rmap.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_mutex
  27. * anon_vma->mutex
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  34. * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
  35. * sb_lock (within inode_lock in fs/fs-writeback.c)
  36. * mapping->tree_lock (widely used, in set_page_dirty,
  37. * in arch-dependent flush_dcache_mmap_lock,
  38. * within inode_wb_list_lock in __sync_single_inode)
  39. *
  40. * (code doesn't rely on that order so it could be switched around)
  41. * ->tasklist_lock
  42. * anon_vma->mutex (memory_failure, collect_procs_anon)
  43. * pte map lock
  44. */
  45. #include <linux/mm.h>
  46. #include <linux/pagemap.h>
  47. #include <linux/swap.h>
  48. #include <linux/swapops.h>
  49. #include <linux/slab.h>
  50. #include <linux/init.h>
  51. #include <linux/ksm.h>
  52. #include <linux/rmap.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/module.h>
  55. #include <linux/memcontrol.h>
  56. #include <linux/mmu_notifier.h>
  57. #include <linux/migrate.h>
  58. #include <linux/hugetlb.h>
  59. #include <asm/tlbflush.h>
  60. #include "internal.h"
  61. static struct kmem_cache *anon_vma_cachep;
  62. static struct kmem_cache *anon_vma_chain_cachep;
  63. static inline struct anon_vma *anon_vma_alloc(void)
  64. {
  65. struct anon_vma *anon_vma;
  66. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  67. if (anon_vma) {
  68. atomic_set(&anon_vma->refcount, 1);
  69. /*
  70. * Initialise the anon_vma root to point to itself. If called
  71. * from fork, the root will be reset to the parents anon_vma.
  72. */
  73. anon_vma->root = anon_vma;
  74. }
  75. return anon_vma;
  76. }
  77. static inline void anon_vma_free(struct anon_vma *anon_vma)
  78. {
  79. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  80. kmem_cache_free(anon_vma_cachep, anon_vma);
  81. }
  82. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  83. {
  84. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  85. }
  86. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  87. {
  88. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  89. }
  90. /**
  91. * anon_vma_prepare - attach an anon_vma to a memory region
  92. * @vma: the memory region in question
  93. *
  94. * This makes sure the memory mapping described by 'vma' has
  95. * an 'anon_vma' attached to it, so that we can associate the
  96. * anonymous pages mapped into it with that anon_vma.
  97. *
  98. * The common case will be that we already have one, but if
  99. * not we either need to find an adjacent mapping that we
  100. * can re-use the anon_vma from (very common when the only
  101. * reason for splitting a vma has been mprotect()), or we
  102. * allocate a new one.
  103. *
  104. * Anon-vma allocations are very subtle, because we may have
  105. * optimistically looked up an anon_vma in page_lock_anon_vma()
  106. * and that may actually touch the spinlock even in the newly
  107. * allocated vma (it depends on RCU to make sure that the
  108. * anon_vma isn't actually destroyed).
  109. *
  110. * As a result, we need to do proper anon_vma locking even
  111. * for the new allocation. At the same time, we do not want
  112. * to do any locking for the common case of already having
  113. * an anon_vma.
  114. *
  115. * This must be called with the mmap_sem held for reading.
  116. */
  117. int anon_vma_prepare(struct vm_area_struct *vma)
  118. {
  119. struct anon_vma *anon_vma = vma->anon_vma;
  120. struct anon_vma_chain *avc;
  121. might_sleep();
  122. if (unlikely(!anon_vma)) {
  123. struct mm_struct *mm = vma->vm_mm;
  124. struct anon_vma *allocated;
  125. avc = anon_vma_chain_alloc();
  126. if (!avc)
  127. goto out_enomem;
  128. anon_vma = find_mergeable_anon_vma(vma);
  129. allocated = NULL;
  130. if (!anon_vma) {
  131. anon_vma = anon_vma_alloc();
  132. if (unlikely(!anon_vma))
  133. goto out_enomem_free_avc;
  134. allocated = anon_vma;
  135. }
  136. anon_vma_lock(anon_vma);
  137. /* page_table_lock to protect against threads */
  138. spin_lock(&mm->page_table_lock);
  139. if (likely(!vma->anon_vma)) {
  140. vma->anon_vma = anon_vma;
  141. avc->anon_vma = anon_vma;
  142. avc->vma = vma;
  143. list_add(&avc->same_vma, &vma->anon_vma_chain);
  144. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  145. allocated = NULL;
  146. avc = NULL;
  147. }
  148. spin_unlock(&mm->page_table_lock);
  149. anon_vma_unlock(anon_vma);
  150. if (unlikely(allocated))
  151. put_anon_vma(allocated);
  152. if (unlikely(avc))
  153. anon_vma_chain_free(avc);
  154. }
  155. return 0;
  156. out_enomem_free_avc:
  157. anon_vma_chain_free(avc);
  158. out_enomem:
  159. return -ENOMEM;
  160. }
  161. static void anon_vma_chain_link(struct vm_area_struct *vma,
  162. struct anon_vma_chain *avc,
  163. struct anon_vma *anon_vma)
  164. {
  165. avc->vma = vma;
  166. avc->anon_vma = anon_vma;
  167. list_add(&avc->same_vma, &vma->anon_vma_chain);
  168. anon_vma_lock(anon_vma);
  169. /*
  170. * It's critical to add new vmas to the tail of the anon_vma,
  171. * see comment in huge_memory.c:__split_huge_page().
  172. */
  173. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  174. anon_vma_unlock(anon_vma);
  175. }
  176. /*
  177. * Attach the anon_vmas from src to dst.
  178. * Returns 0 on success, -ENOMEM on failure.
  179. */
  180. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  181. {
  182. struct anon_vma_chain *avc, *pavc;
  183. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  184. avc = anon_vma_chain_alloc();
  185. if (!avc)
  186. goto enomem_failure;
  187. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  188. }
  189. return 0;
  190. enomem_failure:
  191. unlink_anon_vmas(dst);
  192. return -ENOMEM;
  193. }
  194. /*
  195. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  196. * the corresponding VMA in the parent process is attached to.
  197. * Returns 0 on success, non-zero on failure.
  198. */
  199. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  200. {
  201. struct anon_vma_chain *avc;
  202. struct anon_vma *anon_vma;
  203. /* Don't bother if the parent process has no anon_vma here. */
  204. if (!pvma->anon_vma)
  205. return 0;
  206. /*
  207. * First, attach the new VMA to the parent VMA's anon_vmas,
  208. * so rmap can find non-COWed pages in child processes.
