af_key.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <linux/slab.h>
  29. #include <net/net_namespace.h>
  30. #include <net/netns/generic.h>
  31. #include <net/xfrm.h>
  32. #include <net/sock.h>
  33. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  34. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  35. static int pfkey_net_id __read_mostly;
  36. struct netns_pfkey {
  37. /* List of all pfkey sockets. */
  38. struct hlist_head table;
  39. atomic_t socks_nr;
  40. };
  41. static DEFINE_MUTEX(pfkey_mutex);
  42. #define DUMMY_MARK 0
  43. static struct xfrm_mark dummy_mark = {0, 0};
  44. struct pfkey_sock {
  45. /* struct sock must be the first member of struct pfkey_sock */
  46. struct sock sk;
  47. int registered;
  48. int promisc;
  49. struct {
  50. uint8_t msg_version;
  51. uint32_t msg_portid;
  52. int (*dump)(struct pfkey_sock *sk);
  53. void (*done)(struct pfkey_sock *sk);
  54. union {
  55. struct xfrm_policy_walk policy;
  56. struct xfrm_state_walk state;
  57. } u;
  58. struct sk_buff *skb;
  59. } dump;
  60. };
  61. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  62. {
  63. return (struct pfkey_sock *)sk;
  64. }
  65. static int pfkey_can_dump(const struct sock *sk)
  66. {
  67. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  68. return 1;
  69. return 0;
  70. }
  71. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  72. {
  73. if (pfk->dump.dump) {
  74. if (pfk->dump.skb) {
  75. kfree_skb(pfk->dump.skb);
  76. pfk->dump.skb = NULL;
  77. }
  78. pfk->dump.done(pfk);
  79. pfk->dump.dump = NULL;
  80. pfk->dump.done = NULL;
  81. }
  82. }
  83. static void pfkey_sock_destruct(struct sock *sk)
  84. {
  85. struct net *net = sock_net(sk);
  86. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  87. pfkey_terminate_dump(pfkey_sk(sk));
  88. skb_queue_purge(&sk->sk_receive_queue);
  89. if (!sock_flag(sk, SOCK_DEAD)) {
  90. pr_err("Attempt to release alive pfkey socket: %p\n", sk);
  91. return;
  92. }
  93. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  94. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  95. atomic_dec(&net_pfkey->socks_nr);
  96. }
  97. static const struct proto_ops pfkey_ops;
  98. static void pfkey_insert(struct sock *sk)
  99. {
  100. struct net *net = sock_net(sk);
  101. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  102. mutex_lock(&pfkey_mutex);
  103. sk_add_node_rcu(sk, &net_pfkey->table);
  104. mutex_unlock(&pfkey_mutex);
  105. }
  106. static void pfkey_remove(struct sock *sk)
  107. {
  108. mutex_lock(&pfkey_mutex);
  109. sk_del_node_init_rcu(sk);
  110. mutex_unlock(&pfkey_mutex);
  111. }
  112. static struct proto key_proto = {
  113. .name = "KEY",
  114. .owner = THIS_MODULE,
  115. .obj_size = sizeof(struct pfkey_sock),
  116. };
  117. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  118. int kern)
  119. {
  120. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  121. struct sock *sk;
  122. int err;
  123. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  124. return -EPERM;
  125. if (sock->type != SOCK_RAW)
  126. return -ESOCKTNOSUPPORT;
  127. if (protocol != PF_KEY_V2)
  128. return -EPROTONOSUPPORT;
  129. err = -ENOMEM;
  130. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  131. if (sk == NULL)
  132. goto out;
  133. sock->ops = &pfkey_ops;
  134. sock_init_data(sock, sk);
  135. sk->sk_family = PF_KEY;
  136. sk->sk_destruct = pfkey_sock_destruct;
  137. atomic_inc(&net_pfkey->socks_nr);
  138. pfkey_insert(sk);
  139. return 0;
  140. out:
  141. return err;
  142. }
  143. static int pfkey_release(struct socket *sock)
  144. {
  145. struct sock *sk = sock->sk;
  146. if (!sk)
  147. return 0;
  148. pfkey_remove(sk);
  149. sock_orphan(sk);
  150. sock->sk = NULL;
  151. skb_queue_purge(&sk->sk_write_queue);
  152. synchronize_rcu();
  153. sock_put(sk);
  154. return 0;
  155. }
  156. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  157. gfp_t allocation, struct sock *sk)
  158. {
  159. int err = -ENOBUFS;
  160. sock_hold(sk);
  161. if (*skb2 == NULL) {
  162. if (atomic_read(&skb->users) != 1) {
  163. *skb2 = skb_clone(skb, allocation);
  164. } else {
  165. *skb2 = skb;
  166. atomic_inc(&skb->users);
  167. }
  168. }
  169. if (*skb2 != NULL) {
  170. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  171. skb_set_owner_r(*skb2, sk);
  172. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  173. sk->sk_data_ready(sk, (*skb2)->len);
  174. *skb2 = NULL;
  175. err = 0;
  176. }
  177. }
  178. sock_put(sk);
  179. return err;
  180. }
  181. /* Send SKB to all pfkey sockets matching selected criteria. */
  182. #define BROADCAST_ALL 0
  183. #define BROADCAST_ONE 1
  184. #define BROADCAST_REGISTERED 2
  185. #define BROADCAST_PROMISC_ONLY 4
  186. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  187. int broadcast_flags, struct sock *one_sk,
  188. struct net *net)
  189. {
  190. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  191. struct sock *sk;
  192. struct sk_buff *skb2 = NULL;
  193. int err = -ESRCH;
  194. /* XXX Do we need something like netlink_overrun? I think
  195. * XXX PF_KEY socket apps will not mind current behavior.
  196. */
  197. if (!skb)
  198. return -ENOMEM;
  199. rcu_read_lock();
  200. sk_for_each_rcu(sk, &net_pfkey->table) {
  201. struct pfkey_sock *pfk = pfkey_sk(sk);
  202. int err2;
  203. /* Yes, it means that if you are meant to receive this
  204. * pfkey message you receive it twice as promiscuous
  205. * socket.
  206. */
  207. if (pfk->promisc)
  208. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  209. /* the exact target will be processed later */
  210. if (sk == one_sk)
  211. continue;
  212. if (broadcast_flags != BROADCAST_ALL) {
  213. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  214. continue;
  215. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  216. !pfk->registered)
  217. continue;
  218. if (broadcast_flags & BROADCAST_ONE)
  219. continue;
  220. }
  221. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  222. /* Error is cleare after succecful sending to at least one
  223. * registered KM */
  224. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  225. err = err2;
  226. }
  227. rcu_read_unlock();
  228. if (one_sk != NULL)
  229. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  230. kfree_skb(skb2);
  231. kfree_skb(skb);
  232. return err;
  233. }
  234. static int pfkey_do_dump(struct pfkey_sock *pfk)
  235. {
  236. struct sadb_msg *hdr;
  237. int rc;
  238. rc = pfk->dump.dump(pfk);
  239. if (rc == -ENOBUFS)
  240. return 0;
  241. if (pfk->dump.skb) {
  242. if (!pfkey_can_dump(&pfk->sk))
  243. return 0;
  244. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  245. hdr->sadb_msg_seq = 0;
  246. hdr->sadb_msg_errno = rc;
  247. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  248. &pfk->sk, sock_net(&pfk->sk));
  249. pfk->dump.skb = NULL;
  250. }
  251. pfkey_terminate_dump(pfk);
  252. return rc;
  253. }
  254. static inline void pfkey_hdr_dup(struct sadb_msg *new,
  255. const struct sadb_msg *orig)
  256. {
  257. *new = *orig;
  258. }
  259. static int pfkey_error(const struct sadb_msg *orig, int err, struct sock *sk)
  260. {
  261. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  262. struct sadb_msg *hdr;
  263. if (!skb)
  264. return -ENOBUFS;
  265. /* Woe be to the platform trying to support PFKEY yet
  266. * having normal errnos outside the 1-255 range, inclusive.
  267. */
  268. err = -err;
  269. if (err == ERESTARTSYS ||
  270. err == ERESTARTNOHAND ||
  271. err == ERESTARTNOINTR)
  272. err = EINTR;
  273. if (err >= 512)
  274. err = EINVAL;
  275. BUG_ON(err <= 0 || err >= 256);
  276. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  277. pfkey_hdr_dup(hdr, orig);
  278. hdr->sadb_msg_errno = (uint8_t) err;
  279. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  280. sizeof(uint64_t));
  281. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  282. return 0;
  283. }
  284. static u8 sadb_ext_min_len[] = {
  285. [SADB_EXT_RESERVED] = (u8) 0,
  286. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  287. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  288. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  289. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  291. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  292. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  294. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  295. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  296. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  297. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  298. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  299. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  300. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  301. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  302. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  303. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  304. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  305. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  306. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  307. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  308. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  309. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  310. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  311. };
  312. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  313. static int verify_address_len(const void *p)
  314. {
  315. const struct sadb_address *sp = p;
  316. const struct sockaddr *addr = (const struct sockaddr *)(sp + 1);
  317. const struct sockaddr_in *sin;
  318. #if IS_ENABLED(CONFIG_IPV6)
  319. const struct sockaddr_in6 *sin6;
  320. #endif
  321. int len;
  322. switch (addr->sa_family) {
  323. case AF_INET:
  324. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  325. if (sp->sadb_address_len != len ||
  326. sp->sadb_address_prefixlen > 32)
  327. return -EINVAL;
  328. break;
  329. #if IS_ENABLED(CONFIG_IPV6)
  330. case AF_INET6:
  331. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  332. if (sp->sadb_address_len != len ||
  333. sp->sadb_address_prefixlen > 128)
  334. return -EINVAL;
  335. break;
  336. #endif
  337. default:
  338. /* It is user using kernel to keep track of security
  339. * associations for another protocol, such as
  340. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  341. * lengths.
  342. *
  343. * XXX Actually, association/policy database is not yet
  344. * XXX able to cope with arbitrary sockaddr families.
  345. * XXX When it can, remove this -EINVAL. -DaveM
  346. */
  347. return -EINVAL;
  348. break;
  349. }
  350. return 0;
  351. }
  352. static inline int pfkey_sec_ctx_len(const struct sadb_x_sec_ctx *sec_ctx)
  353. {
  354. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  355. sec_ctx->sadb_x_ctx_len,
  356. sizeof(uint64_t));
  357. }
  358. static inline int verify_sec_ctx_len(const void *p)
  359. {
  360. const struct sadb_x_sec_ctx *sec_ctx = p;
  361. int len = sec_ctx->sadb_x_ctx_len;
  362. if (len > PAGE_SIZE)
  363. return -EINVAL;
  364. len = pfkey_sec_ctx_len(sec_ctx);
  365. if (sec_ctx->sadb_x_sec_len != len)
  366. return -EINVAL;
  367. return 0;
  368. }
  369. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(const struct sadb_x_sec_ctx *sec_ctx)
  370. {
  371. struct xfrm_user_sec_ctx *uctx = NULL;
  372. int ctx_size = sec_ctx->sadb_x_ctx_len;
  373. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  374. if (!uctx)
  375. return NULL;
  376. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  377. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  378. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  379. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  380. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  381. memcpy(uctx + 1, sec_ctx + 1,
  382. uctx->ctx_len);
  383. return uctx;
  384. }
  385. static int present_and_same_family(const struct sadb_address *src,
  386. const struct sadb_address *dst)
  387. {
  388. const struct sockaddr *s_addr, *d_addr;
  389. if (!src || !dst)
  390. return 0;
  391. s_addr = (const struct sockaddr *)(src + 1);
  392. d_addr = (const struct sockaddr *)(dst + 1);
  393. if (s_addr->sa_family != d_addr->sa_family)
  394. return 0;
  395. if (s_addr->sa_family != AF_INET
  396. #if IS_ENABLED(CONFIG_IPV6)
  397. && s_addr->sa_family != AF_INET6
  398. #endif
  399. )
  400. return 0;
  401. return 1;
  402. }
  403. static int parse_exthdrs(struct sk_buff *skb, const struct sadb_msg *hdr, void **ext_hdrs)
  404. {
  405. const char *p = (char *) hdr;
  406. int len = skb->len;
  407. len -= sizeof(*hdr);
  408. p += sizeof(*hdr);
  409. while (len > 0) {
  410. const struct sadb_ext *ehdr = (const struct sadb_ext *) p;
  411. uint16_t ext_type;
  412. int ext_len;
  413. ext_len = ehdr->sadb_ext_len;
  414. ext_len *= sizeof(uint64_t);
  415. ext_type = ehdr->sadb_ext_type;
  416. if (ext_len < sizeof(uint64_t) ||
  417. ext_len > len ||
  418. ext_type == SADB_EXT_RESERVED)
  419. return -EINVAL;
  420. if (ext_type <= SADB_EXT_MAX) {
  421. int min = (int) sadb_ext_min_len[ext_type];
  422. if (ext_len < min)
  423. return -EINVAL;
  424. if (ext_hdrs[ext_type-1] != NULL)
  425. return -EINVAL;
  426. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  427. ext_type == SADB_EXT_ADDRESS_DST ||
  428. ext_type == SADB_EXT_ADDRESS_PROXY ||
  429. ext_type == SADB_X_EXT_NAT_T_OA) {
  430. if (verify_address_len(p))
  431. return -EINVAL;
  432. }
  433. if (ext_type == SADB_X_EXT_SEC_CTX) {
  434. if (verify_sec_ctx_len(p))
  435. return -EINVAL;
  436. }
  437. ext_hdrs[ext_type-1] = (void *) p;
  438. }
  439. p += ext_len;
  440. len -= ext_len;
  441. }
  442. return 0;
  443. }
  444. static uint16_t
  445. pfkey_satype2proto(uint8_t satype)
  446. {
  447. switch (satype) {
  448. case SADB_SATYPE_UNSPEC:
  449. return IPSEC_PROTO_ANY;
  450. case SADB_SATYPE_AH:
  451. return IPPROTO_AH;
  452. case SADB_SATYPE_ESP:
  453. return IPPROTO_ESP;
  454. case SADB_X_SATYPE_IPCOMP:
  455. return IPPROTO_COMP;
  456. break;
  457. default:
  458. return 0;
  459. }
  460. /* NOTREACHED */
  461. }
  462. static uint8_t
  463. pfkey_proto2satype(uint16_t proto)
  464. {
  465. switch (proto) {
  466. case IPPROTO_AH:
  467. return SADB_SATYPE_AH;
  468. case IPPROTO_ESP:
  469. return SADB_SATYPE_ESP;
  470. case IPPROTO_COMP:
  471. return SADB_X_SATYPE_IPCOMP;
  472. break;
  473. default:
  474. return 0;
  475. }
  476. /* NOTREACHED */
  477. }
  478. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  479. * say specifically 'just raw sockets' as we encode them as 255.
