xfs_inode.c 117 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_trans_priv.h"
  26. #include "xfs_sb.h"
  27. #include "xfs_ag.h"
  28. #include "xfs_mount.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_attr_sf.h"
  33. #include "xfs_dinode.h"
  34. #include "xfs_inode.h"
  35. #include "xfs_buf_item.h"
  36. #include "xfs_inode_item.h"
  37. #include "xfs_btree.h"
  38. #include "xfs_alloc.h"
  39. #include "xfs_ialloc.h"
  40. #include "xfs_bmap.h"
  41. #include "xfs_error.h"
  42. #include "xfs_utils.h"
  43. #include "xfs_quota.h"
  44. #include "xfs_filestream.h"
  45. #include "xfs_vnodeops.h"
  46. #include "xfs_cksum.h"
  47. #include "xfs_trace.h"
  48. #include "xfs_icache.h"
  49. kmem_zone_t *xfs_ifork_zone;
  50. kmem_zone_t *xfs_inode_zone;
  51. /*
  52. * Used in xfs_itruncate_extents(). This is the maximum number of extents
  53. * freed from a file in a single transaction.
  54. */
  55. #define XFS_ITRUNC_MAX_EXTENTS 2
  56. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  57. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  58. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  59. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  60. /*
  61. * helper function to extract extent size hint from inode
  62. */
  63. xfs_extlen_t
  64. xfs_get_extsz_hint(
  65. struct xfs_inode *ip)
  66. {
  67. if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  68. return ip->i_d.di_extsize;
  69. if (XFS_IS_REALTIME_INODE(ip))
  70. return ip->i_mount->m_sb.sb_rextsize;
  71. return 0;
  72. }
  73. /*
  74. * This is a wrapper routine around the xfs_ilock() routine used to centralize
  75. * some grungy code. It is used in places that wish to lock the inode solely
  76. * for reading the extents. The reason these places can't just call
  77. * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
  78. * extents from disk for a file in b-tree format. If the inode is in b-tree
  79. * format, then we need to lock the inode exclusively until the extents are read
  80. * in. Locking it exclusively all the time would limit our parallelism
  81. * unnecessarily, though. What we do instead is check to see if the extents
  82. * have been read in yet, and only lock the inode exclusively if they have not.
  83. *
  84. * The function returns a value which should be given to the corresponding
  85. * xfs_iunlock_map_shared(). This value is the mode in which the lock was
  86. * actually taken.
  87. */
  88. uint
  89. xfs_ilock_map_shared(
  90. xfs_inode_t *ip)
  91. {
  92. uint lock_mode;
  93. if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
  94. ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
  95. lock_mode = XFS_ILOCK_EXCL;
  96. } else {
  97. lock_mode = XFS_ILOCK_SHARED;
  98. }
  99. xfs_ilock(ip, lock_mode);
  100. return lock_mode;
  101. }
  102. /*
  103. * This is simply the unlock routine to go with xfs_ilock_map_shared().
  104. * All it does is call xfs_iunlock() with the given lock_mode.
  105. */
  106. void
  107. xfs_iunlock_map_shared(
  108. xfs_inode_t *ip,
  109. unsigned int lock_mode)
  110. {
  111. xfs_iunlock(ip, lock_mode);
  112. }
  113. /*
  114. * The xfs inode contains 2 locks: a multi-reader lock called the
  115. * i_iolock and a multi-reader lock called the i_lock. This routine
  116. * allows either or both of the locks to be obtained.
  117. *
  118. * The 2 locks should always be ordered so that the IO lock is
  119. * obtained first in order to prevent deadlock.
  120. *
  121. * ip -- the inode being locked
  122. * lock_flags -- this parameter indicates the inode's locks
  123. * to be locked. It can be:
  124. * XFS_IOLOCK_SHARED,
  125. * XFS_IOLOCK_EXCL,
  126. * XFS_ILOCK_SHARED,
  127. * XFS_ILOCK_EXCL,
  128. * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
  129. * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
  130. * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
  131. * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
  132. */
  133. void
  134. xfs_ilock(
  135. xfs_inode_t *ip,
  136. uint lock_flags)
  137. {
  138. trace_xfs_ilock(ip, lock_flags, _RET_IP_);
  139. /*
  140. * You can't set both SHARED and EXCL for the same lock,
  141. * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
  142. * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
  143. */
  144. ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
  145. (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
  146. ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
  147. (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
  148. ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
  149. if (lock_flags & XFS_IOLOCK_EXCL)
  150. mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
  151. else if (lock_flags & XFS_IOLOCK_SHARED)
  152. mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
  153. if (lock_flags & XFS_ILOCK_EXCL)
  154. mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
  155. else if (lock_flags & XFS_ILOCK_SHARED)
  156. mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
  157. }
  158. /*
  159. * This is just like xfs_ilock(), except that the caller
  160. * is guaranteed not to sleep. It returns 1 if it gets
  161. * the requested locks and 0 otherwise. If the IO lock is
  162. * obtained but the inode lock cannot be, then the IO lock
  163. * is dropped before returning.
  164. *
  165. * ip -- the inode being locked
  166. * lock_flags -- this parameter indicates the inode's locks to be
  167. * to be locked. See the comment for xfs_ilock() for a list
  168. * of valid values.
  169. */
  170. int
  171. xfs_ilock_nowait(
  172. xfs_inode_t *ip,
  173. uint lock_flags)
  174. {
  175. trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
  176. /*
  177. * You can't set both SHARED and EXCL for the same lock,
  178. * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
  179. * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
  180. */
  181. ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
  182. (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
  183. ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
  184. (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
  185. ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
  186. if (lock_flags & XFS_IOLOCK_EXCL) {
  187. if (!mrtryupdate(&ip->i_iolock))
  188. goto out;
  189. } else if (lock_flags & XFS_IOLOCK_SHARED) {
  190. if (!mrtryaccess(&ip->i_iolock))
  191. goto out;
  192. }
  193. if (lock_flags & XFS_ILOCK_EXCL) {
  194. if (!mrtryupdate(&ip->i_lock))
  195. goto out_undo_iolock;
  196. } else if (lock_flags & XFS_ILOCK_SHARED) {
  197. if (!mrtryaccess(&ip->i_lock))
  198. goto out_undo_iolock;
  199. }
  200. return 1;
  201. out_undo_iolock:
  202. if (lock_flags & XFS_IOLOCK_EXCL)
  203. mrunlock_excl(&ip->i_iolock);
  204. else if (lock_flags & XFS_IOLOCK_SHARED)
  205. mrunlock_shared(&ip->i_iolock);
  206. out:
  207. return 0;
  208. }
  209. /*
  210. * xfs_iunlock() is used to drop the inode locks acquired with
  211. * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
  212. * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
  213. * that we know which locks to drop.
  214. *
  215. * ip -- the inode being unlocked
  216. * lock_flags -- this parameter indicates the inode's locks to be
  217. * to be unlocked. See the comment for xfs_ilock() for a list
  218. * of valid values for this parameter.
  219. *
  220. */
  221. void
  222. xfs_iunlock(
  223. xfs_inode_t *ip,
  224. uint lock_flags)
  225. {
  226. /*
  227. * You can't set both SHARED and EXCL for the same lock,
  228. * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
  229. * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
  230. */
  231. ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
  232. (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
  233. ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
  234. (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
  235. ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
  236. ASSERT(lock_flags != 0);
  237. if (lock_flags & XFS_IOLOCK_EXCL)
  238. mrunlock_excl(&ip->i_iolock);
  239. else if (lock_flags & XFS_IOLOCK_SHARED)
  240. mrunlock_shared(&ip->i_iolock);
  241. if (lock_flags & XFS_ILOCK_EXCL)
  242. mrunlock_excl(&ip->i_lock);
  243. else if (lock_flags & XFS_ILOCK_SHARED)
  244. mrunlock_shared(&ip->i_lock);
  245. trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
  246. }
  247. /*
  248. * give up write locks. the i/o lock cannot be held nested
  249. * if it is being demoted.
  250. */
  251. void
  252. xfs_ilock_demote(
  253. xfs_inode_t *ip,
  254. uint lock_flags)
  255. {
  256. ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
  257. ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
  258. if (lock_flags & XFS_ILOCK_EXCL)
  259. mrdemote(&ip->i_lock);
  260. if (lock_flags & XFS_IOLOCK_EXCL)
  261. mrdemote(&ip->i_iolock);
  262. trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
  263. }
  264. #if defined(DEBUG) || defined(XFS_WARN)
  265. int
  266. xfs_isilocked(
  267. xfs_inode_t *ip,
  268. uint lock_flags)
  269. {
  270. if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
  271. if (!(lock_flags & XFS_ILOCK_SHARED))
  272. return !!ip->i_lock.mr_writer;
  273. return rwsem_is_locked(&ip->i_lock.mr_lock);
  274. }
  275. if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
  276. if (!(lock_flags & XFS_IOLOCK_SHARED))
  277. return !!ip->i_iolock.mr_writer;
  278. return rwsem_is_locked(&ip->i_iolock.mr_lock);
  279. }
  280. ASSERT(0);
  281. return 0;
  282. }
  283. #endif
  284. void
  285. __xfs_iflock(
  286. struct xfs_inode *ip)
  287. {
  288. wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
  289. DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
  290. do {
  291. prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
  292. if (xfs_isiflocked(ip))
  293. io_schedule();
  294. } while (!xfs_iflock_nowait(ip));
  295. finish_wait(wq, &wait.wait);
  296. }
  297. #ifdef DEBUG
  298. /*
  299. * Make sure that the extents in the given memory buffer
  300. * are valid.
  301. */
  302. STATIC void
  303. xfs_validate_extents(
  304. xfs_ifork_t *ifp,
  305. int nrecs,
  306. xfs_exntfmt_t fmt)
  307. {
  308. xfs_bmbt_irec_t irec;
  309. xfs_bmbt_rec_host_t rec;
  310. int i;
  311. for (i = 0; i < nrecs; i++) {
  312. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  313. rec.l0 = get_unaligned(&ep->l0);
  314. rec.l1 = get_unaligned(&ep->l1);
  315. xfs_bmbt_get_all(&rec, &irec);
  316. if (fmt == XFS_EXTFMT_NOSTATE)
  317. ASSERT(irec.br_state == XFS_EXT_NORM);
  318. }
  319. }
  320. #else /* DEBUG */
  321. #define xfs_validate_extents(ifp, nrecs, fmt)
  322. #endif /* DEBUG */
  323. /*
  324. * Check that none of the inode's in the buffer have a next
  325. * unlinked field of 0.
  326. */
  327. #if defined(DEBUG)
  328. void
  329. xfs_inobp_check(
  330. xfs_mount_t *mp,
  331. xfs_buf_t *bp)
  332. {
  333. int i;
  334. int j;
  335. xfs_dinode_t *dip;
  336. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  337. for (i = 0; i < j; i++) {
  338. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  339. i * mp->m_sb.sb_inodesize);
  340. if (!dip->di_next_unlinked) {
  341. xfs_alert(mp,
  342. "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
  343. bp);
  344. ASSERT(dip->di_next_unlinked);
  345. }
  346. }
  347. }
  348. #endif
  349. static void
  350. xfs_inode_buf_verify(
  351. struct xfs_buf *bp)
  352. {
  353. struct xfs_mount *mp = bp->b_target->bt_mount;
  354. int i;
  355. int ni;
  356. /*
  357. * Validate the magic number and version of every inode in the buffer
  358. */
  359. ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
  360. for (i = 0; i < ni; i++) {
  361. int di_ok;
  362. xfs_dinode_t *dip;
  363. dip = (struct xfs_dinode *)xfs_buf_offset(bp,
  364. (i << mp->m_sb.sb_inodelog));
  365. di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
  366. XFS_DINODE_GOOD_VERSION(dip->di_version);
  367. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  368. XFS_ERRTAG_ITOBP_INOTOBP,
  369. XFS_RANDOM_ITOBP_INOTOBP))) {
  370. xfs_buf_ioerror(bp, EFSCORRUPTED);
  371. XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
  372. mp, dip);
  373. #ifdef DEBUG
  374. xfs_emerg(mp,
  375. "bad inode magic/vsn daddr %lld #%d (magic=%x)",
  376. (unsigned long long)bp->b_bn, i,
  377. be16_to_cpu(dip->di_magic));
  378. ASSERT(0);
  379. #endif
  380. }
  381. }
  382. xfs_inobp_check(mp, bp);
  383. }
  384. static void
  385. xfs_inode_buf_read_verify(
  386. struct xfs_buf *bp)
  387. {
  388. xfs_inode_buf_verify(bp);
  389. }
  390. static void
  391. xfs_inode_buf_write_verify(
  392. struct xfs_buf *bp)
  393. {
  394. xfs_inode_buf_verify(bp);
  395. }
  396. const struct xfs_buf_ops xfs_inode_buf_ops = {
  397. .verify_read = xfs_inode_buf_read_verify,
  398. .verify_write = xfs_inode_buf_write_verify,
  399. };
  400. /*
  401. * This routine is called to map an inode to the buffer containing the on-disk
  402. * version of the inode. It returns a pointer to the buffer containing the
  403. * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
  404. * pointer to the on-disk inode within that buffer.
  405. *
  406. * If a non-zero error is returned, then the contents of bpp and dipp are
  407. * undefined.
  408. */
  409. int
  410. xfs_imap_to_bp(
  411. struct xfs_mount *mp,
  412. struct xfs_trans *tp,
  413. struct xfs_imap *imap,
  414. struct xfs_dinode **dipp,
  415. struct xfs_buf **bpp,
  416. uint buf_flags,
  417. uint iget_flags)
  418. {
  419. struct xfs_buf *bp;
  420. int error;
  421. buf_flags |= XBF_UNMAPPED;
  422. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  423. (int)imap->im_len, buf_flags, &bp,
  424. &xfs_inode_buf_ops);
  425. if (error) {
  426. if (error == EAGAIN) {
  427. ASSERT(buf_flags & XBF_TRYLOCK);
  428. return error;
  429. }
  430. if (error == EFSCORRUPTED &&
  431. (iget_flags & XFS_IGET_UNTRUSTED))
  432. return XFS_ERROR(EINVAL);
  433. xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
  434. __func__, error);
  435. return error;
  436. }
  437. *bpp = bp;
  438. *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
  439. return 0;
  440. }
  441. /*
  442. * Move inode type and inode format specific information from the
  443. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  444. * this means set if_rdev to the proper value. For files, directories,
  445. * and symlinks this means to bring in the in-line data or extent
  446. * pointers. For a file in B-tree format, only the root is immediately
  447. * brought in-core. The rest will be in-lined in if_extents when it
  448. * is first referenced (see xfs_iread_extents()).