  209. */
  210. if (anon_vma_clone(vma, pvma))
  211. return -ENOMEM;
  212. /* Then add our own anon_vma. */
  213. anon_vma = anon_vma_alloc();
  214. if (!anon_vma)
  215. goto out_error;
  216. avc = anon_vma_chain_alloc();
  217. if (!avc)
  218. goto out_error_free_anon_vma;
  219. /*
  220. * The root anon_vma's spinlock is the lock actually used when we
  221. * lock any of the anon_vmas in this anon_vma tree.
  222. */
  223. anon_vma->root = pvma->anon_vma->root;
  224. /*
  225. * With refcounts, an anon_vma can stay around longer than the
  226. * process it belongs to. The root anon_vma needs to be pinned until
  227. * this anon_vma is freed, because the lock lives in the root.
  228. */
  229. get_anon_vma(anon_vma->root);
  230. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  231. vma->anon_vma = anon_vma;
  232. anon_vma_chain_link(vma, avc, anon_vma);
  233. return 0;
  234. out_error_free_anon_vma:
  235. put_anon_vma(anon_vma);
  236. out_error:
  237. unlink_anon_vmas(vma);
  238. return -ENOMEM;
  239. }
  240. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  241. {
  242. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  243. int empty;
  244. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  245. if (!anon_vma)
  246. return;
  247. anon_vma_lock(anon_vma);
  248. list_del(&anon_vma_chain->same_anon_vma);
  249. /* We must garbage collect the anon_vma if it's empty */
  250. empty = list_empty(&anon_vma->head);
  251. anon_vma_unlock(anon_vma);
  252. if (empty)
  253. put_anon_vma(anon_vma);
  254. }
  255. void unlink_anon_vmas(struct vm_area_struct *vma)
  256. {
  257. struct anon_vma_chain *avc, *next;
  258. /*
  259. * Unlink each anon_vma chained to the VMA. This list is ordered
  260. * from newest to oldest, ensuring the root anon_vma gets freed last.
  261. */
  262. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  263. anon_vma_unlink(avc);
  264. list_del(&avc->same_vma);
  265. anon_vma_chain_free(avc);
  266. }
  267. }
  268. static void anon_vma_ctor(void *data)
  269. {
  270. struct anon_vma *anon_vma = data;
  271. mutex_init(&anon_vma->mutex);
  272. atomic_set(&anon_vma->refcount, 0);
  273. INIT_LIST_HEAD(&anon_vma->head);
  274. }
  275. void __init anon_vma_init(void)
  276. {
  277. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  278. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  279. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  280. }
  281. /*
  282. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  283. *
  284. * Since there is no serialization what so ever against page_remove_rmap()
  285. * the best this function can do is return a locked anon_vma that might
  286. * have been relevant to this page.
  287. *
  288. * The page might have been remapped to a different anon_vma or the anon_vma
  289. * returned may already be freed (and even reused).
  290. *
  291. * All users of this function must be very careful when walking the anon_vma
  292. * chain and verify that the page in question is indeed mapped in it
  293. * [ something equivalent to page_mapped_in_vma() ].
  294. *
  295. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  296. * that the anon_vma pointer from page->mapping is valid if there is a
  297. * mapcount, we can dereference the anon_vma after observing those.
  298. */
  299. struct anon_vma *page_get_anon_vma(struct page *page)
  300. {
  301. struct anon_vma *anon_vma = NULL;
  302. unsigned long anon_mapping;
  303. rcu_read_lock();
  304. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  305. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  306. goto out;
  307. if (!page_mapped(page))
  308. goto out;
  309. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  310. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  311. anon_vma = NULL;
  312. goto out;
  313. }
  314. /*
  315. * If this page is still mapped, then its anon_vma cannot have been
  316. * freed. But if it has been unmapped, we have no security against the
  317. * anon_vma structure being freed and reused (for another anon_vma:
  318. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  319. * above cannot corrupt).
  320. */
  321. if (!page_mapped(page)) {
  322. put_anon_vma(anon_vma);
  323. anon_vma = NULL;
  324. }
  325. out:
  326. rcu_read_unlock();
  327. return anon_vma;
  328. }
  329. struct anon_vma *page_lock_anon_vma(struct page *page)
  330. {
  331. struct anon_vma *anon_vma = page_get_anon_vma(page);
  332. if (anon_vma)
  333. anon_vma_lock(anon_vma);
  334. return anon_vma;
  335. }
  336. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  337. {
  338. anon_vma_unlock(anon_vma);
  339. put_anon_vma(anon_vma);
  340. }
  341. /*
  342. * At what user virtual address is page expected in @vma?
  343. * Returns virtual address or -EFAULT if page's index/offset is not
  344. * within the range mapped the @vma.
  345. */
  346. inline unsigned long
  347. vma_address(struct page *page, struct vm_area_struct *vma)
  348. {
  349. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  350. unsigned long address;
  351. if (unlikely(is_vm_hugetlb_page(vma)))
  352. pgoff = page->index << huge_page_order(page_hstate(page));
  353. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  354. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  355. /* page should be within @vma mapping range */
  356. return -EFAULT;
  357. }
  358. return address;
  359. }
  360. /*
  361. * At what user virtual address is page expected in vma?
  362. * Caller should check the page is actually part of the vma.
  363. */
  364. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  365. {
  366. if (PageAnon(page)) {
  367. struct anon_vma *page__anon_vma = page_anon_vma(page);
  368. /*
  369. * Note: swapoff's unuse_vma() is more efficient with this
  370. * check, and needs it to match anon_vma when KSM is active.
  371. */
  372. if (!vma->anon_vma || !page__anon_vma ||
  373. vma->anon_vma->root != page__anon_vma->root)
  374. return -EFAULT;
  375. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  376. if (!vma->vm_file ||
  377. vma->vm_file->f_mapping != page->mapping)
  378. return -EFAULT;
  379. } else
  380. return -EFAULT;
  381. return vma_address(page, vma);
  382. }
  383. /*
  384. * Check that @page is mapped at @address into @mm.
  385. *
  386. * If @sync is false, page_check_address may perform a racy check to avoid
  387. * the page table lock when the pte is not present (helpful when reclaiming
  388. * highly shared pages).
  389. *
  390. * On success returns with pte mapped and locked.
