md.c 177 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/buffer_head.h> /* for invalidate_bdev */
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/hdreg.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/random.h>
  36. #include <linux/reboot.h>
  37. #include <linux/file.h>
  38. #include <linux/delay.h>
  39. #include <linux/raid/md_p.h>
  40. #include <linux/raid/md_u.h>
  41. #include "md.h"
  42. #include "bitmap.h"
  43. #define DEBUG 0
  44. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  45. #ifndef MODULE
  46. static void autostart_arrays(int part);
  47. #endif
  48. static LIST_HEAD(pers_list);
  49. static DEFINE_SPINLOCK(pers_lock);
  50. static void md_print_devices(void);
  51. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  52. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  53. /*
  54. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  55. * is 1000 KB/sec, so the extra system load does not show up that much.
  56. * Increase it if you want to have more _guaranteed_ speed. Note that
  57. * the RAID driver will use the maximum available bandwidth if the IO
  58. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  59. * speed limit - in case reconstruction slows down your system despite
  60. * idle IO detection.
  61. *
  62. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  63. * or /sys/block/mdX/md/sync_speed_{min,max}
  64. */
  65. static int sysctl_speed_limit_min = 1000;
  66. static int sysctl_speed_limit_max = 200000;
  67. static inline int speed_min(mddev_t *mddev)
  68. {
  69. return mddev->sync_speed_min ?
  70. mddev->sync_speed_min : sysctl_speed_limit_min;
  71. }
  72. static inline int speed_max(mddev_t *mddev)
  73. {
  74. return mddev->sync_speed_max ?
  75. mddev->sync_speed_max : sysctl_speed_limit_max;
  76. }
  77. static struct ctl_table_header *raid_table_header;
  78. static ctl_table raid_table[] = {
  79. {
  80. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  81. .procname = "speed_limit_min",
  82. .data = &sysctl_speed_limit_min,
  83. .maxlen = sizeof(int),
  84. .mode = S_IRUGO|S_IWUSR,
  85. .proc_handler = &proc_dointvec,
  86. },
  87. {
  88. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  89. .procname = "speed_limit_max",
  90. .data = &sysctl_speed_limit_max,
  91. .maxlen = sizeof(int),
  92. .mode = S_IRUGO|S_IWUSR,
  93. .proc_handler = &proc_dointvec,
  94. },
  95. { .ctl_name = 0 }
  96. };
  97. static ctl_table raid_dir_table[] = {
  98. {
  99. .ctl_name = DEV_RAID,
  100. .procname = "raid",
  101. .maxlen = 0,
  102. .mode = S_IRUGO|S_IXUGO,
  103. .child = raid_table,
  104. },
  105. { .ctl_name = 0 }
  106. };
  107. static ctl_table raid_root_table[] = {
  108. {
  109. .ctl_name = CTL_DEV,
  110. .procname = "dev",
  111. .maxlen = 0,
  112. .mode = 0555,
  113. .child = raid_dir_table,
  114. },
  115. { .ctl_name = 0 }
  116. };
  117. static struct block_device_operations md_fops;
  118. static int start_readonly;
  119. /*
  120. * We have a system wide 'event count' that is incremented
  121. * on any 'interesting' event, and readers of /proc/mdstat
  122. * can use 'poll' or 'select' to find out when the event
  123. * count increases.
  124. *
  125. * Events are:
  126. * start array, stop array, error, add device, remove device,
  127. * start build, activate spare
  128. */
  129. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  130. static atomic_t md_event_count;
  131. void md_new_event(mddev_t *mddev)
  132. {
  133. atomic_inc(&md_event_count);
  134. wake_up(&md_event_waiters);
  135. }
  136. EXPORT_SYMBOL_GPL(md_new_event);
  137. /* Alternate version that can be called from interrupts
  138. * when calling sysfs_notify isn't needed.
  139. */
  140. static void md_new_event_inintr(mddev_t *mddev)
  141. {
  142. atomic_inc(&md_event_count);
  143. wake_up(&md_event_waiters);
  144. }
  145. /*
  146. * Enables to iterate over all existing md arrays
  147. * all_mddevs_lock protects this list.
  148. */
  149. static LIST_HEAD(all_mddevs);
  150. static DEFINE_SPINLOCK(all_mddevs_lock);
  151. /*
  152. * iterates through all used mddevs in the system.
  153. * We take care to grab the all_mddevs_lock whenever navigating
  154. * the list, and to always hold a refcount when unlocked.
  155. * Any code which breaks out of this loop while own
  156. * a reference to the current mddev and must mddev_put it.
  157. */
  158. #define for_each_mddev(mddev,tmp) \
  159. \
  160. for (({ spin_lock(&all_mddevs_lock); \
  161. tmp = all_mddevs.next; \
  162. mddev = NULL;}); \
  163. ({ if (tmp != &all_mddevs) \
  164. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  165. spin_unlock(&all_mddevs_lock); \
  166. if (mddev) mddev_put(mddev); \
  167. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  168. tmp != &all_mddevs;}); \
  169. ({ spin_lock(&all_mddevs_lock); \
  170. tmp = tmp->next;}) \
  171. )
  172. /* Rather than calling directly into the personality make_request function,
  173. * IO requests come here first so that we can check if the device is
  174. * being suspended pending a reconfiguration.
  175. * We hold a refcount over the call to ->make_request. By the time that
  176. * call has finished, the bio has been linked into some internal structure
  177. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  178. */
  179. static int md_make_request(struct request_queue *q, struct bio *bio)
  180. {
  181. mddev_t *mddev = q->queuedata;
  182. int rv;
  183. if (mddev == NULL || mddev->pers == NULL) {
  184. bio_io_error(bio);
  185. return 0;
  186. }
  187. rcu_read_lock();
  188. if (mddev->suspended) {
  189. DEFINE_WAIT(__wait);
  190. for (;;) {
  191. prepare_to_wait(&mddev->sb_wait, &__wait,
  192. TASK_UNINTERRUPTIBLE);
  193. if (!mddev->suspended)
  194. break;
  195. rcu_read_unlock();
  196. schedule();
  197. rcu_read_lock();
  198. }
  199. finish_wait(&mddev->sb_wait, &__wait);
  200. }
  201. atomic_inc(&mddev->active_io);
  202. rcu_read_unlock();
  203. rv = mddev->pers->make_request(q, bio);
  204. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  205. wake_up(&mddev->sb_wait);
  206. return rv;
  207. }
  208. static void mddev_suspend(mddev_t *mddev)
  209. {
  210. BUG_ON(mddev->suspended);
  211. mddev->suspended = 1;
  212. synchronize_rcu();
  213. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  214. mddev->pers->quiesce(mddev, 1);
  215. md_unregister_thread(mddev->thread);
  216. mddev->thread = NULL;
  217. /* we now know that no code is executing in the personality module,
  218. * except possibly the tail end of a ->bi_end_io function, but that
  219. * is certain to complete before the module has a chance to get
  220. * unloaded
  221. */
  222. }
  223. static void mddev_resume(mddev_t *mddev)
  224. {
  225. mddev->suspended = 0;
  226. wake_up(&mddev->sb_wait);
  227. mddev->pers->quiesce(mddev, 0);
  228. }
  229. static inline mddev_t *mddev_get(mddev_t *mddev)
  230. {
  231. atomic_inc(&mddev->active);
  232. return mddev;
  233. }
  234. static void mddev_delayed_delete(struct work_struct *ws);
  235. static void mddev_put(mddev_t *mddev)
  236. {
  237. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  238. return;
  239. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  240. !mddev->hold_active) {
  241. list_del(&mddev->all_mddevs);
  242. if (mddev->gendisk) {
  243. /* we did a probe so need to clean up.
  244. * Call schedule_work inside the spinlock
  245. * so that flush_scheduled_work() after
  246. * mddev_find will succeed in waiting for the
  247. * work to be done.
  248. */
  249. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  250. schedule_work(&mddev->del_work);
  251. } else
  252. kfree(mddev);
  253. }
  254. spin_unlock(&all_mddevs_lock);
  255. }
  256. static mddev_t * mddev_find(dev_t unit)
  257. {
  258. mddev_t *mddev, *new = NULL;
  259. retry:
  260. spin_lock(&all_mddevs_lock);
  261. if (unit) {
  262. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  263. if (mddev->unit == unit) {
  264. mddev_get(mddev);
  265. spin_unlock(&all_mddevs_lock);
  266. kfree(new);
  267. return mddev;
  268. }
  269. if (new) {
  270. list_add(&new->all_mddevs, &all_mddevs);
  271. spin_unlock(&all_mddevs_lock);
  272. new->hold_active = UNTIL_IOCTL;
  273. return new;
  274. }
  275. } else if (new) {
  276. /* find an unused unit number */
  277. static int next_minor = 512;
  278. int start = next_minor;
  279. int is_free = 0;
  280. int dev = 0;
  281. while (!is_free) {
  282. dev = MKDEV(MD_MAJOR, next_minor);
  283. next_minor++;
  284. if (next_minor > MINORMASK)
  285. next_minor = 0;
  286. if (next_minor == start) {
  287. /* Oh dear, all in use. */
  288. spin_unlock(&all_mddevs_lock);
  289. kfree(new);
  290. return NULL;
  291. }
  292. is_free = 1;
  293. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  294. if (mddev->unit == dev) {
  295. is_free = 0;
  296. break;
  297. }
  298. }
  299. new->unit = dev;
  300. new->md_minor = MINOR(dev);
  301. new->hold_active = UNTIL_STOP;
  302. list_add(&new->all_mddevs, &all_mddevs);
  303. spin_unlock(&all_mddevs_lock);
  304. return new;
  305. }
  306. spin_unlock(&all_mddevs_lock);
  307. new = kzalloc(sizeof(*new), GFP_KERNEL);
  308. if (!new)
  309. return NULL;
  310. new->unit = unit;
  311. if (MAJOR(unit) == MD_MAJOR)
  312. new->md_minor = MINOR(unit);
  313. else
  314. new->md_minor = MINOR(unit) >> MdpMinorShift;
  315. mutex_init(&new->reconfig_mutex);
  316. INIT_LIST_HEAD(&new->disks);
  317. INIT_LIST_HEAD(&new->all_mddevs);
  318. init_timer(&new->safemode_timer);
  319. atomic_set(&new->active, 1);
  320. atomic_set(&new->openers, 0);
  321. atomic_set(&new->active_io, 0);
  322. spin_lock_init(&new->write_lock);
  323. init_waitqueue_head(&new->sb_wait);
  324. init_waitqueue_head(&new->recovery_wait);
  325. new->reshape_position = MaxSector;
  326. new->resync_min = 0;
  327. new->resync_max = MaxSector;
  328. new->level = LEVEL_NONE;
  329. goto retry;
  330. }
  331. static inline int mddev_lock(mddev_t * mddev)
  332. {
  333. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  334. }
  335. static inline int mddev_is_locked(mddev_t *mddev)
  336. {
  337. return mutex_is_locked(&mddev->reconfig_mutex);
  338. }
  339. static inline int mddev_trylock(mddev_t * mddev)
  340. {
  341. return mutex_trylock(&mddev->reconfig_mutex);
  342. }
  343. static inline void mddev_unlock(mddev_t * mddev)
  344. {
  345. mutex_unlock(&mddev->reconfig_mutex);
  346. md_wakeup_thread(mddev->thread);
  347. }
  348. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  349. {
  350. mdk_rdev_t *rdev;
  351. list_for_each_entry(rdev, &mddev->disks, same_set)
  352. if (rdev->desc_nr == nr)
  353. return rdev;
  354. return NULL;
  355. }
  356. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  357. {
  358. mdk_rdev_t *rdev;
  359. list_for_each_entry(rdev, &mddev->disks, same_set)
  360. if (rdev->bdev->bd_dev == dev)
  361. return rdev;
  362. return NULL;
  363. }
  364. static struct mdk_personality *find_pers(int level, char *clevel)
  365. {
  366. struct mdk_personality *pers;
  367. list_for_each_entry(pers, &pers_list, list) {
  368. if (level != LEVEL_NONE && pers->level == level)
  369. return pers;
  370. if (strcmp(pers->name, clevel)==0)
  371. return pers;
  372. }
  373. return NULL;
  374. }
  375. /* return the offset of the super block in 512byte sectors */
  376. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  377. {
  378. sector_t num_sectors = bdev->bd_inode->i_size / 512;
  379. return MD_NEW_SIZE_SECTORS(num_sectors);
  380. }
  381. static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
  382. {
  383. sector_t num_sectors = rdev->sb_start;
  384. if (chunk_size)
  385. num_sectors &= ~((sector_t)chunk_size/512 - 1);
  386. return num_sectors;
  387. }
  388. static int alloc_disk_sb(mdk_rdev_t * rdev)
  389. {
  390. if (rdev->sb_page)
  391. MD_BUG();
  392. rdev->sb_page = alloc_page(GFP_KERNEL);
  393. if (!rdev->sb_page) {
  394. printk(KERN_ALERT "md: out of memory.\n");
  395. return -ENOMEM;
  396. }
  397. return 0;
  398. }
  399. static void free_disk_sb(mdk_rdev_t * rdev)
  400. {
  401. if (rdev->sb_page) {
  402. put_page(rdev->sb_page);
  403. rdev->sb_loaded = 0;
  404. rdev->sb_page = NULL;
  405. rdev->sb_start = 0;
  406. rdev->sectors = 0;
  407. }
  408. }
  409. static void super_written(struct bio *bio, int error)
  410. {
  411. mdk_rdev_t *rdev = bio->bi_private;
  412. mddev_t *mddev = rdev->mddev;
  413. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  414. printk("md: super_written gets error=%d, uptodate=%d\n",
  415. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  416. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  417. md_error(mddev, rdev);
  418. }
  419. if (atomic_dec_and_test(&mddev->pending_writes))
  420. wake_up(&mddev->sb_wait);
  421. bio_put(bio);
  422. }
  423. static void super_written_barrier(struct bio *bio, int error)
  424. {
  425. struct bio *bio2 = bio->bi_private;
  426. mdk_rdev_t *rdev = bio2->bi_private;
  427. mddev_t *mddev = rdev->mddev;
  428. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  429. error == -EOPNOTSUPP) {
  430. unsigned long flags;
  431. /* barriers don't appear to be supported :-( */
  432. set_bit(BarriersNotsupp, &rdev->flags);
  433. mddev->barriers_work = 0;
  434. spin_lock_irqsave(&mddev->write_lock, flags);
  435. bio2->bi_next = mddev->biolist;
  436. mddev->biolist = bio2;
  437. spin_unlock_irqrestore(&mddev->write_lock, flags);
  438. wake_up(&mddev->sb_wait);
  439. bio_put(bio);
  440. } else {
  441. bio_put(bio2);
  442. bio->bi_private = rdev;
  443. super_written(bio, error);
  444. }
  445. }
  446. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  447. sector_t sector, int size, struct page *page)
  448. {
  449. /* write first size bytes of page to sector of rdev
  450. * Increment mddev->pending_writes before returning
  451. * and decrement it on completion, waking up sb_wait
  452. * if zero is reached.
  453. * If an error occurred, call md_error
  454. *
  455. * As we might need to resubmit the request if BIO_RW_BARRIER
  456. * causes ENOTSUPP, we allocate a spare bio...
  457. */
  458. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  459. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
  460. bio->bi_bdev = rdev->bdev;
  461. bio->bi_sector = sector;
  462. bio_add_page(bio, page, size, 0);
  463. bio->bi_private = rdev;
  464. bio->bi_end_io = super_written;
  465. bio->bi_rw = rw;
  466. atomic_inc(&mddev->pending_writes);
  467. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  468. struct bio *rbio;
  469. rw |= (1<<BIO_RW_BARRIER);
  470. rbio = bio_clone(bio, GFP_NOIO);
  471. rbio->bi_private = bio;
  472. rbio->bi_end_io = super_written_barrier;
  473. submit_bio(rw, rbio);
  474. } else
  475. submit_bio(rw, bio);
  476. }
  477. void md_super_wait(mddev_t *mddev)
  478. {
  479. /* wait for all superblock writes that were scheduled to complete.
  480. * if any had to be retried (due to BARRIER problems), retry them
  481. */
  482. DEFINE_WAIT(wq);
  483. for(;;) {
  484. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  485. if (atomic_read(&mddev->pending_writes)==0)
  486. break;
  487. while (mddev->biolist) {
  488. struct bio *bio;
  489. spin_lock_irq(&mddev->write_lock);
  490. bio = mddev->biolist;
  491. mddev->biolist = bio->bi_next ;
  492. bio->bi_next = NULL;
  493. spin_unlock_irq(&mddev->write_lock);
  494. submit_bio(bio->bi_rw, bio);
  495. }
  496. schedule();
  497. }
  498. finish_wait(&mddev->sb_wait, &wq);
  499. }
  500. static void bi_complete(struct bio *bio, int error)
  501. {
  502. complete((struct completion*)bio->bi_private);
  503. }
  504. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  505. struct page *page, int rw)
  506. {
  507. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  508. struct completion event;
  509. int ret;
  510. rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
  511. bio->bi_bdev = bdev;
  512. bio->bi_sector = sector;
  513. bio_add_page(bio, page, size, 0);
  514. init_completion(&event);
  515. bio->bi_private = &event;
  516. bio->bi_end_io = bi_complete;
  517. submit_bio(rw, bio);
  518. wait_for_completion(&event);
  519. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  520. bio_put(bio);
  521. return ret;
  522. }
  523. EXPORT_SYMBOL_GPL(sync_page_io);
  524. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  525. {
  526. char b[BDEVNAME_SIZE];
  527. if (!rdev->sb_page) {
  528. MD_BUG();
  529. return -EINVAL;
  530. }
  531. if (rdev->sb_loaded)
  532. return 0;
  533. if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
  534. goto fail;
  535. rdev->sb_loaded = 1;
  536. return 0;
  537. fail:
  538. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  539. bdevname(rdev->bdev,b));
  540. return -EINVAL;
  541. }
  542. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  543. {
  544. return sb1->set_uuid0 == sb2->set_uuid0 &&
  545. sb1->set_uuid1 == sb2->set_uuid1 &&
  546. sb1->set_uuid2 == sb2->set_uuid2 &&
  547. sb1->set_uuid3 == sb2->set_uuid3;
  548. }
  549. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  550. {
  551. int ret;
  552. mdp_super_t *tmp1, *tmp2;
  553. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  554. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  555. if (!tmp1 || !tmp2) {
  556. ret = 0;
  557. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  558. goto abort;
  559. }
  560. *tmp1 = *sb1;
  561. *tmp2 = *sb2;
  562. /*
  563. * nr_disks is not constant
  564. */
  565. tmp1->nr_disks = 0;
  566. tmp2->nr_disks = 0;
  567. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  568. abort:
  569. kfree(tmp1);
  570. kfree(tmp2);
  571. return ret;
  572. }
  573. static u32 md_csum_fold(u32 csum)
  574. {
  575. csum = (csum & 0xffff) + (csum >> 16);
  576. return (csum & 0xffff) + (csum >> 16);
  577. }
  578. static unsigned int calc_sb_csum(mdp_super_t * sb)
  579. {
  580. u64 newcsum = 0;
  581. u32 *sb32 = (u32*)sb;
  582. int i;
  583. unsigned int disk_csum, csum;
  584. disk_csum = sb->sb_csum;
  585. sb->sb_csum = 0;
  586. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  587. newcsum += sb32[i];
  588. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  589. #ifdef CONFIG_ALPHA
  590. /* This used to use csum_partial, which was wrong for several
  591. * reasons including that different results are returned on
  592. * different architectures. It isn't critical that we get exactly
  593. * the same return value as before (we always csum_fold before
  594. * testing, and that removes any differences). However as we
  595. * know that csum_partial always returned a 16bit value on
  596. * alphas, do a fold to maximise conformity to previous behaviour.
  597. */
  598. sb->sb_csum = md_csum_fold(disk_csum);
  599. #else
  600. sb->sb_csum = disk_csum;
  601. #endif
  602. return csum;
  603. }
  604. /*
  605. * Handle superblock details.
  606. * We want to be able to handle multiple superblock formats
  607. * so we have a common interface to them all, and an array of
  608. * different handlers.
  609. * We rely on user-space to write the initial superblock, and support
  610. * reading and updating of superblocks.
  611. * Interface methods are:
  612. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  613. * loads and validates a superblock on dev.
  614. * if refdev != NULL, compare superblocks on both devices
  615. * Return:
  616. * 0 - dev has a superblock that is compatible with refdev
  617. * 1 - dev has a superblock that is compatible and newer than refdev
  618. * so dev should be used as the refdev in future
  619. * -EINVAL superblock incompatible or invalid
  620. * -othererror e.g. -EIO
  621. *
  622. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  623. * Verify that dev is acceptable into mddev.
  624. * The first time, mddev->raid_disks will be 0, and data from
  625. * dev should be merged in. Subsequent calls check that dev
  626. * is new enough. Return 0 or -EINVAL
  627. *
  628. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  629. * Update the superblock for rdev with data in mddev
  630. * This does not write to disc.
  631. *
  632. */
  633. struct super_type {
  634. char *name;
  635. struct module *owner;
  636. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
  637. int minor_version);
  638. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  639. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  640. unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
  641. sector_t num_sectors);
  642. };
  643. /*
  644. * load_super for 0.90.0
  645. */
  646. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  647. {
  648. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  649. mdp_super_t *sb;
  650. int ret;
  651. /*
  652. * Calculate the position of the superblock (512byte sectors),
  653. * it's at the end of the disk.
  654. *
  655. * It also happens to be a multiple of 4Kb.
  656. */
  657. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  658. ret = read_disk_sb(rdev, MD_SB_BYTES);
  659. if (ret) return ret;
  660. ret = -EINVAL;
  661. bdevname(rdev->bdev, b);
  662. sb = (mdp_super_t*)page_address(rdev->sb_page);
  663. if (sb->md_magic != MD_SB_MAGIC) {
  664. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  665. b);
  666. goto abort;
  667. }
  668. if (sb->major_version != 0 ||
  669. sb->minor_version < 90 ||
  670. sb->minor_version > 91) {
  671. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  672. sb->major_version, sb->minor_version,
  673. b);
  674. goto abort;
  675. }
  676. if (sb->raid_disks <= 0)
  677. goto abort;
  678. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  679. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  680. b);
  681. goto abort;
  682. }
  683. rdev->preferred_minor = sb->md_minor;
  684. rdev->data_offset = 0;
  685. rdev->sb_size = MD_SB_BYTES;
  686. if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
  687. if (sb->level != 1 && sb->level != 4
  688. && sb->level != 5 && sb->level != 6
  689. && sb->level != 10) {
  690. /* FIXME use a better test */
  691. printk(KERN_WARNING
  692. "md: bitmaps not supported for this level.\n");
  693. goto abort;
  694. }
  695. }
  696. if (sb->level == LEVEL_MULTIPATH)
  697. rdev->desc_nr = -1;
  698. else
  699. rdev->desc_nr = sb->this_disk.number;
  700. if (!refdev) {
  701. ret = 1;
  702. } else {
  703. __u64 ev1, ev2;
  704. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  705. if (!uuid_equal(refsb, sb)) {
  706. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  707. b, bdevname(refdev->bdev,b2));
  708. goto abort;
  709. }
  710. if (!sb_equal(refsb, sb)) {
  711. printk(KERN_WARNING "md: %s has same UUID"
  712. " but different superblock to %s\n",
  713. b, bdevname(refdev->bdev, b2));
  714. goto abort;
  715. }
  716. ev1 = md_event(sb);
  717. ev2 = md_event(refsb);
  718. if (ev1 > ev2)
  719. ret = 1;
  720. else
  721. ret = 0;
  722. }
  723. rdev->sectors = calc_num_sectors(rdev, sb->chunk_size);
  724. if (rdev->sectors < sb->size * 2 && sb->level > 1)
  725. /* "this cannot possibly happen" ... */
  726. ret = -EINVAL;
  727. abort:
  728. return ret;
  729. }
  730. /*
  731. * validate_super for 0.90.0
  732. */
  733. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  734. {
  735. mdp_disk_t *desc;
  736. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  737. __u64 ev1 = md_event(sb);
  738. rdev->raid_disk = -1;
  739. clear_bit(Faulty, &rdev->flags);
  740. clear_bit(In_sync, &rdev->flags);
  741. clear_bit(WriteMostly, &rdev->flags);
  742. clear_bit(BarriersNotsupp, &rdev->flags);
  743. if (mddev->raid_disks == 0) {
  744. mddev->major_version = 0;
  745. mddev->minor_version = sb->minor_version;
  746. mddev->patch_version = sb->patch_version;
  747. mddev->external = 0;
  748. mddev->chunk_size = sb->chunk_size;
  749. mddev->ctime = sb->ctime;
  750. mddev->utime = sb->utime;
  751. mddev->level = sb->level;
  752. mddev->clevel[0] = 0;
  753. mddev->layout = sb->layout;
  754. mddev->raid_disks = sb->raid_disks;
  755. mddev->dev_sectors = sb->size * 2;
  756. mddev->events = ev1;
  757. mddev->bitmap_offset = 0;
  758. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  759. if (mddev->minor_version >= 91) {
  760. mddev->reshape_position = sb->reshape_position;
  761. mddev->delta_disks = sb->delta_disks;
  762. mddev->new_level = sb->new_level;
  763. mddev->new_layout = sb->new_layout;
  764. mddev->new_chunk = sb->new_chunk;
  765. } else {
  766. mddev->reshape_position = MaxSector;
  767. mddev->delta_disks = 0;
  768. mddev->new_level = mddev->level;
  769. mddev->new_layout = mddev->layout;
  770. mddev->new_chunk = mddev->chunk_size;
  771. }
  772. if (sb->state & (1<<MD_SB_CLEAN))
  773. mddev->recovery_cp = MaxSector;
  774. else {
  775. if (sb->events_hi == sb->cp_events_hi &&
  776. sb->events_lo == sb->cp_events_lo) {
  777. mddev->recovery_cp = sb->recovery_cp;
  778. } else
  779. mddev->recovery_cp = 0;
  780. }
  781. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  782. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  783. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  784. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  785. mddev->max_disks = MD_SB_DISKS;
  786. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  787. mddev->bitmap_file == NULL)
  788. mddev->bitmap_offset = mddev->default_bitmap_offset;
  789. } else if (mddev->pers == NULL) {
  790. /* Insist on good event counter while assembling */
  791. ++ev1;
  792. if (ev1 < mddev->events)
  793. return -EINVAL;
  794. } else if (mddev->bitmap) {
  795. /* if adding to array with a bitmap, then we can accept an
  796. * older device ... but not too old.
  797. */
  798. if (ev1 < mddev->bitmap->events_cleared)
  799. return 0;
  800. } else {
  801. if (ev1 < mddev->events)
  802. /* just a hot-add of a new device, leave raid_disk at -1 */
  803. return 0;
  804. }
  805. if (mddev->level != LEVEL_MULTIPATH) {
  806. desc = sb->disks + rdev->desc_nr;
  807. if (desc->state & (1<<MD_DISK_FAULTY))
  808. set_bit(Faulty, &rdev->flags);
  809. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  810. desc->raid_disk < mddev->raid_disks */) {
  811. set_bit(In_sync, &rdev->flags);
  812. rdev->raid_disk = desc->raid_disk;
  813. }
  814. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  815. set_bit(WriteMostly, &rdev->flags);
  816. } else /* MULTIPATH are always insync */
  817. set_bit(In_sync, &rdev->flags);
  818. return 0;
  819. }
  820. /*
  821. * sync_super for 0.90.0
  822. */
  823. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  824. {
  825. mdp_super_t *sb;
  826. mdk_rdev_t *rdev2;
  827. int next_spare = mddev->raid_disks;
  828. /* make rdev->sb match mddev data..