  480. */
  481. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  482. {
  483. return proto == IPSEC_PROTO_ANY ? 0 : proto;
  484. }
  485. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  486. {
  487. return proto ? proto : IPSEC_PROTO_ANY;
  488. }
  489. static inline int pfkey_sockaddr_len(sa_family_t family)
  490. {
  491. switch (family) {
  492. case AF_INET:
  493. return sizeof(struct sockaddr_in);
  494. #if IS_ENABLED(CONFIG_IPV6)
  495. case AF_INET6:
  496. return sizeof(struct sockaddr_in6);
  497. #endif
  498. }
  499. return 0;
  500. }
  501. static
  502. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  503. {
  504. switch (sa->sa_family) {
  505. case AF_INET:
  506. xaddr->a4 =
  507. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  508. return AF_INET;
  509. #if IS_ENABLED(CONFIG_IPV6)
  510. case AF_INET6:
  511. memcpy(xaddr->a6,
  512. &((struct sockaddr_in6 *)sa)->sin6_addr,
  513. sizeof(struct in6_addr));
  514. return AF_INET6;
  515. #endif
  516. }
  517. return 0;
  518. }
  519. static
  520. int pfkey_sadb_addr2xfrm_addr(const struct sadb_address *addr, xfrm_address_t *xaddr)
  521. {
  522. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  523. xaddr);
  524. }
  525. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs)
  526. {
  527. const struct sadb_sa *sa;
  528. const struct sadb_address *addr;
  529. uint16_t proto;
  530. unsigned short family;
  531. xfrm_address_t *xaddr;
  532. sa = ext_hdrs[SADB_EXT_SA - 1];
  533. if (sa == NULL)
  534. return NULL;
  535. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  536. if (proto == 0)
  537. return NULL;
  538. /* sadb_address_len should be checked by caller */
  539. addr = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  540. if (addr == NULL)
  541. return NULL;
  542. family = ((const struct sockaddr *)(addr + 1))->sa_family;
  543. switch (family) {
  544. case AF_INET:
  545. xaddr = (xfrm_address_t *)&((const struct sockaddr_in *)(addr + 1))->sin_addr;
  546. break;
  547. #if IS_ENABLED(CONFIG_IPV6)
  548. case AF_INET6:
  549. xaddr = (xfrm_address_t *)&((const struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  550. break;
  551. #endif
  552. default:
  553. xaddr = NULL;
  554. }
  555. if (!xaddr)
  556. return NULL;
  557. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  558. }
  559. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  560. static int
  561. pfkey_sockaddr_size(sa_family_t family)
  562. {
  563. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  564. }
  565. static inline int pfkey_mode_from_xfrm(int mode)
  566. {
  567. switch(mode) {
  568. case XFRM_MODE_TRANSPORT:
  569. return IPSEC_MODE_TRANSPORT;
  570. case XFRM_MODE_TUNNEL:
  571. return IPSEC_MODE_TUNNEL;
  572. case XFRM_MODE_BEET:
  573. return IPSEC_MODE_BEET;
  574. default:
  575. return -1;
  576. }
  577. }
  578. static inline int pfkey_mode_to_xfrm(int mode)
  579. {
  580. switch(mode) {
  581. case IPSEC_MODE_ANY: /*XXX*/
  582. case IPSEC_MODE_TRANSPORT:
  583. return XFRM_MODE_TRANSPORT;
  584. case IPSEC_MODE_TUNNEL:
  585. return XFRM_MODE_TUNNEL;
  586. case IPSEC_MODE_BEET:
  587. return XFRM_MODE_BEET;
  588. default:
  589. return -1;
  590. }
  591. }
  592. static unsigned int pfkey_sockaddr_fill(const xfrm_address_t *xaddr, __be16 port,
  593. struct sockaddr *sa,
  594. unsigned short family)
  595. {
  596. switch (family) {
  597. case AF_INET:
  598. {
  599. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  600. sin->sin_family = AF_INET;
  601. sin->sin_port = port;
  602. sin->sin_addr.s_addr = xaddr->a4;
  603. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  604. return 32;
  605. }
  606. #if IS_ENABLED(CONFIG_IPV6)
  607. case AF_INET6:
  608. {
  609. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  610. sin6->sin6_family = AF_INET6;
  611. sin6->sin6_port = port;
  612. sin6->sin6_flowinfo = 0;
  613. sin6->sin6_addr = *(struct in6_addr *)xaddr->a6;
  614. sin6->sin6_scope_id = 0;
  615. return 128;
  616. }
  617. #endif
  618. }
  619. return 0;
  620. }
  621. static struct sk_buff *__pfkey_xfrm_state2msg(const struct xfrm_state *x,
  622. int add_keys, int hsc)
  623. {
  624. struct sk_buff *skb;
  625. struct sadb_msg *hdr;
  626. struct sadb_sa *sa;
  627. struct sadb_lifetime *lifetime;
  628. struct sadb_address *addr;
  629. struct sadb_key *key;
  630. struct sadb_x_sa2 *sa2;
  631. struct sadb_x_sec_ctx *sec_ctx;
  632. struct xfrm_sec_ctx *xfrm_ctx;
  633. int ctx_size = 0;
  634. int size;
  635. int auth_key_size = 0;
  636. int encrypt_key_size = 0;
  637. int sockaddr_size;
  638. struct xfrm_encap_tmpl *natt = NULL;
  639. int mode;
  640. /* address family check */
  641. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  642. if (!sockaddr_size)
  643. return ERR_PTR(-EINVAL);
  644. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  645. key(AE), (identity(SD),) (sensitivity)> */
  646. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  647. sizeof(struct sadb_lifetime) +
  648. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  649. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  650. sizeof(struct sadb_address)*2 +
  651. sockaddr_size*2 +
  652. sizeof(struct sadb_x_sa2);
  653. if ((xfrm_ctx = x->security)) {
  654. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  655. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  656. }
  657. /* identity & sensitivity */
  658. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr, x->props.family))
  659. size += sizeof(struct sadb_address) + sockaddr_size;
  660. if (add_keys) {
  661. if (x->aalg && x->aalg->alg_key_len) {
  662. auth_key_size =
  663. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  664. size += sizeof(struct sadb_key) + auth_key_size;
  665. }
  666. if (x->ealg && x->ealg->alg_key_len) {
  667. encrypt_key_size =
  668. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  669. size += sizeof(struct sadb_key) + encrypt_key_size;
  670. }
  671. }
  672. if (x->encap)
  673. natt = x->encap;
  674. if (natt && natt->encap_type) {
  675. size += sizeof(struct sadb_x_nat_t_type);
  676. size += sizeof(struct sadb_x_nat_t_port);
  677. size += sizeof(struct sadb_x_nat_t_port);
  678. }
  679. skb = alloc_skb(size + 16, GFP_ATOMIC);
  680. if (skb == NULL)
  681. return ERR_PTR(-ENOBUFS);
  682. /* call should fill header later */
  683. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  684. memset(hdr, 0, size); /* XXX do we need this ? */
  685. hdr->sadb_msg_len = size / sizeof(uint64_t);
  686. /* sa */
  687. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  688. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  689. sa->sadb_sa_exttype = SADB_EXT_SA;
  690. sa->sadb_sa_spi = x->id.spi;
  691. sa->sadb_sa_replay = x->props.replay_window;
  692. switch (x->km.state) {
  693. case XFRM_STATE_VALID:
  694. sa->sadb_sa_state = x->km.dying ?
  695. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  696. break;
  697. case XFRM_STATE_ACQ:
  698. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  699. break;
  700. default:
  701. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  702. break;
  703. }
  704. sa->sadb_sa_auth = 0;
  705. if (x->aalg) {
  706. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  707. sa->sadb_sa_auth = (a && a->pfkey_supported) ?
  708. a->desc.sadb_alg_id : 0;
  709. }
  710. sa->sadb_sa_encrypt = 0;
  711. BUG_ON(x->ealg && x->calg);
  712. if (x->ealg) {
  713. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  714. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  715. a->desc.sadb_alg_id : 0;
  716. }
  717. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  718. if (x->calg) {
  719. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  720. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  721. a->desc.sadb_alg_id : 0;
  722. }
  723. sa->sadb_sa_flags = 0;
  724. if (x->props.flags & XFRM_STATE_NOECN)
  725. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  726. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  727. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  728. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  729. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  730. /* hard time */
  731. if (hsc & 2) {
  732. lifetime = (struct sadb_lifetime *) skb_put(skb,
  733. sizeof(struct sadb_lifetime));
  734. lifetime->sadb_lifetime_len =
  735. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  736. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  737. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  738. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  739. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  740. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  741. }
  742. /* soft time */
  743. if (hsc & 1) {
  744. lifetime = (struct sadb_lifetime *) skb_put(skb,
  745. sizeof(struct sadb_lifetime));
  746. lifetime->sadb_lifetime_len =
  747. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  748. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  749. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  750. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  751. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  752. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  753. }
  754. /* current time */
  755. lifetime = (struct sadb_lifetime *) skb_put(skb,
  756. sizeof(struct sadb_lifetime));
  757. lifetime->sadb_lifetime_len =
  758. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  759. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  760. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  761. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  762. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  763. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  764. /* src address */
  765. addr = (struct sadb_address*) skb_put(skb,
  766. sizeof(struct sadb_address)+sockaddr_size);
  767. addr->sadb_address_len =
  768. (sizeof(struct sadb_address)+sockaddr_size)/
  769. sizeof(uint64_t);
  770. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  771. /* "if the ports are non-zero, then the sadb_address_proto field,
  772. normally zero, MUST be filled in with the transport
  773. protocol's number." - RFC2367 */
  774. addr->sadb_address_proto = 0;
  775. addr->sadb_address_reserved = 0;
  776. addr->sadb_address_prefixlen =
  777. pfkey_sockaddr_fill(&x->props.saddr, 0,
  778. (struct sockaddr *) (addr + 1),
  779. x->props.family);
  780. if (!addr->sadb_address_prefixlen)
  781. BUG();
  782. /* dst address */
  783. addr = (struct sadb_address*) skb_put(skb,
  784. sizeof(struct sadb_address)+sockaddr_size);
  785. addr->sadb_address_len =
  786. (sizeof(struct sadb_address)+sockaddr_size)/
  787. sizeof(uint64_t);
  788. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  789. addr->sadb_address_proto = 0;
  790. addr->sadb_address_reserved = 0;
  791. addr->sadb_address_prefixlen =
  792. pfkey_sockaddr_fill(&x->id.daddr, 0,
  793. (struct sockaddr *) (addr + 1),
  794. x->props.family);
  795. if (!addr->sadb_address_prefixlen)
  796. BUG();
  797. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr,
  798. x->props.family)) {
  799. addr = (struct sadb_address*) skb_put(skb,
  800. sizeof(struct sadb_address)+sockaddr_size);
  801. addr->sadb_address_len =
  802. (sizeof(struct sadb_address)+sockaddr_size)/
  803. sizeof(uint64_t);
  804. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  805. addr->sadb_address_proto =
  806. pfkey_proto_from_xfrm(x->sel.proto);
  807. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  808. addr->sadb_address_reserved = 0;
  809. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  810. (struct sockaddr *) (addr + 1),
  811. x->props.family);
  812. }
  813. /* auth key */
  814. if (add_keys && auth_key_size) {
  815. key = (struct sadb_key *) skb_put(skb,
  816. sizeof(struct sadb_key)+auth_key_size);
  817. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  818. sizeof(uint64_t);
  819. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  820. key->sadb_key_bits = x->aalg->alg_key_len;
  821. key->sadb_key_reserved = 0;
  822. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  823. }
  824. /* encrypt key */
  825. if (add_keys && encrypt_key_size) {
  826. key = (struct sadb_key *) skb_put(skb,
  827. sizeof(struct sadb_key)+encrypt_key_size);
  828. key->sadb_key_len = (sizeof(struct sadb_key) +
  829. encrypt_key_size) / sizeof(uint64_t);
  830. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  831. key->sadb_key_bits = x->ealg->alg_key_len;
  832. key->sadb_key_reserved = 0;
  833. memcpy(key + 1, x->ealg->alg_key,
  834. (x->ealg->alg_key_len+7)/8);
  835. }
  836. /* sa */
  837. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  838. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  839. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  840. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  841. kfree_skb(skb);
  842. return ERR_PTR(-EINVAL);
  843. }
  844. sa2->sadb_x_sa2_mode = mode;
  845. sa2->sadb_x_sa2_reserved1 = 0;
  846. sa2->sadb_x_sa2_reserved2 = 0;
  847. sa2->sadb_x_sa2_sequence = 0;
  848. sa2->sadb_x_sa2_reqid = x->props.reqid;
  849. if (natt && natt->encap_type) {
  850. struct sadb_x_nat_t_type *n_type;
  851. struct sadb_x_nat_t_port *n_port;
  852. /* type */
  853. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  854. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  855. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  856. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  857. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  858. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  859. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  860. /* source port */
  861. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  862. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  863. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  864. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  865. n_port->sadb_x_nat_t_port_reserved = 0;
  866. /* dest port */
  867. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  868. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  869. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  870. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  871. n_port->sadb_x_nat_t_port_reserved = 0;
  872. }
  873. /* security context */
  874. if (xfrm_ctx) {
  875. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  876. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  877. sec_ctx->sadb_x_sec_len =
  878. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  879. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  880. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  881. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  882. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  883. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  884. xfrm_ctx->ctx_len);
  885. }
  886. return skb;
  887. }
  888. static inline struct sk_buff *pfkey_xfrm_state2msg(const struct xfrm_state *x)
  889. {
  890. struct sk_buff *skb;
  891. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  892. return skb;
  893. }
  894. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(const struct xfrm_state *x,
  895. int hsc)
  896. {
  897. return __pfkey_xfrm_state2msg(x, 0, hsc);
  898. }
  899. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  900. const struct sadb_msg *hdr,
  901. void * const *ext_hdrs)
  902. {
  903. struct xfrm_state *x;
  904. const struct sadb_lifetime *lifetime;
  905. const struct sadb_sa *sa;
  906. const struct sadb_key *key;
  907. const struct sadb_x_sec_ctx *sec_ctx;
  908. uint16_t proto;
  909. int err;
  910. sa = ext_hdrs[SADB_EXT_SA - 1];
  911. if (!sa ||
  912. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  913. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  914. return ERR_PTR(-EINVAL);
  915. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  916. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  917. return ERR_PTR(-EINVAL);
  918. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  919. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  920. return ERR_PTR(-EINVAL);
  921. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  922. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  923. return ERR_PTR(-EINVAL);
  924. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  925. if (proto == 0)
  926. return ERR_PTR(-EINVAL);
  927. /* default error is no buffer space */
  928. err = -ENOBUFS;
  929. /* RFC2367:
  930. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  931. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  932. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  933. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  934. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  935. not true.