  449. */
  450. STATIC int
  451. xfs_iformat(
  452. xfs_inode_t *ip,
  453. xfs_dinode_t *dip)
  454. {
  455. xfs_attr_shortform_t *atp;
  456. int size;
  457. int error = 0;
  458. xfs_fsize_t di_size;
  459. if (unlikely(be32_to_cpu(dip->di_nextents) +
  460. be16_to_cpu(dip->di_anextents) >
  461. be64_to_cpu(dip->di_nblocks))) {
  462. xfs_warn(ip->i_mount,
  463. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  464. (unsigned long long)ip->i_ino,
  465. (int)(be32_to_cpu(dip->di_nextents) +
  466. be16_to_cpu(dip->di_anextents)),
  467. (unsigned long long)
  468. be64_to_cpu(dip->di_nblocks));
  469. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  470. ip->i_mount, dip);
  471. return XFS_ERROR(EFSCORRUPTED);
  472. }
  473. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  474. xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
  475. (unsigned long long)ip->i_ino,
  476. dip->di_forkoff);
  477. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  478. ip->i_mount, dip);
  479. return XFS_ERROR(EFSCORRUPTED);
  480. }
  481. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  482. !ip->i_mount->m_rtdev_targp)) {
  483. xfs_warn(ip->i_mount,
  484. "corrupt dinode %Lu, has realtime flag set.",
  485. ip->i_ino);
  486. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  487. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  488. return XFS_ERROR(EFSCORRUPTED);
  489. }
  490. switch (ip->i_d.di_mode & S_IFMT) {
  491. case S_IFIFO:
  492. case S_IFCHR:
  493. case S_IFBLK:
  494. case S_IFSOCK:
  495. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  496. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  497. ip->i_mount, dip);
  498. return XFS_ERROR(EFSCORRUPTED);
  499. }
  500. ip->i_d.di_size = 0;
  501. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  502. break;
  503. case S_IFREG:
  504. case S_IFLNK:
  505. case S_IFDIR:
  506. switch (dip->di_format) {
  507. case XFS_DINODE_FMT_LOCAL:
  508. /*
  509. * no local regular files yet
  510. */
  511. if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
  512. xfs_warn(ip->i_mount,
  513. "corrupt inode %Lu (local format for regular file).",
  514. (unsigned long long) ip->i_ino);
  515. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  516. XFS_ERRLEVEL_LOW,
  517. ip->i_mount, dip);
  518. return XFS_ERROR(EFSCORRUPTED);
  519. }
  520. di_size = be64_to_cpu(dip->di_size);
  521. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  522. xfs_warn(ip->i_mount,
  523. "corrupt inode %Lu (bad size %Ld for local inode).",
  524. (unsigned long long) ip->i_ino,
  525. (long long) di_size);
  526. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  527. XFS_ERRLEVEL_LOW,
  528. ip->i_mount, dip);
  529. return XFS_ERROR(EFSCORRUPTED);
  530. }
  531. size = (int)di_size;
  532. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  533. break;
  534. case XFS_DINODE_FMT_EXTENTS:
  535. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  536. break;
  537. case XFS_DINODE_FMT_BTREE:
  538. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  539. break;
  540. default:
  541. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  542. ip->i_mount);
  543. return XFS_ERROR(EFSCORRUPTED);
  544. }
  545. break;
  546. default:
  547. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  548. return XFS_ERROR(EFSCORRUPTED);
  549. }
  550. if (error) {
  551. return error;
  552. }
  553. if (!XFS_DFORK_Q(dip))
  554. return 0;
  555. ASSERT(ip->i_afp == NULL);
  556. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  557. switch (dip->di_aformat) {
  558. case XFS_DINODE_FMT_LOCAL:
  559. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  560. size = be16_to_cpu(atp->hdr.totsize);
  561. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  562. xfs_warn(ip->i_mount,
  563. "corrupt inode %Lu (bad attr fork size %Ld).",
  564. (unsigned long long) ip->i_ino,
  565. (long long) size);
  566. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  567. XFS_ERRLEVEL_LOW,
  568. ip->i_mount, dip);
  569. return XFS_ERROR(EFSCORRUPTED);
  570. }
  571. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  572. break;
  573. case XFS_DINODE_FMT_EXTENTS:
  574. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  575. break;
  576. case XFS_DINODE_FMT_BTREE:
  577. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  578. break;
  579. default:
  580. error = XFS_ERROR(EFSCORRUPTED);
  581. break;
  582. }
  583. if (error) {
  584. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  585. ip->i_afp = NULL;
  586. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  587. }
  588. return error;
  589. }
  590. /*
  591. * The file is in-lined in the on-disk inode.
  592. * If it fits into if_inline_data, then copy
  593. * it there, otherwise allocate a buffer for it
  594. * and copy the data there. Either way, set
  595. * if_data to point at the data.
  596. * If we allocate a buffer for the data, make
  597. * sure that its size is a multiple of 4 and
  598. * record the real size in i_real_bytes.
  599. */
  600. STATIC int
  601. xfs_iformat_local(
  602. xfs_inode_t *ip,
  603. xfs_dinode_t *dip,
  604. int whichfork,
  605. int size)
  606. {
  607. xfs_ifork_t *ifp;
  608. int real_size;
  609. /*
  610. * If the size is unreasonable, then something
  611. * is wrong and we just bail out rather than crash in
  612. * kmem_alloc() or memcpy() below.
  613. */
  614. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  615. xfs_warn(ip->i_mount,
  616. "corrupt inode %Lu (bad size %d for local fork, size = %d).",
  617. (unsigned long long) ip->i_ino, size,
  618. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  619. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  620. ip->i_mount, dip);
  621. return XFS_ERROR(EFSCORRUPTED);
  622. }
  623. ifp = XFS_IFORK_PTR(ip, whichfork);
  624. real_size = 0;
  625. if (size == 0)
  626. ifp->if_u1.if_data = NULL;
  627. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  628. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  629. else {
  630. real_size = roundup(size, 4);
  631. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  632. }
  633. ifp->if_bytes = size;
  634. ifp->if_real_bytes = real_size;
  635. if (size)
  636. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  637. ifp->if_flags &= ~XFS_IFEXTENTS;
  638. ifp->if_flags |= XFS_IFINLINE;
  639. return 0;
  640. }
  641. /*
  642. * The file consists of a set of extents all
  643. * of which fit into the on-disk inode.
  644. * If there are few enough extents to fit into
  645. * the if_inline_ext, then copy them there.
  646. * Otherwise allocate a buffer for them and copy
  647. * them into it. Either way, set if_extents
  648. * to point at the extents.
  649. */
  650. STATIC int
  651. xfs_iformat_extents(
  652. xfs_inode_t *ip,
  653. xfs_dinode_t *dip,
  654. int whichfork)
  655. {
  656. xfs_bmbt_rec_t *dp;
  657. xfs_ifork_t *ifp;
  658. int nex;
  659. int size;
  660. int i;
  661. ifp = XFS_IFORK_PTR(ip, whichfork);
  662. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  663. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  664. /*
  665. * If the number of extents is unreasonable, then something
  666. * is wrong and we just bail out rather than crash in
  667. * kmem_alloc() or memcpy() below.
  668. */
  669. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  670. xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
  671. (unsigned long long) ip->i_ino, nex);
  672. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  673. ip->i_mount, dip);
  674. return XFS_ERROR(EFSCORRUPTED);
  675. }
  676. ifp->if_real_bytes = 0;
  677. if (nex == 0)
  678. ifp->if_u1.if_extents = NULL;
  679. else if (nex <= XFS_INLINE_EXTS)
  680. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  681. else
  682. xfs_iext_add(ifp, 0, nex);
  683. ifp->if_bytes = size;
  684. if (size) {
  685. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  686. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  687. for (i = 0; i < nex; i++, dp++) {
  688. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  689. ep->l0 = get_unaligned_be64(&dp->l0);
  690. ep->l1 = get_unaligned_be64(&dp->l1);
  691. }
  692. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  693. if (whichfork != XFS_DATA_FORK ||
  694. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  695. if (unlikely(xfs_check_nostate_extents(
  696. ifp, 0, nex))) {
  697. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  698. XFS_ERRLEVEL_LOW,
  699. ip->i_mount);
  700. return XFS_ERROR(EFSCORRUPTED);
  701. }
  702. }
  703. ifp->if_flags |= XFS_IFEXTENTS;
  704. return 0;
  705. }
  706. /*
  707. * The file has too many extents to fit into
  708. * the inode, so they are in B-tree format.
  709. * Allocate a buffer for the root of the B-tree
  710. * and copy the root into it. The i_extents
  711. * field will remain NULL until all of the
  712. * extents are read in (when they are needed).
  713. */
  714. STATIC int
  715. xfs_iformat_btree(
  716. xfs_inode_t *ip,
  717. xfs_dinode_t *dip,
  718. int whichfork)
  719. {
  720. struct xfs_mount *mp = ip->i_mount;
  721. xfs_bmdr_block_t *dfp;
  722. xfs_ifork_t *ifp;
  723. /* REFERENCED */
  724. int nrecs;
  725. int size;
  726. ifp = XFS_IFORK_PTR(ip, whichfork);
  727. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  728. size = XFS_BMAP_BROOT_SPACE(mp, dfp);
  729. nrecs = be16_to_cpu(dfp->bb_numrecs);
  730. /*
  731. * blow out if -- fork has less extents than can fit in
  732. * fork (fork shouldn't be a btree format), root btree
  733. * block has more records than can fit into the fork,
  734. * or the number of extents is greater than the number of
  735. * blocks.
  736. */
  737. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
  738. XFS_IFORK_MAXEXT(ip, whichfork) ||
  739. XFS_BMDR_SPACE_CALC(nrecs) >
  740. XFS_DFORK_SIZE(dip, mp, whichfork) ||
  741. XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  742. xfs_warn(mp, "corrupt inode %Lu (btree).",
  743. (unsigned long long) ip->i_ino);
  744. XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  745. mp, dip);
  746. return XFS_ERROR(EFSCORRUPTED);
  747. }
  748. ifp->if_broot_bytes = size;
  749. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  750. ASSERT(ifp->if_broot != NULL);
  751. /*
  752. * Copy and convert from the on-disk structure
  753. * to the in-memory structure.
  754. */
  755. xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  756. ifp->if_broot, size);
  757. ifp->if_flags &= ~XFS_IFEXTENTS;
  758. ifp->if_flags |= XFS_IFBROOT;
  759. return 0;
  760. }
  761. STATIC void
  762. xfs_dinode_from_disk(
  763. xfs_icdinode_t *to,
  764. xfs_dinode_t *from)
  765. {
  766. to->di_magic = be16_to_cpu(from->di_magic);
  767. to->di_mode = be16_to_cpu(from->di_mode);
  768. to->di_version = from ->di_version;
  769. to->di_format = from->di_format;
  770. to->di_onlink = be16_to_cpu(from->di_onlink);
  771. to->di_uid = be32_to_cpu(from->di_uid);
  772. to->di_gid = be32_to_cpu(from->di_gid);
  773. to->di_nlink = be32_to_cpu(from->di_nlink);
  774. to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
  775. to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
  776. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  777. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  778. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  779. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  780. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  781. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  782. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  783. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  784. to->di_size = be64_to_cpu(from->di_size);
  785. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  786. to->di_extsize = be32_to_cpu(from->di_extsize);
  787. to->di_nextents = be32_to_cpu(from->di_nextents);
  788. to->di_anextents = be16_to_cpu(from->di_anextents);
  789. to->di_forkoff = from->di_forkoff;
  790. to->di_aformat = from->di_aformat;
  791. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  792. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  793. to->di_flags = be16_to_cpu(from->di_flags);
  794. to->di_gen = be32_to_cpu(from->di_gen);
  795. if (to->di_version == 3) {
  796. to->di_changecount = be64_to_cpu(from->di_changecount);
  797. to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
  798. to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
  799. to->di_flags2 = be64_to_cpu(from->di_flags2);
  800. to->di_ino = be64_to_cpu(from->di_ino);
  801. to->di_lsn = be64_to_cpu(from->di_lsn);
  802. memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
  803. uuid_copy(&to->di_uuid, &from->di_uuid);
  804. }
  805. }
  806. void
  807. xfs_dinode_to_disk(
  808. xfs_dinode_t *to,
  809. xfs_icdinode_t *from)
  810. {
  811. to->di_magic = cpu_to_be16(from->di_magic);
  812. to->di_mode = cpu_to_be16(from->di_mode);
  813. to->di_version = from ->di_version;
  814. to->di_format = from->di_format;
  815. to->di_onlink = cpu_to_be16(from->di_onlink);
  816. to->di_uid = cpu_to_be32(from->di_uid);
  817. to->di_gid = cpu_to_be32(from->di_gid);
  818. to->di_nlink = cpu_to_be32(from->di_nlink);
  819. to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
  820. to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
  821. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  822. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  823. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  824. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  825. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  826. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  827. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  828. to->di_size = cpu_to_be64(from->di_size);
  829. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  830. to->di_extsize = cpu_to_be32(from->di_extsize);
  831. to->di_nextents = cpu_to_be32(from->di_nextents);
  832. to->di_anextents = cpu_to_be16(from->di_anextents);
  833. to->di_forkoff = from->di_forkoff;
  834. to->di_aformat = from->di_aformat;
  835. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  836. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  837. to->di_flags = cpu_to_be16(from->di_flags);
  838. to->di_gen = cpu_to_be32(from->di_gen);
  839. if (from->di_version == 3) {
  840. to->di_changecount = cpu_to_be64(from->di_changecount);
  841. to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
  842. to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
  843. to->di_flags2 = cpu_to_be64(from->di_flags2);
  844. to->di_ino = cpu_to_be64(from->di_ino);
  845. to->di_lsn = cpu_to_be64(from->di_lsn);
  846. memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
  847. uuid_copy(&to->di_uuid, &from->di_uuid);
  848. to->di_flushiter = 0;
  849. } else {
  850. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  851. }
  852. }
  853. STATIC uint
  854. _xfs_dic2xflags(
  855. __uint16_t di_flags)
  856. {
  857. uint flags = 0;
  858. if (di_flags & XFS_DIFLAG_ANY) {
  859. if (di_flags & XFS_DIFLAG_REALTIME)
  860. flags |= XFS_XFLAG_REALTIME;
  861. if (di_flags & XFS_DIFLAG_PREALLOC)
  862. flags |= XFS_XFLAG_PREALLOC;
  863. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  864. flags |= XFS_XFLAG_IMMUTABLE;
  865. if (di_flags & XFS_DIFLAG_APPEND)
  866. flags |= XFS_XFLAG_APPEND;
  867. if (di_flags & XFS_DIFLAG_SYNC)
  868. flags |= XFS_XFLAG_SYNC;
  869. if (di_flags & XFS_DIFLAG_NOATIME)
  870. flags |= XFS_XFLAG_NOATIME;
  871. if (di_flags & XFS_DIFLAG_NODUMP)
  872. flags |= XFS_XFLAG_NODUMP;
  873. if (di_flags & XFS_DIFLAG_RTINHERIT)
  874. flags |= XFS_XFLAG_RTINHERIT;
  875. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  876. flags |= XFS_XFLAG_PROJINHERIT;
  877. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  878. flags |= XFS_XFLAG_NOSYMLINKS;
  879. if (di_flags & XFS_DIFLAG_EXTSIZE)
  880. flags |= XFS_XFLAG_EXTSIZE;
  881. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  882. flags |= XFS_XFLAG_EXTSZINHERIT;
  883. if (di_flags & XFS_DIFLAG_NODEFRAG)
  884. flags |= XFS_XFLAG_NODEFRAG;
  885. if (di_flags & XFS_DIFLAG_FILESTREAM)
  886. flags |= XFS_XFLAG_FILESTREAM;
  887. }
  888. return flags;
  889. }
  890. uint
  891. xfs_ip2xflags(
  892. xfs_inode_t *ip)
  893. {
  894. xfs_icdinode_t *dic = &ip->i_d;
  895. return _xfs_dic2xflags(dic->di_flags) |
  896. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  897. }
  898. uint
  899. xfs_dic2xflags(
  900. xfs_dinode_t *dip)
  901. {
  902. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  903. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  904. }
  905. static bool
  906. xfs_dinode_verify(
  907. struct xfs_mount *mp,
  908. struct xfs_inode *ip,
  909. struct xfs_dinode *dip)
  910. {
  911. if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
  912. return false;
  913. /* only version 3 or greater inodes are extensively verified here */
  914. if (dip->di_version < 3)
  915. return true;
  916. if (!xfs_sb_version_hascrc(&mp->m_sb))
  917. return false;
  918. if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
  919. offsetof(struct xfs_dinode, di_crc)))
  920. return false;
  921. if (be64_to_cpu(dip->di_ino) != ip->i_ino)
  922. return false;
  923. if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_uuid))
  924. return false;
  925. return true;
  926. }
  927. void
  928. xfs_dinode_calc_crc(
  929. struct xfs_mount *mp,
  930. struct xfs_dinode *dip)
  931. {
  932. __uint32_t crc;
  933. if (dip->di_version < 3)
  934. return;
  935. ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
  936. crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize,
  937. offsetof(struct xfs_dinode, di_crc));
  938. dip->di_crc = xfs_end_cksum(crc);
  939. }
  940. /*
  941. * Read the disk inode attributes into the in-core inode structure.
  942. *
  943. * For version 5 superblocks, if we are initialising a new inode and we are not
  944. * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
  945. * inode core with a random generation number. If we are keeping inodes around,
  946. * we need to read the inode cluster to get the existing generation number off
  947. * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
  948. * format) then log recovery is dependent on the di_flushiter field being
  949. * initialised from the current on-disk value and hence we must also read the
  950. * inode off disk.
  951. */
  952. int
  953. xfs_iread(
  954. xfs_mount_t *mp,
  955. xfs_trans_t *tp,
  956. xfs_inode_t *ip,
  957. uint iget_flags)
  958. {
  959. xfs_buf_t *bp;
  960. xfs_dinode_t *dip;
  961. int error;
  962. /*
  963. * Fill in the location information in the in-core inode.
  964. */
  965. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  966. if (error)
  967. return error;
  968. /* shortcut IO on inode allocation if possible */
  969. if ((iget_flags & XFS_IGET_CREATE) &&
  970. xfs_sb_version_hascrc(&mp->m_sb) &&
  971. !(mp->m_flags & XFS_MOUNT_IKEEP)) {
  972. /* initialise the on-disk inode core */
  973. memset(&ip->i_d, 0, sizeof(ip->i_d));
  974. ip->i_d.di_magic = XFS_DINODE_MAGIC;
  975. ip->i_d.di_gen = prandom_u32();
  976. if (xfs_sb_version_hascrc(&mp->m_sb)) {
  977. ip->i_d.di_version = 3;
  978. ip->i_d.di_ino = ip->i_ino;
  979. uuid_copy(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid);
  980. } else
  981. ip->i_d.di_version = 2;
  982. return 0;
  983. }
  984. /*
  985. * Get pointers to the on-disk inode and the buffer containing it.
