE3 errata RM#2:
  2720. * Achieves better receiver noise performance than the h/w default:
  2721. */
  2722. m3 = readl(port_mmio + PHY_MODE3);
  2723. m3 = (m3 & 0x1f) | (0x5555601 << 5);
  2724. /* Guideline 88F5182 (GL# SATA-S11) */
  2725. if (IS_SOC(hpriv))
  2726. m3 &= ~0x1c;
  2727. if (fix_phy_mode4) {
  2728. u32 m4 = readl(port_mmio + PHY_MODE4);
  2729. /*
  2730. * Enforce reserved-bit restrictions on GenIIe devices only.
  2731. * For earlier chipsets, force only the internal config field
  2732. * (workaround for errata FEr SATA#10 part 1).
  2733. */
  2734. if (IS_GEN_IIE(hpriv))
  2735. m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
  2736. else
  2737. m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
  2738. writel(m4, port_mmio + PHY_MODE4);
  2739. }
  2740. /*
  2741. * Workaround for 60x1-B2 errata SATA#13:
  2742. * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
  2743. * so we must always rewrite PHY_MODE3 after PHY_MODE4.
  2744. */
  2745. writel(m3, port_mmio + PHY_MODE3);
  2746. /* Revert values of pre-emphasis and signal amps to the saved ones */
  2747. m2 = readl(port_mmio + PHY_MODE2);
  2748. m2 &= ~MV_M2_PREAMP_MASK;
  2749. m2 |= hpriv->signal[port].amps;
  2750. m2 |= hpriv->signal[port].pre;
  2751. m2 &= ~(1 << 16);
  2752. /* according to mvSata 3.6.1, some IIE values are fixed */
  2753. if (IS_GEN_IIE(hpriv)) {
  2754. m2 &= ~0xC30FF01F;
  2755. m2 |= 0x0000900F;
  2756. }
  2757. writel(m2, port_mmio + PHY_MODE2);
  2758. }
  2759. /* TODO: use the generic LED interface to configure the SATA Presence */
  2760. /* & Acitivy LEDs on the board */
  2761. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  2762. void __iomem *mmio)
  2763. {
  2764. return;
  2765. }
  2766. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  2767. void __iomem *mmio)
  2768. {
  2769. void __iomem *port_mmio;
  2770. u32 tmp;
  2771. port_mmio = mv_port_base(mmio, idx);
  2772. tmp = readl(port_mmio + PHY_MODE2);
  2773. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2774. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2775. }
  2776. #undef ZERO
  2777. #define ZERO(reg) writel(0, port_mmio + (reg))
  2778. static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
  2779. void __iomem *mmio, unsigned int port)
  2780. {
  2781. void __iomem *port_mmio = mv_port_base(mmio, port);
  2782. mv_reset_channel(hpriv, mmio, port);
  2783. ZERO(0x028); /* command */
  2784. writel(0x101f, port_mmio + EDMA_CFG_OFS);
  2785. ZERO(0x004); /* timer */
  2786. ZERO(0x008); /* irq err cause */
  2787. ZERO(0x00c); /* irq err mask */
  2788. ZERO(0x010); /* rq bah */
  2789. ZERO(0x014); /* rq inp */
  2790. ZERO(0x018); /* rq outp */
  2791. ZERO(0x01c); /* respq bah */
  2792. ZERO(0x024); /* respq outp */
  2793. ZERO(0x020); /* respq inp */
  2794. ZERO(0x02c); /* test control */
  2795. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT_OFS);
  2796. }
  2797. #undef ZERO
  2798. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2799. static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
  2800. void __iomem *mmio)
  2801. {
  2802. void __iomem *hc_mmio = mv_hc_base(mmio, 0);
  2803. ZERO(0x00c);
  2804. ZERO(0x010);
  2805. ZERO(0x014);
  2806. }
  2807. #undef ZERO
  2808. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  2809. void __iomem *mmio, unsigned int n_hc)
  2810. {
  2811. unsigned int port;
  2812. for (port = 0; port < hpriv->n_ports; port++)
  2813. mv_soc_reset_hc_port(hpriv, mmio, port);