  391. */
  392. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  393. unsigned long address, spinlock_t **ptlp, int sync)
  394. {
  395. pgd_t *pgd;
  396. pud_t *pud;
  397. pmd_t *pmd;
  398. pte_t *pte;
  399. spinlock_t *ptl;
  400. if (unlikely(PageHuge(page))) {
  401. pte = huge_pte_offset(mm, address);
  402. ptl = &mm->page_table_lock;
  403. goto check;
  404. }
  405. pgd = pgd_offset(mm, address);
  406. if (!pgd_present(*pgd))
  407. return NULL;
  408. pud = pud_offset(pgd, address);
  409. if (!pud_present(*pud))
  410. return NULL;
  411. pmd = pmd_offset(pud, address);
  412. if (!pmd_present(*pmd))
  413. return NULL;
  414. if (pmd_trans_huge(*pmd))
  415. return NULL;
  416. pte = pte_offset_map(pmd, address);
  417. /* Make a quick check before getting the lock */
  418. if (!sync && !pte_present(*pte)) {
  419. pte_unmap(pte);
  420. return NULL;
  421. }
  422. ptl = pte_lockptr(mm, pmd);
  423. check:
  424. spin_lock(ptl);
  425. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  426. *ptlp = ptl;
  427. return pte;
  428. }
  429. pte_unmap_unlock(pte, ptl);
  430. return NULL;
  431. }
  432. /**
  433. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  434. * @page: the page to test
  435. * @vma: the VMA to test
  436. *
  437. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  438. * if the page is not mapped into the page tables of this VMA. Only
  439. * valid for normal file or anonymous VMAs.
  440. */
  441. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  442. {
  443. unsigned long address;
  444. pte_t *pte;
  445. spinlock_t *ptl;
  446. address = vma_address(page, vma);
  447. if (address == -EFAULT) /* out of vma range */
  448. return 0;
  449. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  450. if (!pte) /* the page is not in this mm */
  451. return 0;
  452. pte_unmap_unlock(pte, ptl);
  453. return 1;
  454. }
  455. /*
  456. * Subfunctions of page_referenced: page_referenced_one called
  457. * repeatedly from either page_referenced_anon or page_referenced_file.
  458. */
  459. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  460. unsigned long address, unsigned int *mapcount,
  461. unsigned long *vm_flags)
  462. {
  463. struct mm_struct *mm = vma->vm_mm;
  464. int referenced = 0;
  465. if (unlikely(PageTransHuge(page))) {
  466. pmd_t *pmd;
  467. spin_lock(&mm->page_table_lock);
  468. /*
  469. * rmap might return false positives; we must filter
  470. * these out using page_check_address_pmd().
  471. */
  472. pmd = page_check_address_pmd(page, mm, address,
  473. PAGE_CHECK_ADDRESS_PMD_FLAG);
  474. if (!pmd) {
  475. spin_unlock(&mm->page_table_lock);
  476. goto out;
  477. }
  478. if (vma->vm_flags & VM_LOCKED) {
  479. spin_unlock(&mm->page_table_lock);
  480. *mapcount = 0; /* break early from loop */
  481. *vm_flags |= VM_LOCKED;
  482. goto out;
  483. }
  484. /* go ahead even if the pmd is pmd_trans_splitting() */
  485. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  486. referenced++;
  487. spin_unlock(&mm->page_table_lock);
  488. } else {
  489. pte_t *pte;
  490. spinlock_t *ptl;
  491. /*
  492. * rmap might return false positives; we must filter
  493. * these out using page_check_address().
  494. */
  495. pte = page_check_address(page, mm, address, &ptl, 0);
  496. if (!pte)
  497. goto out;
  498. if (vma->vm_flags & VM_LOCKED) {
  499. pte_unmap_unlock(pte, ptl);
  500. *mapcount = 0; /* break early from loop */
  501. *vm_flags |= VM_LOCKED;
  502. goto out;
  503. }
  504. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  505. /*
  506. * Don't treat a reference through a sequentially read
  507. * mapping as such. If the page has been used in
  508. * another mapping, we will catch it; if this other
  509. * mapping is already gone, the unmap path will have
  510. * set PG_referenced or activated the page.
  511. */
  512. if (likely(!VM_SequentialReadHint(vma)))
  513. referenced++;
  514. }
  515. pte_unmap_unlock(pte, ptl);
  516. }
  517. /* Pretend the page is referenced if the task has the
  518. swap token and is in the middle of a page fault. */
  519. if (mm != current->mm && has_swap_token(mm) &&
  520. rwsem_is_locked(&mm->mmap_sem))
  521. referenced++;
  522. (*mapcount)--;
  523. if (referenced)
  524. *vm_flags |= vma->vm_flags;
  525. out:
  526. return referenced;
  527. }
  528. static int page_referenced_anon(struct page *page,
  529. struct mem_cgroup *mem_cont,
  530. unsigned long *vm_flags)
  531. {
  532. unsigned int mapcount;
  533. struct anon_vma *anon_vma;
  534. struct anon_vma_chain *avc;
  535. int referenced = 0;
  536. anon_vma = page_lock_anon_vma(page);
  537. if (!anon_vma)
  538. return referenced;
  539. mapcount = page_mapcount(page);
  540. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  541. struct vm_area_struct *vma = avc->vma;
  542. unsigned long address = vma_address(page, vma);
  543. if (address == -EFAULT)
  544. continue;
  545. /*
  546. * If we are reclaiming on behalf of a cgroup, skip
  547. * counting on behalf of references from different
  548. * cgroups
  549. */
  550. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  551. continue;
  552. referenced += page_referenced_one(page, vma, address,
  553. &mapcount, vm_flags);
  554. if (!mapcount)
  555. break;
  556. }
  557. page_unlock_anon_vma(anon_vma);
  558. return referenced;
  559. }
  560. /**
  561. * page_referenced_file - referenced check for object-based rmap
  562. * @page: the page we're checking references on.
  563. * @mem_cont: target memory controller
  564. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  565. *
  566. * For an object-based mapped page, find all the places it is mapped and
  567. * check/clear the referenced flag. This is done by following the page->mapping
  568. * pointer, then walking the chain of vmas it holds. It returns the number
  569. * of references it found.
  570. *
  571. * This function is only called from page_referenced for object-based pages.
  572. */
  573. static int page_referenced_file(struct page *page,
  574. struct mem_cgroup *mem_cont,
  575. unsigned long *vm_flags)
  576. {
  577. unsigned int mapcount;
  578. struct address_space *mapping = page->mapping;
  579. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  580. struct vm_area_struct *vma;
  581. struct prio_tree_iter iter;
  582. int referenced = 0;
  583. /*
  584. * The caller's checks on page->mapping and !PageAnon have made
  585. * sure that this is a file page: the check for page->mapping
  586. * excludes the case just before it gets set on an anon page.