  936. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  937. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  938. */
  939. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  940. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  941. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  942. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  943. return ERR_PTR(-EINVAL);
  944. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  945. if (key != NULL &&
  946. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  947. ((key->sadb_key_bits+7) / 8 == 0 ||
  948. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  949. return ERR_PTR(-EINVAL);
  950. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  951. if (key != NULL &&
  952. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  953. ((key->sadb_key_bits+7) / 8 == 0 ||
  954. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  955. return ERR_PTR(-EINVAL);
  956. x = xfrm_state_alloc(net);
  957. if (x == NULL)
  958. return ERR_PTR(-ENOBUFS);
  959. x->id.proto = proto;
  960. x->id.spi = sa->sadb_sa_spi;
  961. x->props.replay_window = sa->sadb_sa_replay;
  962. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  963. x->props.flags |= XFRM_STATE_NOECN;
  964. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  965. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  966. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  967. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  968. lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD - 1];
  969. if (lifetime != NULL) {
  970. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  971. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  972. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  973. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  974. }
  975. lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT - 1];
  976. if (lifetime != NULL) {
  977. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  978. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  979. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  980. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  981. }
  982. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  983. if (sec_ctx != NULL) {
  984. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  985. if (!uctx)
  986. goto out;
  987. err = security_xfrm_state_alloc(x, uctx);
  988. kfree(uctx);
  989. if (err)
  990. goto out;
  991. }
  992. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  993. if (sa->sadb_sa_auth) {
  994. int keysize = 0;
  995. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  996. if (!a || !a->pfkey_supported) {
  997. err = -ENOSYS;
  998. goto out;
  999. }
  1000. if (key)
  1001. keysize = (key->sadb_key_bits + 7) / 8;
  1002. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1003. if (!x->aalg)
  1004. goto out;
  1005. strcpy(x->aalg->alg_name, a->name);
  1006. x->aalg->alg_key_len = 0;
  1007. if (key) {
  1008. x->aalg->alg_key_len = key->sadb_key_bits;
  1009. memcpy(x->aalg->alg_key, key+1, keysize);
  1010. }
  1011. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1012. x->props.aalgo = sa->sadb_sa_auth;
  1013. /* x->algo.flags = sa->sadb_sa_flags; */
  1014. }
  1015. if (sa->sadb_sa_encrypt) {
  1016. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1017. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1018. if (!a || !a->pfkey_supported) {
  1019. err = -ENOSYS;
  1020. goto out;
  1021. }
  1022. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1023. if (!x->calg)
  1024. goto out;
  1025. strcpy(x->calg->alg_name, a->name);
  1026. x->props.calgo = sa->sadb_sa_encrypt;
  1027. } else {
  1028. int keysize = 0;
  1029. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1030. if (!a || !a->pfkey_supported) {
  1031. err = -ENOSYS;
  1032. goto out;
  1033. }
  1034. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1035. if (key)
  1036. keysize = (key->sadb_key_bits + 7) / 8;
  1037. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1038. if (!x->ealg)
  1039. goto out;
  1040. strcpy(x->ealg->alg_name, a->name);
  1041. x->ealg->alg_key_len = 0;
  1042. if (key) {
  1043. x->ealg->alg_key_len = key->sadb_key_bits;
  1044. memcpy(x->ealg->alg_key, key+1, keysize);
  1045. }
  1046. x->props.ealgo = sa->sadb_sa_encrypt;
  1047. }
  1048. }
  1049. /* x->algo.flags = sa->sadb_sa_flags; */
  1050. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1051. &x->props.saddr);
  1052. if (!x->props.family) {
  1053. err = -EAFNOSUPPORT;
  1054. goto out;
  1055. }
  1056. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1057. &x->id.daddr);
  1058. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1059. const struct sadb_x_sa2 *sa2 = ext_hdrs[SADB_X_EXT_SA2-1];
  1060. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1061. if (mode < 0) {
  1062. err = -EINVAL;
  1063. goto out;
  1064. }
  1065. x->props.mode = mode;
  1066. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1067. }
  1068. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1069. const struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1070. /* Nobody uses this, but we try. */
  1071. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1072. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1073. }
  1074. if (!x->sel.family)
  1075. x->sel.family = x->props.family;
  1076. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1077. const struct sadb_x_nat_t_type* n_type;
  1078. struct xfrm_encap_tmpl *natt;
  1079. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1080. if (!x->encap)
  1081. goto out;
  1082. natt = x->encap;
  1083. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1084. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1085. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1086. const struct sadb_x_nat_t_port *n_port =
  1087. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1088. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1089. }
  1090. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1091. const struct sadb_x_nat_t_port *n_port =
  1092. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1093. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1094. }
  1095. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1096. }
  1097. err = xfrm_init_state(x);
  1098. if (err)
  1099. goto out;
  1100. x->km.seq = hdr->sadb_msg_seq;
  1101. return x;
  1102. out:
  1103. x->km.state = XFRM_STATE_DEAD;
  1104. xfrm_state_put(x);
  1105. return ERR_PTR(err);
  1106. }
  1107. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1108. {
  1109. return -EOPNOTSUPP;
  1110. }
  1111. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1112. {
  1113. struct net *net = sock_net(sk);
  1114. struct sk_buff *resp_skb;
  1115. struct sadb_x_sa2 *sa2;
  1116. struct sadb_address *saddr, *daddr;
  1117. struct sadb_msg *out_hdr;
  1118. struct sadb_spirange *range;
  1119. struct xfrm_state *x = NULL;
  1120. int mode;
  1121. int err;
  1122. u32 min_spi, max_spi;
  1123. u32 reqid;
  1124. u8 proto;
  1125. unsigned short family;
  1126. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1127. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1128. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1129. return -EINVAL;
  1130. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1131. if (proto == 0)
  1132. return -EINVAL;
  1133. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1134. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1135. if (mode < 0)
  1136. return -EINVAL;
  1137. reqid = sa2->sadb_x_sa2_reqid;
  1138. } else {
  1139. mode = 0;
  1140. reqid = 0;
  1141. }
  1142. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1143. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1144. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1145. switch (family) {
  1146. case AF_INET:
  1147. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1148. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1149. break;
  1150. #if IS_ENABLED(CONFIG_IPV6)
  1151. case AF_INET6:
  1152. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1153. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1154. break;
  1155. #endif
  1156. }
  1157. if (hdr->sadb_msg_seq) {
  1158. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1159. if (x && !xfrm_addr_equal(&x->id.daddr, xdaddr, family)) {
  1160. xfrm_state_put(x);
  1161. x = NULL;
  1162. }
  1163. }
  1164. if (!x)
  1165. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1166. if (x == NULL)
  1167. return -ENOENT;
  1168. min_spi = 0x100;
  1169. max_spi = 0x0fffffff;
  1170. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1171. if (range) {
  1172. min_spi = range->sadb_spirange_min;
  1173. max_spi = range->sadb_spirange_max;
  1174. }
  1175. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1176. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1177. if (IS_ERR(resp_skb)) {
  1178. xfrm_state_put(x);
  1179. return PTR_ERR(resp_skb);
  1180. }
  1181. out_hdr = (struct sadb_msg *) resp_skb->data;
  1182. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1183. out_hdr->sadb_msg_type = SADB_GETSPI;
  1184. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1185. out_hdr->sadb_msg_errno = 0;
  1186. out_hdr->sadb_msg_reserved = 0;
  1187. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1188. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1189. xfrm_state_put(x);
  1190. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1191. return 0;
  1192. }
  1193. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1194. {
  1195. struct net *net = sock_net(sk);
  1196. struct xfrm_state *x;
  1197. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1198. return -EOPNOTSUPP;
  1199. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1200. return 0;
  1201. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1202. if (x == NULL)
  1203. return 0;
  1204. spin_lock_bh(&x->lock);
  1205. if (x->km.state == XFRM_STATE_ACQ) {
  1206. x->km.state = XFRM_STATE_ERROR;
  1207. wake_up(&net->xfrm.km_waitq);
  1208. }
  1209. spin_unlock_bh(&x->lock);
  1210. xfrm_state_put(x);
  1211. return 0;
  1212. }
  1213. static inline int event2poltype(int event)
  1214. {
  1215. switch (event) {
  1216. case XFRM_MSG_DELPOLICY:
  1217. return SADB_X_SPDDELETE;
  1218. case XFRM_MSG_NEWPOLICY:
  1219. return SADB_X_SPDADD;
  1220. case XFRM_MSG_UPDPOLICY:
  1221. return SADB_X_SPDUPDATE;
  1222. case XFRM_MSG_POLEXPIRE:
  1223. // return SADB_X_SPDEXPIRE;
  1224. default:
  1225. pr_err("pfkey: Unknown policy event %d\n", event);
  1226. break;
  1227. }
  1228. return 0;
  1229. }
  1230. static inline int event2keytype(int event)
  1231. {
  1232. switch (event) {
  1233. case XFRM_MSG_DELSA:
  1234. return SADB_DELETE;
  1235. case XFRM_MSG_NEWSA:
  1236. return SADB_ADD;
  1237. case XFRM_MSG_UPDSA:
  1238. return SADB_UPDATE;
  1239. case XFRM_MSG_EXPIRE:
  1240. return SADB_EXPIRE;
  1241. default:
  1242. pr_err("pfkey: Unknown SA event %d\n", event);
  1243. break;
  1244. }
  1245. return 0;
  1246. }
  1247. /* ADD/UPD/DEL */
  1248. static int key_notify_sa(struct xfrm_state *x, const struct km_event *c)
  1249. {
  1250. struct sk_buff *skb;
  1251. struct sadb_msg *hdr;
  1252. skb = pfkey_xfrm_state2msg(x);
  1253. if (IS_ERR(skb))
  1254. return PTR_ERR(skb);
  1255. hdr = (struct sadb_msg *) skb->data;
  1256. hdr->sadb_msg_version = PF_KEY_V2;
  1257. hdr->sadb_msg_type = event2keytype(c->event);
  1258. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1259. hdr->sadb_msg_errno = 0;
  1260. hdr->sadb_msg_reserved = 0;
  1261. hdr->sadb_msg_seq = c->seq;
  1262. hdr->sadb_msg_pid = c->portid;
  1263. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1264. return 0;
  1265. }
  1266. static int pfkey_add(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1267. {
  1268. struct net *net = sock_net(sk);
  1269. struct xfrm_state *x;
  1270. int err;
  1271. struct km_event c;
  1272. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1273. if (IS_ERR(x))
  1274. return PTR_ERR(x);
  1275. xfrm_state_hold(x);
  1276. if (hdr->sadb_msg_type == SADB_ADD)
  1277. err = xfrm_state_add(x);
  1278. else
  1279. err = xfrm_state_update(x);
  1280. xfrm_audit_state_add(x, err ? 0 : 1,
  1281. audit_get_loginuid(current),
  1282. audit_get_sessionid(current), 0);
  1283. if (err < 0) {
  1284. x->km.state = XFRM_STATE_DEAD;
  1285. __xfrm_state_put(x);
  1286. goto out;
  1287. }
  1288. if (hdr->sadb_msg_type == SADB_ADD)
  1289. c.event = XFRM_MSG_NEWSA;
  1290. else
  1291. c.event = XFRM_MSG_UPDSA;
  1292. c.seq = hdr->sadb_msg_seq;
  1293. c.portid = hdr->sadb_msg_pid;
  1294. km_state_notify(x, &c);
  1295. out:
  1296. xfrm_state_put(x);
  1297. return err;
  1298. }
  1299. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1300. {
  1301. struct net *net = sock_net(sk);
  1302. struct xfrm_state *x;
  1303. struct km_event c;
  1304. int err;
  1305. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1306. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1307. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1308. return -EINVAL;
  1309. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1310. if (x == NULL)
  1311. return -ESRCH;
  1312. if ((err = security_xfrm_state_delete(x)))
  1313. goto out;
  1314. if (xfrm_state_kern(x)) {
  1315. err = -EPERM;
  1316. goto out;
  1317. }
  1318. err = xfrm_state_delete(x);
  1319. if (err < 0)
  1320. goto out;
  1321. c.seq = hdr->sadb_msg_seq;
  1322. c.portid = hdr->sadb_msg_pid;
  1323. c.event = XFRM_MSG_DELSA;
  1324. km_state_notify(x, &c);
  1325. out:
  1326. xfrm_audit_state_delete(x, err ? 0 : 1,
  1327. audit_get_loginuid(current),
  1328. audit_get_sessionid(current), 0);
  1329. xfrm_state_put(x);
  1330. return err;
  1331. }
  1332. static int pfkey_get(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1333. {
  1334. struct net *net = sock_net(sk);
  1335. __u8 proto;
  1336. struct sk_buff *out_skb;
  1337. struct sadb_msg *out_hdr;
  1338. struct xfrm_state *x;