  2814. mv_soc_reset_one_hc(hpriv, mmio);
  2815. return 0;
  2816. }
  2817. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  2818. void __iomem *mmio)
  2819. {
  2820. return;
  2821. }
  2822. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
  2823. {
  2824. return;
  2825. }
  2826. static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
  2827. {
  2828. u32 ifcfg = readl(port_mmio + SATA_INTERFACE_CFG_OFS);
  2829. ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
  2830. if (want_gen2i)
  2831. ifcfg |= (1 << 7); /* enable gen2i speed */
  2832. writelfl(ifcfg, port_mmio + SATA_INTERFACE_CFG_OFS);
  2833. }
  2834. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  2835. unsigned int port_no)
  2836. {
  2837. void __iomem *port_mmio = mv_port_base(mmio, port_no);
  2838. /*
  2839. * The datasheet warns against setting EDMA_RESET when EDMA is active
  2840. * (but doesn't say what the problem might be). So we first try
  2841. * to disable the EDMA engine before doing the EDMA_RESET operation.
  2842. */
  2843. mv_stop_edma_engine(port_mmio);
  2844. writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
  2845. if (!IS_GEN_I(hpriv)) {
  2846. /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
  2847. mv_setup_ifcfg(port_mmio, 1);
  2848. }
  2849. /*
  2850. * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
  2851. * link, and physical layers. It resets all SATA interface registers
  2852. * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
  2853. */
  2854. writelfl(EDMA_RESET, port_mmio + EDMA_CMD_OFS);
  2855. udelay(25); /* allow reset propagation */
  2856. writelfl(0, port_mmio + EDMA_CMD_OFS);
  2857. hpriv->ops->phy_errata(hpriv, mmio, port_no);
  2858. if (IS_GEN_I(hpriv))
  2859. mdelay(1);
  2860. }
  2861. static void mv_pmp_select(struct ata_port *ap, int pmp)
  2862. {
  2863. if (sata_pmp_supported(ap)) {
  2864. void __iomem *port_mmio = mv_ap_base(ap);
  2865. u32 reg = readl(port_mmio + SATA_IFCTL_OFS);
  2866. int old = reg & 0xf;
  2867. if (old != pmp) {
  2868. reg = (reg & ~0xf) | pmp;
  2869. writelfl(reg, port_mmio + SATA_IFCTL_OFS);
  2870. }
  2871. }
  2872. }
  2873. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  2874. unsigned long deadline)
  2875. {
  2876. mv_pmp_select(link->ap, sata_srst_pmp(link));
  2877. return sata_std_hardreset(link, class, deadline);
  2878. }
  2879. static int mv_softreset(struct ata_link *link, unsigned int *class,
  2880. unsigned long deadline)
  2881. {
  2882. mv_pmp_select(link->ap, sata_srst_pmp(link));
  2883. return ata_sff_softreset(link, class, deadline);
  2884. }
  2885. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  2886. unsigned long deadline)
  2887. {
  2888. struct ata_port *ap = link->ap;
  2889. struct mv_host_priv *hpriv = ap->host->private_data;
  2890. struct mv_port_priv *pp = ap->private_data;
  2891. void __iomem *mmio = hpriv->base;
  2892. int rc, attempts = 0, extra = 0;
  2893. u32 sstatus;
  2894. bool online;
  2895. mv_reset_channel(hpriv, mmio, ap->port_no);
  2896. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2897. pp->pp_flags &=
  2898. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  2899. /* Workaround for errata FEr SATA#10 (part 2) */
  2900. do {
  2901. const unsigned long *timing =
  2902. sata_ehc_deb_timing(&link->eh_context);
  2903. rc = sata_link_hardreset(link, timing, deadline + extra,
  2904. &online, NULL);
  2905. rc = online ? -EAGAIN : rc;
  2906. if (rc)
  2907. return rc;