  986. */
  987. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
  988. if (error)
  989. return error;
  990. /* even unallocated inodes are verified */
  991. if (!xfs_dinode_verify(mp, ip, dip)) {
  992. xfs_alert(mp, "%s: validation failed for inode %lld failed",
  993. __func__, ip->i_ino);
  994. XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip);
  995. error = XFS_ERROR(EFSCORRUPTED);
  996. goto out_brelse;
  997. }
  998. /*
  999. * If the on-disk inode is already linked to a directory
  1000. * entry, copy all of the inode into the in-core inode.
  1001. * xfs_iformat() handles copying in the inode format
  1002. * specific information.
  1003. * Otherwise, just get the truly permanent information.
  1004. */
  1005. if (dip->di_mode) {
  1006. xfs_dinode_from_disk(&ip->i_d, dip);
  1007. error = xfs_iformat(ip, dip);
  1008. if (error) {
  1009. #ifdef DEBUG
  1010. xfs_alert(mp, "%s: xfs_iformat() returned error %d",
  1011. __func__, error);
  1012. #endif /* DEBUG */
  1013. goto out_brelse;
  1014. }
  1015. } else {
  1016. /*
  1017. * Partial initialisation of the in-core inode. Just the bits
  1018. * that xfs_ialloc won't overwrite or relies on being correct.
  1019. */
  1020. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  1021. ip->i_d.di_version = dip->di_version;
  1022. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  1023. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  1024. if (dip->di_version == 3) {
  1025. ip->i_d.di_ino = be64_to_cpu(dip->di_ino);
  1026. uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid);
  1027. }
  1028. /*
  1029. * Make sure to pull in the mode here as well in
  1030. * case the inode is released without being used.
  1031. * This ensures that xfs_inactive() will see that
  1032. * the inode is already free and not try to mess
  1033. * with the uninitialized part of it.
  1034. */
  1035. ip->i_d.di_mode = 0;
  1036. }
  1037. /*
  1038. * The inode format changed when we moved the link count and
  1039. * made it 32 bits long. If this is an old format inode,
  1040. * convert it in memory to look like a new one. If it gets
  1041. * flushed to disk we will convert back before flushing or
  1042. * logging it. We zero out the new projid field and the old link
  1043. * count field. We'll handle clearing the pad field (the remains
  1044. * of the old uuid field) when we actually convert the inode to
  1045. * the new format. We don't change the version number so that we
  1046. * can distinguish this from a real new format inode.
  1047. */
  1048. if (ip->i_d.di_version == 1) {
  1049. ip->i_d.di_nlink = ip->i_d.di_onlink;
  1050. ip->i_d.di_onlink = 0;
  1051. xfs_set_projid(ip, 0);
  1052. }
  1053. ip->i_delayed_blks = 0;
  1054. /*
  1055. * Mark the buffer containing the inode as something to keep
  1056. * around for a while. This helps to keep recently accessed
  1057. * meta-data in-core longer.
  1058. */
  1059. xfs_buf_set_ref(bp, XFS_INO_REF);
  1060. /*
  1061. * Use xfs_trans_brelse() to release the buffer containing the on-disk
  1062. * inode, because it was acquired with xfs_trans_read_buf() in
  1063. * xfs_imap_to_bp() above. If tp is NULL, this is just a normal
  1064. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  1065. * will only release the buffer if it is not dirty within the
  1066. * transaction. It will be OK to release the buffer in this case,
  1067. * because inodes on disk are never destroyed and we will be locking the
  1068. * new in-core inode before putting it in the cache where other
  1069. * processes can find it. Thus we don't have to worry about the inode
  1070. * being changed just because we released the buffer.
  1071. */
  1072. out_brelse:
  1073. xfs_trans_brelse(tp, bp);
  1074. return error;
  1075. }
  1076. /*
  1077. * Read in extents from a btree-format inode.
  1078. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  1079. */
  1080. int
  1081. xfs_iread_extents(
  1082. xfs_trans_t *tp,
  1083. xfs_inode_t *ip,
  1084. int whichfork)
  1085. {
  1086. int error;
  1087. xfs_ifork_t *ifp;
  1088. xfs_extnum_t nextents;
  1089. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  1090. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  1091. ip->i_mount);
  1092. return XFS_ERROR(EFSCORRUPTED);
  1093. }
  1094. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  1095. ifp = XFS_IFORK_PTR(ip, whichfork);
  1096. /*
  1097. * We know that the size is valid (it's checked in iformat_btree)
  1098. */
  1099. ifp->if_bytes = ifp->if_real_bytes = 0;
  1100. ifp->if_flags |= XFS_IFEXTENTS;
  1101. xfs_iext_add(ifp, 0, nextents);
  1102. error = xfs_bmap_read_extents(tp, ip, whichfork);
  1103. if (error) {
  1104. xfs_iext_destroy(ifp);
  1105. ifp->if_flags &= ~XFS_IFEXTENTS;
  1106. return error;
  1107. }
  1108. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  1109. return 0;
  1110. }
  1111. /*
  1112. * Allocate an inode on disk and return a copy of its in-core version.
  1113. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  1114. * appropriately within the inode. The uid and gid for the inode are
  1115. * set according to the contents of the given cred structure.
  1116. *
  1117. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  1118. * has a free inode available, call xfs_iget() to obtain the in-core
  1119. * version of the allocated inode. Finally, fill in the inode and
  1120. * log its initial contents. In this case, ialloc_context would be
  1121. * set to NULL.
  1122. *
  1123. * If xfs_dialloc() does not have an available inode, it will replenish
  1124. * its supply by doing an allocation. Since we can only do one
  1125. * allocation within a transaction without deadlocks, we must commit
  1126. * the current transaction before returning the inode itself.
  1127. * In this case, therefore, we will set ialloc_context and return.
  1128. * The caller should then commit the current transaction, start a new
  1129. * transaction, and call xfs_ialloc() again to actually get the inode.
  1130. *
  1131. * To ensure that some other process does not grab the inode that
  1132. * was allocated during the first call to xfs_ialloc(), this routine
  1133. * also returns the [locked] bp pointing to the head of the freelist
  1134. * as ialloc_context. The caller should hold this buffer across
  1135. * the commit and pass it back into this routine on the second call.
  1136. *
  1137. * If we are allocating quota inodes, we do not have a parent inode
  1138. * to attach to or associate with (i.e. pip == NULL) because they
  1139. * are not linked into the directory structure - they are attached
  1140. * directly to the superblock - and so have no parent.
  1141. */
  1142. int
  1143. xfs_ialloc(
  1144. xfs_trans_t *tp,
  1145. xfs_inode_t *pip,
  1146. umode_t mode,
  1147. xfs_nlink_t nlink,
  1148. xfs_dev_t rdev,
  1149. prid_t prid,
  1150. int okalloc,
  1151. xfs_buf_t **ialloc_context,
  1152. xfs_inode_t **ipp)
  1153. {
  1154. struct xfs_mount *mp = tp->t_mountp;
  1155. xfs_ino_t ino;
  1156. xfs_inode_t *ip;
  1157. uint flags;
  1158. int error;
  1159. timespec_t tv;
  1160. int filestreams = 0;
  1161. /*
  1162. * Call the space management code to pick
  1163. * the on-disk inode to be allocated.
  1164. */
  1165. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1166. ialloc_context, &ino);
  1167. if (error)
  1168. return error;
  1169. if (*ialloc_context || ino == NULLFSINO) {
  1170. *ipp = NULL;
  1171. return 0;
  1172. }
  1173. ASSERT(*ialloc_context == NULL);
  1174. /*
  1175. * Get the in-core inode with the lock held exclusively.
  1176. * This is because we're setting fields here we need
  1177. * to prevent others from looking at until we're done.
  1178. */
  1179. error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
  1180. XFS_ILOCK_EXCL, &ip);
  1181. if (error)
  1182. return error;
  1183. ASSERT(ip != NULL);
  1184. ip->i_d.di_mode = mode;
  1185. ip->i_d.di_onlink = 0;
  1186. ip->i_d.di_nlink = nlink;
  1187. ASSERT(ip->i_d.di_nlink == nlink);
  1188. ip->i_d.di_uid = current_fsuid();
  1189. ip->i_d.di_gid = current_fsgid();
  1190. xfs_set_projid(ip, prid);
  1191. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1192. /*
  1193. * If the superblock version is up to where we support new format
  1194. * inodes and this is currently an old format inode, then change
  1195. * the inode version number now. This way we only do the conversion
  1196. * here rather than here and in the flush/logging code.
  1197. */
  1198. if (xfs_sb_version_hasnlink(&mp->m_sb) &&
  1199. ip->i_d.di_version == 1) {
  1200. ip->i_d.di_version = 2;
  1201. /*
  1202. * We've already zeroed the old link count, the projid field,
  1203. * and the pad field.
  1204. */
  1205. }
  1206. /*
  1207. * Project ids won't be stored on disk if we are using a version 1 inode.
  1208. */
  1209. if ((prid != 0) && (ip->i_d.di_version == 1))
  1210. xfs_bump_ino_vers2(tp, ip);
  1211. if (pip && XFS_INHERIT_GID(pip)) {
  1212. ip->i_d.di_gid = pip->i_d.di_gid;
  1213. if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
  1214. ip->i_d.di_mode |= S_ISGID;
  1215. }
  1216. }
  1217. /*
  1218. * If the group ID of the new file does not match the effective group
  1219. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1220. * (and only if the irix_sgid_inherit compatibility variable is set).
  1221. */
  1222. if ((irix_sgid_inherit) &&
  1223. (ip->i_d.di_mode & S_ISGID) &&
  1224. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1225. ip->i_d.di_mode &= ~S_ISGID;
  1226. }
  1227. ip->i_d.di_size = 0;
  1228. ip->i_d.di_nextents = 0;
  1229. ASSERT(ip->i_d.di_nblocks == 0);
  1230. nanotime(&tv);
  1231. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  1232. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1233. ip->i_d.di_atime = ip->i_d.di_mtime;
  1234. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1235. /*
  1236. * di_gen will have been taken care of in xfs_iread.
  1237. */
  1238. ip->i_d.di_extsize = 0;
  1239. ip->i_d.di_dmevmask = 0;
  1240. ip->i_d.di_dmstate = 0;
  1241. ip->i_d.di_flags = 0;
  1242. if (ip->i_d.di_version == 3) {
  1243. ASSERT(ip->i_d.di_ino == ino);
  1244. ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
  1245. ip->i_d.di_crc = 0;
  1246. ip->i_d.di_changecount = 1;
  1247. ip->i_d.di_lsn = 0;
  1248. ip->i_d.di_flags2 = 0;
  1249. memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
  1250. ip->i_d.di_crtime = ip->i_d.di_mtime;
  1251. }
  1252. flags = XFS_ILOG_CORE;
  1253. switch (mode & S_IFMT) {
  1254. case S_IFIFO:
  1255. case S_IFCHR:
  1256. case S_IFBLK:
  1257. case S_IFSOCK:
  1258. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1259. ip->i_df.if_u2.if_rdev = rdev;
  1260. ip->i_df.if_flags = 0;
  1261. flags |= XFS_ILOG_DEV;
  1262. break;
  1263. case S_IFREG:
  1264. /*
  1265. * we can't set up filestreams until after the VFS inode
  1266. * is set up properly.
  1267. */
  1268. if (pip && xfs_inode_is_filestream(pip))
  1269. filestreams = 1;
  1270. /* fall through */
  1271. case S_IFDIR:
  1272. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1273. uint di_flags = 0;
  1274. if (S_ISDIR(mode)) {
  1275. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1276. di_flags |= XFS_DIFLAG_RTINHERIT;
  1277. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1278. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1279. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1280. }
  1281. } else if (S_ISREG(mode)) {
  1282. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1283. di_flags |= XFS_DIFLAG_REALTIME;
  1284. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1285. di_flags |= XFS_DIFLAG_EXTSIZE;
  1286. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1287. }
  1288. }
  1289. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1290. xfs_inherit_noatime)
  1291. di_flags |= XFS_DIFLAG_NOATIME;
  1292. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1293. xfs_inherit_nodump)
  1294. di_flags |= XFS_DIFLAG_NODUMP;
  1295. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1296. xfs_inherit_sync)
  1297. di_flags |= XFS_DIFLAG_SYNC;
  1298. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1299. xfs_inherit_nosymlinks)
  1300. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1301. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1302. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1303. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1304. xfs_inherit_nodefrag)
  1305. di_flags |= XFS_DIFLAG_NODEFRAG;
  1306. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1307. di_flags |= XFS_DIFLAG_FILESTREAM;
  1308. ip->i_d.di_flags |= di_flags;
  1309. }
  1310. /* FALLTHROUGH */
  1311. case S_IFLNK:
  1312. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1313. ip->i_df.if_flags = XFS_IFEXTENTS;
  1314. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1315. ip->i_df.if_u1.if_extents = NULL;
  1316. break;
  1317. default:
  1318. ASSERT(0);
  1319. }
  1320. /*
  1321. * Attribute fork settings for new inode.
  1322. */
  1323. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1324. ip->i_d.di_anextents = 0;
  1325. /*
  1326. * Log the new values stuffed into the inode.
  1327. */
  1328. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  1329. xfs_trans_log_inode(tp, ip, flags);
  1330. /* now that we have an i_mode we can setup inode ops and unlock */
  1331. xfs_setup_inode(ip);
  1332. /* now we have set up the vfs inode we can associate the filestream */
  1333. if (filestreams) {
  1334. error = xfs_filestream_associate(pip, ip);
  1335. if (error < 0)
  1336. return -error;
  1337. if (!error)
  1338. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1339. }
  1340. *ipp = ip;
  1341. return 0;
  1342. }
  1343. /*
  1344. * Free up the underlying blocks past new_size. The new size must be smaller
  1345. * than the current size. This routine can be used both for the attribute and
  1346. * data fork, and does not modify the inode size, which is left to the caller.
  1347. *
  1348. * The transaction passed to this routine must have made a permanent log
  1349. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1350. * given transaction and start new ones, so make sure everything involved in
  1351. * the transaction is tidy before calling here. Some transaction will be
  1352. * returned to the caller to be committed. The incoming transaction must
  1353. * already include the inode, and both inode locks must be held exclusively.
  1354. * The inode must also be "held" within the transaction. On return the inode
  1355. * will be "held" within the returned transaction. This routine does NOT
  1356. * require any disk space to be reserved for it within the transaction.
  1357. *
  1358. * If we get an error, we must return with the inode locked and linked into the
  1359. * current transaction. This keeps things simple for the higher level code,
  1360. * because it always knows that the inode is locked and held in the transaction
  1361. * that returns to it whether errors occur or not. We don't mark the inode
  1362. * dirty on error so that transactions can be easily aborted if possible.
  1363. */
  1364. int
  1365. xfs_itruncate_extents(
  1366. struct xfs_trans **tpp,
  1367. struct xfs_inode *ip,
  1368. int whichfork,
  1369. xfs_fsize_t new_size)
  1370. {
  1371. struct xfs_mount *mp = ip->i_mount;
  1372. struct xfs_trans *tp = *tpp;
  1373. struct xfs_trans *ntp;
  1374. xfs_bmap_free_t free_list;
  1375. xfs_fsblock_t first_block;
  1376. xfs_fileoff_t first_unmap_block;
  1377. xfs_fileoff_t last_block;
  1378. xfs_filblks_t unmap_len;
  1379. int committed;
  1380. int error = 0;
  1381. int done = 0;
  1382. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1383. ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
  1384. xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1385. ASSERT(new_size <= XFS_ISIZE(ip));
  1386. ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
  1387. ASSERT(ip->i_itemp != NULL);
  1388. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1389. ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
  1390. trace_xfs_itruncate_extents_start(ip, new_size);
  1391. /*
  1392. * Since it is possible for space to become allocated beyond
  1393. * the end of the file (in a crash where the space is allocated
  1394. * but the inode size is not yet updated), simply remove any
  1395. * blocks which show up between the new EOF and the maximum
  1396. * possible file size. If the first block to be removed is
  1397. * beyond the maximum file size (ie it is the same as last_block),
  1398. * then there is nothing to do.