  829. *
  830. * 1/ zero out disks
  831. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  832. * 3/ any empty disks < next_spare become removed
  833. *
  834. * disks[0] gets initialised to REMOVED because
  835. * we cannot be sure from other fields if it has
  836. * been initialised or not.
  837. */
  838. int i;
  839. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  840. rdev->sb_size = MD_SB_BYTES;
  841. sb = (mdp_super_t*)page_address(rdev->sb_page);
  842. memset(sb, 0, sizeof(*sb));
  843. sb->md_magic = MD_SB_MAGIC;
  844. sb->major_version = mddev->major_version;
  845. sb->patch_version = mddev->patch_version;
  846. sb->gvalid_words = 0; /* ignored */
  847. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  848. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  849. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  850. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  851. sb->ctime = mddev->ctime;
  852. sb->level = mddev->level;
  853. sb->size = mddev->dev_sectors / 2;
  854. sb->raid_disks = mddev->raid_disks;
  855. sb->md_minor = mddev->md_minor;
  856. sb->not_persistent = 0;
  857. sb->utime = mddev->utime;
  858. sb->state = 0;
  859. sb->events_hi = (mddev->events>>32);
  860. sb->events_lo = (u32)mddev->events;
  861. if (mddev->reshape_position == MaxSector)
  862. sb->minor_version = 90;
  863. else {
  864. sb->minor_version = 91;
  865. sb->reshape_position = mddev->reshape_position;
  866. sb->new_level = mddev->new_level;
  867. sb->delta_disks = mddev->delta_disks;
  868. sb->new_layout = mddev->new_layout;
  869. sb->new_chunk = mddev->new_chunk;
  870. }
  871. mddev->minor_version = sb->minor_version;
  872. if (mddev->in_sync)
  873. {
  874. sb->recovery_cp = mddev->recovery_cp;
  875. sb->cp_events_hi = (mddev->events>>32);
  876. sb->cp_events_lo = (u32)mddev->events;
  877. if (mddev->recovery_cp == MaxSector)
  878. sb->state = (1<< MD_SB_CLEAN);
  879. } else
  880. sb->recovery_cp = 0;
  881. sb->layout = mddev->layout;
  882. sb->chunk_size = mddev->chunk_size;
  883. if (mddev->bitmap && mddev->bitmap_file == NULL)
  884. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  885. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  886. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  887. mdp_disk_t *d;
  888. int desc_nr;
  889. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  890. && !test_bit(Faulty, &rdev2->flags))
  891. desc_nr = rdev2->raid_disk;
  892. else
  893. desc_nr = next_spare++;
  894. rdev2->desc_nr = desc_nr;
  895. d = &sb->disks[rdev2->desc_nr];
  896. nr_disks++;
  897. d->number = rdev2->desc_nr;
  898. d->major = MAJOR(rdev2->bdev->bd_dev);
  899. d->minor = MINOR(rdev2->bdev->bd_dev);
  900. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  901. && !test_bit(Faulty, &rdev2->flags))
  902. d->raid_disk = rdev2->raid_disk;
  903. else
  904. d->raid_disk = rdev2->desc_nr; /* compatibility */
  905. if (test_bit(Faulty, &rdev2->flags))
  906. d->state = (1<<MD_DISK_FAULTY);
  907. else if (test_bit(In_sync, &rdev2->flags)) {
  908. d->state = (1<<MD_DISK_ACTIVE);
  909. d->state |= (1<<MD_DISK_SYNC);
  910. active++;
  911. working++;
  912. } else {
  913. d->state = 0;
  914. spare++;
  915. working++;
  916. }
  917. if (test_bit(WriteMostly, &rdev2->flags))
  918. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  919. }
  920. /* now set the "removed" and "faulty" bits on any missing devices */
  921. for (i=0 ; i < mddev->raid_disks ; i++) {
  922. mdp_disk_t *d = &sb->disks[i];
  923. if (d->state == 0 && d->number == 0) {
  924. d->number = i;
  925. d->raid_disk = i;
  926. d->state = (1<<MD_DISK_REMOVED);
  927. d->state |= (1<<MD_DISK_FAULTY);
  928. failed++;
  929. }
  930. }
  931. sb->nr_disks = nr_disks;
  932. sb->active_disks = active;
  933. sb->working_disks = working;
  934. sb->failed_disks = failed;
  935. sb->spare_disks = spare;
  936. sb->this_disk = sb->disks[rdev->desc_nr];
  937. sb->sb_csum = calc_sb_csum(sb);
  938. }
  939. /*
  940. * rdev_size_change for 0.90.0
  941. */
  942. static unsigned long long
  943. super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  944. {
  945. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  946. return 0; /* component must fit device */
  947. if (rdev->mddev->bitmap_offset)
  948. return 0; /* can't move bitmap */
  949. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  950. if (!num_sectors || num_sectors > rdev->sb_start)
  951. num_sectors = rdev->sb_start;
  952. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  953. rdev->sb_page);
  954. md_super_wait(rdev->mddev);
  955. return num_sectors / 2; /* kB for sysfs */
  956. }
  957. /*
  958. * version 1 superblock
  959. */
  960. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  961. {
  962. __le32 disk_csum;
  963. u32 csum;
  964. unsigned long long newcsum;
  965. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  966. __le32 *isuper = (__le32*)sb;
  967. int i;
  968. disk_csum = sb->sb_csum;
  969. sb->sb_csum = 0;
  970. newcsum = 0;
  971. for (i=0; size>=4; size -= 4 )
  972. newcsum += le32_to_cpu(*isuper++);
  973. if (size == 2)
  974. newcsum += le16_to_cpu(*(__le16*) isuper);
  975. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  976. sb->sb_csum = disk_csum;
  977. return cpu_to_le32(csum);
  978. }
  979. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  980. {
  981. struct mdp_superblock_1 *sb;
  982. int ret;
  983. sector_t sb_start;
  984. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  985. int bmask;
  986. /*
  987. * Calculate the position of the superblock in 512byte sectors.
  988. * It is always aligned to a 4K boundary and
  989. * depeding on minor_version, it can be:
  990. * 0: At least 8K, but less than 12K, from end of device
  991. * 1: At start of device
  992. * 2: 4K from start of device.
  993. */
  994. switch(minor_version) {
  995. case 0:
  996. sb_start = rdev->bdev->bd_inode->i_size >> 9;
  997. sb_start -= 8*2;
  998. sb_start &= ~(sector_t)(4*2-1);
  999. break;
  1000. case 1:
  1001. sb_start = 0;
  1002. break;
  1003. case 2:
  1004. sb_start = 8;
  1005. break;
  1006. default:
  1007. return -EINVAL;
  1008. }
  1009. rdev->sb_start = sb_start;
  1010. /* superblock is rarely larger than 1K, but it can be larger,
  1011. * and it is safe to read 4k, so we do that
  1012. */
  1013. ret = read_disk_sb(rdev, 4096);
  1014. if (ret) return ret;
  1015. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1016. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1017. sb->major_version != cpu_to_le32(1) ||
  1018. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1019. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1020. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1021. return -EINVAL;
  1022. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1023. printk("md: invalid superblock checksum on %s\n",
  1024. bdevname(rdev->bdev,b));
  1025. return -EINVAL;
  1026. }
  1027. if (le64_to_cpu(sb->data_size) < 10) {
  1028. printk("md: data_size too small on %s\n",
  1029. bdevname(rdev->bdev,b));
  1030. return -EINVAL;
  1031. }
  1032. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
  1033. if (sb->level != cpu_to_le32(1) &&
  1034. sb->level != cpu_to_le32(4) &&
  1035. sb->level != cpu_to_le32(5) &&
  1036. sb->level != cpu_to_le32(6) &&
  1037. sb->level != cpu_to_le32(10)) {
  1038. printk(KERN_WARNING
  1039. "md: bitmaps not supported for this level.\n");
  1040. return -EINVAL;
  1041. }
  1042. }
  1043. rdev->preferred_minor = 0xffff;
  1044. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1045. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1046. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1047. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  1048. if (rdev->sb_size & bmask)
  1049. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1050. if (minor_version
  1051. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1052. return -EINVAL;
  1053. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1054. rdev->desc_nr = -1;
  1055. else
  1056. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1057. if (!refdev) {
  1058. ret = 1;
  1059. } else {
  1060. __u64 ev1, ev2;
  1061. struct mdp_superblock_1 *refsb =
  1062. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  1063. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1064. sb->level != refsb->level ||
  1065. sb->layout != refsb->layout ||
  1066. sb->chunksize != refsb->chunksize) {
  1067. printk(KERN_WARNING "md: %s has strangely different"
  1068. " superblock to %s\n",
  1069. bdevname(rdev->bdev,b),
  1070. bdevname(refdev->bdev,b2));
  1071. return -EINVAL;
  1072. }
  1073. ev1 = le64_to_cpu(sb->events);
  1074. ev2 = le64_to_cpu(refsb->events);
  1075. if (ev1 > ev2)
  1076. ret = 1;
  1077. else
  1078. ret = 0;
  1079. }
  1080. if (minor_version)
  1081. rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
  1082. le64_to_cpu(sb->data_offset);
  1083. else
  1084. rdev->sectors = rdev->sb_start;
  1085. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1086. return -EINVAL;
  1087. rdev->sectors = le64_to_cpu(sb->data_size);
  1088. if (le32_to_cpu(sb->chunksize))
  1089. rdev->sectors &= ~((sector_t)le32_to_cpu(sb->chunksize) - 1);
  1090. if (le64_to_cpu(sb->size) > rdev->sectors)
  1091. return -EINVAL;
  1092. return ret;
  1093. }
  1094. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  1095. {
  1096. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1097. __u64 ev1 = le64_to_cpu(sb->events);
  1098. rdev->raid_disk = -1;
  1099. clear_bit(Faulty, &rdev->flags);
  1100. clear_bit(In_sync, &rdev->flags);
  1101. clear_bit(WriteMostly, &rdev->flags);
  1102. clear_bit(BarriersNotsupp, &rdev->flags);
  1103. if (mddev->raid_disks == 0) {
  1104. mddev->major_version = 1;
  1105. mddev->patch_version = 0;
  1106. mddev->external = 0;
  1107. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  1108. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1109. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1110. mddev->level = le32_to_cpu(sb->level);
  1111. mddev->clevel[0] = 0;
  1112. mddev->layout = le32_to_cpu(sb->layout);
  1113. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1114. mddev->dev_sectors = le64_to_cpu(sb->size);
  1115. mddev->events = ev1;
  1116. mddev->bitmap_offset = 0;
  1117. mddev->default_bitmap_offset = 1024 >> 9;
  1118. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1119. memcpy(mddev->uuid, sb->set_uuid, 16);
  1120. mddev->max_disks = (4096-256)/2;
  1121. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1122. mddev->bitmap_file == NULL )
  1123. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  1124. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1125. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1126. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1127. mddev->new_level = le32_to_cpu(sb->new_level);
  1128. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1129. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  1130. } else {
  1131. mddev->reshape_position = MaxSector;
  1132. mddev->delta_disks = 0;
  1133. mddev->new_level = mddev->level;
  1134. mddev->new_layout = mddev->layout;
  1135. mddev->new_chunk = mddev->chunk_size;
  1136. }
  1137. } else if (mddev->pers == NULL) {
  1138. /* Insist of good event counter while assembling */
  1139. ++ev1;
  1140. if (ev1 < mddev->events)
  1141. return -EINVAL;
  1142. } else if (mddev->bitmap) {
  1143. /* If adding to array with a bitmap, then we can accept an
  1144. * older device, but not too old.
  1145. */
  1146. if (ev1 < mddev->bitmap->events_cleared)
  1147. return 0;
  1148. } else {
  1149. if (ev1 < mddev->events)
  1150. /* just a hot-add of a new device, leave raid_disk at -1 */
  1151. return 0;
  1152. }
  1153. if (mddev->level != LEVEL_MULTIPATH) {
  1154. int role;
  1155. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1156. switch(role) {
  1157. case 0xffff: /* spare */
  1158. break;
  1159. case 0xfffe: /* faulty */
  1160. set_bit(Faulty, &rdev->flags);
  1161. break;
  1162. default:
  1163. if ((le32_to_cpu(sb->feature_map) &
  1164. MD_FEATURE_RECOVERY_OFFSET))
  1165. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1166. else
  1167. set_bit(In_sync, &rdev->flags);
  1168. rdev->raid_disk = role;
  1169. break;
  1170. }
  1171. if (sb->devflags & WriteMostly1)
  1172. set_bit(WriteMostly, &rdev->flags);
  1173. } else /* MULTIPATH are always insync */
  1174. set_bit(In_sync, &rdev->flags);
  1175. return 0;
  1176. }
  1177. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1178. {
  1179. struct mdp_superblock_1 *sb;
  1180. mdk_rdev_t *rdev2;
  1181. int max_dev, i;
  1182. /* make rdev->sb match mddev and rdev data. */
  1183. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1184. sb->feature_map = 0;
  1185. sb->pad0 = 0;
  1186. sb->recovery_offset = cpu_to_le64(0);
  1187. memset(sb->pad1, 0, sizeof(sb->pad1));
  1188. memset(sb->pad2, 0, sizeof(sb->pad2));
  1189. memset(sb->pad3, 0, sizeof(sb->pad3));
  1190. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1191. sb->events = cpu_to_le64(mddev->events);
  1192. if (mddev->in_sync)
  1193. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1194. else
  1195. sb->resync_offset = cpu_to_le64(0);
  1196. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1197. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1198. sb->size = cpu_to_le64(mddev->dev_sectors);
  1199. sb->chunksize = cpu_to_le32(mddev->chunk_size >> 9);
  1200. sb->level = cpu_to_le32(mddev->level);
  1201. sb->layout = cpu_to_le32(mddev->layout);
  1202. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1203. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1204. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1205. }
  1206. if (rdev->raid_disk >= 0 &&
  1207. !test_bit(In_sync, &rdev->flags)) {
  1208. if (mddev->curr_resync_completed > rdev->recovery_offset)
  1209. rdev->recovery_offset = mddev->curr_resync_completed;
  1210. if (rdev->recovery_offset > 0) {
  1211. sb->feature_map |=
  1212. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1213. sb->recovery_offset =
  1214. cpu_to_le64(rdev->recovery_offset);
  1215. }
  1216. }
  1217. if (mddev->reshape_position != MaxSector) {
  1218. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1219. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1220. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1221. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1222. sb->new_level = cpu_to_le32(mddev->new_level);
  1223. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1224. }
  1225. max_dev = 0;
  1226. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1227. if (rdev2->desc_nr+1 > max_dev)
  1228. max_dev = rdev2->desc_nr+1;
  1229. if (max_dev > le32_to_cpu(sb->max_dev))
  1230. sb->max_dev = cpu_to_le32(max_dev);
  1231. for (i=0; i<max_dev;i++)
  1232. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1233. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1234. i = rdev2->desc_nr;
  1235. if (test_bit(Faulty, &rdev2->flags))
  1236. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1237. else if (test_bit(In_sync, &rdev2->flags))
  1238. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1239. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1240. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1241. else
  1242. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1243. }
  1244. sb->sb_csum = calc_sb_1_csum(sb);
  1245. }
  1246. static unsigned long long
  1247. super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1248. {
  1249. struct mdp_superblock_1 *sb;
  1250. sector_t max_sectors;
  1251. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1252. return 0; /* component must fit device */
  1253. if (rdev->sb_start < rdev->data_offset) {
  1254. /* minor versions 1 and 2; superblock before data */
  1255. max_sectors = rdev->bdev->bd_inode->i_size >> 9;
  1256. max_sectors -= rdev->data_offset;
  1257. if (!num_sectors || num_sectors > max_sectors)
  1258. num_sectors = max_sectors;
  1259. } else if (rdev->mddev->bitmap_offset) {
  1260. /* minor version 0 with bitmap we can't move */
  1261. return 0;
  1262. } else {
  1263. /* minor version 0; superblock after data */
  1264. sector_t sb_start;
  1265. sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
  1266. sb_start &= ~(sector_t)(4*2 - 1);
  1267. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1268. if (!num_sectors || num_sectors > max_sectors)
  1269. num_sectors = max_sectors;
  1270. rdev->sb_start = sb_start;
  1271. }
  1272. sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
  1273. sb->data_size = cpu_to_le64(num_sectors);
  1274. sb->super_offset = rdev->sb_start;
  1275. sb->sb_csum = calc_sb_1_csum(sb);
  1276. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1277. rdev->sb_page);
  1278. md_super_wait(rdev->mddev);
  1279. return num_sectors / 2; /* kB for sysfs */
  1280. }
  1281. static struct super_type super_types[] = {
  1282. [0] = {
  1283. .name = "0.90.0",
  1284. .owner = THIS_MODULE,
  1285. .load_super = super_90_load,
  1286. .validate_super = super_90_validate,
  1287. .sync_super = super_90_sync,
  1288. .rdev_size_change = super_90_rdev_size_change,
  1289. },
  1290. [1] = {
  1291. .name = "md-1",
  1292. .owner = THIS_MODULE,
  1293. .load_super = super_1_load,
  1294. .validate_super = super_1_validate,
  1295. .sync_super = super_1_sync,
  1296. .rdev_size_change = super_1_rdev_size_change,
  1297. },
  1298. };
  1299. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1300. {
  1301. mdk_rdev_t *rdev, *rdev2;
  1302. rcu_read_lock();
  1303. rdev_for_each_rcu(rdev, mddev1)
  1304. rdev_for_each_rcu(rdev2, mddev2)
  1305. if (rdev->bdev->bd_contains ==
  1306. rdev2->bdev->bd_contains) {
  1307. rcu_read_unlock();
  1308. return 1;
  1309. }
  1310. rcu_read_unlock();
  1311. return 0;
  1312. }
  1313. static LIST_HEAD(pending_raid_disks);
  1314. static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev)
  1315. {
  1316. struct mdk_personality *pers = mddev->pers;
  1317. struct gendisk *disk = mddev->gendisk;
  1318. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1319. struct blk_integrity *bi_mddev = blk_get_integrity(disk);
  1320. /* Data integrity passthrough not supported on RAID 4, 5 and 6 */
  1321. if (pers && pers->level >= 4 && pers->level <= 6)
  1322. return;
  1323. /* If rdev is integrity capable, register profile for mddev */
  1324. if (!bi_mddev && bi_rdev) {
  1325. if (blk_integrity_register(disk, bi_rdev))
  1326. printk(KERN_ERR "%s: %s Could not register integrity!\n",
  1327. __func__, disk->disk_name);
  1328. else
  1329. printk(KERN_NOTICE "Enabling data integrity on %s\n",
  1330. disk->disk_name);
  1331. return;
  1332. }
  1333. /* Check that mddev and rdev have matching profiles */
  1334. if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) {
  1335. printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__,
  1336. disk->disk_name, rdev->bdev->bd_disk->disk_name);
  1337. printk(KERN_NOTICE "Disabling data integrity on %s\n",
  1338. disk->disk_name);
  1339. blk_integrity_unregister(disk);
  1340. }
  1341. }
  1342. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1343. {
  1344. char b[BDEVNAME_SIZE];
  1345. struct kobject *ko;
  1346. char *s;
  1347. int err;
  1348. if (rdev->mddev) {
  1349. MD_BUG();
  1350. return -EINVAL;
  1351. }
  1352. /* prevent duplicates */
  1353. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1354. return -EEXIST;
  1355. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1356. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1357. rdev->sectors < mddev->dev_sectors)) {
  1358. if (mddev->pers) {
  1359. /* Cannot change size, so fail
  1360. * If mddev->level <= 0, then we don't care
  1361. * about aligning sizes (e.g. linear)
  1362. */
  1363. if (mddev->level > 0)
  1364. return -ENOSPC;
  1365. } else
  1366. mddev->dev_sectors = rdev->sectors;
  1367. }
  1368. /* Verify rdev->desc_nr is unique.
  1369. * If it is -1, assign a free number, else
  1370. * check number is not in use
  1371. */
  1372. if (rdev->desc_nr < 0) {
  1373. int choice = 0;
  1374. if (mddev->pers) choice = mddev->raid_disks;
  1375. while (find_rdev_nr(mddev, choice))
  1376. choice++;
  1377. rdev->desc_nr = choice;
  1378. } else {
  1379. if (find_rdev_nr(mddev, rdev->desc_nr))
  1380. return -EBUSY;
  1381. }
  1382. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1383. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1384. mdname(mddev), mddev->max_disks);
  1385. return -EBUSY;
  1386. }
  1387. bdevname(rdev->bdev,b);
  1388. while ( (s=strchr(b, '/')) != NULL)
  1389. *s = '!';
  1390. rdev->mddev = mddev;
  1391. printk(KERN_INFO "md: bind<%s>\n", b);
  1392. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1393. goto fail;
  1394. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1395. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1396. kobject_del(&rdev->kobj);
  1397. goto fail;
  1398. }
  1399. rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
  1400. list_add_rcu(&rdev->same_set, &mddev->disks);
  1401. bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
  1402. /* May as well allow recovery to be retried once */
  1403. mddev->recovery_disabled = 0;
  1404. md_integrity_check(rdev, mddev);
  1405. return 0;
  1406. fail:
  1407. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1408. b, mdname(mddev));
  1409. return err;
  1410. }
  1411. static void md_delayed_delete(struct work_struct *ws)
  1412. {
  1413. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1414. kobject_del(&rdev->kobj);
  1415. kobject_put(&rdev->kobj);
  1416. }
  1417. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1418. {
  1419. char b[BDEVNAME_SIZE];
  1420. if (!rdev->mddev) {
  1421. MD_BUG();
  1422. return;
  1423. }
  1424. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1425. list_del_rcu(&rdev->same_set);
  1426. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1427. rdev->mddev = NULL;
  1428. sysfs_remove_link(&rdev->kobj, "block");
  1429. sysfs_put(rdev->sysfs_state);
  1430. rdev->sysfs_state = NULL;
  1431. /* We need to delay this, otherwise we can deadlock when
  1432. * writing to 'remove' to "dev/state". We also need
  1433. * to delay it due to rcu usage.
  1434. */
  1435. synchronize_rcu();
  1436. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1437. kobject_get(&rdev->kobj);
  1438. schedule_work(&rdev->del_work);
  1439. }
  1440. /*
  1441. * prevent the device from being mounted, repartitioned or
  1442. * otherwise reused by a RAID array (or any other kernel
  1443. * subsystem), by bd_claiming the device.
  1444. */
  1445. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1446. {
  1447. int err = 0;
  1448. struct block_device *bdev;
  1449. char b[BDEVNAME_SIZE];
  1450. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1451. if (IS_ERR(bdev)) {
  1452. printk(KERN_ERR "md: could not open %s.\n",
  1453. __bdevname(dev, b));
  1454. return PTR_ERR(bdev);
  1455. }
  1456. err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1457. if (err) {
  1458. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1459. bdevname(bdev, b));
  1460. blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
  1461. return err;
  1462. }
  1463. if (!shared)
  1464. set_bit(AllReserved, &rdev->flags);
  1465. rdev->bdev = bdev;
  1466. return err;
  1467. }
  1468. static void unlock_rdev(mdk_rdev_t *rdev)
  1469. {
  1470. struct block_device *bdev = rdev->bdev;
  1471. rdev->bdev = NULL;
  1472. if (!bdev)
  1473. MD_BUG();
  1474. bd_release(bdev);
  1475. blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
  1476. }
  1477. void md_autodetect_dev(dev_t dev);
  1478. static void export_rdev(mdk_rdev_t * rdev)
  1479. {
  1480. char b[BDEVNAME_SIZE];
  1481. printk(KERN_INFO "md: export_rdev(%s)\n",
  1482. bdevname(rdev->bdev,b));
  1483. if (rdev->mddev)
  1484. MD_BUG();
  1485. free_disk_sb(rdev);
  1486. #ifndef MODULE
  1487. if (test_bit(AutoDetected, &rdev->flags))
  1488. md_autodetect_dev(rdev->bdev->bd_dev);
  1489. #endif
  1490. unlock_rdev(rdev);
  1491. kobject_put(&rdev->kobj);
  1492. }
  1493. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1494. {
  1495. unbind_rdev_from_array(rdev);
  1496. export_rdev(rdev);
  1497. }
  1498. static void export_array(mddev_t *mddev)
  1499. {
  1500. mdk_rdev_t *rdev, *tmp;
  1501. rdev_for_each(rdev, tmp, mddev) {
  1502. if (!rdev->mddev) {
  1503. MD_BUG();
  1504. continue;
  1505. }
  1506. kick_rdev_from_array(rdev);
  1507. }
  1508. if (!list_empty(&mddev->disks))
  1509. MD_BUG();
  1510. mddev->raid_disks = 0;
  1511. mddev->major_version = 0;
  1512. }
  1513. static void print_desc(mdp_disk_t *desc)
  1514. {
  1515. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1516. desc->major,desc->minor,desc->raid_disk,desc->state);
  1517. }
  1518. static void print_sb_90(mdp_super_t *sb)
  1519. {
  1520. int i;
  1521. printk(KERN_INFO
  1522. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1523. sb->major_version, sb->minor_version, sb->patch_version,
  1524. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1525. sb->ctime);
  1526. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1527. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1528. sb->md_minor, sb->layout, sb->chunk_size);
  1529. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1530. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1531. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1532. sb->failed_disks, sb->spare_disks,
  1533. sb->sb_csum, (unsigned long)sb->events_lo);
  1534. printk(KERN_INFO);
  1535. for (i = 0; i < MD_SB_DISKS; i++) {
  1536. mdp_disk_t *desc;
  1537. desc = sb->disks + i;
  1538. if (desc->number || desc->major || desc->minor ||
  1539. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1540. printk(" D %2d: ", i);
  1541. print_desc(desc);
  1542. }
  1543. }
  1544. printk(KERN_INFO "md: THIS: ");
  1545. print_desc(&sb->this_disk);
  1546. }
  1547. static void print_sb_1(struct mdp_superblock_1 *sb)
  1548. {
  1549. __u8 *uuid;
  1550. uuid = sb->set_uuid;
  1551. printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
  1552. ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
  1553. KERN_INFO "md: Name: \"%s\" CT:%llu\n",
  1554. le32_to_cpu(sb->major_version),
  1555. le32_to_cpu(sb->feature_map),
  1556. uuid[0], uuid[1], uuid[2], uuid[3],
  1557. uuid[4], uuid[5], uuid[6], uuid[7],
  1558. uuid[8], uuid[9], uuid[10], uuid[11],
  1559. uuid[12], uuid[13], uuid[14], uuid[15],
  1560. sb->set_name,
  1561. (unsigned long long)le64_to_cpu(sb->ctime)
  1562. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1563. uuid = sb->device_uuid;
  1564. printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1565. " RO:%llu\n"
  1566. KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
  1567. ":%02x%02x%02x%02x%02x%02x\n"
  1568. KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1569. KERN_INFO "md: (MaxDev:%u) \n",
  1570. le32_to_cpu(sb->level),
  1571. (unsigned long long)le64_to_cpu(sb->size),
  1572. le32_to_cpu(sb->raid_disks),
  1573. le32_to_cpu(sb->layout),
  1574. le32_to_cpu(sb->chunksize),
  1575. (unsigned long long)le64_to_cpu(sb->data_offset),
  1576. (unsigned long long)le64_to_cpu(sb->data_size),
  1577. (unsigned long long)le64_to_cpu(sb->super_offset),
  1578. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1579. le32_to_cpu(sb->dev_number),
  1580. uuid[0], uuid[1], uuid[2], uuid[3],
  1581. uuid[4], uuid[5], uuid[6], uuid[7],
  1582. uuid[8], uuid[9], uuid[10], uuid[11],
  1583. uuid[12], uuid[13], uuid[14], uuid[15],
  1584. sb->devflags,
  1585. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1586. (unsigned long long)le64_to_cpu(sb->events),
  1587. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1588. le32_to_cpu(sb->sb_csum),
  1589. le32_to_cpu(sb->max_dev)
  1590. );
  1591. }
  1592. static void print_rdev(mdk_rdev_t *rdev, int major_version)
  1593. {
  1594. char b[BDEVNAME_SIZE];
  1595. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  1596. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  1597. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1598. rdev->desc_nr);
  1599. if (rdev->sb_loaded) {
  1600. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  1601. switch (major_version) {
  1602. case 0:
  1603. print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
  1604. break;
  1605. case 1:
  1606. print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
  1607. break;
  1608. }
  1609. } else
  1610. printk(KERN_INFO "md: no rdev superblock!\n");
  1611. }
  1612. static void md_print_devices(void)
  1613. {
  1614. struct list_head *tmp;
  1615. mdk_rdev_t *rdev;
  1616. mddev_t *mddev;
  1617. char b[BDEVNAME_SIZE];
  1618. printk("\n");
  1619. printk("md: **********************************\n");
  1620. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1621. printk("md: **********************************\n");
  1622. for_each_mddev(mddev, tmp) {
  1623. if (mddev->bitmap)
  1624. bitmap_print_sb(mddev->bitmap);
  1625. else
  1626. printk("%s: ", mdname(mddev));
  1627. list_for_each_entry(rdev, &mddev->disks, same_set)
  1628. printk("<%s>", bdevname(rdev->bdev,b));
  1629. printk("\n");
  1630. list_for_each_entry(rdev, &mddev->disks, same_set)
  1631. print_rdev(rdev, mddev->major_version);
  1632. }
  1633. printk("md: **********************************\n");
  1634. printk("\n");
  1635. }
  1636. static void sync_sbs(mddev_t * mddev, int nospares)
  1637. {
  1638. /* Update each superblock (in-memory image), but
  1639. * if we are allowed to, skip spares which already
  1640. * have the right event counter, or have one earlier
  1641. * (which would mean they aren't being marked as dirty
  1642. * with the rest of the array)
  1643. */
  1644. mdk_rdev_t *rdev;
  1645. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1646. if (rdev->sb_events == mddev->events ||
  1647. (nospares &&
  1648. rdev->raid_disk < 0 &&
  1649. (rdev->sb_events&1)==0 &&
  1650. rdev->sb_events+1 == mddev->events)) {
  1651. /* Don't update this superblock */
  1652. rdev->sb_loaded = 2;
  1653. } else {
  1654. super_types[mddev->major_version].