  587. */
  588. BUG_ON(PageAnon(page));
  589. /*
  590. * The page lock not only makes sure that page->mapping cannot
  591. * suddenly be NULLified by truncation, it makes sure that the
  592. * structure at mapping cannot be freed and reused yet,
  593. * so we can safely take mapping->i_mmap_mutex.
  594. */
  595. BUG_ON(!PageLocked(page));
  596. mutex_lock(&mapping->i_mmap_mutex);
  597. /*
  598. * i_mmap_mutex does not stabilize mapcount at all, but mapcount
  599. * is more likely to be accurate if we note it after spinning.
  600. */
  601. mapcount = page_mapcount(page);
  602. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  603. unsigned long address = vma_address(page, vma);
  604. if (address == -EFAULT)
  605. continue;
  606. /*
  607. * If we are reclaiming on behalf of a cgroup, skip
  608. * counting on behalf of references from different
  609. * cgroups
  610. */
  611. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  612. continue;
  613. referenced += page_referenced_one(page, vma, address,
  614. &mapcount, vm_flags);
  615. if (!mapcount)
  616. break;
  617. }
  618. mutex_unlock(&mapping->i_mmap_mutex);
  619. return referenced;
  620. }
  621. /**
  622. * page_referenced - test if the page was referenced
  623. * @page: the page to test
  624. * @is_locked: caller holds lock on the page
  625. * @mem_cont: target memory controller
  626. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  627. *
  628. * Quick test_and_clear_referenced for all mappings to a page,
  629. * returns the number of ptes which referenced the page.
  630. */
  631. int page_referenced(struct page *page,
  632. int is_locked,
  633. struct mem_cgroup *mem_cont,
  634. unsigned long *vm_flags)
  635. {
  636. int referenced = 0;
  637. int we_locked = 0;
  638. *vm_flags = 0;
  639. if (page_mapped(page) && page_rmapping(page)) {
  640. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  641. we_locked = trylock_page(page);
  642. if (!we_locked) {
  643. referenced++;
  644. goto out;
  645. }
  646. }
  647. if (unlikely(PageKsm(page)))
  648. referenced += page_referenced_ksm(page, mem_cont,
  649. vm_flags);
  650. else if (PageAnon(page))
  651. referenced += page_referenced_anon(page, mem_cont,
  652. vm_flags);
  653. else if (page->mapping)
  654. referenced += page_referenced_file(page, mem_cont,
  655. vm_flags);
  656. if (we_locked)
  657. unlock_page(page);
  658. }
  659. out:
  660. if (page_test_and_clear_young(page_to_pfn(page)))
  661. referenced++;
  662. return referenced;
  663. }
  664. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  665. unsigned long address)
  666. {
  667. struct mm_struct *mm = vma->vm_mm;
  668. pte_t *pte;
  669. spinlock_t *ptl;
  670. int ret = 0;
  671. pte = page_check_address(page, mm, address, &ptl, 1);
  672. if (!pte)
  673. goto out;
  674. if (pte_dirty(*pte) || pte_write(*pte)) {
  675. pte_t entry;
  676. flush_cache_page(vma, address, pte_pfn(*pte));
  677. entry = ptep_clear_flush_notify(vma, address, pte);
  678. entry = pte_wrprotect(entry);
  679. entry = pte_mkclean(entry);
  680. set_pte_at(mm, address, pte, entry);
  681. ret = 1;
  682. }
  683. pte_unmap_unlock(pte, ptl);
  684. out:
  685. return ret;
  686. }
  687. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  688. {
  689. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  690. struct vm_area_struct *vma;
  691. struct prio_tree_iter iter;
  692. int ret = 0;
  693. BUG_ON(PageAnon(page));
  694. mutex_lock(&mapping->i_mmap_mutex);
  695. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  696. if (vma->vm_flags & VM_SHARED) {
  697. unsigned long address = vma_address(page, vma);
  698. if (address == -EFAULT)
  699. continue;
  700. ret += page_mkclean_one(page, vma, address);
  701. }
  702. }
  703. mutex_unlock(&mapping->i_mmap_mutex);
  704. return ret;
  705. }
  706. int page_mkclean(struct page *page)
  707. {
  708. int ret = 0;
  709. BUG_ON(!PageLocked(page));
  710. if (page_mapped(page)) {
  711. struct address_space *mapping = page_mapping(page);
  712. if (mapping) {
  713. ret = page_mkclean_file(mapping, page);
  714. if (page_test_and_clear_dirty(page_to_pfn(page), 1))
  715. ret = 1;
  716. }
  717. }
  718. return ret;
  719. }
  720. EXPORT_SYMBOL_GPL(page_mkclean);
  721. /**
  722. * page_move_anon_rmap - move a page to our anon_vma
  723. * @page: the page to move to our anon_vma
  724. * @vma: the vma the page belongs to
  725. * @address: the user virtual address mapped
  726. *
  727. * When a page belongs exclusively to one process after a COW event,
  728. * that page can be moved into the anon_vma that belongs to just that
  729. * process, so the rmap code will not search the parent or sibling
  730. * processes.
  731. */
  732. void page_move_anon_rmap(struct page *page,
  733. struct vm_area_struct *vma, unsigned long address)
  734. {
  735. struct anon_vma *anon_vma = vma->anon_vma;
  736. VM_BUG_ON(!PageLocked(page));
  737. VM_BUG_ON(!anon_vma);
  738. VM_BUG_ON(page->index != linear_page_index(vma, address));
  739. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  740. page->mapping = (struct address_space *) anon_vma;
  741. }
  742. /**
  743. * __page_set_anon_rmap - set up new anonymous rmap
  744. * @page: Page to add to rmap
  745. * @vma: VM area to add page to.
  746. * @address: User virtual address of the mapping
  747. * @exclusive: the page is exclusively owned by the current process
  748. */
  749. static void __page_set_anon_rmap(struct page *page,
  750. struct vm_area_struct *vma, unsigned long address, int exclusive)
  751. {
  752. struct anon_vma *anon_vma = vma->anon_vma;
  753. BUG_ON(!anon_vma);
  754. if (PageAnon(page))
  755. return;
  756. /*
  757. * If the page isn't exclusively mapped into this vma,
  758. * we must use the _oldest_ possible anon_vma for the
  759. * page mapping!
  760. */
  761. if (!exclusive)
  762. anon_vma = anon_vma->root;
  763. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  764. page->mapping = (struct address_space *) anon_vma;
  765. page->index = linear_page_index(vma, address);
  766. }
  767. /**
  768. * __page_check_anon_rmap - sanity check anonymous rmap addition
  769. * @page: the page to add the mapping to
  770. * @vma: the vm area in which the mapping is added
  771. * @address: the user virtual address mapped
  772. */
  773. static void __page_check_anon_rmap(struct page *page,
  774. struct vm_area_struct *vma, unsigned long address)
  775. {
  776. #ifdef CONFIG_DEBUG_VM
  777. /*
  778. * The page's anon-rmap details (mapping and index) are guaranteed to
  779. * be set up correctly at this point.