  1399. */
  1400. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1401. last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
  1402. if (first_unmap_block == last_block)
  1403. return 0;
  1404. ASSERT(first_unmap_block < last_block);
  1405. unmap_len = last_block - first_unmap_block + 1;
  1406. while (!done) {
  1407. xfs_bmap_init(&free_list, &first_block);
  1408. error = xfs_bunmapi(tp, ip,
  1409. first_unmap_block, unmap_len,
  1410. xfs_bmapi_aflag(whichfork),
  1411. XFS_ITRUNC_MAX_EXTENTS,
  1412. &first_block, &free_list,
  1413. &done);
  1414. if (error)
  1415. goto out_bmap_cancel;
  1416. /*
  1417. * Duplicate the transaction that has the permanent
  1418. * reservation and commit the old transaction.
  1419. */
  1420. error = xfs_bmap_finish(&tp, &free_list, &committed);
  1421. if (committed)
  1422. xfs_trans_ijoin(tp, ip, 0);
  1423. if (error)
  1424. goto out_bmap_cancel;
  1425. if (committed) {
  1426. /*
  1427. * Mark the inode dirty so it will be logged and
  1428. * moved forward in the log as part of every commit.
  1429. */
  1430. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1431. }
  1432. ntp = xfs_trans_dup(tp);
  1433. error = xfs_trans_commit(tp, 0);
  1434. tp = ntp;
  1435. xfs_trans_ijoin(tp, ip, 0);
  1436. if (error)
  1437. goto out;
  1438. /*
  1439. * Transaction commit worked ok so we can drop the extra ticket
  1440. * reference that we gained in xfs_trans_dup()
  1441. */
  1442. xfs_log_ticket_put(tp->t_ticket);
  1443. error = xfs_trans_reserve(tp, 0,
  1444. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1445. XFS_TRANS_PERM_LOG_RES,
  1446. XFS_ITRUNCATE_LOG_COUNT);
  1447. if (error)
  1448. goto out;
  1449. }
  1450. /*
  1451. * Always re-log the inode so that our permanent transaction can keep
  1452. * on rolling it forward in the log.
  1453. */
  1454. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1455. trace_xfs_itruncate_extents_end(ip, new_size);
  1456. out:
  1457. *tpp = tp;
  1458. return error;
  1459. out_bmap_cancel:
  1460. /*
  1461. * If the bunmapi call encounters an error, return to the caller where
  1462. * the transaction can be properly aborted. We just need to make sure
  1463. * we're not holding any resources that we were not when we came in.
  1464. */
  1465. xfs_bmap_cancel(&free_list);
  1466. goto out;
  1467. }
  1468. /*
  1469. * This is called when the inode's link count goes to 0.
  1470. * We place the on-disk inode on a list in the AGI. It
  1471. * will be pulled from this list when the inode is freed.
  1472. */
  1473. int
  1474. xfs_iunlink(
  1475. xfs_trans_t *tp,
  1476. xfs_inode_t *ip)
  1477. {
  1478. xfs_mount_t *mp;
  1479. xfs_agi_t *agi;
  1480. xfs_dinode_t *dip;
  1481. xfs_buf_t *agibp;
  1482. xfs_buf_t *ibp;
  1483. xfs_agino_t agino;
  1484. short bucket_index;
  1485. int offset;
  1486. int error;
  1487. ASSERT(ip->i_d.di_nlink == 0);
  1488. ASSERT(ip->i_d.di_mode != 0);
  1489. mp = tp->t_mountp;
  1490. /*
  1491. * Get the agi buffer first. It ensures lock ordering
  1492. * on the list.
  1493. */
  1494. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1495. if (error)
  1496. return error;
  1497. agi = XFS_BUF_TO_AGI(agibp);
  1498. /*
  1499. * Get the index into the agi hash table for the
  1500. * list this inode will go on.
  1501. */
  1502. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1503. ASSERT(agino != 0);
  1504. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1505. ASSERT(agi->agi_unlinked[bucket_index]);
  1506. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1507. if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
  1508. /*
  1509. * There is already another inode in the bucket we need
  1510. * to add ourselves to. Add us at the front of the list.
  1511. * Here we put the head pointer into our next pointer,
  1512. * and then we fall through to point the head at us.
  1513. */
  1514. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
  1515. 0, 0);
  1516. if (error)
  1517. return error;
  1518. ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
  1519. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1520. offset = ip->i_imap.im_boffset +
  1521. offsetof(xfs_dinode_t, di_next_unlinked);
  1522. /* need to recalc the inode CRC if appropriate */
  1523. xfs_dinode_calc_crc(mp, dip);
  1524. xfs_trans_inode_buf(tp, ibp);
  1525. xfs_trans_log_buf(tp, ibp, offset,
  1526. (offset + sizeof(xfs_agino_t) - 1));
  1527. xfs_inobp_check(mp, ibp);
  1528. }
  1529. /*
  1530. * Point the bucket head pointer at the inode being inserted.
  1531. */
  1532. ASSERT(agino != 0);
  1533. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1534. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1535. (sizeof(xfs_agino_t) * bucket_index);
  1536. xfs_trans_log_buf(tp, agibp, offset,
  1537. (offset + sizeof(xfs_agino_t) - 1));
  1538. return 0;
  1539. }
  1540. /*
  1541. * Pull the on-disk inode from the AGI unlinked list.
  1542. */
  1543. STATIC int
  1544. xfs_iunlink_remove(
  1545. xfs_trans_t *tp,
  1546. xfs_inode_t *ip)
  1547. {
  1548. xfs_ino_t next_ino;
  1549. xfs_mount_t *mp;
  1550. xfs_agi_t *agi;
  1551. xfs_dinode_t *dip;
  1552. xfs_buf_t *agibp;
  1553. xfs_buf_t *ibp;
  1554. xfs_agnumber_t agno;
  1555. xfs_agino_t agino;
  1556. xfs_agino_t next_agino;
  1557. xfs_buf_t *last_ibp;
  1558. xfs_dinode_t *last_dip = NULL;
  1559. short bucket_index;
  1560. int offset, last_offset = 0;
  1561. int error;
  1562. mp = tp->t_mountp;
  1563. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1564. /*
  1565. * Get the agi buffer first. It ensures lock ordering
  1566. * on the list.
  1567. */
  1568. error = xfs_read_agi(mp, tp, agno, &agibp);
  1569. if (error)
  1570. return error;
  1571. agi = XFS_BUF_TO_AGI(agibp);
  1572. /*
  1573. * Get the index into the agi hash table for the
  1574. * list this inode will go on.
  1575. */
  1576. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1577. ASSERT(agino != 0);
  1578. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1579. ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
  1580. ASSERT(agi->agi_unlinked[bucket_index]);
  1581. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1582. /*
  1583. * We're at the head of the list. Get the inode's on-disk
  1584. * buffer to see if there is anyone after us on the list.
  1585. * Only modify our next pointer if it is not already NULLAGINO.
  1586. * This saves us the overhead of dealing with the buffer when
  1587. * there is no need to change it.
  1588. */
  1589. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
  1590. 0, 0);
  1591. if (error) {
  1592. xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
  1593. __func__, error);
  1594. return error;
  1595. }
  1596. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1597. ASSERT(next_agino != 0);
  1598. if (next_agino != NULLAGINO) {
  1599. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1600. offset = ip->i_imap.im_boffset +
  1601. offsetof(xfs_dinode_t, di_next_unlinked);
  1602. /* need to recalc the inode CRC if appropriate */
  1603. xfs_dinode_calc_crc(mp, dip);
  1604. xfs_trans_inode_buf(tp, ibp);
  1605. xfs_trans_log_buf(tp, ibp, offset,
  1606. (offset + sizeof(xfs_agino_t) - 1));
  1607. xfs_inobp_check(mp, ibp);
  1608. } else {
  1609. xfs_trans_brelse(tp, ibp);
  1610. }
  1611. /*
  1612. * Point the bucket head pointer at the next inode.
  1613. */
  1614. ASSERT(next_agino != 0);
  1615. ASSERT(next_agino != agino);
  1616. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1617. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1618. (sizeof(xfs_agino_t) * bucket_index);
  1619. xfs_trans_log_buf(tp, agibp, offset,
  1620. (offset + sizeof(xfs_agino_t) - 1));
  1621. } else {
  1622. /*
  1623. * We need to search the list for the inode being freed.
  1624. */
  1625. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1626. last_ibp = NULL;
  1627. while (next_agino != agino) {
  1628. struct xfs_imap imap;
  1629. if (last_ibp)
  1630. xfs_trans_brelse(tp, last_ibp);
  1631. imap.im_blkno = 0;
  1632. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1633. error = xfs_imap(mp, tp, next_ino, &imap, 0);
  1634. if (error) {
  1635. xfs_warn(mp,
  1636. "%s: xfs_imap returned error %d.",
  1637. __func__, error);
  1638. return error;
  1639. }
  1640. error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
  1641. &last_ibp, 0, 0);
  1642. if (error) {
  1643. xfs_warn(mp,
  1644. "%s: xfs_imap_to_bp returned error %d.",
  1645. __func__, error);
  1646. return error;
  1647. }
  1648. last_offset = imap.im_boffset;
  1649. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1650. ASSERT(next_agino != NULLAGINO);
  1651. ASSERT(next_agino != 0);
  1652. }
  1653. /*
  1654. * Now last_ibp points to the buffer previous to us on the
  1655. * unlinked list. Pull us from the list.
  1656. */
  1657. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
  1658. 0, 0);
  1659. if (error) {
  1660. xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
  1661. __func__, error);
  1662. return error;
  1663. }
  1664. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1665. ASSERT(next_agino != 0);
  1666. ASSERT(next_agino != agino);
  1667. if (next_agino != NULLAGINO) {
  1668. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1669. offset = ip->i_imap.im_boffset +
  1670. offsetof(xfs_dinode_t, di_next_unlinked);
  1671. /* need to recalc the inode CRC if appropriate */
  1672. xfs_dinode_calc_crc(mp, dip);
  1673. xfs_trans_inode_buf(tp, ibp);
  1674. xfs_trans_log_buf(tp, ibp, offset,
  1675. (offset + sizeof(xfs_agino_t) - 1));
  1676. xfs_inobp_check(mp, ibp);
  1677. } else {
  1678. xfs_trans_brelse(tp, ibp);
  1679. }
  1680. /*
  1681. * Point the previous inode on the list to the next inode.
  1682. */
  1683. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1684. ASSERT(next_agino != 0);
  1685. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1686. /* need to recalc the inode CRC if appropriate */
  1687. xfs_dinode_calc_crc(mp, last_dip);
  1688. xfs_trans_inode_buf(tp, last_ibp);
  1689. xfs_trans_log_buf(tp, last_ibp, offset,
  1690. (offset + sizeof(xfs_agino_t) - 1));
  1691. xfs_inobp_check(mp, last_ibp);
  1692. }
  1693. return 0;
  1694. }
  1695. /*
  1696. * A big issue when freeing the inode cluster is is that we _cannot_ skip any
  1697. * inodes that are in memory - they all must be marked stale and attached to
  1698. * the cluster buffer.
  1699. */
  1700. STATIC int
  1701. xfs_ifree_cluster(
  1702. xfs_inode_t *free_ip,
  1703. xfs_trans_t *tp,
  1704. xfs_ino_t inum)
  1705. {
  1706. xfs_mount_t *mp = free_ip->i_mount;
  1707. int blks_per_cluster;
  1708. int nbufs;
  1709. int ninodes;
  1710. int i, j;
  1711. xfs_daddr_t blkno;
  1712. xfs_buf_t *bp;
  1713. xfs_inode_t *ip;
  1714. xfs_inode_log_item_t *iip;
  1715. xfs_log_item_t *lip;
  1716. struct xfs_perag *pag;
  1717. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1718. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1719. blks_per_cluster = 1;
  1720. ninodes = mp->m_sb.sb_inopblock;
  1721. nbufs = XFS_IALLOC_BLOCKS(mp);
  1722. } else {
  1723. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1724. mp->m_sb.sb_blocksize;
  1725. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1726. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1727. }
  1728. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1729. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1730. XFS_INO_TO_AGBNO(mp, inum));
  1731. /*
  1732. * We obtain and lock the backing buffer first in the process
  1733. * here, as we have to ensure that any dirty inode that we
  1734. * can't get the flush lock on is attached to the buffer.
  1735. * If we scan the in-memory inodes first, then buffer IO can
  1736. * complete before we get a lock on it, and hence we may fail
  1737. * to mark all the active inodes on the buffer stale.
  1738. */
  1739. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1740. mp->m_bsize * blks_per_cluster,
  1741. XBF_UNMAPPED);
  1742. if (!bp)
  1743. return ENOMEM;
  1744. /*
  1745. * This buffer may not have been correctly initialised as we
  1746. * didn't read it from disk. That's not important because we are
  1747. * only using to mark the buffer as stale in the log, and to
  1748. * attach stale cached inodes on it. That means it will never be
  1749. * dispatched for IO. If it is, we want to know about it, and we
  1750. * want it to fail. We can acheive this by adding a write
  1751. * verifier to the buffer.
  1752. */
  1753. bp->b_ops = &xfs_inode_buf_ops;
  1754. /*
  1755. * Walk the inodes already attached to the buffer and mark them
  1756. * stale. These will all have the flush locks held, so an
  1757. * in-memory inode walk can't lock them. By marking them all
  1758. * stale first, we will not attempt to lock them in the loop
  1759. * below as the XFS_ISTALE flag will be set.
  1760. */
  1761. lip = bp->b_fspriv;
  1762. while (lip) {
  1763. if (lip->li_type == XFS_LI_INODE) {
  1764. iip = (xfs_inode_log_item_t *)lip;
  1765. ASSERT(iip->ili_logged == 1);
  1766. lip->li_cb = xfs_istale_done;
  1767. xfs_trans_ail_copy_lsn(mp->m_ail,
  1768. &iip->ili_flush_lsn,
  1769. &iip->ili_item.li_lsn);
  1770. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1771. }
  1772. lip = lip->li_bio_list;
  1773. }
  1774. /*
  1775. * For each inode in memory attempt to add it to the inode
  1776. * buffer and set it up for being staled on buffer IO
  1777. * completion. This is safe as we've locked out tail pushing
  1778. * and flushing by locking the buffer.
  1779. *
  1780. * We have already marked every inode that was part of a
  1781. * transaction stale above, which means there is no point in
  1782. * even trying to lock them.
  1783. */
  1784. for (i = 0; i < ninodes; i++) {
  1785. retry:
  1786. rcu_read_lock();
  1787. ip = radix_tree_lookup(&pag->pag_ici_root,
  1788. XFS_INO_TO_AGINO(mp, (inum + i)));
  1789. /* Inode not in memory, nothing to do */
  1790. if (!ip) {
  1791. rcu_read_unlock();
  1792. continue;
  1793. }
  1794. /*
  1795. * because this is an RCU protected lookup, we could
  1796. * find a recently freed or even reallocated inode
  1797. * during the lookup. We need to check under the
  1798. * i_flags_lock for a valid inode here. Skip it if it
  1799. * is not valid, the wrong inode or stale.
  1800. */
  1801. spin_lock(&ip->i_flags_lock);
  1802. if (ip->i_ino != inum + i ||
  1803. __xfs_iflags_test(ip, XFS_ISTALE)) {
  1804. spin_unlock(&ip->i_flags_lock);
  1805. rcu_read_unlock();
  1806. continue;
  1807. }
  1808. spin_unlock(&ip->i_flags_lock);
  1809. /*
  1810. * Don't try to lock/unlock the current inode, but we
  1811. * _cannot_ skip the other inodes that we did not find
  1812. * in the list attached to the buffer and are not
  1813. * already marked stale. If we can't lock it, back off
  1814. * and retry.
  1815. */
  1816. if (ip != free_ip &&
  1817. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1818. rcu_read_unlock();
  1819. delay(1);
  1820. goto retry;
  1821. }
  1822. rcu_read_unlock();
  1823. xfs_iflock(ip);
  1824. xfs_iflags_set(ip, XFS_ISTALE);
  1825. /*
  1826. * we don't need to attach clean inodes or those only
  1827. * with unlogged changes (which we throw away, anyway).
  1828. */
  1829. iip = ip->i_itemp;
  1830. if (!iip || xfs_inode_clean(ip)) {
  1831. ASSERT(ip != free_ip);
  1832. xfs_ifunlock(ip);
  1833. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1834. continue;
  1835. }
  1836. iip->ili_last_fields = iip->ili_fields;
  1837. iip->ili_fields = 0;
  1838. iip->ili_logged = 1;
  1839. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1840. &iip->ili_item.li_lsn);
  1841. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1842. &iip->ili_item);
  1843. if (ip != free_ip)
  1844. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1845. }
  1846. xfs_trans_stale_inode_buf(tp, bp);
  1847. xfs_trans_binval(tp, bp);
  1848. }
  1849. xfs_perag_put(pag);
  1850. return 0;
  1851. }
  1852. /*
  1853. * This is called to return an inode to the inode free list.