  1655. sync_super(mddev, rdev);
  1656. rdev->sb_loaded = 1;
  1657. }
  1658. }
  1659. }
  1660. static void md_update_sb(mddev_t * mddev, int force_change)
  1661. {
  1662. mdk_rdev_t *rdev;
  1663. int sync_req;
  1664. int nospares = 0;
  1665. if (mddev->external)
  1666. return;
  1667. repeat:
  1668. spin_lock_irq(&mddev->write_lock);
  1669. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1670. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1671. force_change = 1;
  1672. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1673. /* just a clean<-> dirty transition, possibly leave spares alone,
  1674. * though if events isn't the right even/odd, we will have to do
  1675. * spares after all
  1676. */
  1677. nospares = 1;
  1678. if (force_change)
  1679. nospares = 0;
  1680. if (mddev->degraded)
  1681. /* If the array is degraded, then skipping spares is both
  1682. * dangerous and fairly pointless.
  1683. * Dangerous because a device that was removed from the array
  1684. * might have a event_count that still looks up-to-date,
  1685. * so it can be re-added without a resync.
  1686. * Pointless because if there are any spares to skip,
  1687. * then a recovery will happen and soon that array won't
  1688. * be degraded any more and the spare can go back to sleep then.
  1689. */
  1690. nospares = 0;
  1691. sync_req = mddev->in_sync;
  1692. mddev->utime = get_seconds();
  1693. /* If this is just a dirty<->clean transition, and the array is clean
  1694. * and 'events' is odd, we can roll back to the previous clean state */
  1695. if (nospares
  1696. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1697. && (mddev->events & 1)
  1698. && mddev->events != 1)
  1699. mddev->events--;
  1700. else {
  1701. /* otherwise we have to go forward and ... */
  1702. mddev->events ++;
  1703. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1704. /* .. if the array isn't clean, insist on an odd 'events' */
  1705. if ((mddev->events&1)==0) {
  1706. mddev->events++;
  1707. nospares = 0;
  1708. }
  1709. } else {
  1710. /* otherwise insist on an even 'events' (for clean states) */
  1711. if ((mddev->events&1)) {
  1712. mddev->events++;
  1713. nospares = 0;
  1714. }
  1715. }
  1716. }
  1717. if (!mddev->events) {
  1718. /*
  1719. * oops, this 64-bit counter should never wrap.
  1720. * Either we are in around ~1 trillion A.C., assuming
  1721. * 1 reboot per second, or we have a bug:
  1722. */
  1723. MD_BUG();
  1724. mddev->events --;
  1725. }
  1726. /*
  1727. * do not write anything to disk if using
  1728. * nonpersistent superblocks
  1729. */
  1730. if (!mddev->persistent) {
  1731. if (!mddev->external)
  1732. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1733. spin_unlock_irq(&mddev->write_lock);
  1734. wake_up(&mddev->sb_wait);
  1735. return;
  1736. }
  1737. sync_sbs(mddev, nospares);
  1738. spin_unlock_irq(&mddev->write_lock);
  1739. dprintk(KERN_INFO
  1740. "md: updating %s RAID superblock on device (in sync %d)\n",
  1741. mdname(mddev),mddev->in_sync);
  1742. bitmap_update_sb(mddev->bitmap);
  1743. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1744. char b[BDEVNAME_SIZE];
  1745. dprintk(KERN_INFO "md: ");
  1746. if (rdev->sb_loaded != 1)
  1747. continue; /* no noise on spare devices */
  1748. if (test_bit(Faulty, &rdev->flags))
  1749. dprintk("(skipping faulty ");
  1750. dprintk("%s ", bdevname(rdev->bdev,b));
  1751. if (!test_bit(Faulty, &rdev->flags)) {
  1752. md_super_write(mddev,rdev,
  1753. rdev->sb_start, rdev->sb_size,
  1754. rdev->sb_page);
  1755. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1756. bdevname(rdev->bdev,b),
  1757. (unsigned long long)rdev->sb_start);
  1758. rdev->sb_events = mddev->events;
  1759. } else
  1760. dprintk(")\n");
  1761. if (mddev->level == LEVEL_MULTIPATH)
  1762. /* only need to write one superblock... */
  1763. break;
  1764. }
  1765. md_super_wait(mddev);
  1766. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1767. spin_lock_irq(&mddev->write_lock);
  1768. if (mddev->in_sync != sync_req ||
  1769. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1770. /* have to write it out again */
  1771. spin_unlock_irq(&mddev->write_lock);
  1772. goto repeat;
  1773. }
  1774. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1775. spin_unlock_irq(&mddev->write_lock);
  1776. wake_up(&mddev->sb_wait);
  1777. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  1778. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  1779. }
  1780. /* words written to sysfs files may, or may not, be \n terminated.
  1781. * We want to accept with case. For this we use cmd_match.
  1782. */
  1783. static int cmd_match(const char *cmd, const char *str)
  1784. {
  1785. /* See if cmd, written into a sysfs file, matches
  1786. * str. They must either be the same, or cmd can
  1787. * have a trailing newline
  1788. */
  1789. while (*cmd && *str && *cmd == *str) {
  1790. cmd++;
  1791. str++;
  1792. }
  1793. if (*cmd == '\n')
  1794. cmd++;
  1795. if (*str || *cmd)
  1796. return 0;
  1797. return 1;
  1798. }
  1799. struct rdev_sysfs_entry {
  1800. struct attribute attr;
  1801. ssize_t (*show)(mdk_rdev_t *, char *);
  1802. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1803. };
  1804. static ssize_t
  1805. state_show(mdk_rdev_t *rdev, char *page)
  1806. {
  1807. char *sep = "";
  1808. size_t len = 0;
  1809. if (test_bit(Faulty, &rdev->flags)) {
  1810. len+= sprintf(page+len, "%sfaulty",sep);
  1811. sep = ",";
  1812. }
  1813. if (test_bit(In_sync, &rdev->flags)) {
  1814. len += sprintf(page+len, "%sin_sync",sep);
  1815. sep = ",";
  1816. }
  1817. if (test_bit(WriteMostly, &rdev->flags)) {
  1818. len += sprintf(page+len, "%swrite_mostly",sep);
  1819. sep = ",";
  1820. }
  1821. if (test_bit(Blocked, &rdev->flags)) {
  1822. len += sprintf(page+len, "%sblocked", sep);
  1823. sep = ",";
  1824. }
  1825. if (!test_bit(Faulty, &rdev->flags) &&
  1826. !test_bit(In_sync, &rdev->flags)) {
  1827. len += sprintf(page+len, "%sspare", sep);
  1828. sep = ",";
  1829. }
  1830. return len+sprintf(page+len, "\n");
  1831. }
  1832. static ssize_t
  1833. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1834. {
  1835. /* can write
  1836. * faulty - simulates and error
  1837. * remove - disconnects the device
  1838. * writemostly - sets write_mostly
  1839. * -writemostly - clears write_mostly
  1840. * blocked - sets the Blocked flag
  1841. * -blocked - clears the Blocked flag
  1842. * insync - sets Insync providing device isn't active
  1843. */
  1844. int err = -EINVAL;
  1845. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1846. md_error(rdev->mddev, rdev);
  1847. err = 0;
  1848. } else if (cmd_match(buf, "remove")) {
  1849. if (rdev->raid_disk >= 0)
  1850. err = -EBUSY;
  1851. else {
  1852. mddev_t *mddev = rdev->mddev;
  1853. kick_rdev_from_array(rdev);
  1854. if (mddev->pers)
  1855. md_update_sb(mddev, 1);
  1856. md_new_event(mddev);
  1857. err = 0;
  1858. }
  1859. } else if (cmd_match(buf, "writemostly")) {
  1860. set_bit(WriteMostly, &rdev->flags);
  1861. err = 0;
  1862. } else if (cmd_match(buf, "-writemostly")) {
  1863. clear_bit(WriteMostly, &rdev->flags);
  1864. err = 0;
  1865. } else if (cmd_match(buf, "blocked")) {
  1866. set_bit(Blocked, &rdev->flags);
  1867. err = 0;
  1868. } else if (cmd_match(buf, "-blocked")) {
  1869. clear_bit(Blocked, &rdev->flags);
  1870. wake_up(&rdev->blocked_wait);
  1871. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  1872. md_wakeup_thread(rdev->mddev->thread);
  1873. err = 0;
  1874. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  1875. set_bit(In_sync, &rdev->flags);
  1876. err = 0;
  1877. }
  1878. if (!err && rdev->sysfs_state)
  1879. sysfs_notify_dirent(rdev->sysfs_state);
  1880. return err ? err : len;
  1881. }
  1882. static struct rdev_sysfs_entry rdev_state =
  1883. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1884. static ssize_t
  1885. errors_show(mdk_rdev_t *rdev, char *page)
  1886. {
  1887. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1888. }
  1889. static ssize_t
  1890. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1891. {
  1892. char *e;
  1893. unsigned long n = simple_strtoul(buf, &e, 10);
  1894. if (*buf && (*e == 0 || *e == '\n')) {
  1895. atomic_set(&rdev->corrected_errors, n);
  1896. return len;
  1897. }
  1898. return -EINVAL;
  1899. }
  1900. static struct rdev_sysfs_entry rdev_errors =
  1901. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1902. static ssize_t
  1903. slot_show(mdk_rdev_t *rdev, char *page)
  1904. {
  1905. if (rdev->raid_disk < 0)
  1906. return sprintf(page, "none\n");
  1907. else
  1908. return sprintf(page, "%d\n", rdev->raid_disk);
  1909. }
  1910. static ssize_t
  1911. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1912. {
  1913. char *e;
  1914. int err;
  1915. char nm[20];
  1916. int slot = simple_strtoul(buf, &e, 10);
  1917. if (strncmp(buf, "none", 4)==0)
  1918. slot = -1;
  1919. else if (e==buf || (*e && *e!= '\n'))
  1920. return -EINVAL;
  1921. if (rdev->mddev->pers && slot == -1) {
  1922. /* Setting 'slot' on an active array requires also
  1923. * updating the 'rd%d' link, and communicating
  1924. * with the personality with ->hot_*_disk.
  1925. * For now we only support removing
  1926. * failed/spare devices. This normally happens automatically,
  1927. * but not when the metadata is externally managed.
  1928. */
  1929. if (rdev->raid_disk == -1)
  1930. return -EEXIST;
  1931. /* personality does all needed checks */
  1932. if (rdev->mddev->pers->hot_add_disk == NULL)
  1933. return -EINVAL;
  1934. err = rdev->mddev->pers->
  1935. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  1936. if (err)
  1937. return err;
  1938. sprintf(nm, "rd%d", rdev->raid_disk);
  1939. sysfs_remove_link(&rdev->mddev->kobj, nm);
  1940. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  1941. md_wakeup_thread(rdev->mddev->thread);
  1942. } else if (rdev->mddev->pers) {
  1943. mdk_rdev_t *rdev2;
  1944. /* Activating a spare .. or possibly reactivating
  1945. * if we ever get bitmaps working here.
  1946. */
  1947. if (rdev->raid_disk != -1)
  1948. return -EBUSY;
  1949. if (rdev->mddev->pers->hot_add_disk == NULL)
  1950. return -EINVAL;
  1951. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  1952. if (rdev2->raid_disk == slot)
  1953. return -EEXIST;
  1954. rdev->raid_disk = slot;
  1955. if (test_bit(In_sync, &rdev->flags))
  1956. rdev->saved_raid_disk = slot;
  1957. else
  1958. rdev->saved_raid_disk = -1;
  1959. err = rdev->mddev->pers->
  1960. hot_add_disk(rdev->mddev, rdev);
  1961. if (err) {
  1962. rdev->raid_disk = -1;
  1963. return err;
  1964. } else
  1965. sysfs_notify_dirent(rdev->sysfs_state);
  1966. sprintf(nm, "rd%d", rdev->raid_disk);
  1967. if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
  1968. printk(KERN_WARNING
  1969. "md: cannot register "
  1970. "%s for %s\n",
  1971. nm, mdname(rdev->mddev));
  1972. /* don't wakeup anyone, leave that to userspace. */
  1973. } else {
  1974. if (slot >= rdev->mddev->raid_disks)
  1975. return -ENOSPC;
  1976. rdev->raid_disk = slot;
  1977. /* assume it is working */
  1978. clear_bit(Faulty, &rdev->flags);
  1979. clear_bit(WriteMostly, &rdev->flags);
  1980. set_bit(In_sync, &rdev->flags);
  1981. sysfs_notify_dirent(rdev->sysfs_state);
  1982. }
  1983. return len;
  1984. }
  1985. static struct rdev_sysfs_entry rdev_slot =
  1986. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1987. static ssize_t
  1988. offset_show(mdk_rdev_t *rdev, char *page)
  1989. {
  1990. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1991. }
  1992. static ssize_t
  1993. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1994. {
  1995. char *e;
  1996. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1997. if (e==buf || (*e && *e != '\n'))
  1998. return -EINVAL;
  1999. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2000. return -EBUSY;
  2001. if (rdev->sectors && rdev->mddev->external)
  2002. /* Must set offset before size, so overlap checks
  2003. * can be sane */
  2004. return -EBUSY;
  2005. rdev->data_offset = offset;
  2006. return len;
  2007. }
  2008. static struct rdev_sysfs_entry rdev_offset =
  2009. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2010. static ssize_t
  2011. rdev_size_show(mdk_rdev_t *rdev, char *page)
  2012. {
  2013. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2014. }
  2015. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2016. {
  2017. /* check if two start/length pairs overlap */
  2018. if (s1+l1 <= s2)
  2019. return 0;
  2020. if (s2+l2 <= s1)
  2021. return 0;
  2022. return 1;
  2023. }
  2024. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2025. {
  2026. unsigned long long blocks;
  2027. sector_t new;
  2028. if (strict_strtoull(buf, 10, &blocks) < 0)
  2029. return -EINVAL;
  2030. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2031. return -EINVAL; /* sector conversion overflow */
  2032. new = blocks * 2;
  2033. if (new != blocks * 2)
  2034. return -EINVAL; /* unsigned long long to sector_t overflow */
  2035. *sectors = new;
  2036. return 0;
  2037. }
  2038. static ssize_t
  2039. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2040. {
  2041. mddev_t *my_mddev = rdev->mddev;
  2042. sector_t oldsectors = rdev->sectors;
  2043. sector_t sectors;
  2044. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2045. return -EINVAL;
  2046. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2047. if (my_mddev->persistent) {
  2048. sectors = super_types[my_mddev->major_version].
  2049. rdev_size_change(rdev, sectors);
  2050. if (!sectors)
  2051. return -EBUSY;
  2052. } else if (!sectors)
  2053. sectors = (rdev->bdev->bd_inode->i_size >> 9) -
  2054. rdev->data_offset;
  2055. }
  2056. if (sectors < my_mddev->dev_sectors)
  2057. return -EINVAL; /* component must fit device */
  2058. rdev->sectors = sectors;
  2059. if (sectors > oldsectors && my_mddev->external) {
  2060. /* need to check that all other rdevs with the same ->bdev
  2061. * do not overlap. We need to unlock the mddev to avoid
  2062. * a deadlock. We have already changed rdev->sectors, and if
  2063. * we have to change it back, we will have the lock again.
  2064. */
  2065. mddev_t *mddev;
  2066. int overlap = 0;
  2067. struct list_head *tmp;
  2068. mddev_unlock(my_mddev);
  2069. for_each_mddev(mddev, tmp) {
  2070. mdk_rdev_t *rdev2;
  2071. mddev_lock(mddev);
  2072. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2073. if (test_bit(AllReserved, &rdev2->flags) ||
  2074. (rdev->bdev == rdev2->bdev &&
  2075. rdev != rdev2 &&
  2076. overlaps(rdev->data_offset, rdev->sectors,
  2077. rdev2->data_offset,
  2078. rdev2->sectors))) {
  2079. overlap = 1;
  2080. break;
  2081. }
  2082. mddev_unlock(mddev);
  2083. if (overlap) {
  2084. mddev_put(mddev);
  2085. break;
  2086. }
  2087. }
  2088. mddev_lock(my_mddev);
  2089. if (overlap) {
  2090. /* Someone else could have slipped in a size
  2091. * change here, but doing so is just silly.
  2092. * We put oldsectors back because we *know* it is
  2093. * safe, and trust userspace not to race with
  2094. * itself
  2095. */
  2096. rdev->sectors = oldsectors;
  2097. return -EBUSY;
  2098. }
  2099. }
  2100. return len;
  2101. }
  2102. static struct rdev_sysfs_entry rdev_size =
  2103. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2104. static struct attribute *rdev_default_attrs[] = {
  2105. &rdev_state.attr,
  2106. &rdev_errors.attr,
  2107. &rdev_slot.attr,
  2108. &rdev_offset.attr,
  2109. &rdev_size.attr,
  2110. NULL,
  2111. };
  2112. static ssize_t
  2113. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2114. {
  2115. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2116. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2117. mddev_t *mddev = rdev->mddev;
  2118. ssize_t rv;
  2119. if (!entry->show)
  2120. return -EIO;
  2121. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2122. if (!rv) {
  2123. if (rdev->mddev == NULL)
  2124. rv = -EBUSY;
  2125. else
  2126. rv = entry->show(rdev, page);
  2127. mddev_unlock(mddev);
  2128. }
  2129. return rv;
  2130. }
  2131. static ssize_t
  2132. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2133. const char *page, size_t length)
  2134. {
  2135. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2136. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2137. ssize_t rv;
  2138. mddev_t *mddev = rdev->mddev;
  2139. if (!entry->store)
  2140. return -EIO;
  2141. if (!capable(CAP_SYS_ADMIN))
  2142. return -EACCES;
  2143. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2144. if (!rv) {
  2145. if (rdev->mddev == NULL)
  2146. rv = -EBUSY;
  2147. else
  2148. rv = entry->store(rdev, page, length);
  2149. mddev_unlock(mddev);
  2150. }
  2151. return rv;
  2152. }
  2153. static void rdev_free(struct kobject *ko)
  2154. {
  2155. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  2156. kfree(rdev);
  2157. }
  2158. static struct sysfs_ops rdev_sysfs_ops = {
  2159. .show = rdev_attr_show,
  2160. .store = rdev_attr_store,
  2161. };
  2162. static struct kobj_type rdev_ktype = {
  2163. .release = rdev_free,
  2164. .sysfs_ops = &rdev_sysfs_ops,
  2165. .default_attrs = rdev_default_attrs,
  2166. };
  2167. /*
  2168. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2169. *
  2170. * mark the device faulty if:
  2171. *
  2172. * - the device is nonexistent (zero size)
  2173. * - the device has no valid superblock
  2174. *
  2175. * a faulty rdev _never_ has rdev->sb set.
  2176. */
  2177. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  2178. {
  2179. char b[BDEVNAME_SIZE];
  2180. int err;
  2181. mdk_rdev_t *rdev;
  2182. sector_t size;
  2183. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2184. if (!rdev) {
  2185. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2186. return ERR_PTR(-ENOMEM);
  2187. }
  2188. if ((err = alloc_disk_sb(rdev)))
  2189. goto abort_free;
  2190. err = lock_rdev(rdev, newdev, super_format == -2);
  2191. if (err)
  2192. goto abort_free;
  2193. kobject_init(&rdev->kobj, &rdev_ktype);
  2194. rdev->desc_nr = -1;
  2195. rdev->saved_raid_disk = -1;
  2196. rdev->raid_disk = -1;
  2197. rdev->flags = 0;
  2198. rdev->data_offset = 0;
  2199. rdev->sb_events = 0;
  2200. atomic_set(&rdev->nr_pending, 0);
  2201. atomic_set(&rdev->read_errors, 0);
  2202. atomic_set(&rdev->corrected_errors, 0);
  2203. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2204. if (!size) {
  2205. printk(KERN_WARNING
  2206. "md: %s has zero or unknown size, marking faulty!\n",
  2207. bdevname(rdev->bdev,b));
  2208. err = -EINVAL;
  2209. goto abort_free;
  2210. }
  2211. if (super_format >= 0) {
  2212. err = super_types[super_format].
  2213. load_super(rdev, NULL, super_minor);
  2214. if (err == -EINVAL) {
  2215. printk(KERN_WARNING
  2216. "md: %s does not have a valid v%d.%d "
  2217. "superblock, not importing!\n",
  2218. bdevname(rdev->bdev,b),
  2219. super_format, super_minor);
  2220. goto abort_free;
  2221. }
  2222. if (err < 0) {
  2223. printk(KERN_WARNING
  2224. "md: could not read %s's sb, not importing!\n",
  2225. bdevname(rdev->bdev,b));
  2226. goto abort_free;
  2227. }
  2228. }
  2229. INIT_LIST_HEAD(&rdev->same_set);
  2230. init_waitqueue_head(&rdev->blocked_wait);
  2231. return rdev;
  2232. abort_free:
  2233. if (rdev->sb_page) {
  2234. if (rdev->bdev)
  2235. unlock_rdev(rdev);
  2236. free_disk_sb(rdev);
  2237. }
  2238. kfree(rdev);
  2239. return ERR_PTR(err);
  2240. }
  2241. /*
  2242. * Check a full RAID array for plausibility
  2243. */
  2244. static void analyze_sbs(mddev_t * mddev)
  2245. {
  2246. int i;
  2247. mdk_rdev_t *rdev, *freshest, *tmp;
  2248. char b[BDEVNAME_SIZE];
  2249. freshest = NULL;
  2250. rdev_for_each(rdev, tmp, mddev)
  2251. switch (super_types[mddev->major_version].
  2252. load_super(rdev, freshest, mddev->minor_version)) {
  2253. case 1:
  2254. freshest = rdev;
  2255. break;
  2256. case 0:
  2257. break;
  2258. default:
  2259. printk( KERN_ERR \
  2260. "md: fatal superblock inconsistency in %s"
  2261. " -- removing from array\n",
  2262. bdevname(rdev->bdev,b));
  2263. kick_rdev_from_array(rdev);
  2264. }
  2265. super_types[mddev->major_version].
  2266. validate_super(mddev, freshest);
  2267. i = 0;
  2268. rdev_for_each(rdev, tmp, mddev) {
  2269. if (rdev->desc_nr >= mddev->max_disks ||
  2270. i > mddev->max_disks) {
  2271. printk(KERN_WARNING
  2272. "md: %s: %s: only %d devices permitted\n",
  2273. mdname(mddev), bdevname(rdev->bdev, b),
  2274. mddev->max_disks);
  2275. kick_rdev_from_array(rdev);
  2276. continue;
  2277. }
  2278. if (rdev != freshest)
  2279. if (super_types[mddev->major_version].
  2280. validate_super(mddev, rdev)) {
  2281. printk(KERN_WARNING "md: kicking non-fresh %s"
  2282. " from array!\n",
  2283. bdevname(rdev->bdev,b));
  2284. kick_rdev_from_array(rdev);
  2285. continue;
  2286. }
  2287. if (mddev->level == LEVEL_MULTIPATH) {
  2288. rdev->desc_nr = i++;
  2289. rdev->raid_disk = rdev->desc_nr;
  2290. set_bit(In_sync, &rdev->flags);
  2291. } else if (rdev->raid_disk >= mddev->raid_disks) {
  2292. rdev->raid_disk = -1;
  2293. clear_bit(In_sync, &rdev->flags);
  2294. }
  2295. }
  2296. if (mddev->recovery_cp != MaxSector &&
  2297. mddev->level >= 1)
  2298. printk(KERN_ERR "md: %s: raid array is not clean"
  2299. " -- starting background reconstruction\n",
  2300. mdname(mddev));
  2301. }
  2302. static void md_safemode_timeout(unsigned long data);
  2303. static ssize_t
  2304. safe_delay_show(mddev_t *mddev, char *page)
  2305. {
  2306. int msec = (mddev->safemode_delay*1000)/HZ;
  2307. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2308. }
  2309. static ssize_t
  2310. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  2311. {
  2312. int scale=1;
  2313. int dot=0;
  2314. int i;
  2315. unsigned long msec;
  2316. char buf[30];
  2317. /* remove a period, and count digits after it */
  2318. if (len >= sizeof(buf))
  2319. return -EINVAL;
  2320. strlcpy(buf, cbuf, sizeof(buf));
  2321. for (i=0; i<len; i++) {
  2322. if (dot) {
  2323. if (isdigit(buf[i])) {
  2324. buf[i-1] = buf[i];
  2325. scale *= 10;
  2326. }
  2327. buf[i] = 0;
  2328. } else if (buf[i] == '.') {
  2329. dot=1;
  2330. buf[i] = 0;
  2331. }
  2332. }
  2333. if (strict_strtoul(buf, 10, &msec) < 0)
  2334. return -EINVAL;
  2335. msec = (msec * 1000) / scale;
  2336. if (msec == 0)
  2337. mddev->safemode_delay = 0;
  2338. else {
  2339. unsigned long old_delay = mddev->safemode_delay;
  2340. mddev->safemode_delay = (msec*HZ)/1000;
  2341. if (mddev->safemode_delay == 0)
  2342. mddev->safemode_delay = 1;
  2343. if (mddev->safemode_delay < old_delay)
  2344. md_safemode_timeout((unsigned long)mddev);
  2345. }
  2346. return len;
  2347. }
  2348. static struct md_sysfs_entry md_safe_delay =
  2349. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2350. static ssize_t
  2351. level_show(mddev_t *mddev, char *page)
  2352. {
  2353. struct mdk_personality *p = mddev->pers;
  2354. if (p)
  2355. return sprintf(page, "%s\n", p->name);
  2356. else if (mddev->clevel[0])
  2357. return sprintf(page, "%s\n", mddev->clevel);
  2358. else if (mddev->level != LEVEL_NONE)
  2359. return sprintf(page, "%d\n", mddev->level);
  2360. else
  2361. return 0;
  2362. }
  2363. static ssize_t
  2364. level_store(mddev_t *mddev, const char *buf, size_t len)
  2365. {
  2366. char level[16];
  2367. ssize_t rv = len;
  2368. struct mdk_personality *pers;
  2369. void *priv;
  2370. if (mddev->pers == NULL) {
  2371. if (len == 0)
  2372. return 0;
  2373. if (len >= sizeof(mddev->clevel))
  2374. return -ENOSPC;
  2375. strncpy(mddev->clevel, buf, len);
  2376. if (mddev->clevel[len-1] == '\n')
  2377. len--;
  2378. mddev->clevel[len] = 0;
  2379. mddev->level = LEVEL_NONE;
  2380. return rv;
  2381. }
  2382. /* request to change the personality. Need to ensure:
  2383. * - array is not engaged in resync/recovery/reshape
  2384. * - old personality can be suspended
  2385. * - new personality will access other array.