  1339. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1340. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1341. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1342. return -EINVAL;
  1343. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1344. if (x == NULL)
  1345. return -ESRCH;
  1346. out_skb = pfkey_xfrm_state2msg(x);
  1347. proto = x->id.proto;
  1348. xfrm_state_put(x);
  1349. if (IS_ERR(out_skb))
  1350. return PTR_ERR(out_skb);
  1351. out_hdr = (struct sadb_msg *) out_skb->data;
  1352. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1353. out_hdr->sadb_msg_type = SADB_GET;
  1354. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1355. out_hdr->sadb_msg_errno = 0;
  1356. out_hdr->sadb_msg_reserved = 0;
  1357. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1358. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1359. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1360. return 0;
  1361. }
  1362. static struct sk_buff *compose_sadb_supported(const struct sadb_msg *orig,
  1363. gfp_t allocation)
  1364. {
  1365. struct sk_buff *skb;
  1366. struct sadb_msg *hdr;
  1367. int len, auth_len, enc_len, i;
  1368. auth_len = xfrm_count_pfkey_auth_supported();
  1369. if (auth_len) {
  1370. auth_len *= sizeof(struct sadb_alg);
  1371. auth_len += sizeof(struct sadb_supported);
  1372. }
  1373. enc_len = xfrm_count_pfkey_enc_supported();
  1374. if (enc_len) {
  1375. enc_len *= sizeof(struct sadb_alg);
  1376. enc_len += sizeof(struct sadb_supported);
  1377. }
  1378. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1379. skb = alloc_skb(len + 16, allocation);
  1380. if (!skb)
  1381. goto out_put_algs;
  1382. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1383. pfkey_hdr_dup(hdr, orig);
  1384. hdr->sadb_msg_errno = 0;
  1385. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1386. if (auth_len) {
  1387. struct sadb_supported *sp;
  1388. struct sadb_alg *ap;
  1389. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1390. ap = (struct sadb_alg *) (sp + 1);
  1391. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1392. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1393. for (i = 0; ; i++) {
  1394. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1395. if (!aalg)
  1396. break;
  1397. if (!aalg->pfkey_supported)
  1398. continue;
  1399. if (aalg->available)
  1400. *ap++ = aalg->desc;
  1401. }
  1402. }
  1403. if (enc_len) {
  1404. struct sadb_supported *sp;
  1405. struct sadb_alg *ap;
  1406. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1407. ap = (struct sadb_alg *) (sp + 1);
  1408. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1409. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1410. for (i = 0; ; i++) {
  1411. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1412. if (!ealg)
  1413. break;
  1414. if (!ealg->pfkey_supported)
  1415. continue;
  1416. if (ealg->available)
  1417. *ap++ = ealg->desc;
  1418. }
  1419. }
  1420. out_put_algs:
  1421. return skb;
  1422. }
  1423. static int pfkey_register(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1424. {
  1425. struct pfkey_sock *pfk = pfkey_sk(sk);
  1426. struct sk_buff *supp_skb;
  1427. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1428. return -EINVAL;
  1429. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1430. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1431. return -EEXIST;
  1432. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1433. }
  1434. xfrm_probe_algs();
  1435. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1436. if (!supp_skb) {
  1437. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1438. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1439. return -ENOBUFS;
  1440. }
  1441. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk));
  1442. return 0;
  1443. }
  1444. static int unicast_flush_resp(struct sock *sk, const struct sadb_msg *ihdr)
  1445. {
  1446. struct sk_buff *skb;
  1447. struct sadb_msg *hdr;
  1448. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1449. if (!skb)
  1450. return -ENOBUFS;
  1451. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1452. memcpy(hdr, ihdr, sizeof(struct sadb_msg));
  1453. hdr->sadb_msg_errno = (uint8_t) 0;
  1454. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1455. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1456. }
  1457. static int key_notify_sa_flush(const struct km_event *c)
  1458. {
  1459. struct sk_buff *skb;
  1460. struct sadb_msg *hdr;
  1461. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1462. if (!skb)
  1463. return -ENOBUFS;
  1464. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1465. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1466. hdr->sadb_msg_type = SADB_FLUSH;
  1467. hdr->sadb_msg_seq = c->seq;
  1468. hdr->sadb_msg_pid = c->portid;
  1469. hdr->sadb_msg_version = PF_KEY_V2;
  1470. hdr->sadb_msg_errno = (uint8_t) 0;
  1471. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1472. hdr->sadb_msg_reserved = 0;
  1473. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1474. return 0;
  1475. }
  1476. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1477. {
  1478. struct net *net = sock_net(sk);
  1479. unsigned int proto;
  1480. struct km_event c;
  1481. struct xfrm_audit audit_info;
  1482. int err, err2;
  1483. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1484. if (proto == 0)
  1485. return -EINVAL;
  1486. audit_info.loginuid = audit_get_loginuid(current);
  1487. audit_info.sessionid = audit_get_sessionid(current);
  1488. audit_info.secid = 0;
  1489. err = xfrm_state_flush(net, proto, &audit_info);
  1490. err2 = unicast_flush_resp(sk, hdr);
  1491. if (err || err2) {
  1492. if (err == -ESRCH) /* empty table - go quietly */
  1493. err = 0;
  1494. return err ? err : err2;
  1495. }
  1496. c.data.proto = proto;
  1497. c.seq = hdr->sadb_msg_seq;
  1498. c.portid = hdr->sadb_msg_pid;
  1499. c.event = XFRM_MSG_FLUSHSA;
  1500. c.net = net;
  1501. km_state_notify(NULL, &c);
  1502. return 0;
  1503. }
  1504. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1505. {
  1506. struct pfkey_sock *pfk = ptr;
  1507. struct sk_buff *out_skb;
  1508. struct sadb_msg *out_hdr;
  1509. if (!pfkey_can_dump(&pfk->sk))
  1510. return -ENOBUFS;
  1511. out_skb = pfkey_xfrm_state2msg(x);
  1512. if (IS_ERR(out_skb))
  1513. return PTR_ERR(out_skb);
  1514. out_hdr = (struct sadb_msg *) out_skb->data;
  1515. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1516. out_hdr->sadb_msg_type = SADB_DUMP;
  1517. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1518. out_hdr->sadb_msg_errno = 0;
  1519. out_hdr->sadb_msg_reserved = 0;
  1520. out_hdr->sadb_msg_seq = count + 1;
  1521. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  1522. if (pfk->dump.skb)
  1523. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1524. &pfk->sk, sock_net(&pfk->sk));
  1525. pfk->dump.skb = out_skb;
  1526. return 0;
  1527. }
  1528. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1529. {
  1530. struct net *net = sock_net(&pfk->sk);
  1531. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1532. }
  1533. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1534. {
  1535. xfrm_state_walk_done(&pfk->dump.u.state);
  1536. }
  1537. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1538. {
  1539. u8 proto;
  1540. struct pfkey_sock *pfk = pfkey_sk(sk);
  1541. if (pfk->dump.dump != NULL)
  1542. return -EBUSY;
  1543. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1544. if (proto == 0)
  1545. return -EINVAL;
  1546. pfk->dump.msg_version = hdr->sadb_msg_version;
  1547. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  1548. pfk->dump.dump = pfkey_dump_sa;
  1549. pfk->dump.done = pfkey_dump_sa_done;
  1550. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1551. return pfkey_do_dump(pfk);
  1552. }
  1553. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1554. {
  1555. struct pfkey_sock *pfk = pfkey_sk(sk);
  1556. int satype = hdr->sadb_msg_satype;
  1557. bool reset_errno = false;
  1558. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1559. reset_errno = true;
  1560. if (satype != 0 && satype != 1)
  1561. return -EINVAL;
  1562. pfk->promisc = satype;
  1563. }
  1564. if (reset_errno && skb_cloned(skb))
  1565. skb = skb_copy(skb, GFP_KERNEL);
  1566. else
  1567. skb = skb_clone(skb, GFP_KERNEL);
  1568. if (reset_errno && skb) {
  1569. struct sadb_msg *new_hdr = (struct sadb_msg *) skb->data;
  1570. new_hdr->sadb_msg_errno = 0;
  1571. }
  1572. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1573. return 0;
  1574. }
  1575. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1576. {
  1577. int i;
  1578. u32 reqid = *(u32*)ptr;
  1579. for (i=0; i<xp->xfrm_nr; i++) {
  1580. if (xp->xfrm_vec[i].reqid == reqid)
  1581. return -EEXIST;
  1582. }
  1583. return 0;
  1584. }
  1585. static u32 gen_reqid(struct net *net)
  1586. {
  1587. struct xfrm_policy_walk walk;
  1588. u32 start;
  1589. int rc;
  1590. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1591. start = reqid;
  1592. do {
  1593. ++reqid;
  1594. if (reqid == 0)
  1595. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1596. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1597. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1598. xfrm_policy_walk_done(&walk);
  1599. if (rc != -EEXIST)
  1600. return reqid;
  1601. } while (reqid != start);
  1602. return 0;
  1603. }
  1604. static int
  1605. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1606. {
  1607. struct net *net = xp_net(xp);
  1608. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1609. int mode;
  1610. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1611. return -ELOOP;
  1612. if (rq->sadb_x_ipsecrequest_mode == 0)
  1613. return -EINVAL;
  1614. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1615. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1616. return -EINVAL;
  1617. t->mode = mode;
  1618. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1619. t->optional = 1;
  1620. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1621. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1622. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1623. t->reqid = 0;
  1624. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1625. return -ENOBUFS;
  1626. }
  1627. /* addresses present only in tunnel mode */
  1628. if (t->mode == XFRM_MODE_TUNNEL) {
  1629. u8 *sa = (u8 *) (rq + 1);
  1630. int family, socklen;
  1631. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1632. &t->saddr);
  1633. if (!family)
  1634. return -EINVAL;
  1635. socklen = pfkey_sockaddr_len(family);
  1636. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1637. &t->id.daddr) != family)
  1638. return -EINVAL;
  1639. t->encap_family = family;
  1640. } else
  1641. t->encap_family = xp->family;
  1642. /* No way to set this via kame pfkey */
  1643. t->allalgs = 1;
  1644. xp->xfrm_nr++;
  1645. return 0;
  1646. }
  1647. static int
  1648. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1649. {
  1650. int err;
  1651. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1652. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1653. if (pol->sadb_x_policy_len * 8 < sizeof(struct sadb_x_policy))
  1654. return -EINVAL;
  1655. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1656. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1657. return err;
  1658. len -= rq->sadb_x_ipsecrequest_len;
  1659. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1660. }
  1661. return 0;
  1662. }
  1663. static inline int pfkey_xfrm_policy2sec_ctx_size(const struct xfrm_policy *xp)
  1664. {
  1665. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1666. if (xfrm_ctx) {
  1667. int len = sizeof(struct sadb_x_sec_ctx);
  1668. len += xfrm_ctx->ctx_len;
  1669. return PFKEY_ALIGN8(len);
  1670. }
  1671. return 0;
  1672. }
  1673. static int pfkey_xfrm_policy2msg_size(const struct xfrm_policy *xp)
  1674. {
  1675. const struct xfrm_tmpl *t;
  1676. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1677. int socklen = 0;
  1678. int i;
  1679. for (i=0; i<xp->xfrm_nr; i++) {
  1680. t = xp->xfrm_vec + i;
  1681. socklen += pfkey_sockaddr_len(t->encap_family);
  1682. }
  1683. return sizeof(struct sadb_msg) +
  1684. (sizeof(struct sadb_lifetime) * 3) +
  1685. (sizeof(struct sadb_address) * 2) +
  1686. (sockaddr_size * 2) +
  1687. sizeof(struct sadb_x_policy) +
  1688. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1689. (socklen * 2) +
  1690. pfkey_xfrm_policy2sec_ctx_size(xp);
  1691. }
  1692. static struct sk_buff * pfkey_xfrm_policy2msg_prep(const struct xfrm_policy *xp)
  1693. {
  1694. struct sk_buff *skb;
  1695. int size;
  1696. size = pfkey_xfrm_policy2msg_size(xp);
  1697. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1698. if (skb == NULL)
  1699. return ERR_PTR(-ENOBUFS);
  1700. return skb;
  1701. }
  1702. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, const struct xfrm_policy *xp, int dir)
  1703. {
  1704. struct sadb_msg *hdr;
  1705. struct sadb_address *addr;
  1706. struct sadb_lifetime *lifetime;
  1707. struct sadb_x_policy *pol;
  1708. struct sadb_x_sec_ctx *sec_ctx;
  1709. struct xfrm_sec_ctx *xfrm_ctx;
  1710. int i;
  1711. int size;
  1712. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1713. int socklen = pfkey_sockaddr_len(xp->family);
  1714. size = pfkey_xfrm_policy2msg_size(xp);
  1715. /* call should fill header later */
  1716. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1717. memset(hdr, 0, size); /* XXX do we need this ? */
  1718. /* src address */
  1719. addr = (struct sadb_address*) skb_put(skb,
  1720. sizeof(struct sadb_address)+sockaddr_size);
  1721. addr->sadb_address_len =
  1722. (sizeof(struct sadb_address)+sockaddr_size)/
  1723. sizeof(uint64_t);
  1724. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1725. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1726. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1727. addr->sadb_address_reserved = 0;
  1728. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1729. xp->selector.sport,
  1730. (struct sockaddr *) (addr + 1),
  1731. xp->family))
  1732. BUG();
  1733. /* dst address */