  1854. * The inode should already be truncated to 0 length and have
  1855. * no pages associated with it. This routine also assumes that
  1856. * the inode is already a part of the transaction.
  1857. *
  1858. * The on-disk copy of the inode will have been added to the list
  1859. * of unlinked inodes in the AGI. We need to remove the inode from
  1860. * that list atomically with respect to freeing it here.
  1861. */
  1862. int
  1863. xfs_ifree(
  1864. xfs_trans_t *tp,
  1865. xfs_inode_t *ip,
  1866. xfs_bmap_free_t *flist)
  1867. {
  1868. int error;
  1869. int delete;
  1870. xfs_ino_t first_ino;
  1871. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1872. ASSERT(ip->i_d.di_nlink == 0);
  1873. ASSERT(ip->i_d.di_nextents == 0);
  1874. ASSERT(ip->i_d.di_anextents == 0);
  1875. ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
  1876. ASSERT(ip->i_d.di_nblocks == 0);
  1877. /*
  1878. * Pull the on-disk inode from the AGI unlinked list.
  1879. */
  1880. error = xfs_iunlink_remove(tp, ip);
  1881. if (error)
  1882. return error;
  1883. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1884. if (error)
  1885. return error;
  1886. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1887. ip->i_d.di_flags = 0;
  1888. ip->i_d.di_dmevmask = 0;
  1889. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1890. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1891. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1892. /*
  1893. * Bump the generation count so no one will be confused
  1894. * by reincarnations of this inode.
  1895. */
  1896. ip->i_d.di_gen++;
  1897. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1898. if (delete)
  1899. error = xfs_ifree_cluster(ip, tp, first_ino);
  1900. return error;
  1901. }
  1902. /*
  1903. * Reallocate the space for if_broot based on the number of records
  1904. * being added or deleted as indicated in rec_diff. Move the records
  1905. * and pointers in if_broot to fit the new size. When shrinking this
  1906. * will eliminate holes between the records and pointers created by
  1907. * the caller. When growing this will create holes to be filled in
  1908. * by the caller.
  1909. *
  1910. * The caller must not request to add more records than would fit in
  1911. * the on-disk inode root. If the if_broot is currently NULL, then
  1912. * if we adding records one will be allocated. The caller must also
  1913. * not request that the number of records go below zero, although
  1914. * it can go to zero.
  1915. *
  1916. * ip -- the inode whose if_broot area is changing
  1917. * ext_diff -- the change in the number of records, positive or negative,
  1918. * requested for the if_broot array.
  1919. */
  1920. void
  1921. xfs_iroot_realloc(
  1922. xfs_inode_t *ip,
  1923. int rec_diff,
  1924. int whichfork)
  1925. {
  1926. struct xfs_mount *mp = ip->i_mount;
  1927. int cur_max;
  1928. xfs_ifork_t *ifp;
  1929. struct xfs_btree_block *new_broot;
  1930. int new_max;
  1931. size_t new_size;
  1932. char *np;
  1933. char *op;
  1934. /*
  1935. * Handle the degenerate case quietly.
  1936. */
  1937. if (rec_diff == 0) {
  1938. return;
  1939. }
  1940. ifp = XFS_IFORK_PTR(ip, whichfork);
  1941. if (rec_diff > 0) {
  1942. /*
  1943. * If there wasn't any memory allocated before, just
  1944. * allocate it now and get out.
  1945. */
  1946. if (ifp->if_broot_bytes == 0) {
  1947. new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
  1948. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1949. ifp->if_broot_bytes = (int)new_size;
  1950. return;
  1951. }
  1952. /*
  1953. * If there is already an existing if_broot, then we need
  1954. * to realloc() it and shift the pointers to their new
  1955. * location. The records don't change location because
  1956. * they are kept butted up against the btree block header.
  1957. */
  1958. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1959. new_max = cur_max + rec_diff;
  1960. new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
  1961. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  1962. XFS_BMAP_BROOT_SPACE_CALC(mp, cur_max),
  1963. KM_SLEEP | KM_NOFS);
  1964. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1965. ifp->if_broot_bytes);
  1966. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1967. (int)new_size);
  1968. ifp->if_broot_bytes = (int)new_size;
  1969. ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
  1970. XFS_IFORK_SIZE(ip, whichfork));
  1971. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  1972. return;
  1973. }
  1974. /*
  1975. * rec_diff is less than 0. In this case, we are shrinking the
  1976. * if_broot buffer. It must already exist. If we go to zero
  1977. * records, just get rid of the root and clear the status bit.
  1978. */
  1979. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  1980. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1981. new_max = cur_max + rec_diff;
  1982. ASSERT(new_max >= 0);
  1983. if (new_max > 0)
  1984. new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
  1985. else
  1986. new_size = 0;
  1987. if (new_size > 0) {
  1988. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1989. /*
  1990. * First copy over the btree block header.
  1991. */
  1992. memcpy(new_broot, ifp->if_broot,
  1993. XFS_BMBT_BLOCK_LEN(ip->i_mount));
  1994. } else {
  1995. new_broot = NULL;
  1996. ifp->if_flags &= ~XFS_IFBROOT;
  1997. }
  1998. /*
  1999. * Only copy the records and pointers if there are any.
  2000. */
  2001. if (new_max > 0) {
  2002. /*
  2003. * First copy the records.
  2004. */
  2005. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2006. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2007. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2008. /*
  2009. * Then copy the pointers.
  2010. */
  2011. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2012. ifp->if_broot_bytes);
  2013. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2014. (int)new_size);
  2015. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2016. }
  2017. kmem_free(ifp->if_broot);
  2018. ifp->if_broot = new_broot;
  2019. ifp->if_broot_bytes = (int)new_size;
  2020. if (ifp->if_broot)
  2021. ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
  2022. XFS_IFORK_SIZE(ip, whichfork));
  2023. return;
  2024. }
  2025. /*
  2026. * This is called when the amount of space needed for if_data
  2027. * is increased or decreased. The change in size is indicated by
  2028. * the number of bytes that need to be added or deleted in the
  2029. * byte_diff parameter.
  2030. *
  2031. * If the amount of space needed has decreased below the size of the
  2032. * inline buffer, then switch to using the inline buffer. Otherwise,
  2033. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2034. * to what is needed.
  2035. *
  2036. * ip -- the inode whose if_data area is changing
  2037. * byte_diff -- the change in the number of bytes, positive or negative,
  2038. * requested for the if_data array.
  2039. */
  2040. void
  2041. xfs_idata_realloc(
  2042. xfs_inode_t *ip,
  2043. int byte_diff,
  2044. int whichfork)
  2045. {
  2046. xfs_ifork_t *ifp;
  2047. int new_size;
  2048. int real_size;
  2049. if (byte_diff == 0) {
  2050. return;
  2051. }
  2052. ifp = XFS_IFORK_PTR(ip, whichfork);
  2053. new_size = (int)ifp->if_bytes + byte_diff;
  2054. ASSERT(new_size >= 0);
  2055. if (new_size == 0) {
  2056. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2057. kmem_free(ifp->if_u1.if_data);
  2058. }
  2059. ifp->if_u1.if_data = NULL;
  2060. real_size = 0;
  2061. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2062. /*
  2063. * If the valid extents/data can fit in if_inline_ext/data,
  2064. * copy them from the malloc'd vector and free it.
  2065. */
  2066. if (ifp->if_u1.if_data == NULL) {
  2067. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2068. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2069. ASSERT(ifp->if_real_bytes != 0);
  2070. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2071. new_size);
  2072. kmem_free(ifp->if_u1.if_data);
  2073. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2074. }
  2075. real_size = 0;
  2076. } else {
  2077. /*
  2078. * Stuck with malloc/realloc.
  2079. * For inline data, the underlying buffer must be
  2080. * a multiple of 4 bytes in size so that it can be
  2081. * logged and stay on word boundaries. We enforce
  2082. * that here.
  2083. */
  2084. real_size = roundup(new_size, 4);
  2085. if (ifp->if_u1.if_data == NULL) {
  2086. ASSERT(ifp->if_real_bytes == 0);
  2087. ifp->if_u1.if_data = kmem_alloc(real_size,
  2088. KM_SLEEP | KM_NOFS);
  2089. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2090. /*
  2091. * Only do the realloc if the underlying size
  2092. * is really changing.
  2093. */
  2094. if (ifp->if_real_bytes != real_size) {
  2095. ifp->if_u1.if_data =
  2096. kmem_realloc(ifp->if_u1.if_data,
  2097. real_size,
  2098. ifp->if_real_bytes,
  2099. KM_SLEEP | KM_NOFS);
  2100. }
  2101. } else {
  2102. ASSERT(ifp->if_real_bytes == 0);
  2103. ifp->if_u1.if_data = kmem_alloc(real_size,
  2104. KM_SLEEP | KM_NOFS);
  2105. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2106. ifp->if_bytes);
  2107. }
  2108. }
  2109. ifp->if_real_bytes = real_size;
  2110. ifp->if_bytes = new_size;
  2111. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2112. }
  2113. void
  2114. xfs_idestroy_fork(
  2115. xfs_inode_t *ip,
  2116. int whichfork)
  2117. {
  2118. xfs_ifork_t *ifp;
  2119. ifp = XFS_IFORK_PTR(ip, whichfork);
  2120. if (ifp->if_broot != NULL) {
  2121. kmem_free(ifp->if_broot);
  2122. ifp->if_broot = NULL;
  2123. }
  2124. /*
  2125. * If the format is local, then we can't have an extents
  2126. * array so just look for an inline data array. If we're
  2127. * not local then we may or may not have an extents list,
  2128. * so check and free it up if we do.
  2129. */
  2130. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2131. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2132. (ifp->if_u1.if_data != NULL)) {
  2133. ASSERT(ifp->if_real_bytes != 0);
  2134. kmem_free(ifp->if_u1.if_data);
  2135. ifp->if_u1.if_data = NULL;
  2136. ifp->if_real_bytes = 0;
  2137. }
  2138. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2139. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2140. ((ifp->if_u1.if_extents != NULL) &&
  2141. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2142. ASSERT(ifp->if_real_bytes != 0);
  2143. xfs_iext_destroy(ifp);
  2144. }
  2145. ASSERT(ifp->if_u1.if_extents == NULL ||
  2146. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2147. ASSERT(ifp->if_real_bytes == 0);
  2148. if (whichfork == XFS_ATTR_FORK) {
  2149. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2150. ip->i_afp = NULL;
  2151. }
  2152. }
  2153. /*
  2154. * This is called to unpin an inode. The caller must have the inode locked
  2155. * in at least shared mode so that the buffer cannot be subsequently pinned
  2156. * once someone is waiting for it to be unpinned.
  2157. */
  2158. static void
  2159. xfs_iunpin(
  2160. struct xfs_inode *ip)
  2161. {
  2162. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2163. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  2164. /* Give the log a push to start the unpinning I/O */
  2165. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  2166. }
  2167. static void
  2168. __xfs_iunpin_wait(
  2169. struct xfs_inode *ip)
  2170. {
  2171. wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
  2172. DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
  2173. xfs_iunpin(ip);
  2174. do {
  2175. prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
  2176. if (xfs_ipincount(ip))
  2177. io_schedule();
  2178. } while (xfs_ipincount(ip));
  2179. finish_wait(wq, &wait.wait);
  2180. }
  2181. void
  2182. xfs_iunpin_wait(
  2183. struct xfs_inode *ip)
  2184. {
  2185. if (xfs_ipincount(ip))
  2186. __xfs_iunpin_wait(ip);
  2187. }
  2188. /*
  2189. * xfs_iextents_copy()
  2190. *
  2191. * This is called to copy the REAL extents (as opposed to the delayed
  2192. * allocation extents) from the inode into the given buffer. It
  2193. * returns the number of bytes copied into the buffer.
  2194. *
  2195. * If there are no delayed allocation extents, then we can just
  2196. * memcpy() the extents into the buffer. Otherwise, we need to
  2197. * examine each extent in turn and skip those which are delayed.
  2198. */
  2199. int
  2200. xfs_iextents_copy(
  2201. xfs_inode_t *ip,
  2202. xfs_bmbt_rec_t *dp,
  2203. int whichfork)
  2204. {
  2205. int copied;
  2206. int i;
  2207. xfs_ifork_t *ifp;
  2208. int nrecs;
  2209. xfs_fsblock_t start_block;
  2210. ifp = XFS_IFORK_PTR(ip, whichfork);
  2211. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2212. ASSERT(ifp->if_bytes > 0);
  2213. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2214. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2215. ASSERT(nrecs > 0);
  2216. /*
  2217. * There are some delayed allocation extents in the
  2218. * inode, so copy the extents one at a time and skip
  2219. * the delayed ones. There must be at least one
  2220. * non-delayed extent.
  2221. */
  2222. copied = 0;
  2223. for (i = 0; i < nrecs; i++) {
  2224. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2225. start_block = xfs_bmbt_get_startblock(ep);
  2226. if (isnullstartblock(start_block)) {
  2227. /*
  2228. * It's a delayed allocation extent, so skip it.
  2229. */
  2230. continue;
  2231. }
  2232. /* Translate to on disk format */
  2233. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2234. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2235. dp++;
  2236. copied++;
  2237. }
  2238. ASSERT(copied != 0);
  2239. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2240. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2241. }
  2242. /*
  2243. * Each of the following cases stores data into the same region
  2244. * of the on-disk inode, so only one of them can be valid at
  2245. * any given time. While it is possible to have conflicting formats
  2246. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2247. * in EXTENTS format, this can only happen when the fork has
  2248. * changed formats after being modified but before being flushed.
  2249. * In these cases, the format always takes precedence, because the
  2250. * format indicates the current state of the fork.
  2251. */
  2252. /*ARGSUSED*/
  2253. STATIC void
  2254. xfs_iflush_fork(
  2255. xfs_inode_t *ip,
  2256. xfs_dinode_t *dip,
  2257. xfs_inode_log_item_t *iip,
  2258. int whichfork,
  2259. xfs_buf_t *bp)
  2260. {
  2261. char *cp;
  2262. xfs_ifork_t *ifp;
  2263. xfs_mount_t *mp;
  2264. static const short brootflag[2] =
  2265. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2266. static const short dataflag[2] =
  2267. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2268. static const short extflag[2] =
  2269. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2270. if (!iip)
  2271. return;
  2272. ifp = XFS_IFORK_PTR(ip, whichfork);
  2273. /*
  2274. * This can happen if we gave up in iformat in an error path,
  2275. * for the attribute fork.
  2276. */
  2277. if (!ifp) {
  2278. ASSERT(whichfork == XFS_ATTR_FORK);
  2279. return;
  2280. }
  2281. cp = XFS_DFORK_PTR(dip, whichfork);
  2282. mp = ip->i_mount;
  2283. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2284. case XFS_DINODE_FMT_LOCAL:
  2285. if ((iip->ili_fields & dataflag[whichfork]) &&
  2286. (ifp->if_bytes > 0)) {
  2287. ASSERT(ifp->if_u1.if_data != NULL);
  2288. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2289. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2290. }
  2291. break;
  2292. case XFS_DINODE_FMT_EXTENTS:
  2293. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2294. !(iip->ili_fields & extflag[whichfork]));
  2295. if ((iip->ili_fields & extflag[whichfork]) &&
  2296. (ifp->if_bytes > 0)) {
  2297. ASSERT(xfs_iext_get_ext(ifp, 0));
  2298. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2299. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2300. whichfork);
  2301. }
  2302. break;
  2303. case XFS_DINODE_FMT_BTREE:
  2304. if ((iip->ili_fields & brootflag[whichfork]) &&
  2305. (ifp->if_broot_bytes > 0)) {
  2306. ASSERT(ifp->if_broot != NULL);
  2307. ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
  2308. XFS_IFORK_SIZE(ip, whichfork));
  2309. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2310. (xfs_bmdr_block_t *)cp,
  2311. XFS_DFORK_SIZE(dip, mp, whichfork));
  2312. }
  2313. break;
  2314. case XFS_DINODE_FMT_DEV:
  2315. if (iip->ili_fields & XFS_ILOG_DEV) {
  2316. ASSERT(whichfork == XFS_DATA_FORK);
  2317. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2318. }
  2319. break;
  2320. case XFS_DINODE_FMT_UUID:
  2321. if (iip->ili_fields & XFS_ILOG_UUID) {
  2322. ASSERT(whichfork == XFS_DATA_FORK);
  2323. memcpy(XFS_DFORK_DPTR(dip),
  2324. &ip->i_df.if_u2.if_uuid,
  2325. sizeof(uuid_t));
  2326. }
  2327. break;
  2328. default:
  2329. ASSERT(0);
  2330. break;
  2331. }
  2332. }
  2333. STATIC int
  2334. xfs_iflush_cluster(
  2335. xfs_inode_t *ip,
  2336. xfs_buf_t *bp)
  2337. {
  2338. xfs_mount_t *mp = ip->i_mount;
  2339. struct xfs_perag *pag;
  2340. unsigned long first_index, mask;
  2341. unsigned long inodes_per_cluster;
  2342. int ilist_size;
  2343. xfs_inode_t **ilist;
  2344. xfs_inode_t *iq;
  2345. int nr_found;
  2346. int clcount = 0;
  2347. int bufwasdelwri;
  2348. int i;
  2349. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2350. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2351. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2352. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2353. if (!ilist)
  2354. goto out_put;
  2355. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2356. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2357. rcu_read_lock();
  2358. /* really need a gang lookup range call here */
  2359. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2360. first_index, inodes_per_cluster);
  2361. if (nr_found == 0)
  2362. goto out_free;
  2363. for (i = 0; i < nr_found; i++) {
  2364. iq = ilist[i];
  2365. if (iq == ip)
  2366. continue;
  2367. /*
  2368. * because this is an RCU protected lookup, we could find a
  2369. * recently freed or even reallocated inode during the lookup.