  2386. */
  2387. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  2388. return -EBUSY;
  2389. if (!mddev->pers->quiesce) {
  2390. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2391. mdname(mddev), mddev->pers->name);
  2392. return -EINVAL;
  2393. }
  2394. /* Now find the new personality */
  2395. if (len == 0 || len >= sizeof(level))
  2396. return -EINVAL;
  2397. strncpy(level, buf, len);
  2398. if (level[len-1] == '\n')
  2399. len--;
  2400. level[len] = 0;
  2401. request_module("md-%s", level);
  2402. spin_lock(&pers_lock);
  2403. pers = find_pers(LEVEL_NONE, level);
  2404. if (!pers || !try_module_get(pers->owner)) {
  2405. spin_unlock(&pers_lock);
  2406. printk(KERN_WARNING "md: personality %s not loaded\n", level);
  2407. return -EINVAL;
  2408. }
  2409. spin_unlock(&pers_lock);
  2410. if (pers == mddev->pers) {
  2411. /* Nothing to do! */
  2412. module_put(pers->owner);
  2413. return rv;
  2414. }
  2415. if (!pers->takeover) {
  2416. module_put(pers->owner);
  2417. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2418. mdname(mddev), level);
  2419. return -EINVAL;
  2420. }
  2421. /* ->takeover must set new_* and/or delta_disks
  2422. * if it succeeds, and may set them when it fails.
  2423. */
  2424. priv = pers->takeover(mddev);
  2425. if (IS_ERR(priv)) {
  2426. mddev->new_level = mddev->level;
  2427. mddev->new_layout = mddev->layout;
  2428. mddev->new_chunk = mddev->chunk_size;
  2429. mddev->raid_disks -= mddev->delta_disks;
  2430. mddev->delta_disks = 0;
  2431. module_put(pers->owner);
  2432. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2433. mdname(mddev), level);
  2434. return PTR_ERR(priv);
  2435. }
  2436. /* Looks like we have a winner */
  2437. mddev_suspend(mddev);
  2438. mddev->pers->stop(mddev);
  2439. module_put(mddev->pers->owner);
  2440. mddev->pers = pers;
  2441. mddev->private = priv;
  2442. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2443. mddev->level = mddev->new_level;
  2444. mddev->layout = mddev->new_layout;
  2445. mddev->chunk_size = mddev->new_chunk;
  2446. mddev->delta_disks = 0;
  2447. pers->run(mddev);
  2448. mddev_resume(mddev);
  2449. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2450. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2451. md_wakeup_thread(mddev->thread);
  2452. return rv;
  2453. }
  2454. static struct md_sysfs_entry md_level =
  2455. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  2456. static ssize_t
  2457. layout_show(mddev_t *mddev, char *page)
  2458. {
  2459. /* just a number, not meaningful for all levels */
  2460. if (mddev->reshape_position != MaxSector &&
  2461. mddev->layout != mddev->new_layout)
  2462. return sprintf(page, "%d (%d)\n",
  2463. mddev->new_layout, mddev->layout);
  2464. return sprintf(page, "%d\n", mddev->layout);
  2465. }
  2466. static ssize_t
  2467. layout_store(mddev_t *mddev, const char *buf, size_t len)
  2468. {
  2469. char *e;
  2470. unsigned long n = simple_strtoul(buf, &e, 10);
  2471. if (!*buf || (*e && *e != '\n'))
  2472. return -EINVAL;
  2473. if (mddev->pers) {
  2474. int err;
  2475. if (mddev->pers->reconfig == NULL)
  2476. return -EBUSY;
  2477. err = mddev->pers->reconfig(mddev, n, -1);
  2478. if (err)
  2479. return err;
  2480. } else {
  2481. mddev->new_layout = n;
  2482. if (mddev->reshape_position == MaxSector)
  2483. mddev->layout = n;
  2484. }
  2485. return len;
  2486. }
  2487. static struct md_sysfs_entry md_layout =
  2488. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  2489. static ssize_t
  2490. raid_disks_show(mddev_t *mddev, char *page)
  2491. {
  2492. if (mddev->raid_disks == 0)
  2493. return 0;
  2494. if (mddev->reshape_position != MaxSector &&
  2495. mddev->delta_disks != 0)
  2496. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  2497. mddev->raid_disks - mddev->delta_disks);
  2498. return sprintf(page, "%d\n", mddev->raid_disks);
  2499. }
  2500. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  2501. static ssize_t
  2502. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  2503. {
  2504. char *e;
  2505. int rv = 0;
  2506. unsigned long n = simple_strtoul(buf, &e, 10);
  2507. if (!*buf || (*e && *e != '\n'))
  2508. return -EINVAL;
  2509. if (mddev->pers)
  2510. rv = update_raid_disks(mddev, n);
  2511. else if (mddev->reshape_position != MaxSector) {
  2512. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2513. mddev->delta_disks = n - olddisks;
  2514. mddev->raid_disks = n;
  2515. } else
  2516. mddev->raid_disks = n;
  2517. return rv ? rv : len;
  2518. }
  2519. static struct md_sysfs_entry md_raid_disks =
  2520. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2521. static ssize_t
  2522. chunk_size_show(mddev_t *mddev, char *page)
  2523. {
  2524. if (mddev->reshape_position != MaxSector &&
  2525. mddev->chunk_size != mddev->new_chunk)
  2526. return sprintf(page, "%d (%d)\n", mddev->new_chunk,
  2527. mddev->chunk_size);
  2528. return sprintf(page, "%d\n", mddev->chunk_size);
  2529. }
  2530. static ssize_t
  2531. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2532. {
  2533. char *e;
  2534. unsigned long n = simple_strtoul(buf, &e, 10);
  2535. if (!*buf || (*e && *e != '\n'))
  2536. return -EINVAL;
  2537. if (mddev->pers) {
  2538. int err;
  2539. if (mddev->pers->reconfig == NULL)
  2540. return -EBUSY;
  2541. err = mddev->pers->reconfig(mddev, -1, n);
  2542. if (err)
  2543. return err;
  2544. } else {
  2545. mddev->new_chunk = n;
  2546. if (mddev->reshape_position == MaxSector)
  2547. mddev->chunk_size = n;
  2548. }
  2549. return len;
  2550. }
  2551. static struct md_sysfs_entry md_chunk_size =
  2552. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2553. static ssize_t
  2554. resync_start_show(mddev_t *mddev, char *page)
  2555. {
  2556. if (mddev->recovery_cp == MaxSector)
  2557. return sprintf(page, "none\n");
  2558. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2559. }
  2560. static ssize_t
  2561. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2562. {
  2563. char *e;
  2564. unsigned long long n = simple_strtoull(buf, &e, 10);
  2565. if (mddev->pers)
  2566. return -EBUSY;
  2567. if (!*buf || (*e && *e != '\n'))
  2568. return -EINVAL;
  2569. mddev->recovery_cp = n;
  2570. return len;
  2571. }
  2572. static struct md_sysfs_entry md_resync_start =
  2573. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2574. /*
  2575. * The array state can be:
  2576. *
  2577. * clear
  2578. * No devices, no size, no level
  2579. * Equivalent to STOP_ARRAY ioctl
  2580. * inactive
  2581. * May have some settings, but array is not active
  2582. * all IO results in error
  2583. * When written, doesn't tear down array, but just stops it
  2584. * suspended (not supported yet)
  2585. * All IO requests will block. The array can be reconfigured.
  2586. * Writing this, if accepted, will block until array is quiescent
  2587. * readonly
  2588. * no resync can happen. no superblocks get written.
  2589. * write requests fail
  2590. * read-auto
  2591. * like readonly, but behaves like 'clean' on a write request.
  2592. *
  2593. * clean - no pending writes, but otherwise active.
  2594. * When written to inactive array, starts without resync
  2595. * If a write request arrives then
  2596. * if metadata is known, mark 'dirty' and switch to 'active'.
  2597. * if not known, block and switch to write-pending
  2598. * If written to an active array that has pending writes, then fails.
  2599. * active
  2600. * fully active: IO and resync can be happening.
  2601. * When written to inactive array, starts with resync
  2602. *
  2603. * write-pending
  2604. * clean, but writes are blocked waiting for 'active' to be written.
  2605. *
  2606. * active-idle
  2607. * like active, but no writes have been seen for a while (100msec).
  2608. *
  2609. */
  2610. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2611. write_pending, active_idle, bad_word};
  2612. static char *array_states[] = {
  2613. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2614. "write-pending", "active-idle", NULL };
  2615. static int match_word(const char *word, char **list)
  2616. {
  2617. int n;
  2618. for (n=0; list[n]; n++)
  2619. if (cmd_match(word, list[n]))
  2620. break;
  2621. return n;
  2622. }
  2623. static ssize_t
  2624. array_state_show(mddev_t *mddev, char *page)
  2625. {
  2626. enum array_state st = inactive;
  2627. if (mddev->pers)
  2628. switch(mddev->ro) {
  2629. case 1:
  2630. st = readonly;
  2631. break;
  2632. case 2:
  2633. st = read_auto;
  2634. break;
  2635. case 0:
  2636. if (mddev->in_sync)
  2637. st = clean;
  2638. else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2639. st = write_pending;
  2640. else if (mddev->safemode)
  2641. st = active_idle;
  2642. else
  2643. st = active;
  2644. }
  2645. else {
  2646. if (list_empty(&mddev->disks) &&
  2647. mddev->raid_disks == 0 &&
  2648. mddev->dev_sectors == 0)
  2649. st = clear;
  2650. else
  2651. st = inactive;
  2652. }
  2653. return sprintf(page, "%s\n", array_states[st]);
  2654. }
  2655. static int do_md_stop(mddev_t * mddev, int ro, int is_open);
  2656. static int do_md_run(mddev_t * mddev);
  2657. static int restart_array(mddev_t *mddev);
  2658. static ssize_t
  2659. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2660. {
  2661. int err = -EINVAL;
  2662. enum array_state st = match_word(buf, array_states);
  2663. switch(st) {
  2664. case bad_word:
  2665. break;
  2666. case clear:
  2667. /* stopping an active array */
  2668. if (atomic_read(&mddev->openers) > 0)
  2669. return -EBUSY;
  2670. err = do_md_stop(mddev, 0, 0);
  2671. break;
  2672. case inactive:
  2673. /* stopping an active array */
  2674. if (mddev->pers) {
  2675. if (atomic_read(&mddev->openers) > 0)
  2676. return -EBUSY;
  2677. err = do_md_stop(mddev, 2, 0);
  2678. } else
  2679. err = 0; /* already inactive */
  2680. break;
  2681. case suspended:
  2682. break; /* not supported yet */
  2683. case readonly:
  2684. if (mddev->pers)
  2685. err = do_md_stop(mddev, 1, 0);
  2686. else {
  2687. mddev->ro = 1;
  2688. set_disk_ro(mddev->gendisk, 1);
  2689. err = do_md_run(mddev);
  2690. }
  2691. break;
  2692. case read_auto:
  2693. if (mddev->pers) {
  2694. if (mddev->ro == 0)
  2695. err = do_md_stop(mddev, 1, 0);
  2696. else if (mddev->ro == 1)
  2697. err = restart_array(mddev);
  2698. if (err == 0) {
  2699. mddev->ro = 2;
  2700. set_disk_ro(mddev->gendisk, 0);
  2701. }
  2702. } else {
  2703. mddev->ro = 2;
  2704. err = do_md_run(mddev);
  2705. }
  2706. break;
  2707. case clean:
  2708. if (mddev->pers) {
  2709. restart_array(mddev);
  2710. spin_lock_irq(&mddev->write_lock);
  2711. if (atomic_read(&mddev->writes_pending) == 0) {
  2712. if (mddev->in_sync == 0) {
  2713. mddev->in_sync = 1;
  2714. if (mddev->safemode == 1)
  2715. mddev->safemode = 0;
  2716. if (mddev->persistent)
  2717. set_bit(MD_CHANGE_CLEAN,
  2718. &mddev->flags);
  2719. }
  2720. err = 0;
  2721. } else
  2722. err = -EBUSY;
  2723. spin_unlock_irq(&mddev->write_lock);
  2724. } else
  2725. err = -EINVAL;
  2726. break;
  2727. case active:
  2728. if (mddev->pers) {
  2729. restart_array(mddev);
  2730. if (mddev->external)
  2731. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2732. wake_up(&mddev->sb_wait);
  2733. err = 0;
  2734. } else {
  2735. mddev->ro = 0;
  2736. set_disk_ro(mddev->gendisk, 0);
  2737. err = do_md_run(mddev);
  2738. }
  2739. break;
  2740. case write_pending:
  2741. case active_idle:
  2742. /* these cannot be set */
  2743. break;
  2744. }
  2745. if (err)
  2746. return err;
  2747. else {
  2748. sysfs_notify_dirent(mddev->sysfs_state);
  2749. return len;
  2750. }
  2751. }
  2752. static struct md_sysfs_entry md_array_state =
  2753. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2754. static ssize_t
  2755. null_show(mddev_t *mddev, char *page)
  2756. {
  2757. return -EINVAL;
  2758. }
  2759. static ssize_t
  2760. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2761. {
  2762. /* buf must be %d:%d\n? giving major and minor numbers */
  2763. /* The new device is added to the array.
  2764. * If the array has a persistent superblock, we read the
  2765. * superblock to initialise info and check validity.
  2766. * Otherwise, only checking done is that in bind_rdev_to_array,
  2767. * which mainly checks size.
  2768. */
  2769. char *e;
  2770. int major = simple_strtoul(buf, &e, 10);
  2771. int minor;
  2772. dev_t dev;
  2773. mdk_rdev_t *rdev;
  2774. int err;
  2775. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2776. return -EINVAL;
  2777. minor = simple_strtoul(e+1, &e, 10);
  2778. if (*e && *e != '\n')
  2779. return -EINVAL;
  2780. dev = MKDEV(major, minor);
  2781. if (major != MAJOR(dev) ||
  2782. minor != MINOR(dev))
  2783. return -EOVERFLOW;
  2784. if (mddev->persistent) {
  2785. rdev = md_import_device(dev, mddev->major_version,
  2786. mddev->minor_version);
  2787. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2788. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2789. mdk_rdev_t, same_set);
  2790. err = super_types[mddev->major_version]
  2791. .load_super(rdev, rdev0, mddev->minor_version);
  2792. if (err < 0)
  2793. goto out;
  2794. }
  2795. } else if (mddev->external)
  2796. rdev = md_import_device(dev, -2, -1);
  2797. else
  2798. rdev = md_import_device(dev, -1, -1);
  2799. if (IS_ERR(rdev))
  2800. return PTR_ERR(rdev);
  2801. err = bind_rdev_to_array(rdev, mddev);
  2802. out:
  2803. if (err)
  2804. export_rdev(rdev);
  2805. return err ? err : len;
  2806. }
  2807. static struct md_sysfs_entry md_new_device =
  2808. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2809. static ssize_t
  2810. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2811. {
  2812. char *end;
  2813. unsigned long chunk, end_chunk;
  2814. if (!mddev->bitmap)
  2815. goto out;
  2816. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2817. while (*buf) {
  2818. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2819. if (buf == end) break;
  2820. if (*end == '-') { /* range */
  2821. buf = end + 1;
  2822. end_chunk = simple_strtoul(buf, &end, 0);
  2823. if (buf == end) break;
  2824. }
  2825. if (*end && !isspace(*end)) break;
  2826. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2827. buf = end;
  2828. while (isspace(*buf)) buf++;
  2829. }
  2830. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2831. out:
  2832. return len;
  2833. }
  2834. static struct md_sysfs_entry md_bitmap =
  2835. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2836. static ssize_t
  2837. size_show(mddev_t *mddev, char *page)
  2838. {
  2839. return sprintf(page, "%llu\n",
  2840. (unsigned long long)mddev->dev_sectors / 2);
  2841. }
  2842. static int update_size(mddev_t *mddev, sector_t num_sectors);
  2843. static ssize_t
  2844. size_store(mddev_t *mddev, const char *buf, size_t len)
  2845. {
  2846. /* If array is inactive, we can reduce the component size, but
  2847. * not increase it (except from 0).
  2848. * If array is active, we can try an on-line resize
  2849. */
  2850. sector_t sectors;
  2851. int err = strict_blocks_to_sectors(buf, &sectors);
  2852. if (err < 0)
  2853. return err;
  2854. if (mddev->pers) {
  2855. err = update_size(mddev, sectors);
  2856. md_update_sb(mddev, 1);
  2857. } else {
  2858. if (mddev->dev_sectors == 0 ||
  2859. mddev->dev_sectors > sectors)
  2860. mddev->dev_sectors = sectors;
  2861. else
  2862. err = -ENOSPC;
  2863. }
  2864. return err ? err : len;
  2865. }
  2866. static struct md_sysfs_entry md_size =
  2867. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2868. /* Metdata version.
  2869. * This is one of
  2870. * 'none' for arrays with no metadata (good luck...)
  2871. * 'external' for arrays with externally managed metadata,
  2872. * or N.M for internally known formats
  2873. */
  2874. static ssize_t
  2875. metadata_show(mddev_t *mddev, char *page)
  2876. {
  2877. if (mddev->persistent)
  2878. return sprintf(page, "%d.%d\n",
  2879. mddev->major_version, mddev->minor_version);
  2880. else if (mddev->external)
  2881. return sprintf(page, "external:%s\n", mddev->metadata_type);
  2882. else
  2883. return sprintf(page, "none\n");
  2884. }
  2885. static ssize_t
  2886. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2887. {
  2888. int major, minor;
  2889. char *e;
  2890. /* Changing the details of 'external' metadata is
  2891. * always permitted. Otherwise there must be
  2892. * no devices attached to the array.
  2893. */
  2894. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  2895. ;
  2896. else if (!list_empty(&mddev->disks))
  2897. return -EBUSY;
  2898. if (cmd_match(buf, "none")) {
  2899. mddev->persistent = 0;
  2900. mddev->external = 0;
  2901. mddev->major_version = 0;
  2902. mddev->minor_version = 90;
  2903. return len;
  2904. }
  2905. if (strncmp(buf, "external:", 9) == 0) {
  2906. size_t namelen = len-9;
  2907. if (namelen >= sizeof(mddev->metadata_type))
  2908. namelen = sizeof(mddev->metadata_type)-1;
  2909. strncpy(mddev->metadata_type, buf+9, namelen);
  2910. mddev->metadata_type[namelen] = 0;
  2911. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  2912. mddev->metadata_type[--namelen] = 0;
  2913. mddev->persistent = 0;
  2914. mddev->external = 1;
  2915. mddev->major_version = 0;
  2916. mddev->minor_version = 90;
  2917. return len;
  2918. }
  2919. major = simple_strtoul(buf, &e, 10);
  2920. if (e==buf || *e != '.')