  2908. sata_scr_read(link, SCR_STATUS, &sstatus);
  2909. if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
  2910. /* Force 1.5gb/s link speed and try again */
  2911. mv_setup_ifcfg(mv_ap_base(ap), 0);
  2912. if (time_after(jiffies + HZ, deadline))
  2913. extra = HZ; /* only extend it once, max */
  2914. }
  2915. } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
  2916. mv_save_cached_regs(ap);
  2917. mv_edma_cfg(ap, 0, 0);
  2918. return rc;
  2919. }
  2920. static void mv_eh_freeze(struct ata_port *ap)
  2921. {
  2922. mv_stop_edma(ap);
  2923. mv_enable_port_irqs(ap, 0);
  2924. }
  2925. static void mv_eh_thaw(struct ata_port *ap)
  2926. {
  2927. struct mv_host_priv *hpriv = ap->host->private_data;
  2928. unsigned int port = ap->port_no;
  2929. unsigned int hardport = mv_hardport_from_port(port);
  2930. void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
  2931. void __iomem *port_mmio = mv_ap_base(ap);
  2932. u32 hc_irq_cause;
  2933. /* clear EDMA errors on this port */
  2934. writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2935. /* clear pending irq events */
  2936. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  2937. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
  2938. mv_enable_port_irqs(ap, ERR_IRQ);
  2939. }
  2940. /**
  2941. * mv_port_init - Perform some early initialization on a single port.
  2942. * @port: libata data structure storing shadow register addresses
  2943. * @port_mmio: base address of the port
  2944. *
  2945. * Initialize shadow register mmio addresses, clear outstanding
  2946. * interrupts on the port, and unmask interrupts for the future
  2947. * start of the port.
  2948. *
  2949. * LOCKING:
  2950. * Inherited from caller.
  2951. */
  2952. static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
  2953. {
  2954. void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
  2955. unsigned serr_ofs;
  2956. /* PIO related setup
  2957. */
  2958. port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
  2959. port->error_addr =
  2960. port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
  2961. port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
  2962. port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
  2963. port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
  2964. port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
  2965. port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
  2966. port->status_addr =
  2967. port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
  2968. /* special case: control/altstatus doesn't have ATA_REG_ address */
  2969. port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
  2970. /* unused: */
  2971. port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
  2972. /* Clear any currently outstanding port interrupt conditions */
  2973. serr_ofs = mv_scr_offset(SCR_ERROR);
  2974. writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
  2975. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
  2976. /* unmask all non-transient EDMA error interrupts */
  2977. writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
  2978. VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
  2979. readl(port_mmio + EDMA_CFG_OFS),
  2980. readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
  2981. readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
  2982. }
  2983. static unsigned int mv_in_pcix_mode(struct ata_host *host)
  2984. {
  2985. struct mv_host_priv *hpriv = host->private_data;