  2370. * We need to check under the i_flags_lock for a valid inode
  2371. * here. Skip it if it is not valid or the wrong inode.
  2372. */
  2373. spin_lock(&ip->i_flags_lock);
  2374. if (!ip->i_ino ||
  2375. (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
  2376. spin_unlock(&ip->i_flags_lock);
  2377. continue;
  2378. }
  2379. spin_unlock(&ip->i_flags_lock);
  2380. /*
  2381. * Do an un-protected check to see if the inode is dirty and
  2382. * is a candidate for flushing. These checks will be repeated
  2383. * later after the appropriate locks are acquired.
  2384. */
  2385. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2386. continue;
  2387. /*
  2388. * Try to get locks. If any are unavailable or it is pinned,
  2389. * then this inode cannot be flushed and is skipped.
  2390. */
  2391. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2392. continue;
  2393. if (!xfs_iflock_nowait(iq)) {
  2394. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2395. continue;
  2396. }
  2397. if (xfs_ipincount(iq)) {
  2398. xfs_ifunlock(iq);
  2399. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2400. continue;
  2401. }
  2402. /*
  2403. * arriving here means that this inode can be flushed. First
  2404. * re-check that it's dirty before flushing.
  2405. */
  2406. if (!xfs_inode_clean(iq)) {
  2407. int error;
  2408. error = xfs_iflush_int(iq, bp);
  2409. if (error) {
  2410. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2411. goto cluster_corrupt_out;
  2412. }
  2413. clcount++;
  2414. } else {
  2415. xfs_ifunlock(iq);
  2416. }
  2417. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2418. }
  2419. if (clcount) {
  2420. XFS_STATS_INC(xs_icluster_flushcnt);
  2421. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2422. }
  2423. out_free:
  2424. rcu_read_unlock();
  2425. kmem_free(ilist);
  2426. out_put:
  2427. xfs_perag_put(pag);
  2428. return 0;
  2429. cluster_corrupt_out:
  2430. /*
  2431. * Corruption detected in the clustering loop. Invalidate the
  2432. * inode buffer and shut down the filesystem.
  2433. */
  2434. rcu_read_unlock();
  2435. /*
  2436. * Clean up the buffer. If it was delwri, just release it --
  2437. * brelse can handle it with no problems. If not, shut down the
  2438. * filesystem before releasing the buffer.
  2439. */
  2440. bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
  2441. if (bufwasdelwri)
  2442. xfs_buf_relse(bp);
  2443. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2444. if (!bufwasdelwri) {
  2445. /*
  2446. * Just like incore_relse: if we have b_iodone functions,
  2447. * mark the buffer as an error and call them. Otherwise
  2448. * mark it as stale and brelse.
  2449. */
  2450. if (bp->b_iodone) {
  2451. XFS_BUF_UNDONE(bp);
  2452. xfs_buf_stale(bp);
  2453. xfs_buf_ioerror(bp, EIO);
  2454. xfs_buf_ioend(bp, 0);
  2455. } else {
  2456. xfs_buf_stale(bp);
  2457. xfs_buf_relse(bp);
  2458. }
  2459. }
  2460. /*
  2461. * Unlocks the flush lock
  2462. */
  2463. xfs_iflush_abort(iq, false);
  2464. kmem_free(ilist);
  2465. xfs_perag_put(pag);
  2466. return XFS_ERROR(EFSCORRUPTED);
  2467. }
  2468. /*
  2469. * Flush dirty inode metadata into the backing buffer.
  2470. *
  2471. * The caller must have the inode lock and the inode flush lock held. The
  2472. * inode lock will still be held upon return to the caller, and the inode
  2473. * flush lock will be released after the inode has reached the disk.
  2474. *
  2475. * The caller must write out the buffer returned in *bpp and release it.
  2476. */
  2477. int
  2478. xfs_iflush(
  2479. struct xfs_inode *ip,
  2480. struct xfs_buf **bpp)
  2481. {
  2482. struct xfs_mount *mp = ip->i_mount;
  2483. struct xfs_buf *bp;
  2484. struct xfs_dinode *dip;
  2485. int error;
  2486. XFS_STATS_INC(xs_iflush_count);
  2487. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2488. ASSERT(xfs_isiflocked(ip));
  2489. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2490. ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
  2491. *bpp = NULL;
  2492. xfs_iunpin_wait(ip);
  2493. /*
  2494. * For stale inodes we cannot rely on the backing buffer remaining
  2495. * stale in cache for the remaining life of the stale inode and so
  2496. * xfs_imap_to_bp() below may give us a buffer that no longer contains
  2497. * inodes below. We have to check this after ensuring the inode is
  2498. * unpinned so that it is safe to reclaim the stale inode after the
  2499. * flush call.
  2500. */
  2501. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2502. xfs_ifunlock(ip);
  2503. return 0;
  2504. }
  2505. /*
  2506. * This may have been unpinned because the filesystem is shutting
  2507. * down forcibly. If that's the case we must not write this inode
  2508. * to disk, because the log record didn't make it to disk.
  2509. *
  2510. * We also have to remove the log item from the AIL in this case,
  2511. * as we wait for an empty AIL as part of the unmount process.
  2512. */
  2513. if (XFS_FORCED_SHUTDOWN(mp)) {
  2514. error = XFS_ERROR(EIO);
  2515. goto abort_out;
  2516. }
  2517. /*
  2518. * Get the buffer containing the on-disk inode.
  2519. */
  2520. error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
  2521. 0);
  2522. if (error || !bp) {
  2523. xfs_ifunlock(ip);
  2524. return error;
  2525. }
  2526. /*
  2527. * First flush out the inode that xfs_iflush was called with.
  2528. */
  2529. error = xfs_iflush_int(ip, bp);
  2530. if (error)
  2531. goto corrupt_out;
  2532. /*
  2533. * If the buffer is pinned then push on the log now so we won't
  2534. * get stuck waiting in the write for too long.
  2535. */
  2536. if (xfs_buf_ispinned(bp))
  2537. xfs_log_force(mp, 0);
  2538. /*
  2539. * inode clustering:
  2540. * see if other inodes can be gathered into this write
  2541. */
  2542. error = xfs_iflush_cluster(ip, bp);
  2543. if (error)
  2544. goto cluster_corrupt_out;
  2545. *bpp = bp;
  2546. return 0;
  2547. corrupt_out:
  2548. xfs_buf_relse(bp);
  2549. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2550. cluster_corrupt_out:
  2551. error = XFS_ERROR(EFSCORRUPTED);
  2552. abort_out:
  2553. /*
  2554. * Unlocks the flush lock
  2555. */
  2556. xfs_iflush_abort(ip, false);
  2557. return error;
  2558. }
  2559. STATIC int
  2560. xfs_iflush_int(
  2561. struct xfs_inode *ip,
  2562. struct xfs_buf *bp)
  2563. {
  2564. struct xfs_inode_log_item *iip = ip->i_itemp;
  2565. struct xfs_dinode *dip;
  2566. struct xfs_mount *mp = ip->i_mount;
  2567. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2568. ASSERT(xfs_isiflocked(ip));
  2569. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2570. ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
  2571. ASSERT(iip != NULL && iip->ili_fields != 0);
  2572. /* set *dip = inode's place in the buffer */
  2573. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2574. if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
  2575. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2576. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2577. "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2578. __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2579. goto corrupt_out;
  2580. }
  2581. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2582. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2583. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2584. "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2585. __func__, ip->i_ino, ip, ip->i_d.di_magic);
  2586. goto corrupt_out;
  2587. }
  2588. if (S_ISREG(ip->i_d.di_mode)) {
  2589. if (XFS_TEST_ERROR(
  2590. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2591. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2592. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2593. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2594. "%s: Bad regular inode %Lu, ptr 0x%p",
  2595. __func__, ip->i_ino, ip);
  2596. goto corrupt_out;
  2597. }
  2598. } else if (S_ISDIR(ip->i_d.di_mode)) {
  2599. if (XFS_TEST_ERROR(
  2600. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2601. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2602. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2603. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2604. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2605. "%s: Bad directory inode %Lu, ptr 0x%p",
  2606. __func__, ip->i_ino, ip);
  2607. goto corrupt_out;
  2608. }
  2609. }
  2610. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2611. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2612. XFS_RANDOM_IFLUSH_5)) {
  2613. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2614. "%s: detected corrupt incore inode %Lu, "
  2615. "total extents = %d, nblocks = %Ld, ptr 0x%p",
  2616. __func__, ip->i_ino,
  2617. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2618. ip->i_d.di_nblocks, ip);
  2619. goto corrupt_out;
  2620. }
  2621. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2622. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2623. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2624. "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2625. __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
  2626. goto corrupt_out;
  2627. }
  2628. /*
  2629. * Inode item log recovery for v1/v2 inodes are dependent on the
  2630. * di_flushiter count for correct sequencing. We bump the flush
  2631. * iteration count so we can detect flushes which postdate a log record
  2632. * during recovery. This is redundant as we now log every change and
  2633. * hence this can't happen but we need to still do it to ensure
  2634. * backwards compatibility with old kernels that predate logging all
  2635. * inode changes.
  2636. */
  2637. if (ip->i_d.di_version < 3)
  2638. ip->i_d.di_flushiter++;
  2639. /*
  2640. * Copy the dirty parts of the inode into the on-disk
  2641. * inode. We always copy out the core of the inode,
  2642. * because if the inode is dirty at all the core must
  2643. * be.
  2644. */
  2645. xfs_dinode_to_disk(dip, &ip->i_d);
  2646. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2647. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2648. ip->i_d.di_flushiter = 0;
  2649. /*
  2650. * If this is really an old format inode and the superblock version
  2651. * has not been updated to support only new format inodes, then
  2652. * convert back to the old inode format. If the superblock version
  2653. * has been updated, then make the conversion permanent.
  2654. */
  2655. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2656. if (ip->i_d.di_version == 1) {
  2657. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2658. /*
  2659. * Convert it back.
  2660. */
  2661. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2662. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2663. } else {
  2664. /*
  2665. * The superblock version has already been bumped,
  2666. * so just make the conversion to the new inode
  2667. * format permanent.
  2668. */
  2669. ip->i_d.di_version = 2;
  2670. dip->di_version = 2;
  2671. ip->i_d.di_onlink = 0;
  2672. dip->di_onlink = 0;
  2673. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2674. memset(&(dip->di_pad[0]), 0,
  2675. sizeof(dip->di_pad));
  2676. ASSERT(xfs_get_projid(ip) == 0);
  2677. }
  2678. }
  2679. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2680. if (XFS_IFORK_Q(ip))
  2681. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2682. xfs_inobp_check(mp, bp);
  2683. /*
  2684. * We've recorded everything logged in the inode, so we'd like to clear
  2685. * the ili_fields bits so we don't log and flush things unnecessarily.
  2686. * However, we can't stop logging all this information until the data
  2687. * we've copied into the disk buffer is written to disk. If we did we
  2688. * might overwrite the copy of the inode in the log with all the data
  2689. * after re-logging only part of it, and in the face of a crash we
  2690. * wouldn't have all the data we need to recover.
  2691. *
  2692. * What we do is move the bits to the ili_last_fields field. When
  2693. * logging the inode, these bits are moved back to the ili_fields field.
  2694. * In the xfs_iflush_done() routine we clear ili_last_fields, since we
  2695. * know that the information those bits represent is permanently on
  2696. * disk. As long as the flush completes before the inode is logged
  2697. * again, then both ili_fields and ili_last_fields will be cleared.
  2698. *
  2699. * We can play with the ili_fields bits here, because the inode lock
  2700. * must be held exclusively in order to set bits there and the flush
  2701. * lock protects the ili_last_fields bits. Set ili_logged so the flush
  2702. * done routine can tell whether or not to look in the AIL. Also, store
  2703. * the current LSN of the inode so that we can tell whether the item has
  2704. * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
  2705. * need the AIL lock, because it is a 64 bit value that cannot be read
  2706. * atomically.
  2707. */
  2708. iip->ili_last_fields = iip->ili_fields;
  2709. iip->ili_fields = 0;
  2710. iip->ili_logged = 1;
  2711. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2712. &iip->ili_item.li_lsn);
  2713. /*
  2714. * Attach the function xfs_iflush_done to the inode's
  2715. * buffer. This will remove the inode from the AIL
  2716. * and unlock the inode's flush lock when the inode is
  2717. * completely written to disk.
  2718. */
  2719. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2720. /* update the lsn in the on disk inode if required */
  2721. if (ip->i_d.di_version == 3)
  2722. dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
  2723. /* generate the checksum. */
  2724. xfs_dinode_calc_crc(mp, dip);
  2725. ASSERT(bp->b_fspriv != NULL);
  2726. ASSERT(bp->b_iodone != NULL);
  2727. return 0;
  2728. corrupt_out:
  2729. return XFS_ERROR(EFSCORRUPTED);
  2730. }
  2731. /*
  2732. * Return a pointer to the extent record at file index idx.
  2733. */
  2734. xfs_bmbt_rec_host_t *
  2735. xfs_iext_get_ext(
  2736. xfs_ifork_t *ifp, /* inode fork pointer */
  2737. xfs_extnum_t idx) /* index of target extent */
  2738. {
  2739. ASSERT(idx >= 0);
  2740. ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  2741. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2742. return ifp->if_u1.if_ext_irec->er_extbuf;
  2743. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2744. xfs_ext_irec_t *erp; /* irec pointer */
  2745. int erp_idx = 0; /* irec index */
  2746. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2747. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2748. return &erp->er_extbuf[page_idx];
  2749. } else if (ifp->if_bytes) {
  2750. return &ifp->if_u1.if_extents[idx];
  2751. } else {
  2752. return NULL;
  2753. }
  2754. }
  2755. /*
  2756. * Insert new item(s) into the extent records for incore inode
  2757. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2758. */
  2759. void
  2760. xfs_iext_insert(
  2761. xfs_inode_t *ip, /* incore inode pointer */
  2762. xfs_extnum_t idx, /* starting index of new items */
  2763. xfs_extnum_t count, /* number of inserted items */
  2764. xfs_bmbt_irec_t *new, /* items to insert */
  2765. int state) /* type of extent conversion */
  2766. {
  2767. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2768. xfs_extnum_t i; /* extent record index */
  2769. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2770. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2771. xfs_iext_add(ifp, idx, count);
  2772. for (i = idx; i < idx + count; i++, new++)
  2773. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2774. }
  2775. /*
  2776. * This is called when the amount of space required for incore file
  2777. * extents needs to be increased. The ext_diff parameter stores the
  2778. * number of new extents being added and the idx parameter contains
  2779. * the extent index where the new extents will be added. If the new
  2780. * extents are being appended, then we just need to (re)allocate and
  2781. * initialize the space. Otherwise, if the new extents are being
  2782. * inserted into the middle of the existing entries, a bit more work
  2783. * is required to make room for the new extents to be inserted. The
  2784. * caller is responsible for filling in the new extent entries upon
  2785. * return.