  2921. return -EINVAL;
  2922. buf = e+1;
  2923. minor = simple_strtoul(buf, &e, 10);
  2924. if (e==buf || (*e && *e != '\n') )
  2925. return -EINVAL;
  2926. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  2927. return -ENOENT;
  2928. mddev->major_version = major;
  2929. mddev->minor_version = minor;
  2930. mddev->persistent = 1;
  2931. mddev->external = 0;
  2932. return len;
  2933. }
  2934. static struct md_sysfs_entry md_metadata =
  2935. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2936. static ssize_t
  2937. action_show(mddev_t *mddev, char *page)
  2938. {
  2939. char *type = "idle";
  2940. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2941. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  2942. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2943. type = "reshape";
  2944. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2945. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2946. type = "resync";
  2947. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2948. type = "check";
  2949. else
  2950. type = "repair";
  2951. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  2952. type = "recover";
  2953. }
  2954. return sprintf(page, "%s\n", type);
  2955. }
  2956. static ssize_t
  2957. action_store(mddev_t *mddev, const char *page, size_t len)
  2958. {
  2959. if (!mddev->pers || !mddev->pers->sync_request)
  2960. return -EINVAL;
  2961. if (cmd_match(page, "idle")) {
  2962. if (mddev->sync_thread) {
  2963. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2964. md_unregister_thread(mddev->sync_thread);
  2965. mddev->sync_thread = NULL;
  2966. mddev->recovery = 0;
  2967. }
  2968. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2969. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2970. return -EBUSY;
  2971. else if (cmd_match(page, "resync"))
  2972. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2973. else if (cmd_match(page, "recover")) {
  2974. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  2975. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2976. } else if (cmd_match(page, "reshape")) {
  2977. int err;
  2978. if (mddev->pers->start_reshape == NULL)
  2979. return -EINVAL;
  2980. err = mddev->pers->start_reshape(mddev);
  2981. if (err)
  2982. return err;
  2983. sysfs_notify(&mddev->kobj, NULL, "degraded");
  2984. } else {
  2985. if (cmd_match(page, "check"))
  2986. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2987. else if (!cmd_match(page, "repair"))
  2988. return -EINVAL;
  2989. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2990. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2991. }
  2992. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2993. md_wakeup_thread(mddev->thread);
  2994. sysfs_notify_dirent(mddev->sysfs_action);
  2995. return len;
  2996. }
  2997. static ssize_t
  2998. mismatch_cnt_show(mddev_t *mddev, char *page)
  2999. {
  3000. return sprintf(page, "%llu\n",
  3001. (unsigned long long) mddev->resync_mismatches);
  3002. }
  3003. static struct md_sysfs_entry md_scan_mode =
  3004. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3005. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3006. static ssize_t
  3007. sync_min_show(mddev_t *mddev, char *page)
  3008. {
  3009. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3010. mddev->sync_speed_min ? "local": "system");
  3011. }
  3012. static ssize_t
  3013. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  3014. {
  3015. int min;
  3016. char *e;
  3017. if (strncmp(buf, "system", 6)==0) {
  3018. mddev->sync_speed_min = 0;
  3019. return len;
  3020. }
  3021. min = simple_strtoul(buf, &e, 10);
  3022. if (buf == e || (*e && *e != '\n') || min <= 0)
  3023. return -EINVAL;
  3024. mddev->sync_speed_min = min;
  3025. return len;
  3026. }
  3027. static struct md_sysfs_entry md_sync_min =
  3028. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3029. static ssize_t
  3030. sync_max_show(mddev_t *mddev, char *page)
  3031. {
  3032. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3033. mddev->sync_speed_max ? "local": "system");
  3034. }
  3035. static ssize_t
  3036. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  3037. {
  3038. int max;
  3039. char *e;
  3040. if (strncmp(buf, "system", 6)==0) {
  3041. mddev->sync_speed_max = 0;
  3042. return len;
  3043. }
  3044. max = simple_strtoul(buf, &e, 10);
  3045. if (buf == e || (*e && *e != '\n') || max <= 0)
  3046. return -EINVAL;
  3047. mddev->sync_speed_max = max;
  3048. return len;
  3049. }
  3050. static struct md_sysfs_entry md_sync_max =
  3051. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3052. static ssize_t
  3053. degraded_show(mddev_t *mddev, char *page)
  3054. {
  3055. return sprintf(page, "%d\n", mddev->degraded);
  3056. }
  3057. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3058. static ssize_t
  3059. sync_force_parallel_show(mddev_t *mddev, char *page)
  3060. {
  3061. return sprintf(page, "%d\n", mddev->parallel_resync);
  3062. }
  3063. static ssize_t
  3064. sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
  3065. {
  3066. long n;
  3067. if (strict_strtol(buf, 10, &n))
  3068. return -EINVAL;
  3069. if (n != 0 && n != 1)
  3070. return -EINVAL;
  3071. mddev->parallel_resync = n;
  3072. if (mddev->sync_thread)
  3073. wake_up(&resync_wait);
  3074. return len;
  3075. }
  3076. /* force parallel resync, even with shared block devices */
  3077. static struct md_sysfs_entry md_sync_force_parallel =
  3078. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3079. sync_force_parallel_show, sync_force_parallel_store);
  3080. static ssize_t
  3081. sync_speed_show(mddev_t *mddev, char *page)
  3082. {
  3083. unsigned long resync, dt, db;
  3084. if (mddev->curr_resync == 0)
  3085. return sprintf(page, "none\n");
  3086. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3087. dt = (jiffies - mddev->resync_mark) / HZ;
  3088. if (!dt) dt++;
  3089. db = resync - mddev->resync_mark_cnt;
  3090. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3091. }
  3092. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3093. static ssize_t
  3094. sync_completed_show(mddev_t *mddev, char *page)
  3095. {
  3096. unsigned long max_sectors, resync;
  3097. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3098. return sprintf(page, "none\n");
  3099. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3100. max_sectors = mddev->resync_max_sectors;
  3101. else
  3102. max_sectors = mddev->dev_sectors;
  3103. resync = mddev->curr_resync_completed;
  3104. return sprintf(page, "%lu / %lu\n", resync, max_sectors);
  3105. }
  3106. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3107. static ssize_t
  3108. min_sync_show(mddev_t *mddev, char *page)
  3109. {
  3110. return sprintf(page, "%llu\n",
  3111. (unsigned long long)mddev->resync_min);
  3112. }
  3113. static ssize_t
  3114. min_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3115. {
  3116. unsigned long long min;
  3117. if (strict_strtoull(buf, 10, &min))
  3118. return -EINVAL;
  3119. if (min > mddev->resync_max)
  3120. return -EINVAL;
  3121. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3122. return -EBUSY;
  3123. /* Must be a multiple of chunk_size */
  3124. if (mddev->chunk_size) {
  3125. if (min & (sector_t)((mddev->chunk_size>>9)-1))
  3126. return -EINVAL;
  3127. }
  3128. mddev->resync_min = min;
  3129. return len;
  3130. }
  3131. static struct md_sysfs_entry md_min_sync =
  3132. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3133. static ssize_t
  3134. max_sync_show(mddev_t *mddev, char *page)
  3135. {
  3136. if (mddev->resync_max == MaxSector)
  3137. return sprintf(page, "max\n");
  3138. else
  3139. return sprintf(page, "%llu\n",
  3140. (unsigned long long)mddev->resync_max);
  3141. }
  3142. static ssize_t
  3143. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3144. {
  3145. if (strncmp(buf, "max", 3) == 0)
  3146. mddev->resync_max = MaxSector;
  3147. else {
  3148. unsigned long long max;
  3149. if (strict_strtoull(buf, 10, &max))
  3150. return -EINVAL;
  3151. if (max < mddev->resync_min)
  3152. return -EINVAL;
  3153. if (max < mddev->resync_max &&
  3154. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3155. return -EBUSY;
  3156. /* Must be a multiple of chunk_size */
  3157. if (mddev->chunk_size) {
  3158. if (max & (sector_t)((mddev->chunk_size>>9)-1))
  3159. return -EINVAL;
  3160. }
  3161. mddev->resync_max = max;
  3162. }
  3163. wake_up(&mddev->recovery_wait);
  3164. return len;
  3165. }
  3166. static struct md_sysfs_entry md_max_sync =
  3167. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3168. static ssize_t
  3169. suspend_lo_show(mddev_t *mddev, char *page)
  3170. {
  3171. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3172. }
  3173. static ssize_t
  3174. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  3175. {
  3176. char *e;
  3177. unsigned long long new = simple_strtoull(buf, &e, 10);
  3178. if (mddev->pers->quiesce == NULL)
  3179. return -EINVAL;
  3180. if (buf == e || (*e && *e != '\n'))
  3181. return -EINVAL;
  3182. if (new >= mddev->suspend_hi ||
  3183. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  3184. mddev->suspend_lo = new;
  3185. mddev->pers->quiesce(mddev, 2);
  3186. return len;
  3187. } else
  3188. return -EINVAL;
  3189. }
  3190. static struct md_sysfs_entry md_suspend_lo =
  3191. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3192. static ssize_t
  3193. suspend_hi_show(mddev_t *mddev, char *page)
  3194. {
  3195. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3196. }
  3197. static ssize_t
  3198. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  3199. {
  3200. char *e;
  3201. unsigned long long new = simple_strtoull(buf, &e, 10);
  3202. if (mddev->pers->quiesce == NULL)
  3203. return -EINVAL;
  3204. if (buf == e || (*e && *e != '\n'))
  3205. return -EINVAL;
  3206. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  3207. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  3208. mddev->suspend_hi = new;
  3209. mddev->pers->quiesce(mddev, 1);
  3210. mddev->pers->quiesce(mddev, 0);
  3211. return len;
  3212. } else
  3213. return -EINVAL;
  3214. }
  3215. static struct md_sysfs_entry md_suspend_hi =
  3216. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3217. static ssize_t
  3218. reshape_position_show(mddev_t *mddev, char *page)
  3219. {
  3220. if (mddev->reshape_position != MaxSector)
  3221. return sprintf(page, "%llu\n",
  3222. (unsigned long long)mddev->reshape_position);
  3223. strcpy(page, "none\n");
  3224. return 5;
  3225. }
  3226. static ssize_t
  3227. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  3228. {
  3229. char *e;
  3230. unsigned long long new = simple_strtoull(buf, &e, 10);
  3231. if (mddev->pers)
  3232. return -EBUSY;
  3233. if (buf == e || (*e && *e != '\n'))
  3234. return -EINVAL;
  3235. mddev->reshape_position = new;
  3236. mddev->delta_disks = 0;
  3237. mddev->new_level = mddev->level;
  3238. mddev->new_layout = mddev->layout;
  3239. mddev->new_chunk = mddev->chunk_size;
  3240. return len;
  3241. }
  3242. static struct md_sysfs_entry md_reshape_position =
  3243. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3244. reshape_position_store);
  3245. static ssize_t
  3246. array_size_show(mddev_t *mddev, char *page)
  3247. {
  3248. if (mddev->external_size)
  3249. return sprintf(page, "%llu\n",
  3250. (unsigned long long)mddev->array_sectors/2);
  3251. else
  3252. return sprintf(page, "default\n");
  3253. }
  3254. static ssize_t
  3255. array_size_store(mddev_t *mddev, const char *buf, size_t len)
  3256. {
  3257. sector_t sectors;
  3258. if (strncmp(buf, "default", 7) == 0) {
  3259. if (mddev->pers)
  3260. sectors = mddev->pers->size(mddev, 0, 0);
  3261. else
  3262. sectors = mddev->array_sectors;
  3263. mddev->external_size = 0;
  3264. } else {
  3265. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3266. return -EINVAL;
  3267. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3268. return -E2BIG;
  3269. mddev->external_size = 1;
  3270. }
  3271. mddev->array_sectors = sectors;
  3272. set_capacity(mddev->gendisk, mddev->array_sectors);
  3273. if (mddev->pers) {
  3274. struct block_device *bdev = bdget_disk(mddev->gendisk, 0);
  3275. if (bdev) {
  3276. mutex_lock(&bdev->bd_inode->i_mutex);
  3277. i_size_write(bdev->bd_inode,
  3278. (loff_t)mddev->array_sectors << 9);
  3279. mutex_unlock(&bdev->bd_inode->i_mutex);
  3280. bdput(bdev);
  3281. }
  3282. }
  3283. return len;
  3284. }
  3285. static struct md_sysfs_entry md_array_size =
  3286. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3287. array_size_store);
  3288. static struct attribute *md_default_attrs[] = {
  3289. &md_level.attr,
  3290. &md_layout.attr,
  3291. &md_raid_disks.attr,
  3292. &md_chunk_size.attr,
  3293. &md_size.attr,
  3294. &md_resync_start.attr,
  3295. &md_metadata.attr,
  3296. &md_new_device.attr,
  3297. &md_safe_delay.attr,
  3298. &md_array_state.attr,
  3299. &md_reshape_position.attr,
  3300. &md_array_size.attr,
  3301. NULL,
  3302. };
  3303. static struct attribute *md_redundancy_attrs[] = {
  3304. &md_scan_mode.attr,
  3305. &md_mismatches.attr,
  3306. &md_sync_min.attr,
  3307. &md_sync_max.attr,
  3308. &md_sync_speed.attr,
  3309. &md_sync_force_parallel.attr,
  3310. &md_sync_completed.attr,
  3311. &md_min_sync.attr,
  3312. &md_max_sync.attr,
  3313. &md_suspend_lo.attr,
  3314. &md_suspend_hi.attr,
  3315. &md_bitmap.attr,
  3316. &md_degraded.attr,
  3317. NULL,
  3318. };
  3319. static struct attribute_group md_redundancy_group = {
  3320. .name = NULL,
  3321. .attrs = md_redundancy_attrs,
  3322. };
  3323. static ssize_t
  3324. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3325. {
  3326. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3327. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3328. ssize_t rv;
  3329. if (!entry->show)
  3330. return -EIO;
  3331. rv = mddev_lock(mddev);
  3332. if (!rv) {
  3333. rv = entry->show(mddev, page);
  3334. mddev_unlock(mddev);
  3335. }
  3336. return rv;
  3337. }
  3338. static ssize_t
  3339. md_attr_store(struct kobject *kobj, struct attribute *attr,
  3340. const char *page, size_t length)
  3341. {
  3342. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3343. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3344. ssize_t rv;
  3345. if (!entry->store)
  3346. return -EIO;
  3347. if (!capable(CAP_SYS_ADMIN))
  3348. return -EACCES;
  3349. rv = mddev_lock(mddev);
  3350. if (mddev->hold_active == UNTIL_IOCTL)
  3351. mddev->hold_active = 0;
  3352. if (!rv) {
  3353. rv = entry->store(mddev, page, length);
  3354. mddev_unlock(mddev);
  3355. }
  3356. return rv;
  3357. }
  3358. static void md_free(struct kobject *ko)
  3359. {
  3360. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  3361. if (mddev->sysfs_state)
  3362. sysfs_put(mddev->sysfs_state);
  3363. if (mddev->gendisk) {
  3364. del_gendisk(mddev->gendisk);
  3365. put_disk(mddev->gendisk);
  3366. }
  3367. if (mddev->queue)
  3368. blk_cleanup_queue(mddev->queue);
  3369. kfree(mddev);
  3370. }
  3371. static struct sysfs_ops md_sysfs_ops = {
  3372. .show = md_attr_show,
  3373. .store = md_attr_store,
  3374. };
  3375. static struct kobj_type md_ktype = {
  3376. .release = md_free,
  3377. .sysfs_ops = &md_sysfs_ops,
  3378. .default_attrs = md_default_attrs,
  3379. };
  3380. int mdp_major = 0;
  3381. static void mddev_delayed_delete(struct work_struct *ws)
  3382. {
  3383. mddev_t *mddev = container_of(ws, mddev_t, del_work);
  3384. if (mddev->private == &md_redundancy_group) {
  3385. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  3386. if (mddev->sysfs_action)
  3387. sysfs_put(mddev->sysfs_action);
  3388. mddev->sysfs_action = NULL;
  3389. mddev->private = NULL;
  3390. }
  3391. kobject_del(&mddev->kobj);
  3392. kobject_put(&mddev->kobj);
  3393. }
  3394. static int md_alloc(dev_t dev, char *name)
  3395. {
  3396. static DEFINE_MUTEX(disks_mutex);
  3397. mddev_t *mddev = mddev_find(dev);
  3398. struct gendisk *disk;
  3399. int partitioned;
  3400. int shift;
  3401. int unit;
  3402. int error;
  3403. if (!mddev)
  3404. return -ENODEV;
  3405. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  3406. shift = partitioned ? MdpMinorShift : 0;
  3407. unit = MINOR(mddev->unit) >> shift;
  3408. /* wait for any previous instance if this device
  3409. * to be completed removed (mddev_delayed_delete).
  3410. */
  3411. flush_scheduled_work();
  3412. mutex_lock(&disks_mutex);
  3413. if (mddev->gendisk) {
  3414. mutex_unlock(&disks_mutex);
  3415. mddev_put(mddev);
  3416. return -EEXIST;
  3417. }
  3418. if (name) {
  3419. /* Need to ensure that 'name' is not a duplicate.
  3420. */
  3421. mddev_t *mddev2;
  3422. spin_lock(&all_mddevs_lock);
  3423. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  3424. if (mddev2->gendisk &&
  3425. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  3426. spin_unlock(&all_mddevs_lock);
  3427. return -EEXIST;
  3428. }
  3429. spin_unlock(&all_mddevs_lock);
  3430. }
  3431. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  3432. if (!mddev->queue) {
  3433. mutex_unlock(&disks_mutex);
  3434. mddev_put(mddev);
  3435. return -ENOMEM;
  3436. }
  3437. mddev->queue->queuedata = mddev;
  3438. /* Can be unlocked because the queue is new: no concurrency */
  3439. queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
  3440. blk_queue_make_request(mddev->queue, md_make_request);
  3441. disk = alloc_disk(1 << shift);
  3442. if (!disk) {
  3443. mutex_unlock(&disks_mutex);
  3444. blk_cleanup_queue(mddev->queue);
  3445. mddev->queue = NULL;
  3446. mddev_put(mddev);
  3447. return -ENOMEM;
  3448. }
  3449. disk->major = MAJOR(mddev->unit);
  3450. disk->first_minor = unit << shift;
  3451. if (name)
  3452. strcpy(disk->disk_name, name);
  3453. else if (partitioned)
  3454. sprintf(disk->disk_name, "md_d%d", unit);
  3455. else
  3456. sprintf(disk->disk_name, "md%d", unit);
  3457. disk->fops = &md_fops;
  3458. disk->private_data = mddev;
  3459. disk->queue = mddev->queue;
  3460. /* Allow extended partitions. This makes the
  3461. * 'mdp' device redundant, but we can't really
  3462. * remove it now.
  3463. */
  3464. disk->flags |= GENHD_FL_EXT_DEVT;
  3465. add_disk(disk);
  3466. mddev->gendisk = disk;
  3467. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  3468. &disk_to_dev(disk)->kobj, "%s", "md");
  3469. mutex_unlock(&disks_mutex);
  3470. if (error)
  3471. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  3472. disk->disk_name);
  3473. else {
  3474. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  3475. mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
  3476. }
  3477. mddev_put(mddev);
  3478. return 0;
  3479. }
  3480. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  3481. {
  3482. md_alloc(dev, NULL);
  3483. return NULL;
  3484. }
  3485. static int add_named_array(const char *val, struct kernel_param *kp)
  3486. {
  3487. /* val must be "md_*" where * is not all digits.
  3488. * We allocate an array with a large free minor number, and
  3489. * set the name to val. val must not already be an active name.
  3490. */
  3491. int len = strlen(val);
  3492. char buf[DISK_NAME_LEN];
  3493. while (len && val[len-1] == '\n')
  3494. len--;
  3495. if (len >= DISK_NAME_LEN)
  3496. return -E2BIG;
  3497. strlcpy(buf, val, len+1);
  3498. if (strncmp(buf, "md_", 3) != 0)
  3499. return -EINVAL;
  3500. return md_alloc(0, buf);
  3501. }
  3502. static void md_safemode_timeout(unsigned long data)
  3503. {
  3504. mddev_t *mddev = (mddev_t *) data;
  3505. if (!atomic_read(&mddev->writes_pending)) {
  3506. mddev->safemode = 1;
  3507. if (mddev->external)
  3508. sysfs_notify_dirent(mddev->sysfs_state);
  3509. }
  3510. md_wakeup_thread(mddev->thread);
  3511. }
  3512. static int start_dirty_degraded;
  3513. static int do_md_run(mddev_t * mddev)
  3514. {
  3515. int err;
  3516. int chunk_size;
  3517. mdk_rdev_t *rdev;
  3518. struct gendisk *disk;
  3519. struct mdk_personality *pers;
  3520. char b[BDEVNAME_SIZE];
  3521. if (list_empty(&mddev->disks))
  3522. /* cannot run an array with no devices.. */
  3523. return -EINVAL;
  3524. if (mddev->pers)
  3525. return -EBUSY;
  3526. /*
  3527. * Analyze all RAID superblock(s)
  3528. */
  3529. if (!mddev->raid_disks) {
  3530. if (!mddev->persistent)
  3531. return -EINVAL;
  3532. analyze_sbs(mddev);
  3533. }
  3534. chunk_size = mddev->chunk_size;
  3535. if (chunk_size) {
  3536. if (chunk_size > MAX_CHUNK_SIZE) {
  3537. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  3538. chunk_size, MAX_CHUNK_SIZE);
  3539. return -EINVAL;
  3540. }
  3541. /*
  3542. * chunk-size has to be a power of 2
  3543. */
  3544. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  3545. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  3546. return -EINVAL;
  3547. }
  3548. /* devices must have minimum size of one chunk */
  3549. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3550. if (test_bit(Faulty, &rdev->flags))
  3551. continue;
  3552. if (rdev->sectors < chunk_size / 512) {
  3553. printk(KERN_WARNING
  3554. "md: Dev %s smaller than chunk_size:"
  3555. " %llu < %d\n",
  3556. bdevname(rdev->bdev,b),
  3557. (unsigned long long)rdev->sectors,
  3558. chunk_size / 512);
  3559. return -EINVAL;
  3560. }
  3561. }
  3562. }
  3563. if (mddev->level != LEVEL_NONE)
  3564. request_module("md-level-%d", mddev->level);
  3565. else if (mddev->clevel[0])
  3566. request_module("md-%s", mddev->clevel);
  3567. /*
  3568. * Drop all container device buffers, from now on
  3569. * the only valid external interface is through the md
  3570. * device.
  3571. */
  3572. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3573. if (test_bit(Faulty, &rdev->flags))
  3574. continue;
  3575. sync_blockdev(rdev->bdev);
  3576. invalidate_bdev(rdev->bdev);
  3577. /* perform some consistency tests on the device.
  3578. * We don't want the data to overlap the metadata,
  3579. * Internal Bitmap issues have been handled elsewhere.
  3580. */
  3581. if (rdev->data_offset < rdev->sb_start) {
  3582. if (mddev->dev_sectors &&
  3583. rdev->data_offset + mddev->dev_sectors
  3584. > rdev->sb_start) {
  3585. printk("md: %s: data overlaps metadata\n",
  3586. mdname(mddev));
  3587. return -EINVAL;
  3588. }
  3589. } else {
  3590. if (rdev->sb_start + rdev->sb_size/512
  3591. > rdev->data_offset) {
  3592. printk("md: %s: metadata overlaps data\n",
  3593. mdname(mddev));
  3594. return -EINVAL;
  3595. }
  3596. }
  3597. sysfs_notify_dirent(rdev->sysfs_state);
  3598. }
  3599. md_probe(mddev->unit, NULL, NULL);
  3600. disk = mddev->gendisk;
  3601. if (!disk)
  3602. return -ENOMEM;
  3603. spin_lock(&pers_lock);
  3604. pers = find_pers(mddev->level, mddev->clevel);
  3605. if (!pers || !try_module_get(pers->owner)) {
  3606. spin_unlock(&pers_lock);
  3607. if (mddev->level != LEVEL_NONE)
  3608. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  3609. mddev->level);
  3610. else
  3611. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  3612. mddev->clevel);
  3613. return -EINVAL;
  3614. }
  3615. mddev->pers = pers;
  3616. spin_unlock(&pers_lock);
  3617. if (mddev->level != pers->level) {
  3618. mddev->level = pers->level;
  3619. mddev->new_level = pers->level;
  3620. }
  3621. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3622. if (pers->level >= 4 && pers->level <= 6)
  3623. /* Cannot support integrity (yet) */
  3624. blk_integrity_unregister(mddev->gendisk);
  3625. if (mddev->reshape_position != MaxSector &&
  3626. pers->start_reshape == NULL) {
  3627. /* This personality cannot handle reshaping... */
  3628. mddev->pers = NULL;
  3629. module_put(pers->owner);
  3630. return -EINVAL;
  3631. }
  3632. if (pers->sync_request) {
  3633. /* Warn if this is a potentially silly
  3634. * configuration.
  3635. */
  3636. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3637. mdk_rdev_t *rdev2;
  3638. int warned = 0;
  3639. list_for_each_entry(rdev, &mddev->disks, same_set)
  3640. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  3641. if (rdev < rdev2 &&
  3642. rdev->bdev->bd_contains ==
  3643. rdev2->bdev->bd_contains) {
  3644. printk(KERN_WARNING
  3645. "%s: WARNING: %s appears to be"
  3646. " on the same physical disk as"
  3647. " %s.\n",
  3648. mdname(mddev),
  3649. bdevname(rdev->bdev,b),
  3650. bdevname(rdev2->bdev,b2));
  3651. warned = 1;
  3652. }
  3653. }
  3654. if (warned)
  3655. printk(KERN_WARNING
  3656. "True protection against single-disk"
  3657. " failure might be compromised.\n");
  3658. }
  3659. mddev->recovery = 0;
  3660. /* may be over-ridden by personality */
  3661. mddev->resync_max_sectors = mddev->dev_sectors;
  3662. mddev->barriers_work = 1;
  3663. mddev->ok_start_degraded = start_dirty_degraded;
  3664. if (start_readonly)
  3665. mddev->ro = 2; /* read-only, but switch on first write */
  3666. err = mddev->pers->run(mddev);
  3667. if (err)
  3668. printk(KERN_ERR "md: pers->run() failed ...\n");
  3669. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  3670. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  3671. " but 'external_size' not in effect?\n", __func__);
  3672. printk(KERN_ERR
  3673. "md: invalid array_size %llu > default size %llu\n",
  3674. (unsigned long long)mddev->array_sectors / 2,
  3675. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  3676. err = -EINVAL;
  3677. mddev->pers->stop(mddev);
  3678. }
  3679. if (err == 0 && mddev->pers->sync_request) {
  3680. err = bitmap_create(mddev);
  3681. if (err) {
  3682. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  3683. mdname(mddev), err);
  3684. mddev->pers->stop(mddev);
  3685. }
  3686. }
  3687. if (err) {
  3688. module_put(mddev->pers->owner);
  3689. mddev->pers = NULL;
  3690. bitmap_destroy(mddev);
  3691. return err;
  3692. }
  3693. if (mddev->pers->sync_request) {
  3694. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3695. printk(KERN_WARNING
  3696. "md: cannot register extra attributes for %s\n",
  3697. mdname(mddev));
  3698. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3699. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  3700. mddev->ro = 0;
  3701. atomic_set(&mddev->writes_pending,0);
  3702. mddev->safemode = 0;
  3703. mddev->safemode_timer.function = md_safemode_timeout;
  3704. mddev->safemode_timer.data = (unsigned long) mddev;
  3705. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  3706. mddev->in_sync = 1;
  3707. list_for_each_entry(rdev, &mddev->disks, same_set)
  3708. if (rdev->raid_disk >= 0) {
  3709. char nm[20];
  3710. sprintf(nm, "rd%d", rdev->raid_disk);
  3711. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  3712. printk("md: cannot register %s for %s\n",
  3713. nm, mdname(mddev));
  3714. }
  3715. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3716. if (mddev->flags)
  3717. md_update_sb(mddev, 0);
  3718. set_capacity(disk, mddev->array_sectors);
  3719. /* If there is a partially-recovered drive we need to
  3720. * start recovery here. If we leave it to md_check_recovery,
  3721. * it will remove the drives and not do the right thing
  3722. */
  3723. if (mddev->degraded && !mddev->sync_thread) {
  3724. int spares = 0;
  3725. list_for_each_entry(rdev, &mddev->disks, same_set)
  3726. if (rdev->raid_disk >= 0 &&
  3727. !test_bit(In_sync, &rdev->flags) &&
  3728. !test_bit(Faulty, &rdev->flags))
  3729. /* complete an interrupted recovery */
  3730. spares++;
  3731. if (spares && mddev->pers->sync_request) {
  3732. mddev->recovery = 0;
  3733. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3734. mddev->sync_thread = md_register_thread(md_do_sync,
  3735. mddev,
  3736. "%s_resync");
  3737. if (!mddev->sync_thread) {
  3738. printk(KERN_ERR "%s: could not start resync"
  3739. " thread...\n",
  3740. mdname(mddev));
  3741. /* leave the spares where they are, it shouldn't hurt */
  3742. mddev->recovery = 0;
  3743. }
  3744. }
  3745. }
  3746. md_wakeup_thread(mddev->thread);
  3747. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  3748. mddev->changed = 1;
  3749. md_new_event(mddev);
  3750. sysfs_notify_dirent(mddev->sysfs_state);
  3751. if (mddev->sysfs_action)
  3752. sysfs_notify_dirent(mddev->sysfs_action);
  3753. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3754. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  3755. return 0;
  3756. }
  3757. static int restart_array(mddev_t *mddev)
  3758. {
  3759. struct gendisk *disk = mddev->gendisk;
  3760. /* Complain if it has no devices */
  3761. if (list_empty(&mddev->disks))
  3762. return -ENXIO;
  3763. if (!mddev->pers)
  3764. return -EINVAL;
  3765. if (!mddev->ro)
  3766. return -EBUSY;
  3767. mddev->safemode = 0;
  3768. mddev->ro = 0;
  3769. set_disk_ro(disk, 0);
  3770. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  3771. mdname(mddev));
  3772. /* Kick recovery or resync if necessary */
  3773. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3774. md_wakeup_thread(mddev->thread);
  3775. md_wakeup_thread(mddev->sync_thread);
  3776. sysfs_notify_dirent(mddev->sysfs_state);
  3777. return 0;
  3778. }
  3779. /* similar to deny_write_access, but accounts for our holding a reference
  3780. * to the file ourselves */
  3781. static int deny_bitmap_write_access(struct file * file)
  3782. {
  3783. struct inode *inode = file->f_mapping->host;
  3784. spin_lock(&inode->i_lock);
  3785. if (atomic_read(&inode->i_writecount) > 1) {
  3786. spin_unlock(&inode->i_lock);
  3787. return -ETXTBSY;
  3788. }
  3789. atomic_set(&inode->i_writecount, -1);
  3790. spin_unlock(&inode->i_lock);
  3791. return 0;
  3792. }
  3793. static void restore_bitmap_write_access(struct file *file)
  3794. {
  3795. struct inode *inode = file->f_mapping->host;
  3796. spin_lock(&inode->i_lock);
  3797. atomic_set(&inode->i_writecount, 1);
  3798. spin_unlock(&inode->i_lock);
  3799. }
  3800. /* mode:
  3801. * 0 - completely stop and dis-assemble array
  3802. * 1 - switch to readonly
  3803. * 2 - stop but do not disassemble array
  3804. */
  3805. static int do_md_stop(mddev_t * mddev, int mode, int is_open)
  3806. {
  3807. int err = 0;
  3808. struct gendisk *disk = mddev->gendisk;
  3809. mdk_rdev_t *rdev;
  3810. if (atomic_read(&mddev->openers) > is_open) {
  3811. printk("md: %s still in use.\n",mdname(mddev));
  3812. return -EBUSY;
  3813. }
  3814. if (mddev->pers) {
  3815. if (mddev->sync_thread) {
  3816. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3817. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3818. md_unregister_thread(mddev->sync_thread);
  3819. mddev->sync_thread = NULL;
  3820. }
  3821. del_timer_sync(&mddev->safemode_timer);
  3822. switch(mode) {
  3823. case 1: /* readonly */
  3824. err = -ENXIO;
  3825. if (mddev->ro==1)
  3826. goto out;
  3827. mddev->ro = 1;
  3828. break;
  3829. case 0: /* disassemble */
  3830. case 2: /* stop */
  3831. bitmap_flush(mddev);
  3832. md_super_wait(mddev);
  3833. if (mddev->ro)
  3834. set_disk_ro(disk, 0);
  3835. mddev->pers->stop(mddev);
  3836. mddev->queue->merge_bvec_fn = NULL;
  3837. mddev->queue->unplug_fn = NULL;
  3838. mddev->queue->backing_dev_info.congested_fn = NULL;
  3839. module_put(mddev->pers->owner);
  3840. if (mddev->pers->sync_request)
  3841. mddev->private = &md_redundancy_group;
  3842. mddev->pers = NULL;
  3843. /* tell userspace to handle 'inactive' */
  3844. sysfs_notify_dirent(mddev->sysfs_state);
  3845. list_for_each_entry(rdev, &mddev->disks, same_set)
  3846. if (rdev->raid_disk >= 0) {
  3847. char nm[20];
  3848. sprintf(nm, "rd%d", rdev->raid_disk);
  3849. sysfs_remove_link(&mddev->kobj, nm);
  3850. }
  3851. set_capacity(disk, 0);
  3852. mddev->changed = 1;
  3853. if (mddev->ro)
  3854. mddev->ro = 0;
  3855. }
  3856. if (!mddev->in_sync || mddev->flags) {
  3857. /* mark array as shutdown cleanly */
  3858. mddev->in_sync = 1;
  3859. md_update_sb(mddev, 1);
  3860. }
  3861. if (mode == 1)
  3862. set_disk_ro(disk, 1);
  3863. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3864. }
  3865. /*
  3866. * Free resources if final stop
  3867. */
  3868. if (mode == 0) {
  3869. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  3870. bitmap_destroy(mddev);
  3871. if (mddev->bitmap_file) {
  3872. restore_bitmap_write_access(mddev->bitmap_file);
  3873. fput(mddev->bitmap_file);
  3874. mddev->bitmap_file = NULL;
  3875. }
  3876. mddev->bitmap_offset = 0;
  3877. /* make sure all md_delayed_delete calls have finished */
  3878. flush_scheduled_work();
  3879. export_array(mddev);
  3880. mddev->array_sectors = 0;
  3881. mddev->external_size = 0;
  3882. mddev->dev_sectors = 0;
  3883. mddev->raid_disks = 0;
  3884. mddev->recovery_cp = 0;
  3885. mddev->resync_min = 0;
  3886. mddev->resync_max = MaxSector;
  3887. mddev->reshape_position = MaxSector;
  3888. mddev->external = 0;
  3889. mddev->persistent = 0;
  3890. mddev->level = LEVEL_NONE;
  3891. mddev->clevel[0] = 0;
  3892. mddev->flags = 0;
  3893. mddev->ro = 0;
  3894. mddev->metadata_type[0] = 0;
  3895. mddev->chunk_size = 0;
  3896. mddev->ctime = mddev->utime = 0;
  3897. mddev->layout = 0;
  3898. mddev->max_disks = 0;
  3899. mddev->events = 0;
  3900. mddev->delta_disks = 0;
  3901. mddev->new_level = LEVEL_NONE;
  3902. mddev->new_layout = 0;
  3903. mddev->new_chunk = 0;
  3904. mddev->curr_resync = 0;
  3905. mddev->resync_mismatches = 0;
  3906. mddev->suspend_lo = mddev->suspend_hi = 0;
  3907. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  3908. mddev->recovery = 0;
  3909. mddev->in_sync = 0;
  3910. mddev->changed = 0;
  3911. mddev->degraded = 0;
  3912. mddev->barriers_work = 0;
  3913. mddev->safemode = 0;
  3914. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  3915. if (mddev->hold_active == UNTIL_STOP)
  3916. mddev->hold_active = 0;
  3917. } else if (mddev->pers)
  3918. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  3919. mdname(mddev));
  3920. err = 0;
  3921. blk_integrity_unregister(disk);
  3922. md_new_event(mddev);
  3923. sysfs_notify_dirent(mddev->sysfs_state);
  3924. out:
  3925. return err;
  3926. }
  3927. #ifndef MODULE
  3928. static void autorun_array(mddev_t *mddev)
  3929. {
  3930. mdk_rdev_t *rdev;
  3931. int err;
  3932. if (list_empty(&mddev->disks))
  3933. return;
  3934. printk(KERN_INFO "md: running: ");
  3935. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3936. char b[BDEVNAME_SIZE];
  3937. printk("<%s>", bdevname(rdev->bdev,b));
  3938. }
  3939. printk("\n");
  3940. err = do_md_run(mddev);
  3941. if (err) {
  3942. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  3943. do_md_stop(mddev, 0, 0);
  3944. }
  3945. }
  3946. /*
  3947. * lets try to run arrays based on all disks that have arrived
  3948. * until now. (those are in pending_raid_disks)
  3949. *
  3950. * the method: pick the first pending disk, collect all disks with
  3951. * the same UUID, remove all from the pending list and put them into
  3952. * the 'same_array' list. Then order this list based on superblock
  3953. * update time (freshest comes first), kick out 'old' disks and
  3954. * compare superblocks. If everything's fine then run it.