  2986. void __iomem *mmio = hpriv->base;
  2987. u32 reg;
  2988. if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
  2989. return 0; /* not PCI-X capable */
  2990. reg = readl(mmio + MV_PCI_MODE_OFS);
  2991. if ((reg & MV_PCI_MODE_MASK) == 0)
  2992. return 0; /* conventional PCI mode */
  2993. return 1; /* chip is in PCI-X mode */
  2994. }
  2995. static int mv_pci_cut_through_okay(struct ata_host *host)
  2996. {
  2997. struct mv_host_priv *hpriv = host->private_data;
  2998. void __iomem *mmio = hpriv->base;
  2999. u32 reg;
  3000. if (!mv_in_pcix_mode(host)) {
  3001. reg = readl(mmio + PCI_COMMAND_OFS);
  3002. if (reg & PCI_COMMAND_MRDTRIG)
  3003. return 0; /* not okay */
  3004. }
  3005. return 1; /* okay */
  3006. }
  3007. static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
  3008. {
  3009. struct pci_dev *pdev = to_pci_dev(host->dev);
  3010. struct mv_host_priv *hpriv = host->private_data;
  3011. u32 hp_flags = hpriv->hp_flags;
  3012. switch (board_idx) {
  3013. case chip_5080:
  3014. hpriv->ops = &mv5xxx_ops;
  3015. hp_flags |= MV_HP_GEN_I;
  3016. switch (pdev->revision) {
  3017. case 0x1:
  3018. hp_flags |= MV_HP_ERRATA_50XXB0;
  3019. break;
  3020. case 0x3:
  3021. hp_flags |= MV_HP_ERRATA_50XXB2;
  3022. break;
  3023. default:
  3024. dev_printk(KERN_WARNING, &pdev->dev,
  3025. "Applying 50XXB2 workarounds to unknown rev\n");
  3026. hp_flags |= MV_HP_ERRATA_50XXB2;
  3027. break;
  3028. }
  3029. break;
  3030. case chip_504x:
  3031. case chip_508x:
  3032. hpriv->ops = &mv5xxx_ops;
  3033. hp_flags |= MV_HP_GEN_I;
  3034. switch (pdev->revision) {
  3035. case 0x0:
  3036. hp_flags |= MV_HP_ERRATA_50XXB0;
  3037. break;
  3038. case 0x3:
  3039. hp_flags |= MV_HP_ERRATA_50XXB2;
  3040. break;
  3041. default:
  3042. dev_printk(KERN_WARNING, &pdev->dev,
  3043. "Applying B2 workarounds to unknown rev\n");
  3044. hp_flags |= MV_HP_ERRATA_50XXB2;
  3045. break;
  3046. }
  3047. break;
  3048. case chip_604x:
  3049. case chip_608x:
  3050. hpriv->ops = &mv6xxx_ops;
  3051. hp_flags |= MV_HP_GEN_II;
  3052. switch (pdev->revision) {
  3053. case 0x7:
  3054. hp_flags |= MV_HP_ERRATA_60X1B2;
  3055. break;
  3056. case 0x9:
  3057. hp_flags |= MV_HP_ERRATA_60X1C0;
  3058. break;
  3059. default:
  3060. dev_printk(KERN_WARNING, &pdev->dev,
  3061. "Applying B2 workarounds to unknown rev\n");
  3062. hp_flags |= MV_HP_ERRATA_60X1B2;
  3063. break;
  3064. }
  3065. break;
  3066. case chip_7042:
  3067. hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
  3068. if (pdev->vendor == PCI_VENDOR_ID_TTI &&
  3069. (pdev->device == 0x2300 || pdev->device == 0x2310))
  3070. {
  3071. /*
  3072. * Highpoint RocketRAID PCIe 23xx series cards:
  3073. *
  3074. * Unconfigured drives are treated as "Legacy"
  3075. * by the BIOS, and it overwrites sector 8 with
  3076. * a "Lgcy" metadata block prior to Linux boot.
  3077. *
  3078. * Configured drives (RAID or JBOD) leave sector 8
  3079. * alone, but instead overwrite a high numbered
  3080. * sector for the RAID metadata. This sector can
  3081. * be determined exactly, by truncating the physical
  3082. * drive capacity to a nice even GB value.
  3083. *
  3084. * RAID metadata is at: (dev->n_sectors & ~0xfffff)
  3085. *
  3086. * Warn the user, lest they think we're just buggy.
  3087. */
  3088. printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
  3089. " BIOS CORRUPTS DATA on all attached drives,"
  3090. " regardless of if/how they are configured."