  2786. */
  2787. void
  2788. xfs_iext_add(
  2789. xfs_ifork_t *ifp, /* inode fork pointer */
  2790. xfs_extnum_t idx, /* index to begin adding exts */
  2791. int ext_diff) /* number of extents to add */
  2792. {
  2793. int byte_diff; /* new bytes being added */
  2794. int new_size; /* size of extents after adding */
  2795. xfs_extnum_t nextents; /* number of extents in file */
  2796. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2797. ASSERT((idx >= 0) && (idx <= nextents));
  2798. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2799. new_size = ifp->if_bytes + byte_diff;
  2800. /*
  2801. * If the new number of extents (nextents + ext_diff)
  2802. * fits inside the inode, then continue to use the inline
  2803. * extent buffer.
  2804. */
  2805. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2806. if (idx < nextents) {
  2807. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2808. &ifp->if_u2.if_inline_ext[idx],
  2809. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2810. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2811. }
  2812. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2813. ifp->if_real_bytes = 0;
  2814. }
  2815. /*
  2816. * Otherwise use a linear (direct) extent list.
  2817. * If the extents are currently inside the inode,
  2818. * xfs_iext_realloc_direct will switch us from
  2819. * inline to direct extent allocation mode.
  2820. */
  2821. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2822. xfs_iext_realloc_direct(ifp, new_size);
  2823. if (idx < nextents) {
  2824. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2825. &ifp->if_u1.if_extents[idx],
  2826. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2827. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2828. }
  2829. }
  2830. /* Indirection array */
  2831. else {
  2832. xfs_ext_irec_t *erp;
  2833. int erp_idx = 0;
  2834. int page_idx = idx;
  2835. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2836. if (ifp->if_flags & XFS_IFEXTIREC) {
  2837. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2838. } else {
  2839. xfs_iext_irec_init(ifp);
  2840. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2841. erp = ifp->if_u1.if_ext_irec;
  2842. }
  2843. /* Extents fit in target extent page */
  2844. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2845. if (page_idx < erp->er_extcount) {
  2846. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2847. &erp->er_extbuf[page_idx],
  2848. (erp->er_extcount - page_idx) *
  2849. sizeof(xfs_bmbt_rec_t));
  2850. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2851. }
  2852. erp->er_extcount += ext_diff;
  2853. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2854. }
  2855. /* Insert a new extent page */
  2856. else if (erp) {
  2857. xfs_iext_add_indirect_multi(ifp,
  2858. erp_idx, page_idx, ext_diff);
  2859. }
  2860. /*
  2861. * If extent(s) are being appended to the last page in
  2862. * the indirection array and the new extent(s) don't fit
  2863. * in the page, then erp is NULL and erp_idx is set to
  2864. * the next index needed in the indirection array.
  2865. */
  2866. else {
  2867. int count = ext_diff;
  2868. while (count) {
  2869. erp = xfs_iext_irec_new(ifp, erp_idx);
  2870. erp->er_extcount = count;
  2871. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  2872. if (count) {
  2873. erp_idx++;
  2874. }
  2875. }
  2876. }
  2877. }
  2878. ifp->if_bytes = new_size;
  2879. }
  2880. /*
  2881. * This is called when incore extents are being added to the indirection
  2882. * array and the new extents do not fit in the target extent list. The
  2883. * erp_idx parameter contains the irec index for the target extent list
  2884. * in the indirection array, and the idx parameter contains the extent
  2885. * index within the list. The number of extents being added is stored
  2886. * in the count parameter.
  2887. *
  2888. * |-------| |-------|
  2889. * | | | | idx - number of extents before idx
  2890. * | idx | | count |
  2891. * | | | | count - number of extents being inserted at idx
  2892. * |-------| |-------|
  2893. * | count | | nex2 | nex2 - number of extents after idx + count
  2894. * |-------| |-------|
  2895. */
  2896. void
  2897. xfs_iext_add_indirect_multi(
  2898. xfs_ifork_t *ifp, /* inode fork pointer */
  2899. int erp_idx, /* target extent irec index */
  2900. xfs_extnum_t idx, /* index within target list */
  2901. int count) /* new extents being added */
  2902. {
  2903. int byte_diff; /* new bytes being added */
  2904. xfs_ext_irec_t *erp; /* pointer to irec entry */
  2905. xfs_extnum_t ext_diff; /* number of extents to add */
  2906. xfs_extnum_t ext_cnt; /* new extents still needed */
  2907. xfs_extnum_t nex2; /* extents after idx + count */
  2908. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  2909. int nlists; /* number of irec's (lists) */
  2910. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2911. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  2912. nex2 = erp->er_extcount - idx;
  2913. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  2914. /*
  2915. * Save second part of target extent list
  2916. * (all extents past */
  2917. if (nex2) {
  2918. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2919. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  2920. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  2921. erp->er_extcount -= nex2;
  2922. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  2923. memset(&erp->er_extbuf[idx], 0, byte_diff);
  2924. }
  2925. /*
  2926. * Add the new extents to the end of the target
  2927. * list, then allocate new irec record(s) and
  2928. * extent buffer(s) as needed to store the rest
  2929. * of the new extents.
  2930. */
  2931. ext_cnt = count;
  2932. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  2933. if (ext_diff) {
  2934. erp->er_extcount += ext_diff;
  2935. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2936. ext_cnt -= ext_diff;
  2937. }
  2938. while (ext_cnt) {
  2939. erp_idx++;
  2940. erp = xfs_iext_irec_new(ifp, erp_idx);
  2941. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  2942. erp->er_extcount = ext_diff;
  2943. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2944. ext_cnt -= ext_diff;
  2945. }
  2946. /* Add nex2 extents back to indirection array */
  2947. if (nex2) {
  2948. xfs_extnum_t ext_avail;
  2949. int i;
  2950. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2951. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  2952. i = 0;
  2953. /*
  2954. * If nex2 extents fit in the current page, append
  2955. * nex2_ep after the new extents.
  2956. */
  2957. if (nex2 <= ext_avail) {
  2958. i = erp->er_extcount;
  2959. }
  2960. /*
  2961. * Otherwise, check if space is available in the
  2962. * next page.
  2963. */
  2964. else if ((erp_idx < nlists - 1) &&
  2965. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  2966. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  2967. erp_idx++;
  2968. erp++;
  2969. /* Create a hole for nex2 extents */
  2970. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  2971. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  2972. }
  2973. /*
  2974. * Final choice, create a new extent page for
  2975. * nex2 extents.
  2976. */
  2977. else {
  2978. erp_idx++;
  2979. erp = xfs_iext_irec_new(ifp, erp_idx);
  2980. }
  2981. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  2982. kmem_free(nex2_ep);
  2983. erp->er_extcount += nex2;
  2984. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  2985. }
  2986. }
  2987. /*
  2988. * This is called when the amount of space required for incore file
  2989. * extents needs to be decreased. The ext_diff parameter stores the
  2990. * number of extents to be removed and the idx parameter contains
  2991. * the extent index where the extents will be removed from.
  2992. *
  2993. * If the amount of space needed has decreased below the linear
  2994. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  2995. * extent array. Otherwise, use kmem_realloc() to adjust the
  2996. * size to what is needed.
  2997. */
  2998. void
  2999. xfs_iext_remove(
  3000. xfs_inode_t *ip, /* incore inode pointer */
  3001. xfs_extnum_t idx, /* index to begin removing exts */
  3002. int ext_diff, /* number of extents to remove */
  3003. int state) /* type of extent conversion */
  3004. {
  3005. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  3006. xfs_extnum_t nextents; /* number of extents in file */
  3007. int new_size; /* size of extents after removal */
  3008. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  3009. ASSERT(ext_diff > 0);
  3010. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3011. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3012. if (new_size == 0) {
  3013. xfs_iext_destroy(ifp);
  3014. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3015. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3016. } else if (ifp->if_real_bytes) {
  3017. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3018. } else {
  3019. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3020. }
  3021. ifp->if_bytes = new_size;
  3022. }
  3023. /*
  3024. * This removes ext_diff extents from the inline buffer, beginning
  3025. * at extent index idx.
  3026. */
  3027. void
  3028. xfs_iext_remove_inline(
  3029. xfs_ifork_t *ifp, /* inode fork pointer */
  3030. xfs_extnum_t idx, /* index to begin removing exts */
  3031. int ext_diff) /* number of extents to remove */
  3032. {
  3033. int nextents; /* number of extents in file */
  3034. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3035. ASSERT(idx < XFS_INLINE_EXTS);
  3036. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3037. ASSERT(((nextents - ext_diff) > 0) &&
  3038. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3039. if (idx + ext_diff < nextents) {
  3040. memmove(&ifp->if_u2.if_inline_ext[idx],
  3041. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3042. (nextents - (idx + ext_diff)) *
  3043. sizeof(xfs_bmbt_rec_t));
  3044. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3045. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3046. } else {
  3047. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3048. ext_diff * sizeof(xfs_bmbt_rec_t));
  3049. }
  3050. }
  3051. /*
  3052. * This removes ext_diff extents from a linear (direct) extent list,
  3053. * beginning at extent index idx. If the extents are being removed
  3054. * from the end of the list (ie. truncate) then we just need to re-
  3055. * allocate the list to remove the extra space. Otherwise, if the
  3056. * extents are being removed from the middle of the existing extent
  3057. * entries, then we first need to move the extent records beginning
  3058. * at idx + ext_diff up in the list to overwrite the records being
  3059. * removed, then remove the extra space via kmem_realloc.
  3060. */
  3061. void
  3062. xfs_iext_remove_direct(
  3063. xfs_ifork_t *ifp, /* inode fork pointer */
  3064. xfs_extnum_t idx, /* index to begin removing exts */
  3065. int ext_diff) /* number of extents to remove */
  3066. {
  3067. xfs_extnum_t nextents; /* number of extents in file */
  3068. int new_size; /* size of extents after removal */
  3069. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3070. new_size = ifp->if_bytes -
  3071. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3072. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3073. if (new_size == 0) {
  3074. xfs_iext_destroy(ifp);
  3075. return;
  3076. }
  3077. /* Move extents up in the list (if needed) */
  3078. if (idx + ext_diff < nextents) {
  3079. memmove(&ifp->if_u1.if_extents[idx],
  3080. &ifp->if_u1.if_extents[idx + ext_diff],
  3081. (nextents - (idx + ext_diff)) *
  3082. sizeof(xfs_bmbt_rec_t));
  3083. }
  3084. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3085. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3086. /*
  3087. * Reallocate the direct extent list. If the extents
  3088. * will fit inside the inode then xfs_iext_realloc_direct
  3089. * will switch from direct to inline extent allocation
  3090. * mode for us.
  3091. */
  3092. xfs_iext_realloc_direct(ifp, new_size);
  3093. ifp->if_bytes = new_size;
  3094. }
  3095. /*
  3096. * This is called when incore extents are being removed from the
  3097. * indirection array and the extents being removed span multiple extent
  3098. * buffers. The idx parameter contains the file extent index where we
  3099. * want to begin removing extents, and the count parameter contains
  3100. * how many extents need to be removed.
  3101. *
  3102. * |-------| |-------|
  3103. * | nex1 | | | nex1 - number of extents before idx
  3104. * |-------| | count |
  3105. * | | | | count - number of extents being removed at idx
  3106. * | count | |-------|
  3107. * | | | nex2 | nex2 - number of extents after idx + count
  3108. * |-------| |-------|
  3109. */
  3110. void
  3111. xfs_iext_remove_indirect(
  3112. xfs_ifork_t *ifp, /* inode fork pointer */
  3113. xfs_extnum_t idx, /* index to begin removing extents */
  3114. int count) /* number of extents to remove */
  3115. {
  3116. xfs_ext_irec_t *erp; /* indirection array pointer */
  3117. int erp_idx = 0; /* indirection array index */
  3118. xfs_extnum_t ext_cnt; /* extents left to remove */
  3119. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3120. xfs_extnum_t nex1; /* number of extents before idx */
  3121. xfs_extnum_t nex2; /* extents after idx + count */
  3122. int page_idx = idx; /* index in target extent list */
  3123. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3124. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3125. ASSERT(erp != NULL);
  3126. nex1 = page_idx;
  3127. ext_cnt = count;
  3128. while (ext_cnt) {
  3129. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3130. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3131. /*
  3132. * Check for deletion of entire list;
  3133. * xfs_iext_irec_remove() updates extent offsets.
  3134. */
  3135. if (ext_diff == erp->er_extcount) {
  3136. xfs_iext_irec_remove(ifp, erp_idx);
  3137. ext_cnt -= ext_diff;
  3138. nex1 = 0;
  3139. if (ext_cnt) {
  3140. ASSERT(erp_idx < ifp->if_real_bytes /
  3141. XFS_IEXT_BUFSZ);
  3142. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3143. nex1 = 0;
  3144. continue;
  3145. } else {
  3146. break;
  3147. }
  3148. }
  3149. /* Move extents up (if needed) */
  3150. if (nex2) {
  3151. memmove(&erp->er_extbuf[nex1],
  3152. &erp->er_extbuf[nex1 + ext_diff],
  3153. nex2 * sizeof(xfs_bmbt_rec_t));
  3154. }
  3155. /* Zero out rest of page */
  3156. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3157. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3158. /* Update remaining counters */
  3159. erp->er_extcount -= ext_diff;
  3160. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3161. ext_cnt -= ext_diff;
  3162. nex1 = 0;
  3163. erp_idx++;
  3164. erp++;
  3165. }
  3166. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3167. xfs_iext_irec_compact(ifp);
  3168. }
  3169. /*
  3170. * Create, destroy, or resize a linear (direct) block of extents.
  3171. */
  3172. void
  3173. xfs_iext_realloc_direct(
  3174. xfs_ifork_t *ifp, /* inode fork pointer */
  3175. int new_size) /* new size of extents */
  3176. {
  3177. int rnew_size; /* real new size of extents */
  3178. rnew_size = new_size;
  3179. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3180. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3181. (new_size != ifp->if_real_bytes)));
  3182. /* Free extent records */
  3183. if (new_size == 0) {
  3184. xfs_iext_destroy(ifp);
  3185. }
  3186. /* Resize direct extent list and zero any new bytes */
  3187. else if (ifp->if_real_bytes) {
  3188. /* Check if extents will fit inside the inode */
  3189. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3190. xfs_iext_direct_to_inline(ifp, new_size /
  3191. (uint)sizeof(xfs_bmbt_rec_t));
  3192. ifp->if_bytes = new_size;
  3193. return;
  3194. }
  3195. if (!is_power_of_2(new_size)){
  3196. rnew_size = roundup_pow_of_two(new_size);
  3197. }
  3198. if (rnew_size != ifp->if_real_bytes) {
  3199. ifp->if_u1.if_extents =
  3200. kmem_realloc(ifp->if_u1.if_extents,
  3201. rnew_size,
  3202. ifp->if_real_bytes, KM_NOFS);
  3203. }
  3204. if (rnew_size > ifp->if_real_bytes) {
  3205. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3206. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3207. rnew_size - ifp->if_real_bytes);
  3208. }
  3209. }
  3210. /*
  3211. * Switch from the inline extent buffer to a direct
  3212. * extent list. Be sure to include the inline extent
  3213. * bytes in new_size.
  3214. */
  3215. else {
  3216. new_size += ifp->if_bytes;
  3217. if (!is_power_of_2(new_size)) {
  3218. rnew_size = roundup_pow_of_two(new_size);
  3219. }
  3220. xfs_iext_inline_to_direct(ifp, rnew_size);
  3221. }
  3222. ifp->if_real_bytes = rnew_size;
  3223. ifp->if_bytes = new_size;
  3224. }
  3225. /*
  3226. * Switch from linear (direct) extent records to inline buffer.
  3227. */
  3228. void
  3229. xfs_iext_direct_to_inline(
  3230. xfs_ifork_t *ifp, /* inode fork pointer */
  3231. xfs_extnum_t nextents) /* number of extents in file */
  3232. {
  3233. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3234. ASSERT(nextents <= XFS_INLINE_EXTS);
  3235. /*
  3236. * The inline buffer was zeroed when we switched
  3237. * from inline to direct extent allocation mode,
  3238. * so we don't need to clear it here.
  3239. */
  3240. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3241. nextents * sizeof(xfs_bmbt_rec_t));
  3242. kmem_free(ifp->if_u1.if_extents);
  3243. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3244. ifp->if_real_bytes = 0;
  3245. }
  3246. /*
  3247. * Switch from inline buffer to linear (direct) extent records.
  3248. * new_size should already be rounded up to the next power of 2
  3249. * by the caller (when appropriate), so use new_size as it is.
  3250. * However, since new_size may be rounded up, we can't update
  3251. * if_bytes here. It is the caller's responsibility to update
  3252. * if_bytes upon return.