  3955. *
  3956. * If "unit" is allocated, then bump its reference count
  3957. */
  3958. static void autorun_devices(int part)
  3959. {
  3960. mdk_rdev_t *rdev0, *rdev, *tmp;
  3961. mddev_t *mddev;
  3962. char b[BDEVNAME_SIZE];
  3963. printk(KERN_INFO "md: autorun ...\n");
  3964. while (!list_empty(&pending_raid_disks)) {
  3965. int unit;
  3966. dev_t dev;
  3967. LIST_HEAD(candidates);
  3968. rdev0 = list_entry(pending_raid_disks.next,
  3969. mdk_rdev_t, same_set);
  3970. printk(KERN_INFO "md: considering %s ...\n",
  3971. bdevname(rdev0->bdev,b));
  3972. INIT_LIST_HEAD(&candidates);
  3973. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  3974. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3975. printk(KERN_INFO "md: adding %s ...\n",
  3976. bdevname(rdev->bdev,b));
  3977. list_move(&rdev->same_set, &candidates);
  3978. }
  3979. /*
  3980. * now we have a set of devices, with all of them having
  3981. * mostly sane superblocks. It's time to allocate the
  3982. * mddev.
  3983. */
  3984. if (part) {
  3985. dev = MKDEV(mdp_major,
  3986. rdev0->preferred_minor << MdpMinorShift);
  3987. unit = MINOR(dev) >> MdpMinorShift;
  3988. } else {
  3989. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3990. unit = MINOR(dev);
  3991. }
  3992. if (rdev0->preferred_minor != unit) {
  3993. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3994. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3995. break;
  3996. }
  3997. md_probe(dev, NULL, NULL);
  3998. mddev = mddev_find(dev);
  3999. if (!mddev || !mddev->gendisk) {
  4000. if (mddev)
  4001. mddev_put(mddev);
  4002. printk(KERN_ERR
  4003. "md: cannot allocate memory for md drive.\n");
  4004. break;
  4005. }
  4006. if (mddev_lock(mddev))
  4007. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4008. mdname(mddev));
  4009. else if (mddev->raid_disks || mddev->major_version
  4010. || !list_empty(&mddev->disks)) {
  4011. printk(KERN_WARNING
  4012. "md: %s already running, cannot run %s\n",
  4013. mdname(mddev), bdevname(rdev0->bdev,b));
  4014. mddev_unlock(mddev);
  4015. } else {
  4016. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4017. mddev->persistent = 1;
  4018. rdev_for_each_list(rdev, tmp, &candidates) {
  4019. list_del_init(&rdev->same_set);
  4020. if (bind_rdev_to_array(rdev, mddev))
  4021. export_rdev(rdev);
  4022. }
  4023. autorun_array(mddev);
  4024. mddev_unlock(mddev);
  4025. }
  4026. /* on success, candidates will be empty, on error
  4027. * it won't...
  4028. */
  4029. rdev_for_each_list(rdev, tmp, &candidates) {
  4030. list_del_init(&rdev->same_set);
  4031. export_rdev(rdev);
  4032. }
  4033. mddev_put(mddev);
  4034. }
  4035. printk(KERN_INFO "md: ... autorun DONE.\n");
  4036. }
  4037. #endif /* !MODULE */
  4038. static int get_version(void __user * arg)
  4039. {
  4040. mdu_version_t ver;
  4041. ver.major = MD_MAJOR_VERSION;
  4042. ver.minor = MD_MINOR_VERSION;
  4043. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4044. if (copy_to_user(arg, &ver, sizeof(ver)))
  4045. return -EFAULT;
  4046. return 0;
  4047. }
  4048. static int get_array_info(mddev_t * mddev, void __user * arg)
  4049. {
  4050. mdu_array_info_t info;
  4051. int nr,working,active,failed,spare;
  4052. mdk_rdev_t *rdev;
  4053. nr=working=active=failed=spare=0;
  4054. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4055. nr++;
  4056. if (test_bit(Faulty, &rdev->flags))
  4057. failed++;
  4058. else {
  4059. working++;
  4060. if (test_bit(In_sync, &rdev->flags))
  4061. active++;
  4062. else
  4063. spare++;
  4064. }
  4065. }
  4066. info.major_version = mddev->major_version;
  4067. info.minor_version = mddev->minor_version;
  4068. info.patch_version = MD_PATCHLEVEL_VERSION;
  4069. info.ctime = mddev->ctime;
  4070. info.level = mddev->level;
  4071. info.size = mddev->dev_sectors / 2;
  4072. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4073. info.size = -1;
  4074. info.nr_disks = nr;
  4075. info.raid_disks = mddev->raid_disks;
  4076. info.md_minor = mddev->md_minor;
  4077. info.not_persistent= !mddev->persistent;
  4078. info.utime = mddev->utime;
  4079. info.state = 0;
  4080. if (mddev->in_sync)
  4081. info.state = (1<<MD_SB_CLEAN);
  4082. if (mddev->bitmap && mddev->bitmap_offset)
  4083. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4084. info.active_disks = active;
  4085. info.working_disks = working;
  4086. info.failed_disks = failed;
  4087. info.spare_disks = spare;
  4088. info.layout = mddev->layout;
  4089. info.chunk_size = mddev->chunk_size;
  4090. if (copy_to_user(arg, &info, sizeof(info)))
  4091. return -EFAULT;
  4092. return 0;
  4093. }
  4094. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  4095. {
  4096. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4097. char *ptr, *buf = NULL;
  4098. int err = -ENOMEM;
  4099. if (md_allow_write(mddev))
  4100. file = kmalloc(sizeof(*file), GFP_NOIO);
  4101. else
  4102. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4103. if (!file)
  4104. goto out;
  4105. /* bitmap disabled, zero the first byte and copy out */
  4106. if (!mddev->bitmap || !mddev->bitmap->file) {
  4107. file->pathname[0] = '\0';
  4108. goto copy_out;
  4109. }
  4110. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4111. if (!buf)
  4112. goto out;
  4113. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4114. if (IS_ERR(ptr))
  4115. goto out;
  4116. strcpy(file->pathname, ptr);
  4117. copy_out:
  4118. err = 0;
  4119. if (copy_to_user(arg, file, sizeof(*file)))
  4120. err = -EFAULT;
  4121. out:
  4122. kfree(buf);
  4123. kfree(file);
  4124. return err;
  4125. }
  4126. static int get_disk_info(mddev_t * mddev, void __user * arg)
  4127. {
  4128. mdu_disk_info_t info;
  4129. mdk_rdev_t *rdev;
  4130. if (copy_from_user(&info, arg, sizeof(info)))
  4131. return -EFAULT;
  4132. rdev = find_rdev_nr(mddev, info.number);
  4133. if (rdev) {
  4134. info.major = MAJOR(rdev->bdev->bd_dev);
  4135. info.minor = MINOR(rdev->bdev->bd_dev);
  4136. info.raid_disk = rdev->raid_disk;
  4137. info.state = 0;
  4138. if (test_bit(Faulty, &rdev->flags))
  4139. info.state |= (1<<MD_DISK_FAULTY);
  4140. else if (test_bit(In_sync, &rdev->flags)) {
  4141. info.state |= (1<<MD_DISK_ACTIVE);
  4142. info.state |= (1<<MD_DISK_SYNC);
  4143. }
  4144. if (test_bit(WriteMostly, &rdev->flags))
  4145. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4146. } else {
  4147. info.major = info.minor = 0;
  4148. info.raid_disk = -1;
  4149. info.state = (1<<MD_DISK_REMOVED);
  4150. }
  4151. if (copy_to_user(arg, &info, sizeof(info)))
  4152. return -EFAULT;
  4153. return 0;
  4154. }
  4155. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  4156. {
  4157. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4158. mdk_rdev_t *rdev;
  4159. dev_t dev = MKDEV(info->major,info->minor);
  4160. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4161. return -EOVERFLOW;
  4162. if (!mddev->raid_disks) {
  4163. int err;
  4164. /* expecting a device which has a superblock */
  4165. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4166. if (IS_ERR(rdev)) {
  4167. printk(KERN_WARNING
  4168. "md: md_import_device returned %ld\n",
  4169. PTR_ERR(rdev));
  4170. return PTR_ERR(rdev);
  4171. }
  4172. if (!list_empty(&mddev->disks)) {
  4173. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  4174. mdk_rdev_t, same_set);
  4175. int err = super_types[mddev->major_version]
  4176. .load_super(rdev, rdev0, mddev->minor_version);
  4177. if (err < 0) {
  4178. printk(KERN_WARNING
  4179. "md: %s has different UUID to %s\n",
  4180. bdevname(rdev->bdev,b),
  4181. bdevname(rdev0->bdev,b2));
  4182. export_rdev(rdev);
  4183. return -EINVAL;
  4184. }
  4185. }
  4186. err = bind_rdev_to_array(rdev, mddev);
  4187. if (err)
  4188. export_rdev(rdev);
  4189. return err;
  4190. }
  4191. /*
  4192. * add_new_disk can be used once the array is assembled
  4193. * to add "hot spares". They must already have a superblock
  4194. * written
  4195. */
  4196. if (mddev->pers) {
  4197. int err;
  4198. if (!mddev->pers->hot_add_disk) {
  4199. printk(KERN_WARNING
  4200. "%s: personality does not support diskops!\n",
  4201. mdname(mddev));
  4202. return -EINVAL;
  4203. }
  4204. if (mddev->persistent)
  4205. rdev = md_import_device(dev, mddev->major_version,
  4206. mddev->minor_version);
  4207. else
  4208. rdev = md_import_device(dev, -1, -1);
  4209. if (IS_ERR(rdev)) {
  4210. printk(KERN_WARNING
  4211. "md: md_import_device returned %ld\n",
  4212. PTR_ERR(rdev));
  4213. return PTR_ERR(rdev);
  4214. }
  4215. /* set save_raid_disk if appropriate */
  4216. if (!mddev->persistent) {
  4217. if (info->state & (1<<MD_DISK_SYNC) &&
  4218. info->raid_disk < mddev->raid_disks)
  4219. rdev->raid_disk = info->raid_disk;
  4220. else
  4221. rdev->raid_disk = -1;
  4222. } else
  4223. super_types[mddev->major_version].
  4224. validate_super(mddev, rdev);
  4225. rdev->saved_raid_disk = rdev->raid_disk;
  4226. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4227. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4228. set_bit(WriteMostly, &rdev->flags);
  4229. else
  4230. clear_bit(WriteMostly, &rdev->flags);
  4231. rdev->raid_disk = -1;
  4232. err = bind_rdev_to_array(rdev, mddev);
  4233. if (!err && !mddev->pers->hot_remove_disk) {
  4234. /* If there is hot_add_disk but no hot_remove_disk
  4235. * then added disks for geometry changes,
  4236. * and should be added immediately.
  4237. */
  4238. super_types[mddev->major_version].
  4239. validate_super(mddev, rdev);
  4240. err = mddev->pers->hot_add_disk(mddev, rdev);
  4241. if (err)
  4242. unbind_rdev_from_array(rdev);
  4243. }
  4244. if (err)
  4245. export_rdev(rdev);
  4246. else
  4247. sysfs_notify_dirent(rdev->sysfs_state);
  4248. md_update_sb(mddev, 1);
  4249. if (mddev->degraded)
  4250. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4251. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4252. md_wakeup_thread(mddev->thread);
  4253. return err;
  4254. }
  4255. /* otherwise, add_new_disk is only allowed
  4256. * for major_version==0 superblocks
  4257. */
  4258. if (mddev->major_version != 0) {
  4259. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4260. mdname(mddev));
  4261. return -EINVAL;
  4262. }
  4263. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4264. int err;
  4265. rdev = md_import_device(dev, -1, 0);
  4266. if (IS_ERR(rdev)) {
  4267. printk(KERN_WARNING
  4268. "md: error, md_import_device() returned %ld\n",
  4269. PTR_ERR(rdev));
  4270. return PTR_ERR(rdev);
  4271. }
  4272. rdev->desc_nr = info->number;
  4273. if (info->raid_disk < mddev->raid_disks)
  4274. rdev->raid_disk = info->raid_disk;
  4275. else
  4276. rdev->raid_disk = -1;
  4277. if (rdev->raid_disk < mddev->raid_disks)
  4278. if (info->state & (1<<MD_DISK_SYNC))
  4279. set_bit(In_sync, &rdev->flags);
  4280. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4281. set_bit(WriteMostly, &rdev->flags);
  4282. if (!mddev->persistent) {
  4283. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4284. rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
  4285. } else
  4286. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  4287. rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
  4288. err = bind_rdev_to_array(rdev, mddev);
  4289. if (err) {
  4290. export_rdev(rdev);
  4291. return err;
  4292. }
  4293. }
  4294. return 0;
  4295. }
  4296. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  4297. {
  4298. char b[BDEVNAME_SIZE];
  4299. mdk_rdev_t *rdev;
  4300. rdev = find_rdev(mddev, dev);
  4301. if (!rdev)
  4302. return -ENXIO;
  4303. if (rdev->raid_disk >= 0)
  4304. goto busy;
  4305. kick_rdev_from_array(rdev);
  4306. md_update_sb(mddev, 1);
  4307. md_new_event(mddev);
  4308. return 0;
  4309. busy:
  4310. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4311. bdevname(rdev->bdev,b), mdname(mddev));
  4312. return -EBUSY;
  4313. }
  4314. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  4315. {
  4316. char b[BDEVNAME_SIZE];
  4317. int err;
  4318. mdk_rdev_t *rdev;
  4319. if (!mddev->pers)
  4320. return -ENODEV;
  4321. if (mddev->major_version != 0) {
  4322. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4323. " version-0 superblocks.\n",
  4324. mdname(mddev));
  4325. return -EINVAL;
  4326. }
  4327. if (!mddev->pers->hot_add_disk) {
  4328. printk(KERN_WARNING
  4329. "%s: personality does not support diskops!\n",
  4330. mdname(mddev));
  4331. return -EINVAL;
  4332. }
  4333. rdev = md_import_device(dev, -1, 0);
  4334. if (IS_ERR(rdev)) {
  4335. printk(KERN_WARNING
  4336. "md: error, md_import_device() returned %ld\n",
  4337. PTR_ERR(rdev));
  4338. return -EINVAL;
  4339. }
  4340. if (mddev->persistent)
  4341. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  4342. else
  4343. rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
  4344. rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
  4345. if (test_bit(Faulty, &rdev->flags)) {
  4346. printk(KERN_WARNING
  4347. "md: can not hot-add faulty %s disk to %s!\n",
  4348. bdevname(rdev->bdev,b), mdname(mddev));
  4349. err = -EINVAL;
  4350. goto abort_export;
  4351. }
  4352. clear_bit(In_sync, &rdev->flags);
  4353. rdev->desc_nr = -1;
  4354. rdev->saved_raid_disk = -1;
  4355. err = bind_rdev_to_array(rdev, mddev);
  4356. if (err)
  4357. goto abort_export;
  4358. /*
  4359. * The rest should better be atomic, we can have disk failures
  4360. * noticed in interrupt contexts ...
  4361. */
  4362. rdev->raid_disk = -1;
  4363. md_update_sb(mddev, 1);
  4364. /*
  4365. * Kick recovery, maybe this spare has to be added to the
  4366. * array immediately.
  4367. */
  4368. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4369. md_wakeup_thread(mddev->thread);
  4370. md_new_event(mddev);
  4371. return 0;
  4372. abort_export:
  4373. export_rdev(rdev);
  4374. return err;
  4375. }
  4376. static int set_bitmap_file(mddev_t *mddev, int fd)
  4377. {
  4378. int err;
  4379. if (mddev->pers) {
  4380. if (!mddev->pers->quiesce)
  4381. return -EBUSY;
  4382. if (mddev->recovery || mddev->sync_thread)
  4383. return -EBUSY;
  4384. /* we should be able to change the bitmap.. */
  4385. }
  4386. if (fd >= 0) {
  4387. if (mddev->bitmap)
  4388. return -EEXIST; /* cannot add when bitmap is present */
  4389. mddev->bitmap_file = fget(fd);
  4390. if (mddev->bitmap_file == NULL) {
  4391. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  4392. mdname(mddev));
  4393. return -EBADF;
  4394. }
  4395. err = deny_bitmap_write_access(mddev->bitmap_file);
  4396. if (err) {
  4397. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  4398. mdname(mddev));
  4399. fput(mddev->bitmap_file);
  4400. mddev->bitmap_file = NULL;
  4401. return err;
  4402. }
  4403. mddev->bitmap_offset = 0; /* file overrides offset */
  4404. } else if (mddev->bitmap == NULL)
  4405. return -ENOENT; /* cannot remove what isn't there */
  4406. err = 0;
  4407. if (mddev->pers) {
  4408. mddev->pers->quiesce(mddev, 1);
  4409. if (fd >= 0)
  4410. err = bitmap_create(mddev);
  4411. if (fd < 0 || err) {
  4412. bitmap_destroy(mddev);
  4413. fd = -1; /* make sure to put the file */
  4414. }
  4415. mddev->pers->quiesce(mddev, 0);
  4416. }
  4417. if (fd < 0) {
  4418. if (mddev->bitmap_file) {
  4419. restore_bitmap_write_access(mddev->bitmap_file);
  4420. fput(mddev->bitmap_file);
  4421. }
  4422. mddev->bitmap_file = NULL;
  4423. }
  4424. return err;
  4425. }
  4426. /*
  4427. * set_array_info is used two different ways
  4428. * The original usage is when creating a new array.
  4429. * In this usage, raid_disks is > 0 and it together with
  4430. * level, size, not_persistent,layout,chunksize determine the
  4431. * shape of the array.
  4432. * This will always create an array with a type-0.90.0 superblock.
  4433. * The newer usage is when assembling an array.
  4434. * In this case raid_disks will be 0, and the major_version field is
  4435. * use to determine which style super-blocks are to be found on the devices.
  4436. * The minor and patch _version numbers are also kept incase the
  4437. * super_block handler wishes to interpret them.
  4438. */
  4439. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  4440. {
  4441. if (info->raid_disks == 0) {
  4442. /* just setting version number for superblock loading */
  4443. if (info->major_version < 0 ||
  4444. info->major_version >= ARRAY_SIZE(super_types) ||
  4445. super_types[info->major_version].name == NULL) {
  4446. /* maybe try to auto-load a module? */
  4447. printk(KERN_INFO
  4448. "md: superblock version %d not known\n",
  4449. info->major_version);
  4450. return -EINVAL;
  4451. }
  4452. mddev->major_version = info->major_version;
  4453. mddev->minor_version = info->minor_version;
  4454. mddev->patch_version = info->patch_version;
  4455. mddev->persistent = !info->not_persistent;
  4456. return 0;
  4457. }
  4458. mddev->major_version = MD_MAJOR_VERSION;
  4459. mddev->minor_version = MD_MINOR_VERSION;
  4460. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  4461. mddev->ctime = get_seconds();
  4462. mddev->level = info->level;
  4463. mddev->clevel[0] = 0;
  4464. mddev->dev_sectors = 2 * (sector_t)info->size;
  4465. mddev->raid_disks = info->raid_disks;
  4466. /* don't set md_minor, it is determined by which /dev/md* was
  4467. * openned
  4468. */
  4469. if (info->state & (1<<MD_SB_CLEAN))
  4470. mddev->recovery_cp = MaxSector;
  4471. else
  4472. mddev->recovery_cp = 0;
  4473. mddev->persistent = ! info->not_persistent;
  4474. mddev->external = 0;
  4475. mddev->layout = info->layout;
  4476. mddev->chunk_size = info->chunk_size;
  4477. mddev->max_disks = MD_SB_DISKS;
  4478. if (mddev->persistent)
  4479. mddev->flags = 0;
  4480. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4481. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  4482. mddev->bitmap_offset = 0;
  4483. mddev->reshape_position = MaxSector;
  4484. /*
  4485. * Generate a 128 bit UUID
  4486. */
  4487. get_random_bytes(mddev->uuid, 16);
  4488. mddev->new_level = mddev->level;
  4489. mddev->new_chunk = mddev->chunk_size;
  4490. mddev->new_layout = mddev->layout;
  4491. mddev->delta_disks = 0;
  4492. return 0;
  4493. }
  4494. void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
  4495. {
  4496. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  4497. if (mddev->external_size)
  4498. return;
  4499. mddev->array_sectors = array_sectors;
  4500. }
  4501. EXPORT_SYMBOL(md_set_array_sectors);
  4502. static int update_size(mddev_t *mddev, sector_t num_sectors)
  4503. {
  4504. mdk_rdev_t *rdev;
  4505. int rv;
  4506. int fit = (num_sectors == 0);
  4507. if (mddev->pers->resize == NULL)
  4508. return -EINVAL;
  4509. /* The "num_sectors" is the number of sectors of each device that
  4510. * is used. This can only make sense for arrays with redundancy.
  4511. * linear and raid0 always use whatever space is available. We can only
  4512. * consider changing this number if no resync or reconstruction is
  4513. * happening, and if the new size is acceptable. It must fit before the
  4514. * sb_start or, if that is <data_offset, it must fit before the size
  4515. * of each device. If num_sectors is zero, we find the largest size
  4516. * that fits.
  4517. */
  4518. if (mddev->sync_thread)
  4519. return -EBUSY;
  4520. if (mddev->bitmap)
  4521. /* Sorry, cannot grow a bitmap yet, just remove it,
  4522. * grow, and re-add.
  4523. */
  4524. return -EBUSY;
  4525. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4526. sector_t avail = rdev->sectors;
  4527. if (fit && (num_sectors == 0 || num_sectors > avail))
  4528. num_sectors = avail;
  4529. if (avail < num_sectors)
  4530. return -ENOSPC;
  4531. }
  4532. rv = mddev->pers->resize(mddev, num_sectors);
  4533. if (!rv) {
  4534. struct block_device *bdev;
  4535. bdev = bdget_disk(mddev->gendisk, 0);
  4536. if (bdev) {
  4537. mutex_lock(&bdev->bd_inode->i_mutex);
  4538. i_size_write(bdev->bd_inode,
  4539. (loff_t)mddev->array_sectors << 9);
  4540. mutex_unlock(&bdev->bd_inode->i_mutex);
  4541. bdput(bdev);
  4542. }
  4543. }
  4544. return rv;
  4545. }
  4546. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  4547. {
  4548. int rv;
  4549. /* change the number of raid disks */
  4550. if (mddev->pers->check_reshape == NULL)
  4551. return -EINVAL;
  4552. if (raid_disks <= 0 ||
  4553. raid_disks >= mddev->max_disks)
  4554. return -EINVAL;
  4555. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  4556. return -EBUSY;
  4557. mddev->delta_disks = raid_disks - mddev->raid_disks;
  4558. rv = mddev->pers->check_reshape(mddev);
  4559. return rv;
  4560. }
  4561. /*
  4562. * update_array_info is used to change the configuration of an
  4563. * on-line array.
  4564. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  4565. * fields in the info are checked against the array.
  4566. * Any differences that cannot be handled will cause an error.
  4567. * Normally, only one change can be managed at a time.
  4568. */
  4569. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  4570. {
  4571. int rv = 0;
  4572. int cnt = 0;
  4573. int state = 0;
  4574. /* calculate expected state,ignoring low bits */
  4575. if (mddev->bitmap && mddev->bitmap_offset)
  4576. state |= (1 << MD_SB_BITMAP_PRESENT);
  4577. if (mddev->major_version != info->major_version ||
  4578. mddev->minor_version != info->minor_version ||
  4579. /* mddev->patch_version != info->patch_version || */
  4580. mddev->ctime != info->ctime ||
  4581. mddev->level != info->level ||
  4582. /* mddev->layout != info->layout || */
  4583. !mddev->persistent != info->not_persistent||
  4584. mddev->chunk_size != info->chunk_size ||
  4585. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  4586. ((state^info->state) & 0xfffffe00)
  4587. )
  4588. return -EINVAL;
  4589. /* Check there is only one change */
  4590. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  4591. cnt++;
  4592. if (mddev->raid_disks != info->raid_disks)
  4593. cnt++;
  4594. if (mddev->layout != info->layout)
  4595. cnt++;
  4596. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  4597. cnt++;
  4598. if (cnt == 0)
  4599. return 0;
  4600. if (cnt > 1)
  4601. return -EINVAL;
  4602. if (mddev->layout != info->layout) {
  4603. /* Change layout
  4604. * we don't need to do anything at the md level, the
  4605. * personality will take care of it all.