  780. *
  781. * We have exclusion against page_add_anon_rmap because the caller
  782. * always holds the page locked, except if called from page_dup_rmap,
  783. * in which case the page is already known to be setup.
  784. *
  785. * We have exclusion against page_add_new_anon_rmap because those pages
  786. * are initially only visible via the pagetables, and the pte is locked
  787. * over the call to page_add_new_anon_rmap.
  788. */
  789. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  790. BUG_ON(page->index != linear_page_index(vma, address));
  791. #endif
  792. }
  793. /**
  794. * page_add_anon_rmap - add pte mapping to an anonymous page
  795. * @page: the page to add the mapping to
  796. * @vma: the vm area in which the mapping is added
  797. * @address: the user virtual address mapped
  798. *
  799. * The caller needs to hold the pte lock, and the page must be locked in
  800. * the anon_vma case: to serialize mapping,index checking after setting,
  801. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  802. * (but PageKsm is never downgraded to PageAnon).
  803. */
  804. void page_add_anon_rmap(struct page *page,
  805. struct vm_area_struct *vma, unsigned long address)
  806. {
  807. do_page_add_anon_rmap(page, vma, address, 0);
  808. }
  809. /*
  810. * Special version of the above for do_swap_page, which often runs
  811. * into pages that are exclusively owned by the current process.
  812. * Everybody else should continue to use page_add_anon_rmap above.
  813. */
  814. void do_page_add_anon_rmap(struct page *page,
  815. struct vm_area_struct *vma, unsigned long address, int exclusive)
  816. {
  817. int first = atomic_inc_and_test(&page->_mapcount);
  818. if (first) {
  819. if (!PageTransHuge(page))
  820. __inc_zone_page_state(page, NR_ANON_PAGES);
  821. else
  822. __inc_zone_page_state(page,
  823. NR_ANON_TRANSPARENT_HUGEPAGES);
  824. }
  825. if (unlikely(PageKsm(page)))
  826. return;
  827. VM_BUG_ON(!PageLocked(page));
  828. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  829. if (first)
  830. __page_set_anon_rmap(page, vma, address, exclusive);
  831. else
  832. __page_check_anon_rmap(page, vma, address);
  833. }
  834. /**
  835. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  836. * @page: the page to add the mapping to
  837. * @vma: the vm area in which the mapping is added
  838. * @address: the user virtual address mapped
  839. *
  840. * Same as page_add_anon_rmap but must only be called on *new* pages.
  841. * This means the inc-and-test can be bypassed.
  842. * Page does not have to be locked.
  843. */
  844. void page_add_new_anon_rmap(struct page *page,
  845. struct vm_area_struct *vma, unsigned long address)
  846. {
  847. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  848. SetPageSwapBacked(page);
  849. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  850. if (!PageTransHuge(page))
  851. __inc_zone_page_state(page, NR_ANON_PAGES);
  852. else
  853. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  854. __page_set_anon_rmap(page, vma, address, 1);
  855. if (page_evictable(page, vma))
  856. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  857. else
  858. add_page_to_unevictable_list(page);
  859. }
  860. /**
  861. * page_add_file_rmap - add pte mapping to a file page
  862. * @page: the page to add the mapping to
  863. *
  864. * The caller needs to hold the pte lock.
  865. */
  866. void page_add_file_rmap(struct page *page)
  867. {
  868. if (atomic_inc_and_test(&page->_mapcount)) {
  869. __inc_zone_page_state(page, NR_FILE_MAPPED);
  870. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  871. }
  872. }
  873. /**
  874. * page_remove_rmap - take down pte mapping from a page
  875. * @page: page to remove mapping from
  876. *
  877. * The caller needs to hold the pte lock.
  878. */
  879. void page_remove_rmap(struct page *page)
  880. {
  881. /* page still mapped by someone else? */
  882. if (!atomic_add_negative(-1, &page->_mapcount))
  883. return;
  884. /*
  885. * Now that the last pte has gone, s390 must transfer dirty
  886. * flag from storage key to struct page. We can usually skip
  887. * this if the page is anon, so about to be freed; but perhaps
  888. * not if it's in swapcache - there might be another pte slot
  889. * containing the swap entry, but page not yet written to swap.
  890. */
  891. if ((!PageAnon(page) || PageSwapCache(page)) &&
  892. page_test_and_clear_dirty(page_to_pfn(page), 1))
  893. set_page_dirty(page);
  894. /*
  895. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  896. * and not charged by memcg for now.
  897. */
  898. if (unlikely(PageHuge(page)))
  899. return;
  900. if (PageAnon(page)) {
  901. mem_cgroup_uncharge_page(page);
  902. if (!PageTransHuge(page))
  903. __dec_zone_page_state(page, NR_ANON_PAGES);
  904. else
  905. __dec_zone_page_state(page,
  906. NR_ANON_TRANSPARENT_HUGEPAGES);
  907. } else {
  908. __dec_zone_page_state(page, NR_FILE_MAPPED);
  909. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  910. }
  911. /*
  912. * It would be tidy to reset the PageAnon mapping here,
  913. * but that might overwrite a racing page_add_anon_rmap
  914. * which increments mapcount after us but sets mapping
  915. * before us: so leave the reset to free_hot_cold_page,
  916. * and remember that it's only reliable while mapped.
  917. * Leaving it set also helps swapoff to reinstate ptes
  918. * faster for those pages still in swapcache.
  919. */
  920. }
  921. /*
  922. * Subfunctions of try_to_unmap: try_to_unmap_one called
  923. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  924. */
  925. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  926. unsigned long address, enum ttu_flags flags)
  927. {
  928. struct mm_struct *mm = vma->vm_mm;
  929. pte_t *pte;
  930. pte_t pteval;
  931. spinlock_t *ptl;
  932. int ret = SWAP_AGAIN;
  933. pte = page_check_address(page, mm, address, &ptl, 0);
  934. if (!pte)
  935. goto out;
  936. /*
  937. * If the page is mlock()d, we cannot swap it out.
  938. * If it's recently referenced (perhaps page_referenced
  939. * skipped over this mm) then we should reactivate it.