  3091. " BEWARE!\n");
  3092. printk(KERN_WARNING DRV_NAME ": For data safety, do not"
  3093. " use sectors 8-9 on \"Legacy\" drives,"
  3094. " and avoid the final two gigabytes on"
  3095. " all RocketRAID BIOS initialized drives.\n");
  3096. }
  3097. /* drop through */
  3098. case chip_6042:
  3099. hpriv->ops = &mv6xxx_ops;
  3100. hp_flags |= MV_HP_GEN_IIE;
  3101. if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
  3102. hp_flags |= MV_HP_CUT_THROUGH;
  3103. switch (pdev->revision) {
  3104. case 0x2: /* Rev.B0: the first/only public release */
  3105. hp_flags |= MV_HP_ERRATA_60X1C0;
  3106. break;
  3107. default:
  3108. dev_printk(KERN_WARNING, &pdev->dev,
  3109. "Applying 60X1C0 workarounds to unknown rev\n");
  3110. hp_flags |= MV_HP_ERRATA_60X1C0;
  3111. break;
  3112. }
  3113. break;
  3114. case chip_soc:
  3115. hpriv->ops = &mv_soc_ops;
  3116. hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
  3117. MV_HP_ERRATA_60X1C0;
  3118. break;
  3119. default:
  3120. dev_printk(KERN_ERR, host->dev,
  3121. "BUG: invalid board index %u\n", board_idx);
  3122. return 1;
  3123. }
  3124. hpriv->hp_flags = hp_flags;
  3125. if (hp_flags & MV_HP_PCIE) {
  3126. hpriv->irq_cause_ofs = PCIE_IRQ_CAUSE_OFS;
  3127. hpriv->irq_mask_ofs = PCIE_IRQ_MASK_OFS;
  3128. hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
  3129. } else {
  3130. hpriv->irq_cause_ofs = PCI_IRQ_CAUSE_OFS;
  3131. hpriv->irq_mask_ofs = PCI_IRQ_MASK_OFS;
  3132. hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
  3133. }
  3134. return 0;
  3135. }
  3136. /**
  3137. * mv_init_host - Perform some early initialization of the host.
  3138. * @host: ATA host to initialize
  3139. * @board_idx: controller index
  3140. *
  3141. * If possible, do an early global reset of the host. Then do
  3142. * our port init and clear/unmask all/relevant host interrupts.
  3143. *
  3144. * LOCKING:
  3145. * Inherited from caller.
  3146. */
  3147. static int mv_init_host(struct ata_host *host, unsigned int board_idx)
  3148. {
  3149. int rc = 0, n_hc, port, hc;
  3150. struct mv_host_priv *hpriv = host->private_data;
  3151. void __iomem *mmio = hpriv->base;
  3152. rc = mv_chip_id(host, board_idx);
  3153. if (rc)
  3154. goto done;
  3155. if (IS_SOC(hpriv)) {
  3156. hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE_OFS;
  3157. hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK_OFS;
  3158. } else {
  3159. hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE_OFS;
  3160. hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK_OFS;
  3161. }
  3162. /* initialize shadow irq mask with register's value */
  3163. hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
  3164. /* global interrupt mask: 0 == mask everything */
  3165. mv_set_main_irq_mask(host, ~0, 0);
  3166. n_hc = mv_get_hc_count(host->ports[0]->flags);
  3167. for (port = 0; port < host->n_ports; port++)
  3168. hpriv->ops->read_preamp(hpriv, port, mmio);
  3169. rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
  3170. if (rc)
  3171. goto done;
  3172. hpriv->ops->reset_flash(hpriv, mmio);
  3173. hpriv->ops->reset_bus(host, mmio);
  3174. hpriv->ops->enable_leds(hpriv, mmio);
  3175. for (port = 0; port < host->n_ports; port++) {
  3176. struct ata_port *ap = host->ports[port];
  3177. void __iomem *port_mmio = mv_port_base(mmio, port);
  3178. mv_port_init(&ap->ioaddr, port_mmio);
  3179. #ifdef CONFIG_PCI
  3180. if (!IS_SOC(hpriv)) {
  3181. unsigned int offset = port_mmio - mmio;
  3182. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
  3183. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
  3184. }
  3185. #endif
  3186. }
  3187. for (hc = 0; hc < n_hc; hc++) {
  3188. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  3189. VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
  3190. "(before clear)=0x%08x\n", hc,
  3191. readl(hc_mmio + HC_CFG_OFS),
  3192. readl(hc_mmio + HC_IRQ_CAUSE_OFS));
  3193. /* Clear any currently outstanding hc interrupt conditions */
  3194. writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
  3195. }
  3196. /* Clear any currently outstanding host interrupt conditions */
  3197. writelfl(0, mmio + hpriv->irq_cause_ofs);
  3198. /* and unmask interrupt generation for host regs */
  3199. writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_ofs);
  3200. /*
  3201. * enable only global host interrupts for now.