  4606. */
  4607. if (mddev->pers->reconfig == NULL)
  4608. return -EINVAL;
  4609. else
  4610. return mddev->pers->reconfig(mddev, info->layout, -1);
  4611. }
  4612. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  4613. rv = update_size(mddev, (sector_t)info->size * 2);
  4614. if (mddev->raid_disks != info->raid_disks)
  4615. rv = update_raid_disks(mddev, info->raid_disks);
  4616. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  4617. if (mddev->pers->quiesce == NULL)
  4618. return -EINVAL;
  4619. if (mddev->recovery || mddev->sync_thread)
  4620. return -EBUSY;
  4621. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  4622. /* add the bitmap */
  4623. if (mddev->bitmap)
  4624. return -EEXIST;
  4625. if (mddev->default_bitmap_offset == 0)
  4626. return -EINVAL;
  4627. mddev->bitmap_offset = mddev->default_bitmap_offset;
  4628. mddev->pers->quiesce(mddev, 1);
  4629. rv = bitmap_create(mddev);
  4630. if (rv)
  4631. bitmap_destroy(mddev);
  4632. mddev->pers->quiesce(mddev, 0);
  4633. } else {
  4634. /* remove the bitmap */
  4635. if (!mddev->bitmap)
  4636. return -ENOENT;
  4637. if (mddev->bitmap->file)
  4638. return -EINVAL;
  4639. mddev->pers->quiesce(mddev, 1);
  4640. bitmap_destroy(mddev);
  4641. mddev->pers->quiesce(mddev, 0);
  4642. mddev->bitmap_offset = 0;
  4643. }
  4644. }
  4645. md_update_sb(mddev, 1);
  4646. return rv;
  4647. }
  4648. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  4649. {
  4650. mdk_rdev_t *rdev;
  4651. if (mddev->pers == NULL)
  4652. return -ENODEV;
  4653. rdev = find_rdev(mddev, dev);
  4654. if (!rdev)
  4655. return -ENODEV;
  4656. md_error(mddev, rdev);
  4657. return 0;
  4658. }
  4659. /*
  4660. * We have a problem here : there is no easy way to give a CHS
  4661. * virtual geometry. We currently pretend that we have a 2 heads
  4662. * 4 sectors (with a BIG number of cylinders...). This drives
  4663. * dosfs just mad... ;-)
  4664. */
  4665. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  4666. {
  4667. mddev_t *mddev = bdev->bd_disk->private_data;
  4668. geo->heads = 2;
  4669. geo->sectors = 4;
  4670. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  4671. return 0;
  4672. }
  4673. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  4674. unsigned int cmd, unsigned long arg)
  4675. {
  4676. int err = 0;
  4677. void __user *argp = (void __user *)arg;
  4678. mddev_t *mddev = NULL;
  4679. if (!capable(CAP_SYS_ADMIN))
  4680. return -EACCES;
  4681. /*
  4682. * Commands dealing with the RAID driver but not any
  4683. * particular array:
  4684. */
  4685. switch (cmd)
  4686. {
  4687. case RAID_VERSION:
  4688. err = get_version(argp);
  4689. goto done;
  4690. case PRINT_RAID_DEBUG:
  4691. err = 0;
  4692. md_print_devices();
  4693. goto done;
  4694. #ifndef MODULE
  4695. case RAID_AUTORUN:
  4696. err = 0;
  4697. autostart_arrays(arg);
  4698. goto done;
  4699. #endif
  4700. default:;
  4701. }
  4702. /*
  4703. * Commands creating/starting a new array:
  4704. */
  4705. mddev = bdev->bd_disk->private_data;
  4706. if (!mddev) {
  4707. BUG();
  4708. goto abort;
  4709. }
  4710. err = mddev_lock(mddev);
  4711. if (err) {
  4712. printk(KERN_INFO
  4713. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  4714. err, cmd);
  4715. goto abort;
  4716. }
  4717. switch (cmd)
  4718. {
  4719. case SET_ARRAY_INFO:
  4720. {
  4721. mdu_array_info_t info;
  4722. if (!arg)
  4723. memset(&info, 0, sizeof(info));
  4724. else if (copy_from_user(&info, argp, sizeof(info))) {
  4725. err = -EFAULT;
  4726. goto abort_unlock;
  4727. }
  4728. if (mddev->pers) {
  4729. err = update_array_info(mddev, &info);
  4730. if (err) {
  4731. printk(KERN_WARNING "md: couldn't update"
  4732. " array info. %d\n", err);
  4733. goto abort_unlock;
  4734. }
  4735. goto done_unlock;
  4736. }
  4737. if (!list_empty(&mddev->disks)) {
  4738. printk(KERN_WARNING
  4739. "md: array %s already has disks!\n",
  4740. mdname(mddev));
  4741. err = -EBUSY;
  4742. goto abort_unlock;
  4743. }
  4744. if (mddev->raid_disks) {
  4745. printk(KERN_WARNING
  4746. "md: array %s already initialised!\n",
  4747. mdname(mddev));
  4748. err = -EBUSY;
  4749. goto abort_unlock;
  4750. }
  4751. err = set_array_info(mddev, &info);
  4752. if (err) {
  4753. printk(KERN_WARNING "md: couldn't set"
  4754. " array info. %d\n", err);
  4755. goto abort_unlock;
  4756. }
  4757. }
  4758. goto done_unlock;
  4759. default:;
  4760. }
  4761. /*
  4762. * Commands querying/configuring an existing array:
  4763. */
  4764. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  4765. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  4766. if ((!mddev->raid_disks && !mddev->external)
  4767. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  4768. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  4769. && cmd != GET_BITMAP_FILE) {
  4770. err = -ENODEV;
  4771. goto abort_unlock;
  4772. }
  4773. /*
  4774. * Commands even a read-only array can execute:
  4775. */
  4776. switch (cmd)
  4777. {
  4778. case GET_ARRAY_INFO:
  4779. err = get_array_info(mddev, argp);
  4780. goto done_unlock;
  4781. case GET_BITMAP_FILE:
  4782. err = get_bitmap_file(mddev, argp);
  4783. goto done_unlock;
  4784. case GET_DISK_INFO:
  4785. err = get_disk_info(mddev, argp);
  4786. goto done_unlock;
  4787. case RESTART_ARRAY_RW:
  4788. err = restart_array(mddev);
  4789. goto done_unlock;
  4790. case STOP_ARRAY:
  4791. err = do_md_stop(mddev, 0, 1);
  4792. goto done_unlock;
  4793. case STOP_ARRAY_RO:
  4794. err = do_md_stop(mddev, 1, 1);
  4795. goto done_unlock;
  4796. }
  4797. /*
  4798. * The remaining ioctls are changing the state of the
  4799. * superblock, so we do not allow them on read-only arrays.
  4800. * However non-MD ioctls (e.g. get-size) will still come through
  4801. * here and hit the 'default' below, so only disallow
  4802. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  4803. */
  4804. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  4805. if (mddev->ro == 2) {
  4806. mddev->ro = 0;
  4807. sysfs_notify_dirent(mddev->sysfs_state);
  4808. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4809. md_wakeup_thread(mddev->thread);
  4810. } else {
  4811. err = -EROFS;
  4812. goto abort_unlock;
  4813. }
  4814. }
  4815. switch (cmd)
  4816. {
  4817. case ADD_NEW_DISK:
  4818. {
  4819. mdu_disk_info_t info;
  4820. if (copy_from_user(&info, argp, sizeof(info)))
  4821. err = -EFAULT;
  4822. else
  4823. err = add_new_disk(mddev, &info);
  4824. goto done_unlock;
  4825. }
  4826. case HOT_REMOVE_DISK:
  4827. err = hot_remove_disk(mddev, new_decode_dev(arg));
  4828. goto done_unlock;
  4829. case HOT_ADD_DISK:
  4830. err = hot_add_disk(mddev, new_decode_dev(arg));
  4831. goto done_unlock;
  4832. case SET_DISK_FAULTY:
  4833. err = set_disk_faulty(mddev, new_decode_dev(arg));
  4834. goto done_unlock;
  4835. case RUN_ARRAY:
  4836. err = do_md_run(mddev);
  4837. goto done_unlock;
  4838. case SET_BITMAP_FILE:
  4839. err = set_bitmap_file(mddev, (int)arg);
  4840. goto done_unlock;
  4841. default:
  4842. err = -EINVAL;
  4843. goto abort_unlock;
  4844. }
  4845. done_unlock:
  4846. abort_unlock:
  4847. if (mddev->hold_active == UNTIL_IOCTL &&
  4848. err != -EINVAL)
  4849. mddev->hold_active = 0;
  4850. mddev_unlock(mddev);
  4851. return err;
  4852. done:
  4853. if (err)
  4854. MD_BUG();
  4855. abort:
  4856. return err;
  4857. }
  4858. static int md_open(struct block_device *bdev, fmode_t mode)
  4859. {
  4860. /*
  4861. * Succeed if we can lock the mddev, which confirms that
  4862. * it isn't being stopped right now.
  4863. */
  4864. mddev_t *mddev = mddev_find(bdev->bd_dev);
  4865. int err;
  4866. if (mddev->gendisk != bdev->bd_disk) {
  4867. /* we are racing with mddev_put which is discarding this
  4868. * bd_disk.
  4869. */
  4870. mddev_put(mddev);
  4871. /* Wait until bdev->bd_disk is definitely gone */
  4872. flush_scheduled_work();
  4873. /* Then retry the open from the top */
  4874. return -ERESTARTSYS;
  4875. }
  4876. BUG_ON(mddev != bdev->bd_disk->private_data);
  4877. if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
  4878. goto out;
  4879. err = 0;
  4880. atomic_inc(&mddev->openers);
  4881. mddev_unlock(mddev);
  4882. check_disk_change(bdev);
  4883. out:
  4884. return err;
  4885. }
  4886. static int md_release(struct gendisk *disk, fmode_t mode)
  4887. {
  4888. mddev_t *mddev = disk->private_data;
  4889. BUG_ON(!mddev);
  4890. atomic_dec(&mddev->openers);
  4891. mddev_put(mddev);
  4892. return 0;
  4893. }
  4894. static int md_media_changed(struct gendisk *disk)
  4895. {
  4896. mddev_t *mddev = disk->private_data;
  4897. return mddev->changed;
  4898. }
  4899. static int md_revalidate(struct gendisk *disk)
  4900. {
  4901. mddev_t *mddev = disk->private_data;
  4902. mddev->changed = 0;
  4903. return 0;
  4904. }
  4905. static struct block_device_operations md_fops =
  4906. {
  4907. .owner = THIS_MODULE,
  4908. .open = md_open,
  4909. .release = md_release,
  4910. .locked_ioctl = md_ioctl,
  4911. .getgeo = md_getgeo,
  4912. .media_changed = md_media_changed,
  4913. .revalidate_disk= md_revalidate,
  4914. };
  4915. static int md_thread(void * arg)
  4916. {
  4917. mdk_thread_t *thread = arg;
  4918. /*
  4919. * md_thread is a 'system-thread', it's priority should be very
  4920. * high. We avoid resource deadlocks individually in each
  4921. * raid personality. (RAID5 does preallocation) We also use RR and
  4922. * the very same RT priority as kswapd, thus we will never get
  4923. * into a priority inversion deadlock.
  4924. *
  4925. * we definitely have to have equal or higher priority than
  4926. * bdflush, otherwise bdflush will deadlock if there are too
  4927. * many dirty RAID5 blocks.
  4928. */
  4929. allow_signal(SIGKILL);
  4930. while (!kthread_should_stop()) {
  4931. /* We need to wait INTERRUPTIBLE so that
  4932. * we don't add to the load-average.
  4933. * That means we need to be sure no signals are
  4934. * pending
  4935. */
  4936. if (signal_pending(current))
  4937. flush_signals(current);
  4938. wait_event_interruptible_timeout
  4939. (thread->wqueue,
  4940. test_bit(THREAD_WAKEUP, &thread->flags)
  4941. || kthread_should_stop(),
  4942. thread->timeout);
  4943. clear_bit(THREAD_WAKEUP, &thread->flags);
  4944. thread->run(thread->mddev);
  4945. }
  4946. return 0;
  4947. }
  4948. void md_wakeup_thread(mdk_thread_t *thread)
  4949. {
  4950. if (thread) {
  4951. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  4952. set_bit(THREAD_WAKEUP, &thread->flags);
  4953. wake_up(&thread->wqueue);
  4954. }
  4955. }
  4956. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  4957. const char *name)
  4958. {
  4959. mdk_thread_t *thread;
  4960. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  4961. if (!thread)
  4962. return NULL;
  4963. init_waitqueue_head(&thread->wqueue);
  4964. thread->run = run;
  4965. thread->mddev = mddev;
  4966. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  4967. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  4968. if (IS_ERR(thread->tsk)) {
  4969. kfree(thread);
  4970. return NULL;
  4971. }
  4972. return thread;
  4973. }
  4974. void md_unregister_thread(mdk_thread_t *thread)
  4975. {
  4976. if (!thread)
  4977. return;
  4978. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  4979. kthread_stop(thread->tsk);
  4980. kfree(thread);
  4981. }
  4982. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4983. {
  4984. if (!mddev) {
  4985. MD_BUG();
  4986. return;
  4987. }
  4988. if (!rdev || test_bit(Faulty, &rdev->flags))
  4989. return;
  4990. if (mddev->external)
  4991. set_bit(Blocked, &rdev->flags);
  4992. /*
  4993. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4994. mdname(mddev),
  4995. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4996. __builtin_return_address(0),__builtin_return_address(1),
  4997. __builtin_return_address(2),__builtin_return_address(3));
  4998. */
  4999. if (!mddev->pers)
  5000. return;
  5001. if (!mddev->pers->error_handler)
  5002. return;
  5003. mddev->pers->error_handler(mddev,rdev);
  5004. if (mddev->degraded)
  5005. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5006. set_bit(StateChanged, &rdev->flags);
  5007. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5008. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5009. md_wakeup_thread(mddev->thread);
  5010. md_new_event_inintr(mddev);
  5011. }
  5012. /* seq_file implementation /proc/mdstat */
  5013. static void status_unused(struct seq_file *seq)
  5014. {
  5015. int i = 0;
  5016. mdk_rdev_t *rdev;
  5017. seq_printf(seq, "unused devices: ");
  5018. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5019. char b[BDEVNAME_SIZE];
  5020. i++;
  5021. seq_printf(seq, "%s ",
  5022. bdevname(rdev->bdev,b));
  5023. }
  5024. if (!i)
  5025. seq_printf(seq, "<none>");
  5026. seq_printf(seq, "\n");
  5027. }
  5028. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  5029. {
  5030. sector_t max_sectors, resync, res;
  5031. unsigned long dt, db;
  5032. sector_t rt;
  5033. int scale;
  5034. unsigned int per_milli;
  5035. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5036. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5037. max_sectors = mddev->resync_max_sectors;
  5038. else
  5039. max_sectors = mddev->dev_sectors;
  5040. /*
  5041. * Should not happen.
  5042. */
  5043. if (!max_sectors) {
  5044. MD_BUG();
  5045. return;
  5046. }
  5047. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5048. * in a sector_t, and (max_sectors>>scale) will fit in a
  5049. * u32, as those are the requirements for sector_div.
  5050. * Thus 'scale' must be at least 10
  5051. */
  5052. scale = 10;
  5053. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5054. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5055. scale++;
  5056. }
  5057. res = (resync>>scale)*1000;
  5058. sector_div(res, (u32)((max_sectors>>scale)+1));
  5059. per_milli = res;
  5060. {
  5061. int i, x = per_milli/50, y = 20-x;
  5062. seq_printf(seq, "[");
  5063. for (i = 0; i < x; i++)
  5064. seq_printf(seq, "=");
  5065. seq_printf(seq, ">");
  5066. for (i = 0; i < y; i++)
  5067. seq_printf(seq, ".");
  5068. seq_printf(seq, "] ");
  5069. }
  5070. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5071. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5072. "reshape" :
  5073. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5074. "check" :
  5075. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5076. "resync" : "recovery"))),
  5077. per_milli/10, per_milli % 10,
  5078. (unsigned long long) resync/2,
  5079. (unsigned long long) max_sectors/2);
  5080. /*
  5081. * dt: time from mark until now
  5082. * db: blocks written from mark until now
  5083. * rt: remaining time
  5084. *
  5085. * rt is a sector_t, so could be 32bit or 64bit.
  5086. * So we divide before multiply in case it is 32bit and close
  5087. * to the limit.
  5088. * We scale the divisor (db) by 32 to avoid loosing precision
  5089. * near the end of resync when the number of remaining sectors
  5090. * is close to 'db'.
  5091. * We then divide rt by 32 after multiplying by db to compensate.
  5092. * The '+1' avoids division by zero if db is very small.
  5093. */
  5094. dt = ((jiffies - mddev->resync_mark) / HZ);
  5095. if (!dt) dt++;
  5096. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5097. - mddev->resync_mark_cnt;
  5098. rt = max_sectors - resync; /* number of remaining sectors */
  5099. sector_div(rt, db/32+1);
  5100. rt *= dt;
  5101. rt >>= 5;
  5102. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5103. ((unsigned long)rt % 60)/6);
  5104. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5105. }
  5106. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5107. {
  5108. struct list_head *tmp;
  5109. loff_t l = *pos;
  5110. mddev_t *mddev;
  5111. if (l >= 0x10000)
  5112. return NULL;
  5113. if (!l--)
  5114. /* header */
  5115. return (void*)1;
  5116. spin_lock(&all_mddevs_lock);
  5117. list_for_each(tmp,&all_mddevs)
  5118. if (!l--) {
  5119. mddev = list_entry(tmp, mddev_t, all_mddevs);
  5120. mddev_get(mddev);
  5121. spin_unlock(&all_mddevs_lock);
  5122. return mddev;
  5123. }
  5124. spin_unlock(&all_mddevs_lock);
  5125. if (!l--)
  5126. return (void*)2;/* tail */
  5127. return NULL;
  5128. }
  5129. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5130. {
  5131. struct list_head *tmp;
  5132. mddev_t *next_mddev, *mddev = v;
  5133. ++*pos;
  5134. if (v == (void*)2)
  5135. return NULL;
  5136. spin_lock(&all_mddevs_lock);
  5137. if (v == (void*)1)
  5138. tmp = all_mddevs.next;
  5139. else
  5140. tmp = mddev->all_mddevs.next;
  5141. if (tmp != &all_mddevs)
  5142. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  5143. else {
  5144. next_mddev = (void*)2;
  5145. *pos = 0x10000;
  5146. }
  5147. spin_unlock(&all_mddevs_lock);
  5148. if (v != (void*)1)
  5149. mddev_put(mddev);
  5150. return next_mddev;
  5151. }
  5152. static void md_seq_stop(struct seq_file *seq, void *v)
  5153. {
  5154. mddev_t *mddev = v;
  5155. if (mddev && v != (void*)1 && v != (void*)2)
  5156. mddev_put(mddev);
  5157. }
  5158. struct mdstat_info {
  5159. int event;
  5160. };
  5161. static int md_seq_show(struct seq_file *seq, void *v)
  5162. {
  5163. mddev_t *mddev = v;
  5164. sector_t sectors;
  5165. mdk_rdev_t *rdev;
  5166. struct mdstat_info *mi = seq->private;
  5167. struct bitmap *bitmap;
  5168. if (v == (void*)1) {
  5169. struct mdk_personality *pers;
  5170. seq_printf(seq, "Personalities : ");
  5171. spin_lock(&pers_lock);
  5172. list_for_each_entry(pers, &pers_list, list)
  5173. seq_printf(seq, "[%s] ", pers->name);
  5174. spin_unlock(&pers_lock);
  5175. seq_printf(seq, "\n");
  5176. mi->event = atomic_read(&md_event_count);
  5177. return 0;
  5178. }
  5179. if (v == (void*)2) {
  5180. status_unused(seq);
  5181. return 0;
  5182. }
  5183. if (mddev_lock(mddev) < 0)
  5184. return -EINTR;
  5185. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5186. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5187. mddev->pers ? "" : "in");
  5188. if (mddev->pers) {
  5189. if (mddev->ro==1)
  5190. seq_printf(seq, " (read-only)");
  5191. if (mddev->ro==2)
  5192. seq_printf(seq, " (auto-read-only)");
  5193. seq_printf(seq, " %s", mddev->pers->name);
  5194. }
  5195. sectors = 0;
  5196. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5197. char b[BDEVNAME_SIZE];
  5198. seq_printf(seq, " %s[%d]",
  5199. bdevname(rdev->bdev,b), rdev->desc_nr);
  5200. if (test_bit(WriteMostly, &rdev->flags))
  5201. seq_printf(seq, "(W)");
  5202. if (test_bit(Faulty, &rdev->flags)) {
  5203. seq_printf(seq, "(F)");
  5204. continue;
  5205. } else if (rdev->raid_disk < 0)
  5206. seq_printf(seq, "(S)"); /* spare */
  5207. sectors += rdev->sectors;
  5208. }
  5209. if (!list_empty(&mddev->disks)) {
  5210. if (mddev->pers)
  5211. seq_printf(seq, "\n %llu blocks",
  5212. (unsigned long long)
  5213. mddev->array_sectors / 2);
  5214. else
  5215. seq_printf(seq, "\n %llu blocks",
  5216. (unsigned long long)sectors / 2);
  5217. }
  5218. if (mddev->persistent) {
  5219. if (mddev->major_version != 0 ||
  5220. mddev->minor_version != 90) {
  5221. seq_printf(seq," super %d.%d",
  5222. mddev->major_version,
  5223. mddev->minor_version);
  5224. }
  5225. } else if (mddev->external)
  5226. seq_printf(seq, " super external:%s",
  5227. mddev->metadata_type);
  5228. else
  5229. seq_printf(seq, " super non-persistent");
  5230. if (mddev->pers) {
  5231. mddev->pers->status(seq, mddev);
  5232. seq_printf(seq, "\n ");
  5233. if (mddev->pers->sync_request) {
  5234. if (mddev->curr_resync > 2) {
  5235. status_resync(seq, mddev);
  5236. seq_printf(seq, "\n ");
  5237. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5238. seq_printf(seq, "\tresync=DELAYED\n ");
  5239. else if (mddev->recovery_cp < MaxSector)
  5240. seq_printf(seq, "\tresync=PENDING\n ");
  5241. }
  5242. } else
  5243. seq_printf(seq, "\n ");
  5244. if ((bitmap = mddev->bitmap)) {
  5245. unsigned long chunk_kb;
  5246. unsigned long flags;
  5247. spin_lock_irqsave(&bitmap->lock, flags);
  5248. chunk_kb = bitmap->chunksize >> 10;
  5249. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5250. "%lu%s chunk",
  5251. bitmap->pages - bitmap->missing_pages,
  5252. bitmap->pages,
  5253. (bitmap->pages - bitmap->missing_pages)
  5254. << (PAGE_SHIFT - 10),
  5255. chunk_kb ? chunk_kb : bitmap->chunksize,
  5256. chunk_kb ? "KB" : "B");
  5257. if (bitmap->file) {
  5258. seq_printf(seq, ", file: ");
  5259. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5260. }
  5261. seq_printf(seq, "\n");
  5262. spin_unlock_irqrestore(&bitmap->lock, flags);
  5263. }
  5264. seq_printf(seq, "\n");
  5265. }
  5266. mddev_unlock(mddev);
  5267. return 0;
  5268. }
  5269. static const struct seq_operations md_seq_ops = {
  5270. .start = md_seq_start,
  5271. .next = md_seq_next,
  5272. .stop = md_seq_stop,
  5273. .show = md_seq_show,
  5274. };
  5275. static int md_seq_open(struct inode *inode, struct file *file)
  5276. {
  5277. int error;
  5278. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  5279. if (mi == NULL)
  5280. return -ENOMEM;
  5281. error = seq_open(file, &md_seq_ops);
  5282. if (error)
  5283. kfree(mi);
  5284. else {
  5285. struct seq_file *p = file->private_data;
  5286. p->private = mi;
  5287. mi->event = atomic_read(&md_event_count);
  5288. }
  5289. return error;
  5290. }
  5291. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  5292. {
  5293. struct seq_file *m = filp->private_data;
  5294. struct mdstat_info *mi = m->private;
  5295. int mask;
  5296. poll_wait(filp, &md_event_waiters, wait);
  5297. /* always allow read */
  5298. mask = POLLIN | POLLRDNORM;
  5299. if (mi->event != atomic_read(&md_event_count))
  5300. mask |= POLLERR | POLLPRI;
  5301. return mask;
  5302. }
  5303. static const struct file_operations md_seq_fops = {
  5304. .owner = THIS_MODULE,
  5305. .open = md_seq_open,
  5306. .read = seq_read,
  5307. .llseek = seq_lseek,
  5308. .release = seq_release_private,
  5309. .poll = mdstat_poll,
  5310. };
  5311. int register_md_personality(struct mdk_personality *p)
  5312. {
  5313. spin_lock(&pers_lock);
  5314. list_add_tail(&p->list, &pers_list);
  5315. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  5316. spin_unlock(&pers_lock);
  5317. return 0;
  5318. }
  5319. int unregister_md_personality(struct mdk_personality *p)
  5320. {
  5321. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  5322. spin_lock(&pers_lock);
  5323. list_del_init(&p->list);
  5324. spin_unlock(&pers_lock);
  5325. return 0;
  5326. }
  5327. static int is_mddev_idle(mddev_t *mddev, int init)
  5328. {
  5329. mdk_rdev_t * rdev;
  5330. int idle;
  5331. int curr_events;
  5332. idle = 1;
  5333. rcu_read_lock();
  5334. rdev_for_each_rcu(rdev, mddev) {
  5335. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  5336. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  5337. (int)part_stat_read(&disk->part0, sectors[1]) -
  5338. atomic_read(&disk->sync_io);
  5339. /* sync IO will cause sync_io to increase before the disk_stats
  5340. * as sync_io is counted when a request starts, and
  5341. * disk_stats is counted when it completes.
  5342. * So resync activity will cause curr_events to be smaller than
  5343. * when there was no such activity.
  5344. * non-sync IO will cause disk_stat to increase without
  5345. * increasing sync_io so curr_events will (eventually)
  5346. * be larger than it was before. Once it becomes
  5347. * substantially larger, the test below will cause
  5348. * the array to appear non-idle, and resync will slow
  5349. * down.
  5350. * If there is a lot of outstanding resync activity when
  5351. * we set last_event to curr_events, then all that activity
  5352. * completing might cause the array to appear non-idle
  5353. * and resync will be slowed down even though there might
  5354. * not have been non-resync activity. This will only
  5355. * happen once though. 'last_events' will soon reflect
  5356. * the state where there is little or no outstanding
  5357. * resync requests, and further resync activity will
  5358. * always make curr_events less than last_events.
  5359. *
  5360. */
  5361. if (init || curr_events - rdev->last_events > 64) {
  5362. rdev->last_events = curr_events;
  5363. idle = 0;
  5364. }
  5365. }
  5366. rcu_read_unlock();
  5367. return idle;
  5368. }
  5369. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  5370. {
  5371. /* another "blocks" (512byte) blocks have been synced */
  5372. atomic_sub(blocks, &mddev->recovery_active);
  5373. wake_up(&mddev->recovery_wait);
  5374. if (!ok) {
  5375. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5376. md_wakeup_thread(mddev->thread);
  5377. // stop recovery, signal do_sync ....
  5378. }
  5379. }
  5380. /* md_write_start(mddev, bi)
  5381. * If we need to update some array metadata (e.g. 'active' flag
  5382. * in superblock) before writing, schedule a superblock update
  5383. * and wait for it to complete.