  940. */
  941. if (!(flags & TTU_IGNORE_MLOCK)) {
  942. if (vma->vm_flags & VM_LOCKED)
  943. goto out_mlock;
  944. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  945. goto out_unmap;
  946. }
  947. if (!(flags & TTU_IGNORE_ACCESS)) {
  948. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  949. ret = SWAP_FAIL;
  950. goto out_unmap;
  951. }
  952. }
  953. /* Nuke the page table entry. */
  954. flush_cache_page(vma, address, page_to_pfn(page));
  955. pteval = ptep_clear_flush_notify(vma, address, pte);
  956. /* Move the dirty bit to the physical page now the pte is gone. */
  957. if (pte_dirty(pteval))
  958. set_page_dirty(page);
  959. /* Update high watermark before we lower rss */
  960. update_hiwater_rss(mm);
  961. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  962. if (PageAnon(page))
  963. dec_mm_counter(mm, MM_ANONPAGES);
  964. else
  965. dec_mm_counter(mm, MM_FILEPAGES);
  966. set_pte_at(mm, address, pte,
  967. swp_entry_to_pte(make_hwpoison_entry(page)));
  968. } else if (PageAnon(page)) {
  969. swp_entry_t entry = { .val = page_private(page) };
  970. if (PageSwapCache(page)) {
  971. /*
  972. * Store the swap location in the pte.
  973. * See handle_pte_fault() ...
  974. */
  975. if (swap_duplicate(entry) < 0) {
  976. set_pte_at(mm, address, pte, pteval);
  977. ret = SWAP_FAIL;
  978. goto out_unmap;
  979. }
  980. if (list_empty(&mm->mmlist)) {
  981. spin_lock(&mmlist_lock);
  982. if (list_empty(&mm->mmlist))
  983. list_add(&mm->mmlist, &init_mm.mmlist);
  984. spin_unlock(&mmlist_lock);
  985. }
  986. dec_mm_counter(mm, MM_ANONPAGES);
  987. inc_mm_counter(mm, MM_SWAPENTS);
  988. } else if (PAGE_MIGRATION) {
  989. /*
  990. * Store the pfn of the page in a special migration
  991. * pte. do_swap_page() will wait until the migration
  992. * pte is removed and then restart fault handling.
  993. */
  994. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  995. entry = make_migration_entry(page, pte_write(pteval));
  996. }
  997. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  998. BUG_ON(pte_file(*pte));
  999. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  1000. /* Establish migration entry for a file page */
  1001. swp_entry_t entry;
  1002. entry = make_migration_entry(page, pte_write(pteval));
  1003. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1004. } else
  1005. dec_mm_counter(mm, MM_FILEPAGES);
  1006. page_remove_rmap(page);
  1007. page_cache_release(page);
  1008. out_unmap:
  1009. pte_unmap_unlock(pte, ptl);
  1010. out:
  1011. return ret;
  1012. out_mlock:
  1013. pte_unmap_unlock(pte, ptl);
  1014. /*
  1015. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1016. * unstable result and race. Plus, We can't wait here because
  1017. * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
  1018. * if trylock failed, the page remain in evictable lru and later
  1019. * vmscan could retry to move the page to unevictable lru if the
  1020. * page is actually mlocked.
  1021. */
  1022. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1023. if (vma->vm_flags & VM_LOCKED) {
  1024. mlock_vma_page(page);
  1025. ret = SWAP_MLOCK;
  1026. }
  1027. up_read(&vma->vm_mm->mmap_sem);
  1028. }
  1029. return ret;
  1030. }
  1031. /*
  1032. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1033. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1034. * Consequently, given a particular page and its ->index, we cannot locate the
  1035. * ptes which are mapping that page without an exhaustive linear search.
  1036. *
  1037. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1038. * maps the file to which the target page belongs. The ->vm_private_data field
  1039. * holds the current cursor into that scan. Successive searches will circulate
  1040. * around the vma's virtual address space.
  1041. *
  1042. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1043. * more scanning pressure is placed against them as well. Eventually pages
  1044. * will become fully unmapped and are eligible for eviction.
  1045. *
  1046. * For very sparsely populated VMAs this is a little inefficient - chances are
  1047. * there there won't be many ptes located within the scan cluster. In this case
  1048. * maybe we could scan further - to the end of the pte page, perhaps.
  1049. *
  1050. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1051. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1052. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1053. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1054. */
  1055. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1056. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1057. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1058. struct vm_area_struct *vma, struct page *check_page)
  1059. {
  1060. struct mm_struct *mm = vma->vm_mm;
  1061. pgd_t *pgd;
  1062. pud_t *pud;
  1063. pmd_t *pmd;
  1064. pte_t *pte;
  1065. pte_t pteval;
  1066. spinlock_t *ptl;
  1067. struct page *page;
  1068. unsigned long address;
  1069. unsigned long end;
  1070. int ret = SWAP_AGAIN;
  1071. int locked_vma = 0;
  1072. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1073. end = address + CLUSTER_SIZE;
  1074. if (address < vma->vm_start)
  1075. address = vma->vm_start;
  1076. if (end > vma->vm_end)
  1077. end = vma->vm_end;
  1078. pgd = pgd_offset(mm, address);
  1079. if (!pgd_present(*pgd))
  1080. return ret;
  1081. pud = pud_offset(pgd, address);
  1082. if (!pud_present(*pud))
  1083. return ret;
  1084. pmd = pmd_offset(pud, address);
  1085. if (!pmd_present(*pmd))
  1086. return ret;
  1087. /*
  1088. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1089. * keep the sem while scanning the cluster for mlocking pages.