  3202. * The per-port interrupts get done later as ports are set up.
  3203. */
  3204. mv_set_main_irq_mask(host, 0, PCI_ERR);
  3205. mv_set_irq_coalescing(host, irq_coalescing_io_count,
  3206. irq_coalescing_usecs);
  3207. done:
  3208. return rc;
  3209. }
  3210. static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
  3211. {
  3212. hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
  3213. MV_CRQB_Q_SZ, 0);
  3214. if (!hpriv->crqb_pool)
  3215. return -ENOMEM;
  3216. hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
  3217. MV_CRPB_Q_SZ, 0);
  3218. if (!hpriv->crpb_pool)
  3219. return -ENOMEM;
  3220. hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
  3221. MV_SG_TBL_SZ, 0);
  3222. if (!hpriv->sg_tbl_pool)
  3223. return -ENOMEM;
  3224. return 0;
  3225. }
  3226. static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
  3227. struct mbus_dram_target_info *dram)
  3228. {
  3229. int i;
  3230. for (i = 0; i < 4; i++) {
  3231. writel(0, hpriv->base + WINDOW_CTRL(i));
  3232. writel(0, hpriv->base + WINDOW_BASE(i));
  3233. }
  3234. for (i = 0; i < dram->num_cs; i++) {
  3235. struct mbus_dram_window *cs = dram->cs + i;
  3236. writel(((cs->size - 1) & 0xffff0000) |
  3237. (cs->mbus_attr << 8) |
  3238. (dram->mbus_dram_target_id << 4) | 1,
  3239. hpriv->base + WINDOW_CTRL(i));
  3240. writel(cs->base, hpriv->base + WINDOW_BASE(i));
  3241. }
  3242. }
  3243. /**
  3244. * mv_platform_probe - handle a positive probe of an soc Marvell
  3245. * host
  3246. * @pdev: platform device found
  3247. *
  3248. * LOCKING:
  3249. * Inherited from caller.
  3250. */
  3251. static int mv_platform_probe(struct platform_device *pdev)
  3252. {
  3253. static int printed_version;
  3254. const struct mv_sata_platform_data *mv_platform_data;
  3255. const struct ata_port_info *ppi[] =
  3256. { &mv_port_info[chip_soc], NULL };
  3257. struct ata_host *host;
  3258. struct mv_host_priv *hpriv;
  3259. struct resource *res;
  3260. int n_ports, rc;
  3261. if (!printed_version++)
  3262. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  3263. /*
  3264. * Simple resource validation ..
  3265. */
  3266. if (unlikely(pdev->num_resources != 2)) {
  3267. dev_err(&pdev->dev, "invalid number of resources\n");
  3268. return -EINVAL;
  3269. }
  3270. /*
  3271. * Get the register base first
  3272. */
  3273. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  3274. if (res == NULL)
  3275. return -EINVAL;
  3276. /* allocate host */
  3277. mv_platform_data = pdev->dev.platform_data;
  3278. n_ports = mv_platform_data->n_ports;
  3279. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3280. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3281. if (!host || !hpriv)
  3282. return -ENOMEM;
  3283. host->private_data = hpriv;
  3284. hpriv->n_ports = n_ports;
  3285. host->iomap = NULL;
  3286. hpriv->base = devm_ioremap(&pdev->dev, res->start,
  3287. res->end - res->start + 1);
  3288. hpriv->base -= MV_SATAHC0_REG_BASE;
  3289. /*
  3290. * (Re-)program MBUS remapping windows if we are asked to.