  1734. addr = (struct sadb_address*) skb_put(skb,
  1735. sizeof(struct sadb_address)+sockaddr_size);
  1736. addr->sadb_address_len =
  1737. (sizeof(struct sadb_address)+sockaddr_size)/
  1738. sizeof(uint64_t);
  1739. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1740. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1741. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1742. addr->sadb_address_reserved = 0;
  1743. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1744. (struct sockaddr *) (addr + 1),
  1745. xp->family);
  1746. /* hard time */
  1747. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1748. sizeof(struct sadb_lifetime));
  1749. lifetime->sadb_lifetime_len =
  1750. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1751. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1752. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1753. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1754. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1755. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1756. /* soft time */
  1757. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1758. sizeof(struct sadb_lifetime));
  1759. lifetime->sadb_lifetime_len =
  1760. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1761. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1762. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1763. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1764. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1765. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1766. /* current time */
  1767. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1768. sizeof(struct sadb_lifetime));
  1769. lifetime->sadb_lifetime_len =
  1770. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1771. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1772. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1773. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1774. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1775. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1776. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1777. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1778. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1779. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1780. if (xp->action == XFRM_POLICY_ALLOW) {
  1781. if (xp->xfrm_nr)
  1782. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1783. else
  1784. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1785. }
  1786. pol->sadb_x_policy_dir = dir+1;
  1787. pol->sadb_x_policy_reserved = 0;
  1788. pol->sadb_x_policy_id = xp->index;
  1789. pol->sadb_x_policy_priority = xp->priority;
  1790. for (i=0; i<xp->xfrm_nr; i++) {
  1791. const struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1792. struct sadb_x_ipsecrequest *rq;
  1793. int req_size;
  1794. int mode;
  1795. req_size = sizeof(struct sadb_x_ipsecrequest);
  1796. if (t->mode == XFRM_MODE_TUNNEL) {
  1797. socklen = pfkey_sockaddr_len(t->encap_family);
  1798. req_size += socklen * 2;
  1799. } else {
  1800. size -= 2*socklen;
  1801. }
  1802. rq = (void*)skb_put(skb, req_size);
  1803. pol->sadb_x_policy_len += req_size/8;
  1804. memset(rq, 0, sizeof(*rq));
  1805. rq->sadb_x_ipsecrequest_len = req_size;
  1806. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1807. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1808. return -EINVAL;
  1809. rq->sadb_x_ipsecrequest_mode = mode;
  1810. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1811. if (t->reqid)
  1812. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1813. if (t->optional)
  1814. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1815. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1816. if (t->mode == XFRM_MODE_TUNNEL) {
  1817. u8 *sa = (void *)(rq + 1);
  1818. pfkey_sockaddr_fill(&t->saddr, 0,
  1819. (struct sockaddr *)sa,
  1820. t->encap_family);
  1821. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1822. (struct sockaddr *) (sa + socklen),
  1823. t->encap_family);
  1824. }
  1825. }
  1826. /* security context */
  1827. if ((xfrm_ctx = xp->security)) {
  1828. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1829. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1830. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1831. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1832. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1833. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1834. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1835. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1836. xfrm_ctx->ctx_len);
  1837. }
  1838. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1839. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1840. return 0;
  1841. }
  1842. static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c)
  1843. {
  1844. struct sk_buff *out_skb;
  1845. struct sadb_msg *out_hdr;
  1846. int err;
  1847. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1848. if (IS_ERR(out_skb))
  1849. return PTR_ERR(out_skb);
  1850. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1851. if (err < 0)
  1852. return err;
  1853. out_hdr = (struct sadb_msg *) out_skb->data;
  1854. out_hdr->sadb_msg_version = PF_KEY_V2;
  1855. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1856. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1857. else
  1858. out_hdr->sadb_msg_type = event2poltype(c->event);
  1859. out_hdr->sadb_msg_errno = 0;
  1860. out_hdr->sadb_msg_seq = c->seq;
  1861. out_hdr->sadb_msg_pid = c->portid;
  1862. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1863. return 0;
  1864. }
  1865. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1866. {
  1867. struct net *net = sock_net(sk);
  1868. int err = 0;
  1869. struct sadb_lifetime *lifetime;
  1870. struct sadb_address *sa;
  1871. struct sadb_x_policy *pol;
  1872. struct xfrm_policy *xp;
  1873. struct km_event c;
  1874. struct sadb_x_sec_ctx *sec_ctx;
  1875. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1876. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1877. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1878. return -EINVAL;
  1879. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1880. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1881. return -EINVAL;
  1882. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1883. return -EINVAL;
  1884. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1885. if (xp == NULL)
  1886. return -ENOBUFS;
  1887. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1888. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1889. xp->priority = pol->sadb_x_policy_priority;
  1890. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1891. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1892. if (!xp->family) {
  1893. err = -EINVAL;
  1894. goto out;
  1895. }
  1896. xp->selector.family = xp->family;
  1897. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1898. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1899. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1900. if (xp->selector.sport)
  1901. xp->selector.sport_mask = htons(0xffff);
  1902. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1903. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1904. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1905. /* Amusing, we set this twice. KAME apps appear to set same value
  1906. * in both addresses.
  1907. */
  1908. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1909. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1910. if (xp->selector.dport)
  1911. xp->selector.dport_mask = htons(0xffff);
  1912. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1913. if (sec_ctx != NULL) {
  1914. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1915. if (!uctx) {
  1916. err = -ENOBUFS;
  1917. goto out;
  1918. }
  1919. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1920. kfree(uctx);
  1921. if (err)
  1922. goto out;
  1923. }
  1924. xp->lft.soft_byte_limit = XFRM_INF;
  1925. xp->lft.hard_byte_limit = XFRM_INF;
  1926. xp->lft.soft_packet_limit = XFRM_INF;
  1927. xp->lft.hard_packet_limit = XFRM_INF;
  1928. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1929. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1930. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1931. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1932. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1933. }
  1934. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1935. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1936. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1937. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1938. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1939. }
  1940. xp->xfrm_nr = 0;
  1941. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1942. (err = parse_ipsecrequests(xp, pol)) < 0)
  1943. goto out;
  1944. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1945. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1946. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1947. audit_get_loginuid(current),
  1948. audit_get_sessionid(current), 0);
  1949. if (err)
  1950. goto out;
  1951. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1952. c.event = XFRM_MSG_UPDPOLICY;
  1953. else
  1954. c.event = XFRM_MSG_NEWPOLICY;
  1955. c.seq = hdr->sadb_msg_seq;
  1956. c.portid = hdr->sadb_msg_pid;
  1957. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1958. xfrm_pol_put(xp);
  1959. return 0;
  1960. out:
  1961. xp->walk.dead = 1;
  1962. xfrm_policy_destroy(xp);
  1963. return err;
  1964. }
  1965. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1966. {
  1967. struct net *net = sock_net(sk);
  1968. int err;
  1969. struct sadb_address *sa;
  1970. struct sadb_x_policy *pol;
  1971. struct xfrm_policy *xp;
  1972. struct xfrm_selector sel;
  1973. struct km_event c;
  1974. struct sadb_x_sec_ctx *sec_ctx;
  1975. struct xfrm_sec_ctx *pol_ctx = NULL;
  1976. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1977. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1978. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1979. return -EINVAL;
  1980. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1981. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1982. return -EINVAL;
  1983. memset(&sel, 0, sizeof(sel));
  1984. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1985. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1986. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1987. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1988. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1989. if (sel.sport)
  1990. sel.sport_mask = htons(0xffff);
  1991. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1992. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1993. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1994. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1995. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1996. if (sel.dport)
  1997. sel.dport_mask = htons(0xffff);
  1998. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1999. if (sec_ctx != NULL) {
  2000. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2001. if (!uctx)
  2002. return -ENOMEM;
  2003. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  2004. kfree(uctx);
  2005. if (err)
  2006. return err;
  2007. }
  2008. xp = xfrm_policy_bysel_ctx(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2009. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2010. 1, &err);
  2011. security_xfrm_policy_free(pol_ctx);
  2012. if (xp == NULL)
  2013. return -ENOENT;
  2014. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2015. audit_get_loginuid(current),
  2016. audit_get_sessionid(current), 0);
  2017. if (err)
  2018. goto out;
  2019. c.seq = hdr->sadb_msg_seq;
  2020. c.portid = hdr->sadb_msg_pid;
  2021. c.data.byid = 0;
  2022. c.event = XFRM_MSG_DELPOLICY;
  2023. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2024. out:
  2025. xfrm_pol_put(xp);
  2026. if (err == 0)
  2027. xfrm_garbage_collect(net);
  2028. return err;
  2029. }
  2030. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, const struct sadb_msg *hdr, int dir)
  2031. {
  2032. int err;
  2033. struct sk_buff *out_skb;
  2034. struct sadb_msg *out_hdr;
  2035. err = 0;
  2036. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2037. if (IS_ERR(out_skb)) {
  2038. err = PTR_ERR(out_skb);
  2039. goto out;
  2040. }
  2041. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2042. if (err < 0)
  2043. goto out;
  2044. out_hdr = (struct sadb_msg *) out_skb->data;
  2045. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2046. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2047. out_hdr->sadb_msg_satype = 0;
  2048. out_hdr->sadb_msg_errno = 0;
  2049. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2050. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2051. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2052. err = 0;
  2053. out:
  2054. return err;
  2055. }
  2056. #ifdef CONFIG_NET_KEY_MIGRATE
  2057. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2058. {
  2059. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2060. }
  2061. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2062. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2063. u16 *family)
  2064. {
  2065. int af, socklen;
  2066. if (ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2067. return -EINVAL;
  2068. af = pfkey_sockaddr_extract(sa, saddr);
  2069. if (!af)
  2070. return -EINVAL;
  2071. socklen = pfkey_sockaddr_len(af);
  2072. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2073. daddr) != af)
  2074. return -EINVAL;
  2075. *family = af;
  2076. return 0;
  2077. }
  2078. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2079. struct xfrm_migrate *m)
  2080. {
  2081. int err;
  2082. struct sadb_x_ipsecrequest *rq2;
  2083. int mode;
  2084. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2085. len < rq1->sadb_x_ipsecrequest_len)
  2086. return -EINVAL;
  2087. /* old endoints */
  2088. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2089. rq1->sadb_x_ipsecrequest_len,