  5384. */
  5385. void md_write_start(mddev_t *mddev, struct bio *bi)
  5386. {
  5387. int did_change = 0;
  5388. if (bio_data_dir(bi) != WRITE)
  5389. return;
  5390. BUG_ON(mddev->ro == 1);
  5391. if (mddev->ro == 2) {
  5392. /* need to switch to read/write */
  5393. mddev->ro = 0;
  5394. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5395. md_wakeup_thread(mddev->thread);
  5396. md_wakeup_thread(mddev->sync_thread);
  5397. did_change = 1;
  5398. }
  5399. atomic_inc(&mddev->writes_pending);
  5400. if (mddev->safemode == 1)
  5401. mddev->safemode = 0;
  5402. if (mddev->in_sync) {
  5403. spin_lock_irq(&mddev->write_lock);
  5404. if (mddev->in_sync) {
  5405. mddev->in_sync = 0;
  5406. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5407. md_wakeup_thread(mddev->thread);
  5408. did_change = 1;
  5409. }
  5410. spin_unlock_irq(&mddev->write_lock);
  5411. }
  5412. if (did_change)
  5413. sysfs_notify_dirent(mddev->sysfs_state);
  5414. wait_event(mddev->sb_wait,
  5415. !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
  5416. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5417. }
  5418. void md_write_end(mddev_t *mddev)
  5419. {
  5420. if (atomic_dec_and_test(&mddev->writes_pending)) {
  5421. if (mddev->safemode == 2)
  5422. md_wakeup_thread(mddev->thread);
  5423. else if (mddev->safemode_delay)
  5424. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  5425. }
  5426. }
  5427. /* md_allow_write(mddev)
  5428. * Calling this ensures that the array is marked 'active' so that writes
  5429. * may proceed without blocking. It is important to call this before
  5430. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  5431. * Must be called with mddev_lock held.
  5432. *
  5433. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  5434. * is dropped, so return -EAGAIN after notifying userspace.
  5435. */
  5436. int md_allow_write(mddev_t *mddev)
  5437. {
  5438. if (!mddev->pers)
  5439. return 0;
  5440. if (mddev->ro)
  5441. return 0;
  5442. if (!mddev->pers->sync_request)
  5443. return 0;
  5444. spin_lock_irq(&mddev->write_lock);
  5445. if (mddev->in_sync) {
  5446. mddev->in_sync = 0;
  5447. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5448. if (mddev->safemode_delay &&
  5449. mddev->safemode == 0)
  5450. mddev->safemode = 1;
  5451. spin_unlock_irq(&mddev->write_lock);
  5452. md_update_sb(mddev, 0);
  5453. sysfs_notify_dirent(mddev->sysfs_state);
  5454. } else
  5455. spin_unlock_irq(&mddev->write_lock);
  5456. if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  5457. return -EAGAIN;
  5458. else
  5459. return 0;
  5460. }
  5461. EXPORT_SYMBOL_GPL(md_allow_write);
  5462. #define SYNC_MARKS 10
  5463. #define SYNC_MARK_STEP (3*HZ)
  5464. void md_do_sync(mddev_t *mddev)
  5465. {
  5466. mddev_t *mddev2;
  5467. unsigned int currspeed = 0,
  5468. window;
  5469. sector_t max_sectors,j, io_sectors;
  5470. unsigned long mark[SYNC_MARKS];
  5471. sector_t mark_cnt[SYNC_MARKS];
  5472. int last_mark,m;
  5473. struct list_head *tmp;
  5474. sector_t last_check;
  5475. int skipped = 0;
  5476. mdk_rdev_t *rdev;
  5477. char *desc;
  5478. /* just incase thread restarts... */
  5479. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  5480. return;
  5481. if (mddev->ro) /* never try to sync a read-only array */
  5482. return;
  5483. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5484. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  5485. desc = "data-check";
  5486. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5487. desc = "requested-resync";
  5488. else
  5489. desc = "resync";
  5490. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5491. desc = "reshape";
  5492. else
  5493. desc = "recovery";
  5494. /* we overload curr_resync somewhat here.
  5495. * 0 == not engaged in resync at all
  5496. * 2 == checking that there is no conflict with another sync
  5497. * 1 == like 2, but have yielded to allow conflicting resync to
  5498. * commense
  5499. * other == active in resync - this many blocks
  5500. *
  5501. * Before starting a resync we must have set curr_resync to
  5502. * 2, and then checked that every "conflicting" array has curr_resync
  5503. * less than ours. When we find one that is the same or higher
  5504. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  5505. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  5506. * This will mean we have to start checking from the beginning again.
  5507. *
  5508. */
  5509. do {
  5510. mddev->curr_resync = 2;
  5511. try_again:
  5512. if (kthread_should_stop()) {
  5513. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5514. goto skip;
  5515. }
  5516. for_each_mddev(mddev2, tmp) {
  5517. if (mddev2 == mddev)
  5518. continue;
  5519. if (!mddev->parallel_resync
  5520. && mddev2->curr_resync
  5521. && match_mddev_units(mddev, mddev2)) {
  5522. DEFINE_WAIT(wq);
  5523. if (mddev < mddev2 && mddev->curr_resync == 2) {
  5524. /* arbitrarily yield */
  5525. mddev->curr_resync = 1;
  5526. wake_up(&resync_wait);
  5527. }
  5528. if (mddev > mddev2 && mddev->curr_resync == 1)
  5529. /* no need to wait here, we can wait the next
  5530. * time 'round when curr_resync == 2
  5531. */
  5532. continue;
  5533. /* We need to wait 'interruptible' so as not to
  5534. * contribute to the load average, and not to
  5535. * be caught by 'softlockup'
  5536. */
  5537. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  5538. if (!kthread_should_stop() &&
  5539. mddev2->curr_resync >= mddev->curr_resync) {
  5540. printk(KERN_INFO "md: delaying %s of %s"
  5541. " until %s has finished (they"
  5542. " share one or more physical units)\n",
  5543. desc, mdname(mddev), mdname(mddev2));
  5544. mddev_put(mddev2);
  5545. if (signal_pending(current))
  5546. flush_signals(current);
  5547. schedule();
  5548. finish_wait(&resync_wait, &wq);
  5549. goto try_again;
  5550. }
  5551. finish_wait(&resync_wait, &wq);
  5552. }
  5553. }
  5554. } while (mddev->curr_resync < 2);
  5555. j = 0;
  5556. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5557. /* resync follows the size requested by the personality,
  5558. * which defaults to physical size, but can be virtual size
  5559. */
  5560. max_sectors = mddev->resync_max_sectors;
  5561. mddev->resync_mismatches = 0;
  5562. /* we don't use the checkpoint if there's a bitmap */
  5563. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5564. j = mddev->resync_min;
  5565. else if (!mddev->bitmap)
  5566. j = mddev->recovery_cp;
  5567. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5568. max_sectors = mddev->dev_sectors;
  5569. else {
  5570. /* recovery follows the physical size of devices */
  5571. max_sectors = mddev->dev_sectors;
  5572. j = MaxSector;
  5573. list_for_each_entry(rdev, &mddev->disks, same_set)
  5574. if (rdev->raid_disk >= 0 &&
  5575. !test_bit(Faulty, &rdev->flags) &&
  5576. !test_bit(In_sync, &rdev->flags) &&
  5577. rdev->recovery_offset < j)
  5578. j = rdev->recovery_offset;
  5579. }
  5580. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  5581. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  5582. " %d KB/sec/disk.\n", speed_min(mddev));
  5583. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  5584. "(but not more than %d KB/sec) for %s.\n",
  5585. speed_max(mddev), desc);
  5586. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  5587. io_sectors = 0;
  5588. for (m = 0; m < SYNC_MARKS; m++) {
  5589. mark[m] = jiffies;
  5590. mark_cnt[m] = io_sectors;
  5591. }
  5592. last_mark = 0;
  5593. mddev->resync_mark = mark[last_mark];
  5594. mddev->resync_mark_cnt = mark_cnt[last_mark];
  5595. /*
  5596. * Tune reconstruction:
  5597. */
  5598. window = 32*(PAGE_SIZE/512);
  5599. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  5600. window/2,(unsigned long long) max_sectors/2);
  5601. atomic_set(&mddev->recovery_active, 0);
  5602. last_check = 0;
  5603. if (j>2) {
  5604. printk(KERN_INFO
  5605. "md: resuming %s of %s from checkpoint.\n",
  5606. desc, mdname(mddev));
  5607. mddev->curr_resync = j;
  5608. }
  5609. while (j < max_sectors) {
  5610. sector_t sectors;
  5611. skipped = 0;
  5612. if ((mddev->curr_resync > mddev->curr_resync_completed &&
  5613. (mddev->curr_resync - mddev->curr_resync_completed)
  5614. > (max_sectors >> 4)) ||
  5615. (j - mddev->curr_resync_completed)*2
  5616. >= mddev->resync_max - mddev->curr_resync_completed
  5617. ) {
  5618. /* time to update curr_resync_completed */
  5619. blk_unplug(mddev->queue);
  5620. wait_event(mddev->recovery_wait,
  5621. atomic_read(&mddev->recovery_active) == 0);
  5622. mddev->curr_resync_completed =
  5623. mddev->curr_resync;
  5624. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5625. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  5626. }
  5627. if (j >= mddev->resync_max)
  5628. wait_event(mddev->recovery_wait,
  5629. mddev->resync_max > j
  5630. || kthread_should_stop());
  5631. if (kthread_should_stop())
  5632. goto interrupted;
  5633. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  5634. currspeed < speed_min(mddev));
  5635. if (sectors == 0) {
  5636. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5637. goto out;
  5638. }
  5639. if (!skipped) { /* actual IO requested */
  5640. io_sectors += sectors;
  5641. atomic_add(sectors, &mddev->recovery_active);
  5642. }
  5643. j += sectors;
  5644. if (j>1) mddev->curr_resync = j;
  5645. mddev->curr_mark_cnt = io_sectors;
  5646. if (last_check == 0)
  5647. /* this is the earliers that rebuilt will be
  5648. * visible in /proc/mdstat
  5649. */
  5650. md_new_event(mddev);
  5651. if (last_check + window > io_sectors || j == max_sectors)
  5652. continue;
  5653. last_check = io_sectors;
  5654. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5655. break;
  5656. repeat:
  5657. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  5658. /* step marks */
  5659. int next = (last_mark+1) % SYNC_MARKS;
  5660. mddev->resync_mark = mark[next];
  5661. mddev->resync_mark_cnt = mark_cnt[next];
  5662. mark[next] = jiffies;
  5663. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  5664. last_mark = next;
  5665. }
  5666. if (kthread_should_stop())
  5667. goto interrupted;
  5668. /*
  5669. * this loop exits only if either when we are slower than
  5670. * the 'hard' speed limit, or the system was IO-idle for
  5671. * a jiffy.
  5672. * the system might be non-idle CPU-wise, but we only care
  5673. * about not overloading the IO subsystem. (things like an
  5674. * e2fsck being done on the RAID array should execute fast)
  5675. */
  5676. blk_unplug(mddev->queue);
  5677. cond_resched();
  5678. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  5679. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  5680. if (currspeed > speed_min(mddev)) {
  5681. if ((currspeed > speed_max(mddev)) ||
  5682. !is_mddev_idle(mddev, 0)) {
  5683. msleep(500);
  5684. goto repeat;
  5685. }
  5686. }
  5687. }
  5688. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  5689. /*
  5690. * this also signals 'finished resyncing' to md_stop
  5691. */
  5692. out:
  5693. blk_unplug(mddev->queue);
  5694. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  5695. /* tell personality that we are finished */
  5696. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  5697. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  5698. mddev->curr_resync > 2) {
  5699. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5700. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  5701. if (mddev->curr_resync >= mddev->recovery_cp) {
  5702. printk(KERN_INFO
  5703. "md: checkpointing %s of %s.\n",
  5704. desc, mdname(mddev));
  5705. mddev->recovery_cp = mddev->curr_resync;
  5706. }
  5707. } else
  5708. mddev->recovery_cp = MaxSector;
  5709. } else {
  5710. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5711. mddev->curr_resync = MaxSector;
  5712. list_for_each_entry(rdev, &mddev->disks, same_set)
  5713. if (rdev->raid_disk >= 0 &&
  5714. !test_bit(Faulty, &rdev->flags) &&
  5715. !test_bit(In_sync, &rdev->flags) &&
  5716. rdev->recovery_offset < mddev->curr_resync)
  5717. rdev->recovery_offset = mddev->curr_resync;
  5718. }
  5719. }
  5720. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5721. skip:
  5722. mddev->curr_resync = 0;
  5723. mddev->curr_resync_completed = 0;
  5724. mddev->resync_min = 0;
  5725. mddev->resync_max = MaxSector;
  5726. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  5727. wake_up(&resync_wait);
  5728. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  5729. md_wakeup_thread(mddev->thread);
  5730. return;
  5731. interrupted:
  5732. /*
  5733. * got a signal, exit.
  5734. */
  5735. printk(KERN_INFO
  5736. "md: md_do_sync() got signal ... exiting\n");
  5737. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5738. goto out;
  5739. }
  5740. EXPORT_SYMBOL_GPL(md_do_sync);
  5741. static int remove_and_add_spares(mddev_t *mddev)
  5742. {
  5743. mdk_rdev_t *rdev;
  5744. int spares = 0;
  5745. mddev->curr_resync_completed = 0;
  5746. list_for_each_entry(rdev, &mddev->disks, same_set)
  5747. if (rdev->raid_disk >= 0 &&
  5748. !test_bit(Blocked, &rdev->flags) &&
  5749. (test_bit(Faulty, &rdev->flags) ||
  5750. ! test_bit(In_sync, &rdev->flags)) &&
  5751. atomic_read(&rdev->nr_pending)==0) {
  5752. if (mddev->pers->hot_remove_disk(
  5753. mddev, rdev->raid_disk)==0) {
  5754. char nm[20];
  5755. sprintf(nm,"rd%d", rdev->raid_disk);
  5756. sysfs_remove_link(&mddev->kobj, nm);
  5757. rdev->raid_disk = -1;
  5758. }
  5759. }
  5760. if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
  5761. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5762. if (rdev->raid_disk >= 0 &&
  5763. !test_bit(In_sync, &rdev->flags) &&
  5764. !test_bit(Blocked, &rdev->flags))
  5765. spares++;
  5766. if (rdev->raid_disk < 0
  5767. && !test_bit(Faulty, &rdev->flags)) {
  5768. rdev->recovery_offset = 0;
  5769. if (mddev->pers->
  5770. hot_add_disk(mddev, rdev) == 0) {
  5771. char nm[20];
  5772. sprintf(nm, "rd%d", rdev->raid_disk);
  5773. if (sysfs_create_link(&mddev->kobj,
  5774. &rdev->kobj, nm))
  5775. printk(KERN_WARNING
  5776. "md: cannot register "
  5777. "%s for %s\n",
  5778. nm, mdname(mddev));
  5779. spares++;
  5780. md_new_event(mddev);
  5781. } else
  5782. break;
  5783. }
  5784. }
  5785. }
  5786. return spares;
  5787. }
  5788. /*
  5789. * This routine is regularly called by all per-raid-array threads to
  5790. * deal with generic issues like resync and super-block update.
  5791. * Raid personalities that don't have a thread (linear/raid0) do not
  5792. * need this as they never do any recovery or update the superblock.
  5793. *
  5794. * It does not do any resync itself, but rather "forks" off other threads
  5795. * to do that as needed.
  5796. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  5797. * "->recovery" and create a thread at ->sync_thread.
  5798. * When the thread finishes it sets MD_RECOVERY_DONE
  5799. * and wakeups up this thread which will reap the thread and finish up.
  5800. * This thread also removes any faulty devices (with nr_pending == 0).
  5801. *
  5802. * The overall approach is:
  5803. * 1/ if the superblock needs updating, update it.
  5804. * 2/ If a recovery thread is running, don't do anything else.
  5805. * 3/ If recovery has finished, clean up, possibly marking spares active.
  5806. * 4/ If there are any faulty devices, remove them.
  5807. * 5/ If array is degraded, try to add spares devices
  5808. * 6/ If array has spares or is not in-sync, start a resync thread.
  5809. */
  5810. void md_check_recovery(mddev_t *mddev)
  5811. {
  5812. mdk_rdev_t *rdev;
  5813. if (mddev->bitmap)
  5814. bitmap_daemon_work(mddev->bitmap);
  5815. if (mddev->ro)
  5816. return;
  5817. if (signal_pending(current)) {
  5818. if (mddev->pers->sync_request && !mddev->external) {
  5819. printk(KERN_INFO "md: %s in immediate safe mode\n",
  5820. mdname(mddev));
  5821. mddev->safemode = 2;
  5822. }
  5823. flush_signals(current);
  5824. }
  5825. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  5826. return;
  5827. if ( ! (
  5828. (mddev->flags && !mddev->external) ||
  5829. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  5830. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  5831. (mddev->external == 0 && mddev->safemode == 1) ||
  5832. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  5833. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  5834. ))
  5835. return;
  5836. if (mddev_trylock(mddev)) {
  5837. int spares = 0;
  5838. if (mddev->ro) {
  5839. /* Only thing we do on a ro array is remove
  5840. * failed devices.
  5841. */
  5842. remove_and_add_spares(mddev);
  5843. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5844. goto unlock;
  5845. }
  5846. if (!mddev->external) {
  5847. int did_change = 0;
  5848. spin_lock_irq(&mddev->write_lock);
  5849. if (mddev->safemode &&
  5850. !atomic_read(&mddev->writes_pending) &&
  5851. !mddev->in_sync &&
  5852. mddev->recovery_cp == MaxSector) {
  5853. mddev->in_sync = 1;
  5854. did_change = 1;
  5855. if (mddev->persistent)
  5856. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5857. }
  5858. if (mddev->safemode == 1)
  5859. mddev->safemode = 0;
  5860. spin_unlock_irq(&mddev->write_lock);
  5861. if (did_change)
  5862. sysfs_notify_dirent(mddev->sysfs_state);
  5863. }
  5864. if (mddev->flags)
  5865. md_update_sb(mddev, 0);
  5866. list_for_each_entry(rdev, &mddev->disks, same_set)
  5867. if (test_and_clear_bit(StateChanged, &rdev->flags))
  5868. sysfs_notify_dirent(rdev->sysfs_state);
  5869. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  5870. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  5871. /* resync/recovery still happening */
  5872. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5873. goto unlock;
  5874. }
  5875. if (mddev->sync_thread) {
  5876. /* resync has finished, collect result */
  5877. md_unregister_thread(mddev->sync_thread);
  5878. mddev->sync_thread = NULL;
  5879. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  5880. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  5881. /* success...*/
  5882. /* activate any spares */
  5883. if (mddev->pers->spare_active(mddev))
  5884. sysfs_notify(&mddev->kobj, NULL,
  5885. "degraded");
  5886. }
  5887. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  5888. mddev->pers->finish_reshape)
  5889. mddev->pers->finish_reshape(mddev);
  5890. md_update_sb(mddev, 1);
  5891. /* if array is no-longer degraded, then any saved_raid_disk
  5892. * information must be scrapped
  5893. */
  5894. if (!mddev->degraded)
  5895. list_for_each_entry(rdev, &mddev->disks, same_set)
  5896. rdev->saved_raid_disk = -1;
  5897. mddev->recovery = 0;
  5898. /* flag recovery needed just to double check */
  5899. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5900. sysfs_notify_dirent(mddev->sysfs_action);
  5901. md_new_event(mddev);
  5902. goto unlock;
  5903. }
  5904. /* Set RUNNING before clearing NEEDED to avoid
  5905. * any transients in the value of "sync_action".
  5906. */
  5907. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  5908. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5909. /* Clear some bits that don't mean anything, but
  5910. * might be left set
  5911. */
  5912. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5913. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  5914. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  5915. goto unlock;
  5916. /* no recovery is running.
  5917. * remove any failed drives, then
  5918. * add spares if possible.
  5919. * Spare are also removed and re-added, to allow
  5920. * the personality to fail the re-add.
  5921. */
  5922. if (mddev->reshape_position != MaxSector) {
  5923. if (mddev->pers->check_reshape(mddev) != 0)
  5924. /* Cannot proceed */
  5925. goto unlock;
  5926. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  5927. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5928. } else if ((spares = remove_and_add_spares(mddev))) {
  5929. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5930. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  5931. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  5932. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5933. } else if (mddev->recovery_cp < MaxSector) {
  5934. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5935. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5936. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5937. /* nothing to be done ... */
  5938. goto unlock;
  5939. if (mddev->pers->sync_request) {
  5940. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  5941. /* We are adding a device or devices to an array
  5942. * which has the bitmap stored on all devices.
  5943. * So make sure all bitmap pages get written
  5944. */
  5945. bitmap_write_all(mddev->bitmap);
  5946. }
  5947. mddev->sync_thread = md_register_thread(md_do_sync,
  5948. mddev,
  5949. "%s_resync");
  5950. if (!mddev->sync_thread) {
  5951. printk(KERN_ERR "%s: could not start resync"
  5952. " thread...\n",
  5953. mdname(mddev));
  5954. /* leave the spares where they are, it shouldn't hurt */
  5955. mddev->recovery = 0;
  5956. } else
  5957. md_wakeup_thread(mddev->sync_thread);
  5958. sysfs_notify_dirent(mddev->sysfs_action);
  5959. md_new_event(mddev);
  5960. }
  5961. unlock:
  5962. if (!mddev->sync_thread) {
  5963. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  5964. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  5965. &mddev->recovery))
  5966. if (mddev->sysfs_action)
  5967. sysfs_notify_dirent(mddev->sysfs_action);
  5968. }
  5969. mddev_unlock(mddev);
  5970. }
  5971. }
  5972. void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  5973. {
  5974. sysfs_notify_dirent(rdev->sysfs_state);
  5975. wait_event_timeout(rdev->blocked_wait,
  5976. !test_bit(Blocked, &rdev->flags),
  5977. msecs_to_jiffies(5000));
  5978. rdev_dec_pending(rdev, mddev);
  5979. }
  5980. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  5981. static int md_notify_reboot(struct notifier_block *this,
  5982. unsigned long code, void *x)
  5983. {
  5984. struct list_head *tmp;
  5985. mddev_t *mddev;
  5986. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  5987. printk(KERN_INFO "md: stopping all md devices.\n");
  5988. for_each_mddev(mddev, tmp)
  5989. if (mddev_trylock(mddev)) {
  5990. /* Force a switch to readonly even array
  5991. * appears to still be in use. Hence
  5992. * the '100'.
  5993. */
  5994. do_md_stop(mddev, 1, 100);
  5995. mddev_unlock(mddev);
  5996. }
  5997. /*
  5998. * certain more exotic SCSI devices are known to be
  5999. * volatile wrt too early system reboots. While the
  6000. * right place to handle this issue is the given
  6001. * driver, we do want to have a safe RAID driver ...
  6002. */
  6003. mdelay(1000*1);
  6004. }
  6005. return NOTIFY_DONE;
  6006. }
  6007. static struct notifier_block md_notifier = {
  6008. .notifier_call = md_notify_reboot,
  6009. .next = NULL,
  6010. .priority = INT_MAX, /* before any real devices */
  6011. };
  6012. static void md_geninit(void)
  6013. {
  6014. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  6015. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  6016. }
  6017. static int __init md_init(void)
  6018. {
  6019. if (register_blkdev(MD_MAJOR, "md"))
  6020. return -1;
  6021. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  6022. unregister_blkdev(MD_MAJOR, "md");
  6023. return -1;
  6024. }
  6025. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  6026. md_probe, NULL, NULL);
  6027. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  6028. md_probe, NULL, NULL);
  6029. register_reboot_notifier(&md_notifier);
  6030. raid_table_header = register_sysctl_table(raid_root_table);
  6031. md_geninit();
  6032. return 0;
  6033. }
  6034. #ifndef MODULE
  6035. /*
  6036. * Searches all registered partitions for autorun RAID arrays
  6037. * at boot time.
  6038. */
  6039. static LIST_HEAD(all_detected_devices);
  6040. struct detected_devices_node {
  6041. struct list_head list;
  6042. dev_t dev;
  6043. };
  6044. void md_autodetect_dev(dev_t dev)
  6045. {
  6046. struct detected_devices_node *node_detected_dev;
  6047. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  6048. if (node_detected_dev) {
  6049. node_detected_dev->dev = dev;
  6050. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  6051. } else {
  6052. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  6053. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  6054. }
  6055. }
  6056. static void autostart_arrays(int part)
  6057. {
  6058. mdk_rdev_t *rdev;
  6059. struct detected_devices_node *node_detected_dev;
  6060. dev_t dev;
  6061. int i_scanned, i_passed;
  6062. i_scanned = 0;
  6063. i_passed = 0;
  6064. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  6065. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  6066. i_scanned++;
  6067. node_detected_dev = list_entry(all_detected_devices.next,
  6068. struct detected_devices_node, list);
  6069. list_del(&node_detected_dev->list);
  6070. dev = node_detected_dev->dev;
  6071. kfree(node_detected_dev);
  6072. rdev = md_import_device(dev,0, 90);
  6073. if (IS_ERR(rdev))
  6074. continue;
  6075. if (test_bit(Faulty, &rdev->flags)) {
  6076. MD_BUG();
  6077. continue;
  6078. }
  6079. set_bit(AutoDetected, &rdev->flags);
  6080. list_add(&rdev->same_set, &pending_raid_disks);
  6081. i_passed++;
  6082. }
  6083. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  6084. i_scanned, i_passed);
  6085. autorun_devices(part);
  6086. }
  6087. #endif /* !MODULE */
  6088. static __exit void md_exit(void)
  6089. {
  6090. mddev_t *mddev;
  6091. struct list_head *tmp;
  6092. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  6093. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  6094. unregister_blkdev(MD_MAJOR,"md");
  6095. unregister_blkdev(mdp_major, "mdp");
  6096. unregister_reboot_notifier(&md_notifier);
  6097. unregister_sysctl_table(raid_table_header);
  6098. remove_proc_entry("mdstat", NULL);
  6099. for_each_mddev(mddev, tmp) {
  6100. export_array(mddev);
  6101. mddev->hold_active = 0;
  6102. }
  6103. }
  6104. subsys_initcall(md_init);
  6105. module_exit(md_exit)
  6106. static int get_ro(char *buffer, struct kernel_param *kp)
  6107. {
  6108. return sprintf(buffer, "%d", start_readonly);
  6109. }
  6110. static int set_ro(const char *val, struct kernel_param *kp)
  6111. {
  6112. char *e;
  6113. int num = simple_strtoul(val, &e, 10);
  6114. if (*val && (*e == '\0' || *e == '\n')) {
  6115. start_readonly = num;
  6116. return 0;
  6117. }
  6118. return -EINVAL;
  6119. }
  6120. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  6121. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  6122. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  6123. EXPORT_SYMBOL(register_md_personality);
  6124. EXPORT_SYMBOL(unregister_md_personality);
  6125. EXPORT_SYMBOL(md_error);
  6126. EXPORT_SYMBOL(md_done_sync);
  6127. EXPORT_SYMBOL(md_write_start);
  6128. EXPORT_SYMBOL(md_write_end);
  6129. EXPORT_SYMBOL(md_register_thread);
  6130. EXPORT_SYMBOL(md_unregister_thread);
  6131. EXPORT_SYMBOL(md_wakeup_thread);
  6132. EXPORT_SYMBOL(md_check_recovery);
  6133. MODULE_LICENSE("GPL");
  6134. MODULE_ALIAS("md");
  6135. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);