  3291. */
  3292. if (mv_platform_data->dram != NULL)
  3293. mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
  3294. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3295. if (rc)
  3296. return rc;
  3297. /* initialize adapter */
  3298. rc = mv_init_host(host, chip_soc);
  3299. if (rc)
  3300. return rc;
  3301. dev_printk(KERN_INFO, &pdev->dev,
  3302. "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
  3303. host->n_ports);
  3304. return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
  3305. IRQF_SHARED, &mv6_sht);
  3306. }
  3307. /*
  3308. *
  3309. * mv_platform_remove - unplug a platform interface
  3310. * @pdev: platform device
  3311. *
  3312. * A platform bus SATA device has been unplugged. Perform the needed
  3313. * cleanup. Also called on module unload for any active devices.
  3314. */
  3315. static int __devexit mv_platform_remove(struct platform_device *pdev)
  3316. {
  3317. struct device *dev = &pdev->dev;
  3318. struct ata_host *host = dev_get_drvdata(dev);
  3319. ata_host_detach(host);
  3320. return 0;
  3321. }
  3322. static struct platform_driver mv_platform_driver = {
  3323. .probe = mv_platform_probe,
  3324. .remove = __devexit_p(mv_platform_remove),
  3325. .driver = {
  3326. .name = DRV_NAME,
  3327. .owner = THIS_MODULE,
  3328. },
  3329. };
  3330. #ifdef CONFIG_PCI
  3331. static int mv_pci_init_one(struct pci_dev *pdev,
  3332. const struct pci_device_id *ent);
  3333. static struct pci_driver mv_pci_driver = {
  3334. .name = DRV_NAME,
  3335. .id_table = mv_pci_tbl,
  3336. .probe = mv_pci_init_one,
  3337. .remove = ata_pci_remove_one,
  3338. };
  3339. /* move to PCI layer or libata core? */
  3340. static int pci_go_64(struct pci_dev *pdev)
  3341. {
  3342. int rc;
  3343. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3344. rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3345. if (rc) {
  3346. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3347. if (rc) {
  3348. dev_printk(KERN_ERR, &pdev->dev,
  3349. "64-bit DMA enable failed\n");
  3350. return rc;
  3351. }
  3352. }
  3353. } else {
  3354. rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3355. if (rc) {
  3356. dev_printk(KERN_ERR, &pdev->dev,
  3357. "32-bit DMA enable failed\n");
  3358. return rc;
  3359. }
  3360. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3361. if (rc) {
  3362. dev_printk(KERN_ERR, &pdev->dev,
  3363. "32-bit consistent DMA enable failed\n");
  3364. return rc;
  3365. }
  3366. }
  3367. return rc;
  3368. }
  3369. /**
  3370. * mv_print_info - Dump key info to kernel log for perusal.
  3371. * @host: ATA host to print info about
  3372. *
  3373. * FIXME: complete this.
  3374. *
  3375. * LOCKING:
  3376. * Inherited from caller.