  1090. */
  1091. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1092. locked_vma = (vma->vm_flags & VM_LOCKED);
  1093. if (!locked_vma)
  1094. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1095. }
  1096. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1097. /* Update high watermark before we lower rss */
  1098. update_hiwater_rss(mm);
  1099. for (; address < end; pte++, address += PAGE_SIZE) {
  1100. if (!pte_present(*pte))
  1101. continue;
  1102. page = vm_normal_page(vma, address, *pte);
  1103. BUG_ON(!page || PageAnon(page));
  1104. if (locked_vma) {
  1105. mlock_vma_page(page); /* no-op if already mlocked */
  1106. if (page == check_page)
  1107. ret = SWAP_MLOCK;
  1108. continue; /* don't unmap */
  1109. }
  1110. if (ptep_clear_flush_young_notify(vma, address, pte))
  1111. continue;
  1112. /* Nuke the page table entry. */
  1113. flush_cache_page(vma, address, pte_pfn(*pte));
  1114. pteval = ptep_clear_flush_notify(vma, address, pte);
  1115. /* If nonlinear, store the file page offset in the pte. */
  1116. if (page->index != linear_page_index(vma, address))
  1117. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1118. /* Move the dirty bit to the physical page now the pte is gone. */
  1119. if (pte_dirty(pteval))
  1120. set_page_dirty(page);
  1121. page_remove_rmap(page);
  1122. page_cache_release(page);
  1123. dec_mm_counter(mm, MM_FILEPAGES);
  1124. (*mapcount)--;
  1125. }
  1126. pte_unmap_unlock(pte - 1, ptl);
  1127. if (locked_vma)
  1128. up_read(&vma->vm_mm->mmap_sem);
  1129. return ret;
  1130. }
  1131. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1132. {
  1133. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1134. if (!maybe_stack)
  1135. return false;
  1136. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1137. VM_STACK_INCOMPLETE_SETUP)
  1138. return true;
  1139. return false;
  1140. }
  1141. /**
  1142. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1143. * rmap method
  1144. * @page: the page to unmap/unlock
  1145. * @flags: action and flags
  1146. *
  1147. * Find all the mappings of a page using the mapping pointer and the vma chains
  1148. * contained in the anon_vma struct it points to.
  1149. *
  1150. * This function is only called from try_to_unmap/try_to_munlock for
  1151. * anonymous pages.
  1152. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1153. * where the page was found will be held for write. So, we won't recheck
  1154. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1155. * 'LOCKED.
  1156. */
  1157. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1158. {
  1159. struct anon_vma *anon_vma;
  1160. struct anon_vma_chain *avc;
  1161. int ret = SWAP_AGAIN;
  1162. anon_vma = page_lock_anon_vma(page);
  1163. if (!anon_vma)
  1164. return ret;
  1165. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1166. struct vm_area_struct *vma = avc->vma;
  1167. unsigned long address;
  1168. /*
  1169. * During exec, a temporary VMA is setup and later moved.
  1170. * The VMA is moved under the anon_vma lock but not the
  1171. * page tables leading to a race where migration cannot
  1172. * find the migration ptes. Rather than increasing the
  1173. * locking requirements of exec(), migration skips
  1174. * temporary VMAs until after exec() completes.
  1175. */
  1176. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1177. is_vma_temporary_stack(vma))
  1178. continue;
  1179. address = vma_address(page, vma);
  1180. if (address == -EFAULT)
  1181. continue;
  1182. ret = try_to_unmap_one(page, vma, address, flags);
  1183. if (ret != SWAP_AGAIN || !page_mapped(page))
  1184. break;
  1185. }
  1186. page_unlock_anon_vma(anon_vma);
  1187. return ret;
  1188. }
  1189. /**
  1190. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1191. * @page: the page to unmap/unlock
  1192. * @flags: action and flags
  1193. *
  1194. * Find all the mappings of a page using the mapping pointer and the vma chains
  1195. * contained in the address_space struct it points to.
  1196. *
  1197. * This function is only called from try_to_unmap/try_to_munlock for
  1198. * object-based pages.
  1199. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1200. * where the page was found will be held for write. So, we won't recheck
  1201. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1202. * 'LOCKED.
  1203. */
  1204. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1205. {
  1206. struct address_space *mapping = page->mapping;
  1207. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1208. struct vm_area_struct *vma;
  1209. struct prio_tree_iter iter;
  1210. int ret = SWAP_AGAIN;
  1211. unsigned long cursor;
  1212. unsigned long max_nl_cursor = 0;
  1213. unsigned long max_nl_size = 0;
  1214. unsigned int mapcount;
  1215. mutex_lock(&mapping->i_mmap_mutex);
  1216. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1217. unsigned long address = vma_address(page, vma);
  1218. if (address == -EFAULT)
  1219. continue;
  1220. ret = try_to_unmap_one(page, vma, address, flags);
  1221. if (ret != SWAP_AGAIN || !page_mapped(page))
  1222. goto out;
  1223. }
  1224. if (list_empty(&mapping->i_mmap_nonlinear))
  1225. goto out;
  1226. /*
  1227. * We don't bother to try to find the munlocked page in nonlinears.
  1228. * It's costly. Instead, later, page reclaim logic may call
  1229. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1230. */
  1231. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1232. goto out;
  1233. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1234. shared.vm_set.list) {
  1235. cursor = (unsigned long) vma->vm_private_data;
  1236. if (cursor > max_nl_cursor)
  1237. max_nl_cursor = cursor;
  1238. cursor = vma->vm_end - vma->vm_start;
  1239. if (cursor > max_nl_size)
  1240. max_nl_size = cursor;
  1241. }
  1242. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1243. ret = SWAP_FAIL;
  1244. goto out;
  1245. }
  1246. /*
  1247. * We don't try to search for this page in the nonlinear vmas,
  1248. * and page_referenced wouldn't have found it anyway. Instead
  1249. * just walk the nonlinear vmas trying to age and unmap some.
  1250. * The mapcount of the page we came in with is irrelevant,
  1251. * but even so use it as a guide to how hard we should try?
  1252. */
  1253. mapcount = page_mapcount(page);
  1254. if (!mapcount)
  1255. goto out;
  1256. cond_resched();
  1257. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1258. if (max_nl_cursor == 0)
  1259. max_nl_cursor = CLUSTER_SIZE;
  1260. do {
  1261. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1262. shared.vm_set.list) {
  1263. cursor = (unsigned long) vma->vm_private_data;
  1264. while ( cursor < max_nl_cursor &&
  1265. cursor < vma->vm_end - vma->vm_start) {
  1266. if (try_to_unmap_cluster(cursor, &mapcount,
  1267. vma, page) == SWAP_MLOCK)
  1268. ret = SWAP_MLOCK;
  1269. cursor += CLUSTER_SIZE;
  1270. vma->vm_private_data = (void *) cursor;
  1271. if ((int)mapcount <= 0)
  1272. goto out;
  1273. }
  1274. vma->vm_private_data = (void *) max_nl_cursor;
  1275. }
  1276. cond_resched();
  1277. max_nl_cursor += CLUSTER_SIZE;
  1278. } while (max_nl_cursor <= max_nl_size);
  1279. /*
  1280. * Don't loop forever (perhaps all the remaining pages are
  1281. * in locked vmas). Reset cursor on all unreserved nonlinear
  1282. * vmas, now forgetting on which ones it had fallen behind.
  1283. */
  1284. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1285. vma->vm_private_data = NULL;
  1286. out:
  1287. mutex_unlock(&mapping->i_mmap_mutex);
  1288. return ret;
  1289. }
  1290. /**
  1291. * try_to_unmap - try to remove all page table mappings to a page
  1292. * @page: the page to get unmapped
  1293. * @flags: action and flags
  1294. *
  1295. * Tries to remove all the page table entries which are mapping this
  1296. * page, used in the pageout path. Caller must hold the page lock.