  2090. &m->old_saddr, &m->old_daddr,
  2091. &m->old_family);
  2092. if (err)
  2093. return err;
  2094. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2095. len -= rq1->sadb_x_ipsecrequest_len;
  2096. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2097. len < rq2->sadb_x_ipsecrequest_len)
  2098. return -EINVAL;
  2099. /* new endpoints */
  2100. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2101. rq2->sadb_x_ipsecrequest_len,
  2102. &m->new_saddr, &m->new_daddr,
  2103. &m->new_family);
  2104. if (err)
  2105. return err;
  2106. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2107. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2108. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2109. return -EINVAL;
  2110. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2111. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2112. return -EINVAL;
  2113. m->mode = mode;
  2114. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2115. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2116. rq2->sadb_x_ipsecrequest_len));
  2117. }
  2118. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2119. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2120. {
  2121. int i, len, ret, err = -EINVAL;
  2122. u8 dir;
  2123. struct sadb_address *sa;
  2124. struct sadb_x_kmaddress *kma;
  2125. struct sadb_x_policy *pol;
  2126. struct sadb_x_ipsecrequest *rq;
  2127. struct xfrm_selector sel;
  2128. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2129. struct xfrm_kmaddress k;
  2130. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2131. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2132. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2133. err = -EINVAL;
  2134. goto out;
  2135. }
  2136. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2137. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2138. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2139. err = -EINVAL;
  2140. goto out;
  2141. }
  2142. if (kma) {
  2143. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2144. k.reserved = kma->sadb_x_kmaddress_reserved;
  2145. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2146. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2147. &k.local, &k.remote, &k.family);
  2148. if (ret < 0) {
  2149. err = ret;
  2150. goto out;
  2151. }
  2152. }
  2153. dir = pol->sadb_x_policy_dir - 1;
  2154. memset(&sel, 0, sizeof(sel));
  2155. /* set source address info of selector */
  2156. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2157. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2158. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2159. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2160. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2161. if (sel.sport)
  2162. sel.sport_mask = htons(0xffff);
  2163. /* set destination address info of selector */
  2164. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2165. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2166. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2167. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2168. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2169. if (sel.dport)
  2170. sel.dport_mask = htons(0xffff);
  2171. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2172. /* extract ipsecrequests */
  2173. i = 0;
  2174. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2175. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2176. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2177. if (ret < 0) {
  2178. err = ret;
  2179. goto out;
  2180. } else {
  2181. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2182. len -= ret;
  2183. i++;
  2184. }
  2185. }
  2186. if (!i || len > 0) {
  2187. err = -EINVAL;
  2188. goto out;
  2189. }
  2190. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2191. kma ? &k : NULL);
  2192. out:
  2193. return err;
  2194. }
  2195. #else
  2196. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2197. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2198. {
  2199. return -ENOPROTOOPT;
  2200. }
  2201. #endif
  2202. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2203. {
  2204. struct net *net = sock_net(sk);
  2205. unsigned int dir;
  2206. int err = 0, delete;
  2207. struct sadb_x_policy *pol;
  2208. struct xfrm_policy *xp;
  2209. struct km_event c;
  2210. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2211. return -EINVAL;
  2212. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2213. if (dir >= XFRM_POLICY_MAX)
  2214. return -EINVAL;
  2215. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2216. xp = xfrm_policy_byid(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2217. dir, pol->sadb_x_policy_id, delete, &err);
  2218. if (xp == NULL)
  2219. return -ENOENT;
  2220. if (delete) {
  2221. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2222. audit_get_loginuid(current),
  2223. audit_get_sessionid(current), 0);
  2224. if (err)
  2225. goto out;
  2226. c.seq = hdr->sadb_msg_seq;
  2227. c.portid = hdr->sadb_msg_pid;
  2228. c.data.byid = 1;
  2229. c.event = XFRM_MSG_DELPOLICY;
  2230. km_policy_notify(xp, dir, &c);
  2231. } else {
  2232. err = key_pol_get_resp(sk, xp, hdr, dir);
  2233. }
  2234. out:
  2235. xfrm_pol_put(xp);
  2236. if (delete && err == 0)
  2237. xfrm_garbage_collect(net);
  2238. return err;
  2239. }
  2240. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2241. {
  2242. struct pfkey_sock *pfk = ptr;
  2243. struct sk_buff *out_skb;
  2244. struct sadb_msg *out_hdr;
  2245. int err;
  2246. if (!pfkey_can_dump(&pfk->sk))
  2247. return -ENOBUFS;
  2248. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2249. if (IS_ERR(out_skb))
  2250. return PTR_ERR(out_skb);
  2251. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2252. if (err < 0)
  2253. return err;
  2254. out_hdr = (struct sadb_msg *) out_skb->data;
  2255. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2256. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2257. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2258. out_hdr->sadb_msg_errno = 0;
  2259. out_hdr->sadb_msg_seq = count + 1;
  2260. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  2261. if (pfk->dump.skb)
  2262. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2263. &pfk->sk, sock_net(&pfk->sk));
  2264. pfk->dump.skb = out_skb;
  2265. return 0;
  2266. }
  2267. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2268. {
  2269. struct net *net = sock_net(&pfk->sk);
  2270. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2271. }
  2272. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2273. {
  2274. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2275. }
  2276. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2277. {
  2278. struct pfkey_sock *pfk = pfkey_sk(sk);
  2279. if (pfk->dump.dump != NULL)
  2280. return -EBUSY;
  2281. pfk->dump.msg_version = hdr->sadb_msg_version;
  2282. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  2283. pfk->dump.dump = pfkey_dump_sp;
  2284. pfk->dump.done = pfkey_dump_sp_done;
  2285. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2286. return pfkey_do_dump(pfk);
  2287. }
  2288. static int key_notify_policy_flush(const struct km_event *c)
  2289. {
  2290. struct sk_buff *skb_out;
  2291. struct sadb_msg *hdr;
  2292. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2293. if (!skb_out)
  2294. return -ENOBUFS;
  2295. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2296. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2297. hdr->sadb_msg_seq = c->seq;
  2298. hdr->sadb_msg_pid = c->portid;
  2299. hdr->sadb_msg_version = PF_KEY_V2;
  2300. hdr->sadb_msg_errno = (uint8_t) 0;
  2301. hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2302. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2303. hdr->sadb_msg_reserved = 0;
  2304. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2305. return 0;
  2306. }
  2307. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2308. {
  2309. struct net *net = sock_net(sk);
  2310. struct km_event c;
  2311. struct xfrm_audit audit_info;
  2312. int err, err2;
  2313. audit_info.loginuid = audit_get_loginuid(current);
  2314. audit_info.sessionid = audit_get_sessionid(current);
  2315. audit_info.secid = 0;
  2316. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, &audit_info);
  2317. err2 = unicast_flush_resp(sk, hdr);
  2318. if (err || err2) {
  2319. if (err == -ESRCH) /* empty table - old silent behavior */
  2320. return 0;
  2321. return err;
  2322. }
  2323. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2324. c.event = XFRM_MSG_FLUSHPOLICY;
  2325. c.portid = hdr->sadb_msg_pid;
  2326. c.seq = hdr->sadb_msg_seq;
  2327. c.net = net;
  2328. km_policy_notify(NULL, 0, &c);
  2329. return 0;
  2330. }
  2331. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2332. const struct sadb_msg *hdr, void * const *ext_hdrs);
  2333. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2334. [SADB_RESERVED] = pfkey_reserved,
  2335. [SADB_GETSPI] = pfkey_getspi,
  2336. [SADB_UPDATE] = pfkey_add,
  2337. [SADB_ADD] = pfkey_add,
  2338. [SADB_DELETE] = pfkey_delete,
  2339. [SADB_GET] = pfkey_get,
  2340. [SADB_ACQUIRE] = pfkey_acquire,
  2341. [SADB_REGISTER] = pfkey_register,
  2342. [SADB_EXPIRE] = NULL,
  2343. [SADB_FLUSH] = pfkey_flush,
  2344. [SADB_DUMP] = pfkey_dump,
  2345. [SADB_X_PROMISC] = pfkey_promisc,
  2346. [SADB_X_PCHANGE] = NULL,
  2347. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2348. [SADB_X_SPDADD] = pfkey_spdadd,
  2349. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2350. [SADB_X_SPDGET] = pfkey_spdget,
  2351. [SADB_X_SPDACQUIRE] = NULL,
  2352. [SADB_X_SPDDUMP] = pfkey_spddump,
  2353. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2354. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2355. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2356. [SADB_X_MIGRATE] = pfkey_migrate,
  2357. };
  2358. static int pfkey_process(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr)
  2359. {
  2360. void *ext_hdrs[SADB_EXT_MAX];
  2361. int err;
  2362. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2363. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2364. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2365. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2366. if (!err) {
  2367. err = -EOPNOTSUPP;
  2368. if (pfkey_funcs[hdr->sadb_msg_type])
  2369. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2370. }
  2371. return err;
  2372. }
  2373. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2374. {
  2375. struct sadb_msg *hdr = NULL;
  2376. if (skb->len < sizeof(*hdr)) {
  2377. *errp = -EMSGSIZE;
  2378. } else {
  2379. hdr = (struct sadb_msg *) skb->data;
  2380. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2381. hdr->sadb_msg_reserved != 0 ||
  2382. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2383. hdr->sadb_msg_type > SADB_MAX)) {
  2384. hdr = NULL;
  2385. *errp = -EINVAL;
  2386. } else if (hdr->sadb_msg_len != (skb->len /
  2387. sizeof(uint64_t)) ||
  2388. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2389. sizeof(uint64_t))) {
  2390. hdr = NULL;
  2391. *errp = -EMSGSIZE;
  2392. } else {
  2393. *errp = 0;
  2394. }
  2395. }
  2396. return hdr;
  2397. }
  2398. static inline int aalg_tmpl_set(const struct xfrm_tmpl *t,
  2399. const struct xfrm_algo_desc *d)
  2400. {
  2401. unsigned int id = d->desc.sadb_alg_id;
  2402. if (id >= sizeof(t->aalgos) * 8)
  2403. return 0;
  2404. return (t->aalgos >> id) & 1;
  2405. }
  2406. static inline int ealg_tmpl_set(const struct xfrm_tmpl *t,
  2407. const struct xfrm_algo_desc *d)
  2408. {
  2409. unsigned int id = d->desc.sadb_alg_id;
  2410. if (id >= sizeof(t->ealgos) * 8)
  2411. return 0;
  2412. return (t->ealgos >> id) & 1;
  2413. }
  2414. static int count_ah_combs(const struct xfrm_tmpl *t)
  2415. {
  2416. int i, sz = 0;
  2417. for (i = 0; ; i++) {
  2418. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2419. if (!aalg)
  2420. break;
  2421. if (!aalg->pfkey_supported)
  2422. continue;
  2423. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2424. sz += sizeof(struct sadb_comb);
  2425. }
  2426. return sz + sizeof(struct sadb_prop);
  2427. }
  2428. static int count_esp_combs(const struct xfrm_tmpl *t)
  2429. {
  2430. int i, k, sz = 0;
  2431. for (i = 0; ; i++) {
  2432. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2433. if (!ealg)
  2434. break;
  2435. if (!ealg->pfkey_supported)
  2436. continue;
  2437. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2438. continue;
  2439. for (k = 1; ; k++) {
  2440. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2441. if (!aalg)
  2442. break;
  2443. if (!aalg->pfkey_supported)
  2444. continue;
  2445. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2446. sz += sizeof(struct sadb_comb);
  2447. }
  2448. }
  2449. return sz + sizeof(struct sadb_prop);
  2450. }
  2451. static void dump_ah_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2452. {
  2453. struct sadb_prop *p;
  2454. int i;
  2455. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2456. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2457. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2458. p->sadb_prop_replay = 32;
  2459. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2460. for (i = 0; ; i++) {
  2461. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2462. if (!aalg)
  2463. break;
  2464. if (!aalg->pfkey_supported)
  2465. continue;
  2466. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2467. struct sadb_comb *c;
  2468. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2469. memset(c, 0, sizeof(*c));
  2470. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2471. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2472. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2473. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2474. c->sadb_comb_hard_addtime = 24*60*60;
  2475. c->sadb_comb_soft_addtime = 20*60*60;
  2476. c->sadb_comb_hard_usetime = 8*60*60;
  2477. c->sadb_comb_soft_usetime = 7*60*60;
  2478. }
  2479. }
  2480. }