  3377. */
  3378. static void mv_print_info(struct ata_host *host)
  3379. {
  3380. struct pci_dev *pdev = to_pci_dev(host->dev);
  3381. struct mv_host_priv *hpriv = host->private_data;
  3382. u8 scc;
  3383. const char *scc_s, *gen;
  3384. /* Use this to determine the HW stepping of the chip so we know
  3385. * what errata to workaround
  3386. */
  3387. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
  3388. if (scc == 0)
  3389. scc_s = "SCSI";
  3390. else if (scc == 0x01)
  3391. scc_s = "RAID";
  3392. else
  3393. scc_s = "?";
  3394. if (IS_GEN_I(hpriv))
  3395. gen = "I";
  3396. else if (IS_GEN_II(hpriv))
  3397. gen = "II";
  3398. else if (IS_GEN_IIE(hpriv))
  3399. gen = "IIE";
  3400. else
  3401. gen = "?";
  3402. dev_printk(KERN_INFO, &pdev->dev,
  3403. "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
  3404. gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
  3405. scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
  3406. }
  3407. /**
  3408. * mv_pci_init_one - handle a positive probe of a PCI Marvell host
  3409. * @pdev: PCI device found
  3410. * @ent: PCI device ID entry for the matched host
  3411. *
  3412. * LOCKING:
  3413. * Inherited from caller.
  3414. */
  3415. static int mv_pci_init_one(struct pci_dev *pdev,
  3416. const struct pci_device_id *ent)
  3417. {
  3418. static int printed_version;
  3419. unsigned int board_idx = (unsigned int)ent->driver_data;
  3420. const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
  3421. struct ata_host *host;
  3422. struct mv_host_priv *hpriv;
  3423. int n_ports, rc;
  3424. if (!printed_version++)
  3425. dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
  3426. /* allocate host */
  3427. n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
  3428. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3429. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3430. if (!host || !hpriv)
  3431. return -ENOMEM;
  3432. host->private_data = hpriv;
  3433. hpriv->n_ports = n_ports;
  3434. /* acquire resources */
  3435. rc = pcim_enable_device(pdev);
  3436. if (rc)
  3437. return rc;
  3438. rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
  3439. if (rc == -EBUSY)
  3440. pcim_pin_device(pdev);
  3441. if (rc)
  3442. return rc;
  3443. host->iomap = pcim_iomap_table(pdev);
  3444. hpriv->base = host->iomap[MV_PRIMARY_BAR];
  3445. rc = pci_go_64(pdev);
  3446. if (rc)
  3447. return rc;
  3448. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3449. if (rc)
  3450. return rc;
  3451. /* initialize adapter */
  3452. rc = mv_init_host(host, board_idx);
  3453. if (rc)
  3454. return rc;
  3455. /* Enable message-switched interrupts, if requested */
  3456. if (msi && pci_enable_msi(pdev) == 0)
  3457. hpriv->hp_flags |= MV_HP_FLAG_MSI;
  3458. mv_dump_pci_cfg(pdev, 0x68);
  3459. mv_print_info(host);
  3460. pci_set_master(pdev);
  3461. pci_try_set_mwi(pdev);
  3462. return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
  3463. IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
  3464. }
  3465. #endif
  3466. static int mv_platform_probe(struct platform_device *pdev);
  3467. static int __devexit mv_platform_remove(struct platform_device *pdev);
  3468. static int __init mv_init(void)
  3469. {
  3470. int rc = -ENODEV;
  3471. #ifdef CONFIG_PCI
  3472. rc = pci_register_driver(&mv_pci_driver);
  3473. if (rc < 0)
  3474. return rc;
  3475. #endif
  3476. rc = platform_driver_register(&mv_platform_driver);
  3477. #ifdef CONFIG_PCI
  3478. if (rc < 0)
  3479. pci_unregister_driver(&mv_pci_driver);
  3480. #endif
  3481. return rc;
  3482. }
  3483. static void __exit mv_exit(void)
  3484. {
  3485. #ifdef CONFIG_PCI
  3486. pci_unregister_driver(&mv_pci_driver);
  3487. #endif
  3488. platform_driver_unregister(&mv_platform_driver);
  3489. }
  3490. MODULE_AUTHOR("Brett Russ");
  3491. MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
  3492. MODULE_LICENSE("GPL");
  3493. MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
  3494. MODULE_VERSION(DRV_VERSION);
  3495. MODULE_ALIAS("platform:" DRV_NAME);
  3496. module_init(mv_init);
  3497. module_exit(mv_exit);