  1297. * Return values are:
  1298. *
  1299. * SWAP_SUCCESS - we succeeded in removing all mappings
  1300. * SWAP_AGAIN - we missed a mapping, try again later
  1301. * SWAP_FAIL - the page is unswappable
  1302. * SWAP_MLOCK - page is mlocked.
  1303. */
  1304. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1305. {
  1306. int ret;
  1307. BUG_ON(!PageLocked(page));
  1308. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1309. if (unlikely(PageKsm(page)))
  1310. ret = try_to_unmap_ksm(page, flags);
  1311. else if (PageAnon(page))
  1312. ret = try_to_unmap_anon(page, flags);
  1313. else
  1314. ret = try_to_unmap_file(page, flags);
  1315. if (ret != SWAP_MLOCK && !page_mapped(page))
  1316. ret = SWAP_SUCCESS;
  1317. return ret;
  1318. }
  1319. /**
  1320. * try_to_munlock - try to munlock a page
  1321. * @page: the page to be munlocked
  1322. *
  1323. * Called from munlock code. Checks all of the VMAs mapping the page
  1324. * to make sure nobody else has this page mlocked. The page will be
  1325. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1326. *
  1327. * Return values are:
  1328. *
  1329. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1330. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1331. * SWAP_FAIL - page cannot be located at present
  1332. * SWAP_MLOCK - page is now mlocked.
  1333. */
  1334. int try_to_munlock(struct page *page)
  1335. {
  1336. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1337. if (unlikely(PageKsm(page)))
  1338. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1339. else if (PageAnon(page))
  1340. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1341. else
  1342. return try_to_unmap_file(page, TTU_MUNLOCK);
  1343. }
  1344. void __put_anon_vma(struct anon_vma *anon_vma)
  1345. {
  1346. struct anon_vma *root = anon_vma->root;
  1347. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1348. anon_vma_free(root);
  1349. anon_vma_free(anon_vma);
  1350. }
  1351. #ifdef CONFIG_MIGRATION
  1352. /*
  1353. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1354. * Called by migrate.c to remove migration ptes, but might be used more later.
  1355. */
  1356. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1357. struct vm_area_struct *, unsigned long, void *), void *arg)
  1358. {
  1359. struct anon_vma *anon_vma;
  1360. struct anon_vma_chain *avc;
  1361. int ret = SWAP_AGAIN;
  1362. /*
  1363. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1364. * because that depends on page_mapped(); but not all its usages
  1365. * are holding mmap_sem. Users without mmap_sem are required to
  1366. * take a reference count to prevent the anon_vma disappearing
  1367. */
  1368. anon_vma = page_anon_vma(page);
  1369. if (!anon_vma)
  1370. return ret;
  1371. anon_vma_lock(anon_vma);
  1372. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1373. struct vm_area_struct *vma = avc->vma;
  1374. unsigned long address = vma_address(page, vma);
  1375. if (address == -EFAULT)
  1376. continue;
  1377. ret = rmap_one(page, vma, address, arg);
  1378. if (ret != SWAP_AGAIN)
  1379. break;
  1380. }
  1381. anon_vma_unlock(anon_vma);
  1382. return ret;
  1383. }
  1384. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1385. struct vm_area_struct *, unsigned long, void *), void *arg)
  1386. {
  1387. struct address_space *mapping = page->mapping;
  1388. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1389. struct vm_area_struct *vma;
  1390. struct prio_tree_iter iter;
  1391. int ret = SWAP_AGAIN;
  1392. if (!mapping)
  1393. return ret;
  1394. mutex_lock(&mapping->i_mmap_mutex);
  1395. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1396. unsigned long address = vma_address(page, vma);
  1397. if (address == -EFAULT)
  1398. continue;
  1399. ret = rmap_one(page, vma, address, arg);
  1400. if (ret != SWAP_AGAIN)
  1401. break;
  1402. }
  1403. /*
  1404. * No nonlinear handling: being always shared, nonlinear vmas
  1405. * never contain migration ptes. Decide what to do about this
  1406. * limitation to linear when we need rmap_walk() on nonlinear.
  1407. */
  1408. mutex_unlock(&mapping->i_mmap_mutex);
  1409. return ret;
  1410. }
  1411. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1412. struct vm_area_struct *, unsigned long, void *), void *arg)
  1413. {
  1414. VM_BUG_ON(!PageLocked(page));
  1415. if (unlikely(PageKsm(page)))
  1416. return rmap_walk_ksm(page, rmap_one, arg);
  1417. else if (PageAnon(page))
  1418. return rmap_walk_anon(page, rmap_one, arg);
  1419. else
  1420. return rmap_walk_file(page, rmap_one, arg);
  1421. }
  1422. #endif /* CONFIG_MIGRATION */
  1423. #ifdef CONFIG_HUGETLB_PAGE
  1424. /*
  1425. * The following three functions are for anonymous (private mapped) hugepages.
  1426. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1427. * and no lru code, because we handle hugepages differently from common pages.
  1428. */
  1429. static void __hugepage_set_anon_rmap(struct page *page,
  1430. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1431. {
  1432. struct anon_vma *anon_vma = vma->anon_vma;
  1433. BUG_ON(!anon_vma);
  1434. if (PageAnon(page))
  1435. return;
  1436. if (!exclusive)
  1437. anon_vma = anon_vma->root;
  1438. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1439. page->mapping = (struct address_space *) anon_vma;
  1440. page->index = linear_page_index(vma, address);
  1441. }
  1442. void hugepage_add_anon_rmap(struct page *page,
  1443. struct vm_area_struct *vma, unsigned long address)
  1444. {
  1445. struct anon_vma *anon_vma = vma->anon_vma;
  1446. int first;
  1447. BUG_ON(!PageLocked(page));
  1448. BUG_ON(!anon_vma);
  1449. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1450. first = atomic_inc_and_test(&page->_mapcount);
  1451. if (first)
  1452. __hugepage_set_anon_rmap(page, vma, address, 0);
  1453. }
  1454. void hugepage_add_new_anon_rmap(struct page *page,
  1455. struct vm_area_struct *vma, unsigned long address)
  1456. {
  1457. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1458. atomic_set(&page->_mapcount, 0);
  1459. __hugepage_set_anon_rmap(page, vma, address, 1);
  1460. }
  1461. #endif /* CONFIG_HUGETLB_PAGE */