  2481. static void dump_esp_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2482. {
  2483. struct sadb_prop *p;
  2484. int i, k;
  2485. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2486. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2487. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2488. p->sadb_prop_replay = 32;
  2489. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2490. for (i=0; ; i++) {
  2491. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2492. if (!ealg)
  2493. break;
  2494. if (!ealg->pfkey_supported)
  2495. continue;
  2496. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2497. continue;
  2498. for (k = 1; ; k++) {
  2499. struct sadb_comb *c;
  2500. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2501. if (!aalg)
  2502. break;
  2503. if (!aalg->pfkey_supported)
  2504. continue;
  2505. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2506. continue;
  2507. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2508. memset(c, 0, sizeof(*c));
  2509. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2510. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2511. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2512. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2513. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2514. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2515. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2516. c->sadb_comb_hard_addtime = 24*60*60;
  2517. c->sadb_comb_soft_addtime = 20*60*60;
  2518. c->sadb_comb_hard_usetime = 8*60*60;
  2519. c->sadb_comb_soft_usetime = 7*60*60;
  2520. }
  2521. }
  2522. }
  2523. static int key_notify_policy_expire(struct xfrm_policy *xp, const struct km_event *c)
  2524. {
  2525. return 0;
  2526. }
  2527. static int key_notify_sa_expire(struct xfrm_state *x, const struct km_event *c)
  2528. {
  2529. struct sk_buff *out_skb;
  2530. struct sadb_msg *out_hdr;
  2531. int hard;
  2532. int hsc;
  2533. hard = c->data.hard;
  2534. if (hard)
  2535. hsc = 2;
  2536. else
  2537. hsc = 1;
  2538. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2539. if (IS_ERR(out_skb))
  2540. return PTR_ERR(out_skb);
  2541. out_hdr = (struct sadb_msg *) out_skb->data;
  2542. out_hdr->sadb_msg_version = PF_KEY_V2;
  2543. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2544. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2545. out_hdr->sadb_msg_errno = 0;
  2546. out_hdr->sadb_msg_reserved = 0;
  2547. out_hdr->sadb_msg_seq = 0;
  2548. out_hdr->sadb_msg_pid = 0;
  2549. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2550. return 0;
  2551. }
  2552. static int pfkey_send_notify(struct xfrm_state *x, const struct km_event *c)
  2553. {
  2554. struct net *net = x ? xs_net(x) : c->net;
  2555. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2556. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2557. return 0;
  2558. switch (c->event) {
  2559. case XFRM_MSG_EXPIRE:
  2560. return key_notify_sa_expire(x, c);
  2561. case XFRM_MSG_DELSA:
  2562. case XFRM_MSG_NEWSA:
  2563. case XFRM_MSG_UPDSA:
  2564. return key_notify_sa(x, c);
  2565. case XFRM_MSG_FLUSHSA:
  2566. return key_notify_sa_flush(c);
  2567. case XFRM_MSG_NEWAE: /* not yet supported */
  2568. break;
  2569. default:
  2570. pr_err("pfkey: Unknown SA event %d\n", c->event);
  2571. break;
  2572. }
  2573. return 0;
  2574. }
  2575. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
  2576. {
  2577. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2578. return 0;
  2579. switch (c->event) {
  2580. case XFRM_MSG_POLEXPIRE:
  2581. return key_notify_policy_expire(xp, c);
  2582. case XFRM_MSG_DELPOLICY:
  2583. case XFRM_MSG_NEWPOLICY:
  2584. case XFRM_MSG_UPDPOLICY:
  2585. return key_notify_policy(xp, dir, c);
  2586. case XFRM_MSG_FLUSHPOLICY:
  2587. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2588. break;
  2589. return key_notify_policy_flush(c);
  2590. default:
  2591. pr_err("pfkey: Unknown policy event %d\n", c->event);
  2592. break;
  2593. }
  2594. return 0;
  2595. }
  2596. static u32 get_acqseq(void)
  2597. {
  2598. u32 res;
  2599. static atomic_t acqseq;
  2600. do {
  2601. res = atomic_inc_return(&acqseq);
  2602. } while (!res);
  2603. return res;
  2604. }
  2605. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp)
  2606. {
  2607. struct sk_buff *skb;
  2608. struct sadb_msg *hdr;
  2609. struct sadb_address *addr;
  2610. struct sadb_x_policy *pol;
  2611. int sockaddr_size;
  2612. int size;
  2613. struct sadb_x_sec_ctx *sec_ctx;
  2614. struct xfrm_sec_ctx *xfrm_ctx;
  2615. int ctx_size = 0;
  2616. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2617. if (!sockaddr_size)
  2618. return -EINVAL;
  2619. size = sizeof(struct sadb_msg) +
  2620. (sizeof(struct sadb_address) * 2) +
  2621. (sockaddr_size * 2) +
  2622. sizeof(struct sadb_x_policy);
  2623. if (x->id.proto == IPPROTO_AH)
  2624. size += count_ah_combs(t);
  2625. else if (x->id.proto == IPPROTO_ESP)
  2626. size += count_esp_combs(t);
  2627. if ((xfrm_ctx = x->security)) {
  2628. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2629. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2630. }
  2631. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2632. if (skb == NULL)
  2633. return -ENOMEM;
  2634. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2635. hdr->sadb_msg_version = PF_KEY_V2;
  2636. hdr->sadb_msg_type = SADB_ACQUIRE;
  2637. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2638. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2639. hdr->sadb_msg_errno = 0;
  2640. hdr->sadb_msg_reserved = 0;
  2641. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2642. hdr->sadb_msg_pid = 0;
  2643. /* src address */
  2644. addr = (struct sadb_address*) skb_put(skb,
  2645. sizeof(struct sadb_address)+sockaddr_size);
  2646. addr->sadb_address_len =
  2647. (sizeof(struct sadb_address)+sockaddr_size)/
  2648. sizeof(uint64_t);
  2649. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2650. addr->sadb_address_proto = 0;
  2651. addr->sadb_address_reserved = 0;
  2652. addr->sadb_address_prefixlen =
  2653. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2654. (struct sockaddr *) (addr + 1),
  2655. x->props.family);
  2656. if (!addr->sadb_address_prefixlen)
  2657. BUG();
  2658. /* dst address */
  2659. addr = (struct sadb_address*) skb_put(skb,
  2660. sizeof(struct sadb_address)+sockaddr_size);
  2661. addr->sadb_address_len =
  2662. (sizeof(struct sadb_address)+sockaddr_size)/
  2663. sizeof(uint64_t);
  2664. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2665. addr->sadb_address_proto = 0;
  2666. addr->sadb_address_reserved = 0;
  2667. addr->sadb_address_prefixlen =
  2668. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2669. (struct sockaddr *) (addr + 1),
  2670. x->props.family);
  2671. if (!addr->sadb_address_prefixlen)
  2672. BUG();
  2673. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2674. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2675. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2676. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2677. pol->sadb_x_policy_dir = XFRM_POLICY_OUT + 1;
  2678. pol->sadb_x_policy_reserved = 0;
  2679. pol->sadb_x_policy_id = xp->index;
  2680. pol->sadb_x_policy_priority = xp->priority;
  2681. /* Set sadb_comb's. */
  2682. if (x->id.proto == IPPROTO_AH)
  2683. dump_ah_combs(skb, t);
  2684. else if (x->id.proto == IPPROTO_ESP)
  2685. dump_esp_combs(skb, t);
  2686. /* security context */
  2687. if (xfrm_ctx) {
  2688. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2689. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2690. sec_ctx->sadb_x_sec_len =
  2691. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2692. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2693. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2694. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2695. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2696. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2697. xfrm_ctx->ctx_len);
  2698. }
  2699. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2700. }
  2701. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2702. u8 *data, int len, int *dir)
  2703. {
  2704. struct net *net = sock_net(sk);
  2705. struct xfrm_policy *xp;
  2706. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2707. struct sadb_x_sec_ctx *sec_ctx;
  2708. switch (sk->sk_family) {
  2709. case AF_INET:
  2710. if (opt != IP_IPSEC_POLICY) {
  2711. *dir = -EOPNOTSUPP;
  2712. return NULL;
  2713. }
  2714. break;
  2715. #if IS_ENABLED(CONFIG_IPV6)
  2716. case AF_INET6:
  2717. if (opt != IPV6_IPSEC_POLICY) {
  2718. *dir = -EOPNOTSUPP;
  2719. return NULL;
  2720. }
  2721. break;
  2722. #endif
  2723. default:
  2724. *dir = -EINVAL;
  2725. return NULL;
  2726. }
  2727. *dir = -EINVAL;
  2728. if (len < sizeof(struct sadb_x_policy) ||
  2729. pol->sadb_x_policy_len*8 > len ||
  2730. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2731. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2732. return NULL;
  2733. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2734. if (xp == NULL) {
  2735. *dir = -ENOBUFS;
  2736. return NULL;
  2737. }
  2738. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2739. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2740. xp->lft.soft_byte_limit = XFRM_INF;
  2741. xp->lft.hard_byte_limit = XFRM_INF;
  2742. xp->lft.soft_packet_limit = XFRM_INF;
  2743. xp->lft.hard_packet_limit = XFRM_INF;
  2744. xp->family = sk->sk_family;
  2745. xp->xfrm_nr = 0;
  2746. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2747. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2748. goto out;
  2749. /* security context too */
  2750. if (len >= (pol->sadb_x_policy_len*8 +
  2751. sizeof(struct sadb_x_sec_ctx))) {
  2752. char *p = (char *)pol;
  2753. struct xfrm_user_sec_ctx *uctx;
  2754. p += pol->sadb_x_policy_len*8;
  2755. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2756. if (len < pol->sadb_x_policy_len*8 +
  2757. sec_ctx->sadb_x_sec_len) {
  2758. *dir = -EINVAL;
  2759. goto out;
  2760. }
  2761. if ((*dir = verify_sec_ctx_len(p)))
  2762. goto out;
  2763. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2764. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2765. kfree(uctx);
  2766. if (*dir)
  2767. goto out;
  2768. }
  2769. *dir = pol->sadb_x_policy_dir-1;
  2770. return xp;
  2771. out:
  2772. xp->walk.dead = 1;
  2773. xfrm_policy_destroy(xp);
  2774. return NULL;
  2775. }
  2776. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2777. {
  2778. struct sk_buff *skb;
  2779. struct sadb_msg *hdr;
  2780. struct sadb_sa *sa;
  2781. struct sadb_address *addr;
  2782. struct sadb_x_nat_t_port *n_port;
  2783. int sockaddr_size;
  2784. int size;
  2785. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2786. struct xfrm_encap_tmpl *natt = NULL;
  2787. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2788. if (!sockaddr_size)
  2789. return -EINVAL;
  2790. if (!satype)
  2791. return -EINVAL;
  2792. if (!x->encap)
  2793. return -EINVAL;
  2794. natt = x->encap;
  2795. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2796. *
  2797. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2798. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2799. */
  2800. size = sizeof(struct sadb_msg) +
  2801. sizeof(struct sadb_sa) +
  2802. (sizeof(struct sadb_address) * 2) +
  2803. (sockaddr_size * 2) +
  2804. (sizeof(struct sadb_x_nat_t_port) * 2);
  2805. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2806. if (skb == NULL)
  2807. return -ENOMEM;
  2808. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2809. hdr->sadb_msg_version = PF_KEY_V2;
  2810. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2811. hdr->sadb_msg_satype = satype;
  2812. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2813. hdr->sadb_msg_errno = 0;
  2814. hdr->sadb_msg_reserved = 0;
  2815. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2816. hdr->sadb_msg_pid = 0;
  2817. /* SA */
  2818. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2819. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2820. sa->sadb_sa_exttype = SADB_EXT_SA;
  2821. sa->sadb_sa_spi = x->id.spi;
  2822. sa->sadb_sa_replay = 0;
  2823. sa->sadb_sa_state = 0;
  2824. sa->sadb_sa_auth = 0;
  2825. sa->sadb_sa_encrypt = 0;
  2826. sa->sadb_sa_flags = 0;
  2827. /* ADDRESS_SRC (old addr) */
  2828. addr = (struct sadb_address*)
  2829. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2830. addr->sadb_address_len =
  2831. (sizeof(struct sadb_address)+sockaddr_size)/
  2832. sizeof(uint64_t);
  2833. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2834. addr->sadb_address_proto = 0;
  2835. addr->sadb_address_reserved = 0;
  2836. addr->sadb_address_prefixlen =
  2837. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2838. (struct sockaddr *) (addr + 1),
  2839. x->props.family);
  2840. if (!addr->sadb_address_prefixlen)
  2841. BUG();
  2842. /* NAT_T_SPORT (old port) */
  2843. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2844. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2845. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2846. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2847. n_port->sadb_x_nat_t_port_reserved = 0;
  2848. /* ADDRESS_DST (new addr) */
  2849. addr = (struct sadb_address*)
  2850. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2851. addr->sadb_address_len =
  2852. (sizeof(struct sadb_address)+sockaddr_size)/
  2853. sizeof(uint64_t);
  2854. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2855. addr->sadb_address_proto = 0;
  2856. addr->sadb_address_reserved = 0;
  2857. addr->sadb_address_prefixlen =
  2858. pfkey_sockaddr_fill(ipaddr, 0,
  2859. (struct sockaddr *) (addr + 1),
  2860. x->props.family);
  2861. if (!addr->sadb_address_prefixlen)
  2862. BUG();
  2863. /* NAT_T_DPORT (new port) */
  2864. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2865. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2866. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2867. n_port->sadb_x_nat_t_port_port = sport;