  3253. */
  3254. void
  3255. xfs_iext_inline_to_direct(
  3256. xfs_ifork_t *ifp, /* inode fork pointer */
  3257. int new_size) /* number of extents in file */
  3258. {
  3259. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3260. memset(ifp->if_u1.if_extents, 0, new_size);
  3261. if (ifp->if_bytes) {
  3262. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3263. ifp->if_bytes);
  3264. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3265. sizeof(xfs_bmbt_rec_t));
  3266. }
  3267. ifp->if_real_bytes = new_size;
  3268. }
  3269. /*
  3270. * Resize an extent indirection array to new_size bytes.
  3271. */
  3272. STATIC void
  3273. xfs_iext_realloc_indirect(
  3274. xfs_ifork_t *ifp, /* inode fork pointer */
  3275. int new_size) /* new indirection array size */
  3276. {
  3277. int nlists; /* number of irec's (ex lists) */
  3278. int size; /* current indirection array size */
  3279. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3280. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3281. size = nlists * sizeof(xfs_ext_irec_t);
  3282. ASSERT(ifp->if_real_bytes);
  3283. ASSERT((new_size >= 0) && (new_size != size));
  3284. if (new_size == 0) {
  3285. xfs_iext_destroy(ifp);
  3286. } else {
  3287. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3288. kmem_realloc(ifp->if_u1.if_ext_irec,
  3289. new_size, size, KM_NOFS);
  3290. }
  3291. }
  3292. /*
  3293. * Switch from indirection array to linear (direct) extent allocations.
  3294. */
  3295. STATIC void
  3296. xfs_iext_indirect_to_direct(
  3297. xfs_ifork_t *ifp) /* inode fork pointer */
  3298. {
  3299. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3300. xfs_extnum_t nextents; /* number of extents in file */
  3301. int size; /* size of file extents */
  3302. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3303. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3304. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3305. size = nextents * sizeof(xfs_bmbt_rec_t);
  3306. xfs_iext_irec_compact_pages(ifp);
  3307. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3308. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3309. kmem_free(ifp->if_u1.if_ext_irec);
  3310. ifp->if_flags &= ~XFS_IFEXTIREC;
  3311. ifp->if_u1.if_extents = ep;
  3312. ifp->if_bytes = size;
  3313. if (nextents < XFS_LINEAR_EXTS) {
  3314. xfs_iext_realloc_direct(ifp, size);
  3315. }
  3316. }
  3317. /*
  3318. * Free incore file extents.
  3319. */
  3320. void
  3321. xfs_iext_destroy(
  3322. xfs_ifork_t *ifp) /* inode fork pointer */
  3323. {
  3324. if (ifp->if_flags & XFS_IFEXTIREC) {
  3325. int erp_idx;
  3326. int nlists;
  3327. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3328. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3329. xfs_iext_irec_remove(ifp, erp_idx);
  3330. }
  3331. ifp->if_flags &= ~XFS_IFEXTIREC;
  3332. } else if (ifp->if_real_bytes) {
  3333. kmem_free(ifp->if_u1.if_extents);
  3334. } else if (ifp->if_bytes) {
  3335. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3336. sizeof(xfs_bmbt_rec_t));
  3337. }
  3338. ifp->if_u1.if_extents = NULL;
  3339. ifp->if_real_bytes = 0;
  3340. ifp->if_bytes = 0;
  3341. }
  3342. /*
  3343. * Return a pointer to the extent record for file system block bno.
  3344. */
  3345. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3346. xfs_iext_bno_to_ext(
  3347. xfs_ifork_t *ifp, /* inode fork pointer */
  3348. xfs_fileoff_t bno, /* block number to search for */
  3349. xfs_extnum_t *idxp) /* index of target extent */
  3350. {
  3351. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3352. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3353. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3354. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3355. int high; /* upper boundary in search */
  3356. xfs_extnum_t idx = 0; /* index of target extent */
  3357. int low; /* lower boundary in search */
  3358. xfs_extnum_t nextents; /* number of file extents */
  3359. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3360. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3361. if (nextents == 0) {
  3362. *idxp = 0;
  3363. return NULL;
  3364. }
  3365. low = 0;
  3366. if (ifp->if_flags & XFS_IFEXTIREC) {
  3367. /* Find target extent list */
  3368. int erp_idx = 0;
  3369. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3370. base = erp->er_extbuf;
  3371. high = erp->er_extcount - 1;
  3372. } else {
  3373. base = ifp->if_u1.if_extents;
  3374. high = nextents - 1;
  3375. }
  3376. /* Binary search extent records */
  3377. while (low <= high) {
  3378. idx = (low + high) >> 1;
  3379. ep = base + idx;
  3380. startoff = xfs_bmbt_get_startoff(ep);
  3381. blockcount = xfs_bmbt_get_blockcount(ep);
  3382. if (bno < startoff) {
  3383. high = idx - 1;
  3384. } else if (bno >= startoff + blockcount) {
  3385. low = idx + 1;
  3386. } else {
  3387. /* Convert back to file-based extent index */
  3388. if (ifp->if_flags & XFS_IFEXTIREC) {
  3389. idx += erp->er_extoff;
  3390. }
  3391. *idxp = idx;
  3392. return ep;
  3393. }
  3394. }
  3395. /* Convert back to file-based extent index */
  3396. if (ifp->if_flags & XFS_IFEXTIREC) {
  3397. idx += erp->er_extoff;
  3398. }
  3399. if (bno >= startoff + blockcount) {
  3400. if (++idx == nextents) {
  3401. ep = NULL;
  3402. } else {
  3403. ep = xfs_iext_get_ext(ifp, idx);
  3404. }
  3405. }
  3406. *idxp = idx;
  3407. return ep;
  3408. }
  3409. /*
  3410. * Return a pointer to the indirection array entry containing the
  3411. * extent record for filesystem block bno. Store the index of the
  3412. * target irec in *erp_idxp.
  3413. */
  3414. xfs_ext_irec_t * /* pointer to found extent record */
  3415. xfs_iext_bno_to_irec(
  3416. xfs_ifork_t *ifp, /* inode fork pointer */
  3417. xfs_fileoff_t bno, /* block number to search for */
  3418. int *erp_idxp) /* irec index of target ext list */
  3419. {
  3420. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3421. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3422. int erp_idx; /* indirection array index */
  3423. int nlists; /* number of extent irec's (lists) */
  3424. int high; /* binary search upper limit */
  3425. int low; /* binary search lower limit */
  3426. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3427. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3428. erp_idx = 0;
  3429. low = 0;
  3430. high = nlists - 1;
  3431. while (low <= high) {
  3432. erp_idx = (low + high) >> 1;
  3433. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3434. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3435. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3436. high = erp_idx - 1;
  3437. } else if (erp_next && bno >=
  3438. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3439. low = erp_idx + 1;
  3440. } else {
  3441. break;
  3442. }
  3443. }
  3444. *erp_idxp = erp_idx;
  3445. return erp;
  3446. }
  3447. /*
  3448. * Return a pointer to the indirection array entry containing the
  3449. * extent record at file extent index *idxp. Store the index of the
  3450. * target irec in *erp_idxp and store the page index of the target
  3451. * extent record in *idxp.
  3452. */
  3453. xfs_ext_irec_t *
  3454. xfs_iext_idx_to_irec(
  3455. xfs_ifork_t *ifp, /* inode fork pointer */
  3456. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3457. int *erp_idxp, /* pointer to target irec */
  3458. int realloc) /* new bytes were just added */
  3459. {
  3460. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3461. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3462. int erp_idx; /* indirection array index */
  3463. int nlists; /* number of irec's (ex lists) */
  3464. int high; /* binary search upper limit */
  3465. int low; /* binary search lower limit */
  3466. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3467. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3468. ASSERT(page_idx >= 0);
  3469. ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  3470. ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
  3471. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3472. erp_idx = 0;
  3473. low = 0;
  3474. high = nlists - 1;
  3475. /* Binary search extent irec's */
  3476. while (low <= high) {
  3477. erp_idx = (low + high) >> 1;
  3478. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3479. prev = erp_idx > 0 ? erp - 1 : NULL;
  3480. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3481. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3482. high = erp_idx - 1;
  3483. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3484. (page_idx == erp->er_extoff + erp->er_extcount &&
  3485. !realloc)) {
  3486. low = erp_idx + 1;
  3487. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3488. erp->er_extcount == XFS_LINEAR_EXTS) {
  3489. ASSERT(realloc);
  3490. page_idx = 0;
  3491. erp_idx++;
  3492. erp = erp_idx < nlists ? erp + 1 : NULL;
  3493. break;
  3494. } else {
  3495. page_idx -= erp->er_extoff;
  3496. break;
  3497. }
  3498. }
  3499. *idxp = page_idx;
  3500. *erp_idxp = erp_idx;
  3501. return(erp);
  3502. }
  3503. /*
  3504. * Allocate and initialize an indirection array once the space needed
  3505. * for incore extents increases above XFS_IEXT_BUFSZ.
  3506. */
  3507. void
  3508. xfs_iext_irec_init(
  3509. xfs_ifork_t *ifp) /* inode fork pointer */
  3510. {
  3511. xfs_ext_irec_t *erp; /* indirection array pointer */
  3512. xfs_extnum_t nextents; /* number of extents in file */
  3513. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3514. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3515. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3516. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3517. if (nextents == 0) {
  3518. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3519. } else if (!ifp->if_real_bytes) {
  3520. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3521. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3522. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3523. }
  3524. erp->er_extbuf = ifp->if_u1.if_extents;
  3525. erp->er_extcount = nextents;
  3526. erp->er_extoff = 0;
  3527. ifp->if_flags |= XFS_IFEXTIREC;
  3528. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3529. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3530. ifp->if_u1.if_ext_irec = erp;
  3531. return;
  3532. }
  3533. /*
  3534. * Allocate and initialize a new entry in the indirection array.
  3535. */
  3536. xfs_ext_irec_t *
  3537. xfs_iext_irec_new(
  3538. xfs_ifork_t *ifp, /* inode fork pointer */
  3539. int erp_idx) /* index for new irec */
  3540. {
  3541. xfs_ext_irec_t *erp; /* indirection array pointer */
  3542. int i; /* loop counter */
  3543. int nlists; /* number of irec's (ex lists) */
  3544. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3545. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3546. /* Resize indirection array */
  3547. xfs_iext_realloc_indirect(ifp, ++nlists *
  3548. sizeof(xfs_ext_irec_t));
  3549. /*
  3550. * Move records down in the array so the
  3551. * new page can use erp_idx.
  3552. */
  3553. erp = ifp->if_u1.if_ext_irec;
  3554. for (i = nlists - 1; i > erp_idx; i--) {
  3555. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3556. }
  3557. ASSERT(i == erp_idx);
  3558. /* Initialize new extent record */
  3559. erp = ifp->if_u1.if_ext_irec;
  3560. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3561. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3562. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3563. erp[erp_idx].er_extcount = 0;
  3564. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3565. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3566. return (&erp[erp_idx]);
  3567. }
  3568. /*
  3569. * Remove a record from the indirection array.
  3570. */
  3571. void
  3572. xfs_iext_irec_remove(
  3573. xfs_ifork_t *ifp, /* inode fork pointer */
  3574. int erp_idx) /* irec index to remove */
  3575. {
  3576. xfs_ext_irec_t *erp; /* indirection array pointer */
  3577. int i; /* loop counter */
  3578. int nlists; /* number of irec's (ex lists) */
  3579. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3580. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3581. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3582. if (erp->er_extbuf) {
  3583. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3584. -erp->er_extcount);
  3585. kmem_free(erp->er_extbuf);
  3586. }
  3587. /* Compact extent records */
  3588. erp = ifp->if_u1.if_ext_irec;
  3589. for (i = erp_idx; i < nlists - 1; i++) {
  3590. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3591. }
  3592. /*
  3593. * Manually free the last extent record from the indirection
  3594. * array. A call to xfs_iext_realloc_indirect() with a size
  3595. * of zero would result in a call to xfs_iext_destroy() which
  3596. * would in turn call this function again, creating a nasty
  3597. * infinite loop.
  3598. */
  3599. if (--nlists) {
  3600. xfs_iext_realloc_indirect(ifp,
  3601. nlists * sizeof(xfs_ext_irec_t));
  3602. } else {
  3603. kmem_free(ifp->if_u1.if_ext_irec);
  3604. }
  3605. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3606. }
  3607. /*
  3608. * This is called to clean up large amounts of unused memory allocated
  3609. * by the indirection array. Before compacting anything though, verify
  3610. * that the indirection array is still needed and switch back to the
  3611. * linear extent list (or even the inline buffer) if possible. The
  3612. * compaction policy is as follows:
  3613. *
  3614. * Full Compaction: Extents fit into a single page (or inline buffer)
  3615. * Partial Compaction: Extents occupy less than 50% of allocated space
  3616. * No Compaction: Extents occupy at least 50% of allocated space
  3617. */
  3618. void
  3619. xfs_iext_irec_compact(
  3620. xfs_ifork_t *ifp) /* inode fork pointer */
  3621. {
  3622. xfs_extnum_t nextents; /* number of extents in file */
  3623. int nlists; /* number of irec's (ex lists) */
  3624. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3625. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3626. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3627. if (nextents == 0) {
  3628. xfs_iext_destroy(ifp);
  3629. } else if (nextents <= XFS_INLINE_EXTS) {
  3630. xfs_iext_indirect_to_direct(ifp);
  3631. xfs_iext_direct_to_inline(ifp, nextents);
  3632. } else if (nextents <= XFS_LINEAR_EXTS) {
  3633. xfs_iext_indirect_to_direct(ifp);
  3634. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3635. xfs_iext_irec_compact_pages(ifp);
  3636. }
  3637. }
  3638. /*
  3639. * Combine extents from neighboring extent pages.
  3640. */
  3641. void
  3642. xfs_iext_irec_compact_pages(
  3643. xfs_ifork_t *ifp) /* inode fork pointer */
  3644. {
  3645. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3646. int erp_idx = 0; /* indirection array index */
  3647. int nlists; /* number of irec's (ex lists) */
  3648. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3649. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3650. while (erp_idx < nlists - 1) {
  3651. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3652. erp_next = erp + 1;
  3653. if (erp_next->er_extcount <=
  3654. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3655. memcpy(&erp->er_extbuf[erp->er_extcount],
  3656. erp_next->er_extbuf, erp_next->er_extcount *
  3657. sizeof(xfs_bmbt_rec_t));
  3658. erp->er_extcount += erp_next->er_extcount;
  3659. /*
  3660. * Free page before removing extent record
  3661. * so er_extoffs don't get modified in
  3662. * xfs_iext_irec_remove.
  3663. */
  3664. kmem_free(erp_next->er_extbuf);
  3665. erp_next->er_extbuf = NULL;
  3666. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3667. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3668. } else {
  3669. erp_idx++;
  3670. }
  3671. }
  3672. }
  3673. /*
  3674. * This is called to update the er_extoff field in the indirection
  3675. * array when extents have been added or removed from one of the
  3676. * extent lists. erp_idx contains the irec index to begin updating
  3677. * at and ext_diff contains the number of extents that were added
  3678. * or removed.
  3679. */
  3680. void
  3681. xfs_iext_irec_update_extoffs(
  3682. xfs_ifork_t *ifp, /* inode fork pointer */
  3683. int erp_idx, /* irec index to update */
  3684. int ext_diff) /* number of new extents */
  3685. {
  3686. int i; /* loop counter */
  3687. int nlists; /* number of irec's (ex lists */
  3688. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3689. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3690. for (i = erp_idx; i < nlists; i++) {
  3691. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3692. }
  3693. }
  3694. /*
  3695. * Test whether it is appropriate to check an inode for and free post EOF
  3696. * blocks. The 'force' parameter determines whether we should also consider
  3697. * regular files that are marked preallocated or append-only.
  3698. */
  3699. bool
  3700. xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
  3701. {
  3702. /* prealloc/delalloc exists only on regular files */
  3703. if (!S_ISREG(ip->i_d.di_mode))
  3704. return false;
  3705. /*
  3706. * Zero sized files with no cached pages and delalloc blocks will not
  3707. * have speculative prealloc/delalloc blocks to remove.
  3708. */
  3709. if (VFS_I(ip)->i_size == 0 &&
  3710. VN_CACHED(VFS_I(ip)) == 0 &&
  3711. ip->i_delayed_blks == 0)
  3712. return false;
  3713. /* If we haven't read in the extent list, then don't do it now. */
  3714. if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
  3715. return false;
  3716. /*
  3717. * Do not free real preallocated or append-only files unless the file
  3718. * has delalloc blocks and we are forced to remove them.
  3719. */
  3720. if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
  3721. if (!force || ip->i_delayed_blks == 0)
  3722. return false;
  3723. return true;
  3724. }