  2868. n_port->sadb_x_nat_t_port_reserved = 0;
  2869. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2870. }
  2871. #ifdef CONFIG_NET_KEY_MIGRATE
  2872. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2873. const struct xfrm_selector *sel)
  2874. {
  2875. struct sadb_address *addr;
  2876. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2877. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2878. addr->sadb_address_exttype = type;
  2879. addr->sadb_address_proto = sel->proto;
  2880. addr->sadb_address_reserved = 0;
  2881. switch (type) {
  2882. case SADB_EXT_ADDRESS_SRC:
  2883. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2884. pfkey_sockaddr_fill(&sel->saddr, 0,
  2885. (struct sockaddr *)(addr + 1),
  2886. sel->family);
  2887. break;
  2888. case SADB_EXT_ADDRESS_DST:
  2889. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2890. pfkey_sockaddr_fill(&sel->daddr, 0,
  2891. (struct sockaddr *)(addr + 1),
  2892. sel->family);
  2893. break;
  2894. default:
  2895. return -EINVAL;
  2896. }
  2897. return 0;
  2898. }
  2899. static int set_sadb_kmaddress(struct sk_buff *skb, const struct xfrm_kmaddress *k)
  2900. {
  2901. struct sadb_x_kmaddress *kma;
  2902. u8 *sa;
  2903. int family = k->family;
  2904. int socklen = pfkey_sockaddr_len(family);
  2905. int size_req;
  2906. size_req = (sizeof(struct sadb_x_kmaddress) +
  2907. pfkey_sockaddr_pair_size(family));
  2908. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2909. memset(kma, 0, size_req);
  2910. kma->sadb_x_kmaddress_len = size_req / 8;
  2911. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2912. kma->sadb_x_kmaddress_reserved = k->reserved;
  2913. sa = (u8 *)(kma + 1);
  2914. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2915. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2916. return -EINVAL;
  2917. return 0;
  2918. }
  2919. static int set_ipsecrequest(struct sk_buff *skb,
  2920. uint8_t proto, uint8_t mode, int level,
  2921. uint32_t reqid, uint8_t family,
  2922. const xfrm_address_t *src, const xfrm_address_t *dst)
  2923. {
  2924. struct sadb_x_ipsecrequest *rq;
  2925. u8 *sa;
  2926. int socklen = pfkey_sockaddr_len(family);
  2927. int size_req;
  2928. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2929. pfkey_sockaddr_pair_size(family);
  2930. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2931. memset(rq, 0, size_req);
  2932. rq->sadb_x_ipsecrequest_len = size_req;
  2933. rq->sadb_x_ipsecrequest_proto = proto;
  2934. rq->sadb_x_ipsecrequest_mode = mode;
  2935. rq->sadb_x_ipsecrequest_level = level;
  2936. rq->sadb_x_ipsecrequest_reqid = reqid;
  2937. sa = (u8 *) (rq + 1);
  2938. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2939. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2940. return -EINVAL;
  2941. return 0;
  2942. }
  2943. #endif
  2944. #ifdef CONFIG_NET_KEY_MIGRATE
  2945. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  2946. const struct xfrm_migrate *m, int num_bundles,
  2947. const struct xfrm_kmaddress *k)
  2948. {
  2949. int i;
  2950. int sasize_sel;
  2951. int size = 0;
  2952. int size_pol = 0;
  2953. struct sk_buff *skb;
  2954. struct sadb_msg *hdr;
  2955. struct sadb_x_policy *pol;
  2956. const struct xfrm_migrate *mp;
  2957. if (type != XFRM_POLICY_TYPE_MAIN)
  2958. return 0;
  2959. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2960. return -EINVAL;
  2961. if (k != NULL) {
  2962. /* addresses for KM */
  2963. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2964. pfkey_sockaddr_pair_size(k->family));
  2965. }
  2966. /* selector */
  2967. sasize_sel = pfkey_sockaddr_size(sel->family);
  2968. if (!sasize_sel)
  2969. return -EINVAL;
  2970. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2971. /* policy info */
  2972. size_pol += sizeof(struct sadb_x_policy);
  2973. /* ipsecrequests */
  2974. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2975. /* old locator pair */
  2976. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2977. pfkey_sockaddr_pair_size(mp->old_family);
  2978. /* new locator pair */
  2979. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2980. pfkey_sockaddr_pair_size(mp->new_family);
  2981. }
  2982. size += sizeof(struct sadb_msg) + size_pol;
  2983. /* alloc buffer */
  2984. skb = alloc_skb(size, GFP_ATOMIC);
  2985. if (skb == NULL)
  2986. return -ENOMEM;
  2987. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2988. hdr->sadb_msg_version = PF_KEY_V2;
  2989. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2990. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2991. hdr->sadb_msg_len = size / 8;
  2992. hdr->sadb_msg_errno = 0;
  2993. hdr->sadb_msg_reserved = 0;
  2994. hdr->sadb_msg_seq = 0;
  2995. hdr->sadb_msg_pid = 0;
  2996. /* Addresses to be used by KM for negotiation, if ext is available */
  2997. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  2998. goto err;
  2999. /* selector src */
  3000. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3001. /* selector dst */
  3002. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3003. /* policy information */
  3004. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3005. pol->sadb_x_policy_len = size_pol / 8;
  3006. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3007. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3008. pol->sadb_x_policy_dir = dir + 1;
  3009. pol->sadb_x_policy_reserved = 0;
  3010. pol->sadb_x_policy_id = 0;
  3011. pol->sadb_x_policy_priority = 0;
  3012. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3013. /* old ipsecrequest */
  3014. int mode = pfkey_mode_from_xfrm(mp->mode);
  3015. if (mode < 0)
  3016. goto err;
  3017. if (set_ipsecrequest(skb, mp->proto, mode,
  3018. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3019. mp->reqid, mp->old_family,
  3020. &mp->old_saddr, &mp->old_daddr) < 0)
  3021. goto err;
  3022. /* new ipsecrequest */
  3023. if (set_ipsecrequest(skb, mp->proto, mode,
  3024. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3025. mp->reqid, mp->new_family,
  3026. &mp->new_saddr, &mp->new_daddr) < 0)
  3027. goto err;
  3028. }
  3029. /* broadcast migrate message to sockets */
  3030. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  3031. return 0;
  3032. err:
  3033. kfree_skb(skb);
  3034. return -EINVAL;
  3035. }
  3036. #else
  3037. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3038. const struct xfrm_migrate *m, int num_bundles,
  3039. const struct xfrm_kmaddress *k)
  3040. {
  3041. return -ENOPROTOOPT;
  3042. }
  3043. #endif
  3044. static int pfkey_sendmsg(struct kiocb *kiocb,
  3045. struct socket *sock, struct msghdr *msg, size_t len)
  3046. {
  3047. struct sock *sk = sock->sk;
  3048. struct sk_buff *skb = NULL;
  3049. struct sadb_msg *hdr = NULL;
  3050. int err;
  3051. err = -EOPNOTSUPP;
  3052. if (msg->msg_flags & MSG_OOB)
  3053. goto out;
  3054. err = -EMSGSIZE;
  3055. if ((unsigned int)len > sk->sk_sndbuf - 32)
  3056. goto out;
  3057. err = -ENOBUFS;
  3058. skb = alloc_skb(len, GFP_KERNEL);
  3059. if (skb == NULL)
  3060. goto out;
  3061. err = -EFAULT;
  3062. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3063. goto out;
  3064. hdr = pfkey_get_base_msg(skb, &err);
  3065. if (!hdr)
  3066. goto out;
  3067. mutex_lock(&xfrm_cfg_mutex);
  3068. err = pfkey_process(sk, skb, hdr);
  3069. mutex_unlock(&xfrm_cfg_mutex);
  3070. out:
  3071. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3072. err = 0;
  3073. kfree_skb(skb);
  3074. return err ? : len;
  3075. }
  3076. static int pfkey_recvmsg(struct kiocb *kiocb,
  3077. struct socket *sock, struct msghdr *msg, size_t len,
  3078. int flags)
  3079. {
  3080. struct sock *sk = sock->sk;
  3081. struct pfkey_sock *pfk = pfkey_sk(sk);
  3082. struct sk_buff *skb;
  3083. int copied, err;
  3084. err = -EINVAL;
  3085. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3086. goto out;
  3087. msg->msg_namelen = 0;
  3088. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3089. if (skb == NULL)
  3090. goto out;
  3091. copied = skb->len;
  3092. if (copied > len) {
  3093. msg->msg_flags |= MSG_TRUNC;
  3094. copied = len;
  3095. }
  3096. skb_reset_transport_header(skb);
  3097. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3098. if (err)
  3099. goto out_free;
  3100. sock_recv_ts_and_drops(msg, sk, skb);
  3101. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3102. if (pfk->dump.dump != NULL &&
  3103. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3104. pfkey_do_dump(pfk);
  3105. out_free:
  3106. skb_free_datagram(sk, skb);
  3107. out:
  3108. return err;
  3109. }
  3110. static const struct proto_ops pfkey_ops = {
  3111. .family = PF_KEY,
  3112. .owner = THIS_MODULE,
  3113. /* Operations that make no sense on pfkey sockets. */
  3114. .bind = sock_no_bind,
  3115. .connect = sock_no_connect,
  3116. .socketpair = sock_no_socketpair,
  3117. .accept = sock_no_accept,
  3118. .getname = sock_no_getname,
  3119. .ioctl = sock_no_ioctl,
  3120. .listen = sock_no_listen,
  3121. .shutdown = sock_no_shutdown,
  3122. .setsockopt = sock_no_setsockopt,
  3123. .getsockopt = sock_no_getsockopt,
  3124. .mmap = sock_no_mmap,
  3125. .sendpage = sock_no_sendpage,
  3126. /* Now the operations that really occur. */
  3127. .release = pfkey_release,
  3128. .poll = datagram_poll,
  3129. .sendmsg = pfkey_sendmsg,
  3130. .recvmsg = pfkey_recvmsg,
  3131. };
  3132. static const struct net_proto_family pfkey_family_ops = {
  3133. .family = PF_KEY,
  3134. .create = pfkey_create,
  3135. .owner = THIS_MODULE,
  3136. };
  3137. #ifdef CONFIG_PROC_FS
  3138. static int pfkey_seq_show(struct seq_file *f, void *v)
  3139. {
  3140. struct sock *s = sk_entry(v);
  3141. if (v == SEQ_START_TOKEN)
  3142. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3143. else
  3144. seq_printf(f, "%pK %-6d %-6u %-6u %-6u %-6lu\n",
  3145. s,
  3146. atomic_read(&s->sk_refcnt),
  3147. sk_rmem_alloc_get(s),
  3148. sk_wmem_alloc_get(s),
  3149. from_kuid_munged(seq_user_ns(f), sock_i_uid(s)),
  3150. sock_i_ino(s)
  3151. );
  3152. return 0;
  3153. }
  3154. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3155. __acquires(rcu)
  3156. {
  3157. struct net *net = seq_file_net(f);
  3158. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3159. rcu_read_lock();
  3160. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3161. }
  3162. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3163. {
  3164. struct net *net = seq_file_net(f);
  3165. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3166. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3167. }
  3168. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3169. __releases(rcu)
  3170. {
  3171. rcu_read_unlock();
  3172. }
  3173. static const struct seq_operations pfkey_seq_ops = {
  3174. .start = pfkey_seq_start,
  3175. .next = pfkey_seq_next,
  3176. .stop = pfkey_seq_stop,
  3177. .show = pfkey_seq_show,
  3178. };
  3179. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3180. {
  3181. return seq_open_net(inode, file, &pfkey_seq_ops,
  3182. sizeof(struct seq_net_private));
  3183. }
  3184. static const struct file_operations pfkey_proc_ops = {
  3185. .open = pfkey_seq_open,
  3186. .read = seq_read,
  3187. .llseek = seq_lseek,
  3188. .release = seq_release_net,
  3189. };
  3190. static int __net_init pfkey_init_proc(struct net *net)
  3191. {
  3192. struct proc_dir_entry *e;
  3193. e = proc_create("pfkey", 0, net->proc_net, &pfkey_proc_ops);
  3194. if (e == NULL)
  3195. return -ENOMEM;
  3196. return 0;
  3197. }
  3198. static void __net_exit pfkey_exit_proc(struct net *net)
  3199. {
  3200. remove_proc_entry("pfkey", net->proc_net);
  3201. }
  3202. #else
  3203. static inline int pfkey_init_proc(struct net *net)
  3204. {
  3205. return 0;
  3206. }
  3207. static inline void pfkey_exit_proc(struct net *net)
  3208. {
  3209. }
  3210. #endif
  3211. static struct xfrm_mgr pfkeyv2_mgr =
  3212. {
  3213. .id = "pfkeyv2",
  3214. .notify = pfkey_send_notify,
  3215. .acquire = pfkey_send_acquire,
  3216. .compile_policy = pfkey_compile_policy,
  3217. .new_mapping = pfkey_send_new_mapping,
  3218. .notify_policy = pfkey_send_policy_notify,
  3219. .migrate = pfkey_send_migrate,
  3220. };
  3221. static int __net_init pfkey_net_init(struct net *net)
  3222. {
  3223. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3224. int rv;
  3225. INIT_HLIST_HEAD(&net_pfkey->table);
  3226. atomic_set(&net_pfkey->socks_nr, 0);
  3227. rv = pfkey_init_proc(net);
  3228. return rv;
  3229. }
  3230. static void __net_exit pfkey_net_exit(struct net *net)
  3231. {
  3232. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3233. pfkey_exit_proc(net);
  3234. BUG_ON(!hlist_empty(&net_pfkey->table));
  3235. }
  3236. static struct pernet_operations pfkey_net_ops = {
  3237. .init = pfkey_net_init,
  3238. .exit = pfkey_net_exit,
  3239. .id = &pfkey_net_id,
  3240. .size = sizeof(struct netns_pfkey),
  3241. };
  3242. static void __exit ipsec_pfkey_exit(void)
  3243. {
  3244. xfrm_unregister_km(&pfkeyv2_mgr);
  3245. sock_unregister(PF_KEY);
  3246. unregister_pernet_subsys(&pfkey_net_ops);
  3247. proto_unregister(&key_proto);
  3248. }
  3249. static int __init ipsec_pfkey_init(void)
  3250. {
  3251. int err = proto_register(&key_proto, 0);
  3252. if (err != 0)
  3253. goto out;
  3254. err = register_pernet_subsys(&pfkey_net_ops);
  3255. if (err != 0)
  3256. goto out_unregister_key_proto;
  3257. err = sock_register(&pfkey_family_ops);
  3258. if (err != 0)
  3259. goto out_unregister_pernet;
  3260. err = xfrm_register_km(&pfkeyv2_mgr);
  3261. if (err != 0)
  3262. goto out_sock_unregister;
  3263. out:
  3264. return err;
  3265. out_sock_unregister:
  3266. sock_unregister(PF_KEY);
  3267. out_unregister_pernet:
  3268. unregister_pernet_subsys(&pfkey_net_ops);
  3269. out_unregister_key_proto:
  3270. proto_unregister(&key_proto);
  3271. goto out;
  3272. }
  3273. module_init(ipsec_pfkey_init);
  3274. module_exit(ipsec_pfkey_exit);
  3275. MODULE_LICENSE("GPL");
  3276. MODULE_ALIAS_NETPROTO(PF_KEY);